




技术领域technical field
本发明涉及微电子散热技术领域,尤其涉及一种新型多尺度热管理结构及微组装方法。The present invention relates to the technical field of heat dissipation of microelectronics, in particular to a novel multi-scale thermal management structure and a micro-assembly method.
背景技术Background technique
在下一代信息系统中,射频阵列孔径将朝着作用距离更远,体积更小的方向发展,广泛采用GaN芯片和阵列化体制。然而,在微波频段,GaN器件具有很高的功率密度,自热效应相当严重。比如,GaN HEMT器件可以获得比传统的Si和GaAs器件高出10多倍的功率密度;其热流密度大幅提高,甚至高达600W/cm2以上。In the next-generation information system, the RF array aperture will develop in the direction of longer range and smaller volume, and GaN chips and arrayed systems are widely used. However, in the microwave frequency band, GaN devices have high power density, and the self-heating effect is quite serious. For example, GaN HEMT devices can achieve more than 10 times higher power density than traditional Si and GaAs devices; their heat flux density is greatly improved, even as high as 600W/cm2 or more.
传统的被动散热技术已经不能满足大功率GaN芯片的散热需求。这是因为:传统被动散热采用金属热沉,通过金属热传导和热辐射散热,不适合大热流密度传热,且体积大、重量大;传统主动散热技术有强制风冷或者强制液体循环制冷,通过空气、液体快速循环散热,或者液体相变散热,缺点是散热系统功耗高、体积大和效率低,不适合小空间高效散热。Traditional passive heat dissipation technology can no longer meet the heat dissipation requirements of high-power GaN chips. This is because: traditional passive heat dissipation uses metal heat sinks, which dissipate heat through metal heat conduction and heat radiation, which are not suitable for heat transfer with large heat flux density, and are bulky and heavy; traditional active heat dissipation technologies include forced air cooling or forced liquid circulation cooling. The rapid circulation of air and liquid for heat dissipation, or liquid phase change heat dissipation, has the disadvantage of high power consumption, large volume and low efficiency of the heat dissipation system, which is not suitable for efficient heat dissipation in small spaces.
利用微米尺度流体实现增强散热的热管理技术成为重要的解决途径。与被动散热和传统的主动散热相比,微流道散热技术具有独特的优势。一方面,以液体为冷却介质的微流道散热技术,可以实现大热流密度传热;另一方面,微流道内液体流动换热的对流换热系数与通道的当量尺寸成反比,在减小通道当量尺寸的同时,既可以显著提高换热效果,又可以大幅度减小体积,使得整个散热系统的结构尺寸及重量得到很大程度的简化和降低。因此,微流道散热技术在微系统集成和大功率电子器件等领域有广泛的应用前景。Thermal management technology that utilizes micron-scale fluids to enhance heat dissipation has become an important solution. Compared with passive cooling and traditional active cooling, micro-channel cooling technology has unique advantages. On the one hand, the micro-channel heat dissipation technology using liquid as the cooling medium can realize heat transfer with large heat flux density; At the same time of the equivalent size of the channel, the heat exchange effect can be significantly improved, and the volume can be greatly reduced, so that the structural size and weight of the entire cooling system can be greatly simplified and reduced. Therefore, microfluidic cooling technology has broad application prospects in the fields of microsystem integration and high-power electronic devices.
在基于GaN芯片的阵列系统和功放组件中,热源分布将呈现垂直方向多层堆叠、水平方向阵列排布的特征;除了提高末端热沉散热能力外,还必须在系统层面综合考虑,构建新型多尺度热管理结构,实现芯片级微米尺度流道、封装级毫米尺度微流道和系统级厘米尺度供液网络的多尺度热管理结构一体化组装集成。In array systems and power amplifier components based on GaN chips, the heat source distribution will be characterized by vertical multi-layer stacking and horizontal array arrangement. The scale thermal management structure realizes the integrated assembly and integration of multi-scale thermal management structures of chip-level micro-scale flow channels, package-level millimeter-scale micro-channels, and system-level centimeter-scale liquid supply networks.
目前,关于微流道散热的专利很多,如CN201710377322.1和CN201810412925.5。但是,如何将微米尺度微流道集成在系统中,将微观尺度的微流道与复杂的宏观系统装备有机结合在一起,从而构建新型多尺度热管理结构的方法还鲜有报道。At present, there are many patents related to micro-channel heat dissipation, such as CN201710377322.1 and CN201810412925.5. However, there are few reports on how to integrate micro-scale micro-channels into the system and organically combine micro-scale micro-channels with complex macro-system equipment to construct novel multi-scale thermal management structures.
发明内容SUMMARY OF THE INVENTION
针对现有技术中存在的问题,本发明的目的在于提供一种新型多尺度热管理结构微组装方法,在实现局部区域高热流密度散热的同时,形成阵列化、系统级热管理结构,满足下一代大功率信息系统的应用需求。其特征在于,新型多尺度热管理结构包括芯片级微米尺度散热微流道、封装级毫米尺度微流道和系统级厘米尺度宏观供液网络。In view of the problems existing in the prior art, the purpose of the present invention is to provide a novel multi-scale thermal management structure micro-assembly method, which can form an arrayed, system-level thermal management structure while achieving high heat flux density in local areas for heat dissipation, which satisfies the following requirements: Application requirements of a generation of high-power information systems. It is characterized in that the new multi-scale thermal management structure includes chip-level micro-scale heat dissipation micro-channels, package-level millimeter-scale micro-channels and system-level centimeter-scale macroscopic liquid supply networks.
本发明采用的技术方案如下:一种新型多尺度热管理结构,包括:大功率芯片、芯片级微米尺度散热微流道、封装级毫米尺度微流道、系统级厘米尺度宏观供液网络,所述大功率芯片通过低空洞焊接与芯片级微米尺度散热微流道低热阻集成,芯片级微米尺度散热微流道与封装级毫米尺度微流道通过气密焊接实现液体网络的互联;封装级毫米尺度微流道与系统级厘米尺度宏观供液网络采用双通水密连接头实现互联;系统级厘米尺度宏观供液网络通过液冷连接器与外部供液系统互联。The technical scheme adopted by the present invention is as follows: a novel multi-scale thermal management structure, comprising: a high-power chip, a chip-level micro-scale heat dissipation micro-channel, a package-level millimeter-scale micro-channel, and a system-level centimeter-scale macroscopic liquid supply network. The high-power chip is integrated with chip-level micron-scale heat dissipation microchannels with low thermal resistance through low-void welding, and chip-level micron-scale heat dissipation microchannels and package-level millimeter-scale microchannels are interconnected through air-tight welding to achieve liquid network; package-level millimeter The scale microchannel and the system-level centimeter-scale macroscopic liquid supply network are interconnected by double-pass watertight connectors; the system-level centimeter-scale macroscopic liquid supply network is interconnected with the external liquid supply system through liquid cooling connectors.
进一步的,所述芯片级微米尺度散热微流道为硅基微流道,其顶部金属化层满足低空洞焊接的要求,其底部金属化层满足气密焊接的要求;芯片级微米尺度散热微流道中,流道尺度在10~100μm之间;对外流体接口位于微流道底部,用于与封装级毫米尺度微流道连接。Further, the chip-level micro-scale heat dissipation micro-channel is a silicon-based micro-channel, the top metallization layer meets the requirements of low-void welding, and the bottom metal layer meets the air-tight welding requirements; chip-level micro-scale heat dissipation micro-channels. In the flow channel, the size of the flow channel is between 10 and 100 μm; the external fluid interface is located at the bottom of the micro flow channel, which is used to connect with the package-level millimeter-scale micro flow channel.
进一步的,所述封装级毫米尺度微流道为集成微流道的金属盒体,其金属化层满足芯片级微米尺度散热微流道与封装级毫米尺度微流道的气密焊接要求;封装级毫米尺度微流道中,流道尺度在100μm~5mm之间;封装级毫米尺度微流道顶部与底部均开设有对外接口,顶部对外接口用于与芯片级微米尺度散热微流道互联,底部对外接口用于与系统级厘米尺度宏观供液网络互联。Further, the package-level millimeter-scale microchannel is a metal box with integrated microchannels, and its metallization layer meets the airtight welding requirements of the chip-level micrometer-scale heat dissipation microchannel and the package-level millimeter-scale microchannel; packaging In the millimeter-scale microchannel, the channel size is between 100μm and 5mm; the top and bottom of the package-level millimeter-scale microchannel are provided with external interfaces. The external interface is used to interconnect with the system-level centimeter-scale macroscopic liquid supply network.
进一步的,所述系统级厘米尺度宏观供液网络为集成分流网络的大尺寸金属盒体,流道尺度在1mm~1cm之间;系统级厘米尺度宏观供液网络顶部与底部均开设有对外接口,顶部对外接口用于与封装级毫米尺度微流道互联,底部对外接口用于与外部供液系统互联。Further, the system-level centimeter-scale macroscopic liquid supply network is a large-sized metal box with an integrated shunt network, and the flow channel size is between 1 mm and 1 cm; the top and bottom of the system-level centimeter-scale macroscopic liquid supply network are provided with external interfaces. , the top external interface is used to interconnect with the package-level millimeter-scale microchannel, and the bottom external interface is used to interconnect with the external liquid supply system.
进一步的,芯片级微米尺度散热微流道对外流体接口与封装级毫米尺度微流道顶部对外接口尺寸均在500μm~3mm之间;封装级毫米尺度微流道底部对外接口与系统级厘米尺度宏观供液网络顶部对外接口尺寸均在1mm~3cm之间;系统级厘米尺度宏观供液网络的对外接口尺寸均在1cm~10cm之间。Further, the external fluid interface of the chip-level micro-scale heat dissipation micro-channel and the external interface of the package-level millimeter-scale micro-channel are both between 500 μm and 3 mm; the external interface of the package-level millimeter-scale micro-channel bottom and the system-level centimeter-scale macro The size of the external interface at the top of the liquid supply network is between 1mm and 3cm; the size of the external interface of the system-level centimeter-scale macroscopic liquid supply network is between 1cm and 10cm.
进一步的,所述芯片级微米尺度散热微流道、封装级毫米尺度微流道、系统级厘米尺度宏观供液网络对外接口形状为圆形、椭圆形或方形其中一种;互联处接口形状相同。Further, the external interface shape of the chip-level micro-scale heat dissipation micro-channel, package-level millimeter-scale micro-channel, and system-level centimeter-scale macroscopic liquid supply network is one of a circle, an ellipse or a square shape; the shape of the interface at the interconnection is the same .
进一步的,所述低热阻集成为金锗共晶或纳米银浆烧结焊接工艺。Further, the low thermal resistance is integrated into a gold-germanium eutectic or nano-silver paste sintering and welding process.
进一步的,所述气密焊接为金锡共晶工艺或其他耐流体腐蚀的焊接工艺。Further, the airtight welding is a gold-tin eutectic process or other fluid corrosion-resistant welding process.
进一步的,所述封装级毫米尺度微流道具有多个顶部接口,可对应互联多个芯片级微米尺度散热微流道。Further, the package-level millimeter-scale microchannel has a plurality of top interfaces, which can correspond to interconnect a plurality of chip-level micrometer-scale heat dissipation microchannels.
本发明还提供了一种新型多尺度热管理结构微组装方法,包括以下步骤:The present invention also provides a novel multi-scale thermal management structure micro-assembly method, comprising the following steps:
步骤1、采用低热阻集成工艺,将大功率芯片低空洞焊接在微米尺度硅基微流道表面;Step 1. Using a low thermal resistance integration process, a high-power chip with low voids is welded on the surface of a micron-scale silicon-based microchannel;
步骤2、采用气密焊接工艺,将微米尺度硅基微流道焊接在集成微流道的金属封装盒体上;
步骤3、采用双通水密连接头插接工艺,将金属封装盒体互联到集成分流网络的大尺寸金属盒体上;
步骤4、将集成分流网络的大尺寸金属盒体通过液冷连接器与外部供液系统互联。
与现有技术相比,采用上述技术方案的有益效果为:Compared with the prior art, the beneficial effects of adopting the above technical solution are:
(1)针对基于GaN芯片的阵列系统和功放组件,通过芯片级微米尺度散热微流道的增强散热效应,显著提高了末端热沉的散热效率,实现了600W/cm2以上的局部高散热能力;并在系统层面综合考虑,构建了跨越芯片级微米尺度微流道、封装级毫米尺度微流道和系统级厘米尺度供液网络的多尺度热管理结构,解决了微观尺度的微流道与复杂宏观系统装备有机结合的技术难题;通过流道尺度的逐级递增,解决了阵列化微流道均匀散热难题。(1) For array systems and power amplifier components based on GaN chips, the enhanced heat dissipation effect of chip-level micro-scale heat dissipation microchannels significantly improves the heat dissipation efficiency of the end heat sink, and achieves a local high heat dissipation capacity of more than 600W/cm2 ; And comprehensively considered at the system level, a multi-scale thermal management structure spanning chip-scale micro-scale micro-channels, package-level millimeter-scale micro-channels, and system-level centimeter-scale liquid supply networks is constructed, solving the problem of micro-scale micro-channels and micro-channels. The technical problem of the organic combination of complex macro system equipment; through the step-by-step increase in the size of the flow channel, the problem of uniform heat dissipation of the arrayed micro-channel is solved.
(2)通过使用多温度梯度焊接技术,在封装级实现了芯片级微米尺度流道与封装级毫米尺度微流道的气密焊接,在系统级实现了封装级毫米尺度微流道和系统级厘米尺度供液网络的水密连接,可满足阵列化系统的散热需求。(2) By using the multi-temperature gradient welding technology, the airtight welding of the chip-level micro-scale flow channel and the packaging-level millimeter-scale micro-channel is realized at the packaging level, and the package-level millimeter-scale micro-channel and the system-level micro-channel are realized at the system level. The watertight connection of the centimeter-scale liquid supply network can meet the cooling requirements of the arrayed system.
附图说明Description of drawings
图1是本发明的多尺度热管理结构剖面示意图。FIG. 1 is a schematic cross-sectional view of a multi-scale thermal management structure of the present invention.
图2是本发明的芯片级微米尺度散热微流道切面示意图。FIG. 2 is a schematic cross-sectional view of a chip-scale micron-scale heat dissipation microchannel of the present invention.
图3是本发明的封装级毫米尺度微流道正面示意图。FIG. 3 is a schematic front view of a package-level millimeter-scale microfluidic channel of the present invention.
图4是本发明的封装级毫米尺度微流道切面示意图。FIG. 4 is a schematic cross-sectional view of a package-level millimeter-scale microchannel of the present invention.
图5是本发明的系统级厘米尺度宏观供液网络切面示意图。5 is a schematic cross-sectional view of a system-level centimeter-scale macroscopic liquid supply network of the present invention.
附图标记:1.大功率芯片;2.芯片级微米尺度散热微流道;3.微米尺度典型流道;4.芯片级微米尺度散热微流道对外流体接口;5.封装级毫米尺度微流道;6.封装级毫米尺度微流道顶部对外接口;7.毫米尺度典型流道;8.封装级毫米尺度微流道底部对外接口;9.双通水密连接头;10.系统级厘米尺度宏观供液网络;11.系统级厘米尺度宏观供液网络顶部对外接口;12.厘米尺度典型流道;13.系统级厘米尺度宏观供液网络底部对外接口;14.液冷连接器。Reference signs: 1. High-power chip; 2. Chip-level micro-scale heat dissipation micro-channel; 3. Micro-scale typical flow channel; 4. Chip-level micro-scale heat dissipation micro-channel external fluid interface; 5. Package-level millimeter-scale micro-channel Flow channel; 6. External interface at the top of package-level millimeter-scale microchannel; 7. Typical flow channel at millimeter-scale; 8. External interface at the bottom of package-level millimeter-scale microchannel; 9. Double-pass watertight connector; 10. System-level centimeter Scale macroscopic liquid supply network; 11. System-level centimeter-scale macroscopic liquid supply network top external interface; 12. Centimeter-scale typical flow channel; 13. System-level centimeter-scale macroscopic liquid supply network bottom external interface; 14. Liquid cooling connector.
具体实施方式Detailed ways
下面结合附图对本发明做进一步描述。The present invention will be further described below with reference to the accompanying drawings.
如图1所示,本发明提供了一种新型多尺度热管理结构,包括:大功率芯片、芯片级微米尺度散热微流道、封装级毫米尺度微流道、系统级厘米尺度宏观供液网络,所述大功率芯片通过低空洞焊接与芯片级微米尺度散热微流道低热阻集成,芯片级微米尺度散热微流道与封装级毫米尺度微流道通过气密焊接实现液体网络的互联;封装级毫米尺度微流道与系统级厘米尺度宏观供液网络采用双通水密连接头实现互联;系统级厘米尺度宏观供液网络通过液冷连接器与外部供液系统互联。As shown in FIG. 1 , the present invention provides a novel multi-scale thermal management structure, including: high-power chips, chip-level micro-scale heat dissipation micro-channels, package-level millimeter-scale micro-channels, and system-level centimeter-scale macroscopic liquid supply networks , the high-power chip is integrated with chip-level micron-scale heat dissipation microchannels with low thermal resistance through low-void welding, and chip-level micron-scale heat dissipation microchannels and package-level millimeter-scale microchannels are interconnected through air-tight welding to realize the interconnection of liquid networks; packaging; The millimeter-scale microchannels and the system-level centimeter-scale macroscopic liquid supply network are interconnected with double-pass watertight connectors; the system-level centimeter-scale macroscopic liquid supply network is interconnected with the external liquid supply system through liquid cooling connectors.
在一个优选实施例中,所述大功率芯片采用大功率GaN芯片,其底部金属化层满足低空洞焊接要求。In a preferred embodiment, the high-power chip adopts a high-power GaN chip, and its bottom metallization layer meets the requirements of low-void soldering.
如图2所示,芯片级微米尺度散热微流道为硅基微流道,其顶部金属化层满足低空洞焊接的要求,其底部金属化层满足气密焊接的要求;采用硅基MEMS工艺制备。As shown in Figure 2, the chip-scale micro-scale heat dissipation micro-channel is a silicon-based micro-channel, the top metallization layer meets the requirements of low-void welding, and the bottom metallization layer meets the requirements of air-tight welding; the silicon-based MEMS process is adopted preparation.
芯片级微米尺度散热微流道中,尺度流道尺度在10~100μm之间;对外流体接口位于微流道底部,用于与封装级毫米尺度微流道连接。In the chip-scale micro-scale heat dissipation micro-channel, the scale-scale channel scale is between 10 and 100 μm; the external fluid interface is located at the bottom of the micro-channel, which is used to connect with the package-level millimeter-scale micro-channel.
如图3、4所示,封装级毫米尺度微流道为集成微流道的金属盒体,其金属化层满足芯片级微米尺度散热微流道与封装级毫米尺度微流道的气密焊接要求,采用精密金属机械加工技术结合真空扩散焊接技术制备而成;As shown in Figures 3 and 4, the package-level millimeter-scale microchannel is a metal box with integrated microchannels, and its metallization layer satisfies the airtight welding of chip-level micrometer-scale heat dissipation microchannels and package-level millimeter-scale microchannels. It is prepared by using precision metal machining technology combined with vacuum diffusion welding technology;
封装级毫米尺度微流道中,流道尺度在100μm~5mm之间;封装级毫米尺度微流道顶部与底部均开设有对外接口,顶部对外接口用于与芯片级微米尺度散热微流道互联,底部对外接口用于与系统级厘米尺度宏观供液网络互联。In the package-level millimeter-scale microchannel, the channel size is between 100μm and 5mm; the top and bottom of the package-level millimeter-scale microchannel are provided with external interfaces, and the top external interface is used to interconnect with the chip-level micrometer-scale heat dissipation microchannel. The bottom external interface is used to interconnect with the system-level centimeter-scale macroscopic liquid supply network.
如图5所示,系统级厘米尺度宏观供液网络为集成分流网络的大尺寸金属盒体,采用金属3D打印技术制备,流道尺度在1mm~1cm之间;系统级厘米尺度宏观供液网络顶部与底部均开设有对外接口,顶部对外接口用于与封装级毫米尺度微流道互联,底部对外接口用于与外部供液系统互联。As shown in Figure 5, the system-level centimeter-scale macroscopic liquid supply network is a large-sized metal box with an integrated shunt network, prepared by metal 3D printing technology, and the flow channel size is between 1mm and 1cm; the system-level centimeter-scale macroscopic liquid supply network Both the top and the bottom are provided with external interfaces, the top external interface is used to interconnect with the package-level millimeter-scale microchannel, and the bottom external interface is used to interconnect with the external liquid supply system.
在一个优选实施例中,芯片级微米尺度散热微流道对外流体接口与封装级毫米尺度微流道顶部对外接口尺寸均在500μm~3mm之间;封装级毫米尺度微流道底部对外接口与系统级厘米尺度宏观供液网络顶部对外接口尺寸均在1mm~3cm之间;系统级厘米尺度宏观供液网络的对外接口尺寸均在1cm~10cm之间。In a preferred embodiment, the size of the external fluid interface of the chip-level micro-scale heat dissipation micro-channel and the external interface of the package-level millimeter-scale micro-channel top is between 500 μm and 3 mm; the external interface of the package-level millimeter-scale micro-channel bottom external interface and system The size of the external interface at the top of the centimeter-scale macroscopic liquid supply network is between 1mm and 3cm; the size of the external interface of the system-level centimeter-scale macroscopic liquid supply network is between 1cm and 10cm.
在一个优选实施例中,所述芯片级微米尺度散热微流道、封装级毫米尺度微流道、系统级厘米尺度宏观供液网络对外接口形状为圆形、椭圆形或方形其中一种;互联处接口形状相同。In a preferred embodiment, the external interface shape of the chip-level micro-scale heat dissipation micro-channel, package-level millimeter-scale micro-channel, and system-level centimeter-scale macroscopic liquid supply network is one of a circle, an ellipse or a square; The shape of the interface is the same.
在本实施例中,芯片级微米尺度散热微流道的流道尺度为50微米;对外流体接口为圆形,典型接口尺寸为1mm。In this embodiment, the channel size of the chip-level micro-scale heat dissipation micro-channel is 50 microns; the external fluid interface is circular, and the typical interface size is 1 mm.
封装级毫米尺度微流道的流道尺度为1mm;封装级毫米尺度微流道顶部对外接口为圆形,接口尺寸为1mm;封装级毫米尺度微流道底部对外流体接口为圆形,接口尺寸为3mm。The flow channel dimension of the package-level millimeter-scale microchannel is 1mm; the external interface of the package-level millimeter-scale microchannel is circular at the top, and the interface size is 1mm; the external fluid interface of the package-level millimeter-scale microchannel is circular, and the interface size is 1mm. is 3mm.
系统级厘米尺度宏观供液网络中流道尺度为1cm;系统级厘米尺度宏观供液网络顶部对外接口为圆形,接口尺寸为3mm;系统级厘米尺度宏观供液网络底部对外接口为圆形,接口尺寸为1cm。The size of the flow channel in the system-level centimeter-scale macroscopic liquid supply network is 1cm; the external interface at the top of the system-level centimeter-scale macroscopic liquid supply network is circular, and the interface size is 3mm; The size is 1cm.
在一个优选实施例中,所述低热阻集成为纳米银浆烧结焊接工艺。In a preferred embodiment, the low thermal resistance is integrated into a nano-silver paste sintering and welding process.
在一个优选实施例中,所述气密焊接为金锡共晶工艺。In a preferred embodiment, the hermetic welding is a gold-tin eutectic process.
在一个优选实施例中,所述封装级毫米尺度微流道具有多个顶部接口,可对应互联多个芯片级微米尺度散热微流道。In a preferred embodiment, the package-level millimeter-scale microfluidic channel has a plurality of top interfaces, which can correspond to interconnect a plurality of chip-level micrometer-scale heat dissipation microfluidic channels.
本发明还提供了一种新型多尺度热管理结构微组装方法,包括以下步骤:The present invention also provides a novel multi-scale thermal management structure micro-assembly method, comprising the following steps:
步骤1、采用纳米银浆烧结工艺,将大功率芯片低空洞焊接在微米尺度硅基微流道表面;Step 1. Using the nano-silver paste sintering process, the high-power chip is welded to the surface of the micro-scale silicon-based micro-channel with low voids;
步骤2、采用金锡共晶工艺,将微米尺度硅基微流道焊接在集成微流道的金属封装盒体上;
步骤3、采用双通水密连接头插接工艺,将金属封装盒体互联到集成分流网络的大尺寸金属盒体上;
步骤4、将集成分流网络的大尺寸金属盒体通过液冷连接器与外部供液系统互联。
通过微组装方法将大功率芯片与三种结构集成在一起。其中,微组装方法的集成温度梯度应≥3个。The high-power chip was integrated with the three structures by a micro-assembly method. Among them, the integration temperature gradient of the micro-assembly method should be ≥3.
采用本发明的新型多尺度热管理结构微组装方法,构建了跨越芯片级微米尺度微流道、封装级毫米尺度微流道和系统级厘米尺度供液网络的多尺度热管理结构,解决了微观尺度的微流道与复杂宏观系统装备有机结合的技术难题;通过流道尺度的逐级递增,解决了阵列化微流道均匀散热难题。在封装级实现了芯片级微米尺度流道与封装级毫米尺度微流道的气密焊接,在系统级实现了封装级毫米尺度微流道和系统级厘米尺度供液网络的水密连接,可满足阵列化系统的散热需求。局部散热能力可达到600W/cm2以上。而普通的单一尺度微流道散热器或散热网络,无法同时实现阵列化、局部高散热能力。By adopting the novel multi-scale thermal management structure micro-assembly method of the present invention, a multi-scale thermal management structure spanning chip-level micro-scale micro-channels, package-level millimeter-scale micro-channels and system-level centimeter-scale liquid supply networks is constructed, which solves the problem of micro-scale thermal management. The technical problem of organically combining large-scale micro-channels with complex macro-system equipment; through the step-by-step increase in the size of the channels, the problem of uniform heat dissipation of the arrayed micro-channels is solved. At the packaging level, the airtight welding of the chip-level micro-scale flow channel and the packaging-level millimeter-scale micro-channel is realized, and the water-tight connection between the packaging-level millimeter-scale micro-channel and the system-level centimeter-scale liquid supply network is realized at the system level, which can meet the requirements of Cooling requirements for arrayed systems. The local heat dissipation capacity can reach more than 600W/cm2 . However, ordinary single-scale micro-channel radiators or heat dissipation networks cannot achieve arrayed and local high heat dissipation capabilities at the same time.
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。如果本领域技术人员,在不脱离本发明的精神所做的非实质性改变或改进,都应该属于本发明权利要求保护的范围。The present invention is not limited to the foregoing specific embodiments. The present invention extends to any new features or any new combination disclosed in this specification, as well as any new method or process steps or any new combination disclosed. Any insubstantial changes or improvements made by those skilled in the art without departing from the spirit of the present invention shall fall within the scope of protection of the claims of the present invention.
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。All features disclosed in this specification, or steps in all methods or processes disclosed, may be combined in any way except mutually exclusive features and/or steps.
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。Any feature disclosed in this specification, unless expressly stated otherwise, may be replaced by other equivalent or alternative features serving a similar purpose. That is, unless expressly stated otherwise, each feature is but one example of a series of equivalent or similar features.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010801282.0ACN112086415B (en) | 2020-08-11 | 2020-08-11 | A Novel Multiscale Thermal Management Structure and Micro-assembly Method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010801282.0ACN112086415B (en) | 2020-08-11 | 2020-08-11 | A Novel Multiscale Thermal Management Structure and Micro-assembly Method |
| Publication Number | Publication Date |
|---|---|
| CN112086415A CN112086415A (en) | 2020-12-15 |
| CN112086415Btrue CN112086415B (en) | 2022-08-02 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010801282.0AActiveCN112086415B (en) | 2020-08-11 | 2020-08-11 | A Novel Multiscale Thermal Management Structure and Micro-assembly Method |
| Country | Link |
|---|---|
| CN (1) | CN112086415B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113299618B (en)* | 2021-04-29 | 2023-07-14 | 中国电子科技集团公司第二十九研究所 | A three-dimensional integrated high-efficiency heat dissipation packaging structure and its preparation method |
| CN113327904B (en)* | 2021-04-29 | 2023-06-02 | 中国电子科技集团公司第二十九研究所 | A double-sided high-efficiency heat dissipation hermetic packaging structure and its preparation method |
| CN113286416B (en)* | 2021-05-20 | 2022-05-17 | 中国电子科技集团公司第二十九研究所 | A printed circuit board integrated structure with embedded micro-channel and preparation method thereof |
| CN113611695B (en)* | 2021-07-12 | 2022-08-05 | 南京中电芯谷高频器件产业技术研究院有限公司 | Van-level GaN-based solid-state power source system and manufacturing method thereof |
| CN113784501B (en)* | 2021-08-17 | 2022-12-13 | 中国电子科技集团公司第二十九研究所 | A printed circuit board integrated structure with embedded micro-channel and its manufacturing method |
| CN114256175B (en)* | 2021-12-07 | 2023-09-01 | 中国电子科技集团公司第二十九研究所 | Tile type TR (transmitter-receiver) component embedded in micro-channel and preparation method thereof |
| CN115274586A (en)* | 2022-07-28 | 2022-11-01 | 四川九洲电器集团有限责任公司 | Microfluid radiator suitable for high-power bare chip heat dissipation |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105682428A (en)* | 2016-03-28 | 2016-06-15 | 中国电子科技集团公司第二十九研究所 | High-power chip heat radiation device manufacturing method |
| CN107275297A (en)* | 2017-05-25 | 2017-10-20 | 中国电子科技集团公司第二十九研究所 | A kind of microfluid heat dissipation channel, heat dissipating method and preparation method |
| CN108666283A (en)* | 2018-05-03 | 2018-10-16 | 中国电子科技集团公司第二十九研究所 | A kind of microchannel heat sink structure and preparation method thereof |
| CN109411427A (en)* | 2018-09-06 | 2019-03-01 | 中国电子科技集团公司第二十九研究所 | A kind of fluid channel Radiator and its preparation method |
| CN109524373A (en)* | 2018-11-19 | 2019-03-26 | 中国电子科技集团公司第五十八研究所 | The three-dimensional active heat removal encapsulating structure and its manufacture craft of embedded fluid channel |
| CN110255490A (en)* | 2019-06-26 | 2019-09-20 | 中国电子科技集团公司第三十八研究所 | Integrated fluid channel radiator structure, preparation method and wafer level packaging structure |
| CN110707059A (en)* | 2019-09-26 | 2020-01-17 | 上海交通大学 | A multi-dimensional mesh mixed microchannel fluid radiator |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7016748B2 (en)* | 2002-04-30 | 2006-03-21 | Lsi Logic Corporation | Collaborative integration of hybrid electronic and micro and sub-micro level aggregates |
| US6898082B2 (en)* | 2002-05-10 | 2005-05-24 | Serguei V. Dessiatoun | Enhanced heat transfer structure with heat transfer members of variable density |
| US20070212678A1 (en)* | 2004-04-23 | 2007-09-13 | Amgen Inc. | Method And Apparatus For Predicting Aggregation Kinetics Of A Biologically Active Material |
| US20060231237A1 (en)* | 2005-03-21 | 2006-10-19 | Carlos Dangelo | Apparatus and method for cooling ICs using nano-rod based chip-level heat sinks |
| US8479806B2 (en)* | 2007-11-30 | 2013-07-09 | University Of Hawaii | Two-phase cross-connected micro-channel heat sink |
| US20100091447A1 (en)* | 2008-10-10 | 2010-04-15 | Dell Products, Lp | System and Method for Providing Liquid Cooling of Memory Devices |
| US8989226B2 (en)* | 2009-08-31 | 2015-03-24 | Xi'an Focuslight Technologies Co., Ltd. | Cooling module for laser, fabricating method thereof, and semiconductor laser fabricated from the module |
| US8912643B2 (en)* | 2012-12-10 | 2014-12-16 | General Electric Company | Electronic device cooling with microjet impingement and method of assembly |
| CN107293496B (en)* | 2017-05-09 | 2019-09-27 | 中国电子科技集团公司第五十五研究所 | Chip-scale integrated microfluidic radiating module and preparation method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105682428A (en)* | 2016-03-28 | 2016-06-15 | 中国电子科技集团公司第二十九研究所 | High-power chip heat radiation device manufacturing method |
| CN107275297A (en)* | 2017-05-25 | 2017-10-20 | 中国电子科技集团公司第二十九研究所 | A kind of microfluid heat dissipation channel, heat dissipating method and preparation method |
| CN108666283A (en)* | 2018-05-03 | 2018-10-16 | 中国电子科技集团公司第二十九研究所 | A kind of microchannel heat sink structure and preparation method thereof |
| CN109411427A (en)* | 2018-09-06 | 2019-03-01 | 中国电子科技集团公司第二十九研究所 | A kind of fluid channel Radiator and its preparation method |
| CN109524373A (en)* | 2018-11-19 | 2019-03-26 | 中国电子科技集团公司第五十八研究所 | The three-dimensional active heat removal encapsulating structure and its manufacture craft of embedded fluid channel |
| CN110255490A (en)* | 2019-06-26 | 2019-09-20 | 中国电子科技集团公司第三十八研究所 | Integrated fluid channel radiator structure, preparation method and wafer level packaging structure |
| CN110707059A (en)* | 2019-09-26 | 2020-01-17 | 上海交通大学 | A multi-dimensional mesh mixed microchannel fluid radiator |
| Publication number | Publication date |
|---|---|
| CN112086415A (en) | 2020-12-15 |
| Publication | Publication Date | Title |
|---|---|---|
| CN112086415B (en) | A Novel Multiscale Thermal Management Structure and Micro-assembly Method | |
| US11018077B2 (en) | Modular microjet cooling of packaged electronic components | |
| CN113327904B (en) | A double-sided high-efficiency heat dissipation hermetic packaging structure and its preparation method | |
| CN107293496B (en) | Chip-scale integrated microfluidic radiating module and preparation method | |
| CN108735693B (en) | High heat dissipation silicon/glass composite interposer board and manufacturing method thereof | |
| CN113056087B (en) | Printed circuit board embedded with micro-channel and preparation method thereof | |
| CN108336045A (en) | The microchannel cooling system constituted using the imitative Airfoil Sections cooling fin of 3D printing | |
| CN115241734B (en) | Uniform temperature and lightweight heat sink for single-tube laser chip and fiber-coupled semiconductor laser | |
| CN109585399B (en) | A high-efficiency thermally conductive chip substrate structure and preparation method | |
| WO2020248905A1 (en) | Wafer-level 3d stacked microchannel heat dissipation structure and manufacturing method therefor | |
| CN112340694B (en) | Preparation method of glass micro-channel radiator for gallium nitride power amplifier chip | |
| CN112071818B (en) | Phase-change micro-cooling method and device for micro-system | |
| CN114300428A (en) | A microfluidic package structure capable of dissipating heat from six sides and a manufacturing method thereof | |
| CN108666283B (en) | Micro-channel radiator structure and preparation method thereof | |
| CN113260138B (en) | Printed circuit board with embedded array micro-channel and preparation method | |
| US20160218048A1 (en) | Microfluidic channels for thermal management of microelectronics | |
| CN114783970A (en) | A high-power radio frequency array three-dimensional heterogeneous microfluidic cooling device | |
| CN109560054A (en) | A kind of metallic micro channel heat sink structure and its manufacturing method applied to chip cooling | |
| CN204442897U (en) | A kind of lightweight package alloy liquid cooling radiator structure | |
| CN114256175B (en) | Tile type TR (transmitter-receiver) component embedded in micro-channel and preparation method thereof | |
| CN115000802A (en) | Semiconductor laser based on micro-channel secondary substrate | |
| CN114256177A (en) | A high-power chip heat dissipation structure and preparation method thereof | |
| CN116546869A (en) | Novel micro-flow thermoelectric radiator, manufacturing method thereof and radiating method | |
| CN116741724A (en) | Cooling integrated silicon carbide module, preparation method thereof and chip transformation method | |
| CN114551384A (en) | Heat dissipation substrate applied to myriawatt-level power device and preparation method thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |