
技术领域technical field
本发明属于被动锻炼用器械领域,具体涉及一种利用电刺激进行康复训练的肢体康复机器人。The invention belongs to the field of passive exercise equipment, and in particular relates to a limb rehabilitation robot which uses electric stimulation for rehabilitation training.
背景技术Background technique
脑卒中是中老年群体中常见的一种脑血管疾病,其具有高发病率、高致残率、高死亡率的特点,是导致长期瘫痪和不同程度运动功能障碍的主要原因,对人类健康造成了巨大威胁。Stroke is a common cerebrovascular disease among middle-aged and elderly people. It has the characteristics of high morbidity, high disability and high mortality. It is the main cause of long-term paralysis and different degrees of motor dysfunction. a huge threat.
中风也是一种常见疾病,对于中风患者而言,由于中枢神经损伤而导致运动神经信号中断或神经调制出现了问题,肢体肌肉收到异常神经信号或没有收到运动信号,从而丧失了被激活收缩的功能,导致肢体无法由大脑控制而实现自主运动。Stroke is also a common disease. For stroke patients, motor nerve signal interruption or nerve modulation problems occur due to central nervous system damage. Limb muscles receive abnormal nerve signals or do not receive motor signals, thus losing the activated contraction The function of limbs can not be controlled by the brain to achieve voluntary movement.
功能性电刺激作为一种神经肌肉刺激治疗方法,能够激活神经和肌肉,将其用于脑卒中、中风患者的治疗,能够有效的实现病人肌力和运动功能的康复。例如,功能性电刺激的方式包括,在皮肤上粘贴电极片,控制产生一定强度的电信号,对皮肤进行刺激。As a neuromuscular stimulation therapy, functional electrical stimulation can activate nerves and muscles. It can be used in the treatment of stroke and stroke patients, and can effectively restore the patient's muscle strength and motor function. For example, the way of functional electrical stimulation includes sticking electrode pads on the skin, controlling the generation of electrical signals of a certain intensity, and stimulating the skin.
为了进行闭环控制,需要检测肢体对电刺激的反应。现有技术中,主要通过两种方式获取肢体对电刺激的反应,例如公开号为CN105031812的中国专利文献“一种肌电信号反馈的功能性电刺激闭环控制系统”,通过肌电信号采集器(表面电极)采集肌电信号,以检测肢体对电刺激的反应。For closed-loop control, the response of the limb to electrical stimulation needs to be detected. In the prior art, there are mainly two ways to obtain the response of the limbs to electrical stimulation. For example, the Chinese patent document "A Functional Electrical Stimulation Closed-loop Control System for EMG Signal Feedback" with the publication number CN105031812, through the EMG signal collector (Surface electrodes) collect electromyographic signals to detect the response of the limbs to electrical stimulation.
然而,肌电信号本身较为复杂,包含有大量人体本身的生物电信息,提取有效信号的难度较大;而且肌电信号采集时也需要在皮肤上粘贴大量表面电极,操作繁琐,效率较低。However, the EMG signal itself is relatively complex, containing a large amount of bioelectric information of the human body itself, and it is difficult to extract effective signals; moreover, it is necessary to paste a large number of surface electrodes on the skin when collecting EMG signals, which is cumbersome and inefficient.
发明内容Contents of the invention
本发明的目的是提供一种肢体康复机器人,以解决现有方法提取有效信号难度大的问题。The purpose of the present invention is to provide a limb rehabilitation robot to solve the problem that the existing method is difficult to extract effective signals.
基于上述目的,一种肢体康复机器人,包括功能性电刺激装置和机器人本体;Based on the above purpose, a limb rehabilitation robot includes a functional electrical stimulation device and a robot body;
所述功能性电刺激装置用于产生电刺激信号;The functional electrical stimulation device is used to generate electrical stimulation signals;
所述机器人本体包括用于支撑整个肢体的机械臂,所述机械臂包括前端臂(10)和后端臂(6);前端臂(10)、后端臂(6)分别用于固定肢体的相应部分;前端臂(10)与后端臂(6)延伸方向一致,两臂相对位置处设有三维力传感器(9),两臂通过该三维力传感器(9)连接。Described robot body comprises the mechanical arm that is used to support whole limb, and described mechanical arm comprises front-end arm (10) and rear-end arm (6); Front-end arm (10), rear-end arm (6) are used for fixing limb respectively Corresponding parts; the front end arm (10) and the rear end arm (6) extend in the same direction, and a three-dimensional force sensor (9) is arranged at the relative position of the two arms, and the two arms are connected through the three-dimensional force sensor (9).
进一步的,前端臂(10)、后端臂(6)为条形,在它们的外侧分别设置有托架。Further, the front end arm (10) and the rear end arm (6) are bar-shaped, and brackets are respectively arranged on their outer sides.
进一步的,所述三维力传感器(9)通过两个连接件(8)分别与前端臂(10)与后端臂(6)连接。Further, the three-dimensional force sensor (9) is respectively connected to the front end arm (10) and the rear end arm (6) through two connecting pieces (8).
进一步的,所述两个连接件(8)的长度方向与两臂延伸方向垂直,所述三维力传感器(9)安装位置与两臂位置错开。Further, the length direction of the two connecting parts (8) is perpendicular to the extension direction of the two arms, and the installation position of the three-dimensional force sensor (9) is staggered from the positions of the two arms.
进一步的,后端臂(6)的后端安装有转轴(5),转轴(5)的两端分别转动装配在两个安装板(4、7)上,使得机械臂能够绕转轴(5)的轴线转动,以调节机械臂的角度。Further, the rear end of the rear arm (6) is equipped with a rotating shaft (5), and the two ends of the rotating shaft (5) are respectively rotated and assembled on the two mounting plates (4, 7), so that the mechanical arm can rotate around the rotating shaft (5) The axis of the axis rotates to adjust the angle of the mechanical arm.
进一步的,还包括传动连接转轴(5)的电机。Further, it also includes a motor connected to the rotating shaft (5) through transmission.
进一步的,功能性电刺激控制装置包括上位机(16)、控制器(13)和电机片(15)。Further, the functional electrical stimulation control device includes a host computer (16), a controller (13) and a motor sheet (15).
本发明的主要特点在于,将机械臂分为两个部分——前端臂和后端臂,并且在前端臂和后端臂之间安装三维力传感器,利用三维力传感器采集肌肉接收电刺激后的反馈,相比于采集肌电信号,大大降低了信号处理的难度,也降低了操作的复杂度,提高了效率。The main feature of the present invention is that the mechanical arm is divided into two parts—the front end arm and the rear end arm, and a three-dimensional force sensor is installed between the front end arm and the rear end arm. Feedback, compared to collecting EMG signals, greatly reduces the difficulty of signal processing, reduces the complexity of operations, and improves efficiency.
附图说明Description of drawings
图1是上肢康复机器人整体结构图;Figure 1 is an overall structural diagram of an upper limb rehabilitation robot;
1为L型悬臂,2为固定座,3为连接座,4、7为安装板,5为转轴,6为后端臂,8为第一、第二连接件,9为三维力传感器,10为前端臂,11、12为托架,13为控制器,14为电刺激器,15为电极片,16为上位机。1 is an L-shaped cantilever, 2 is a fixed seat, 3 is a connecting seat, 4 and 7 are mounting plates, 5 is a rotating shaft, 6 is a rear end arm, 8 is the first and second connecting parts, 9 is a three-dimensional force sensor, 10 11 and 12 are brackets, 13 is a controller, 14 is an electric stimulator, 15 is an electrode sheet, and 16 is a host computer.
具体实施方式Detailed ways
下面提供一种用于上肢康复训练的机器人。本领域技术人员应当理解,通过适当改造,其也可以应用于下肢康复训练。A robot for upper limb rehabilitation training is provided below. Those skilled in the art should understand that it can also be applied to lower limb rehabilitation training through appropriate modification.
如图1所示的一种上肢康复机器人,包括功能性电刺激控制装置和机器人本体:As shown in Figure 1, an upper limb rehabilitation robot includes a functional electrical stimulation control device and a robot body:
功能性电刺激控制装置包括:上位机16,操作人员进行操作以及观察相关反馈,控制器13(采用NI myRIO控制器,部署LabVIEW的平台)产生PWM信号输入到多通道的电刺激器14,电刺激器14将PWM信号放大到90V-120V的电压范围内,构成电压脉冲,经过粘贴在人体肌肉表面的电极片15,对肌肉固定位置进行电刺激。通常电极片15需要设置多个构成电刺激阵列。控制器13还用于接收三维力传感器9采集的信号,结合控制程序调节PWM信号的输出给电刺激器14。The functional electrical stimulation control device includes: a
机器人本体主要包括:用于支撑整个上肢的机械臂,机械臂包括前端臂10和后端臂6,前端臂10上安装有一个用于固定手腕的托架12;后端臂6上安装有一个用于固定肱二头肌的托架11。前端臂10与后端臂6延伸方向一致,两臂相对位置分别设置固定有第一、第二连接件8;第一、第二连接件8长度方向与两臂延伸方向垂直,第一、第二连接件8之间安装有一个三维力传感器9;三维力传感器9安装位置与两臂位置错开,以便于安装。考虑到机械臂和人体上肢的质量之和大约在5kg,在未经电刺激的情况下压力传感器的受力值已经为50N,经过统计发现大部分人的电刺激输出值在30N以内,因此这里选择的传感器的量程100N,同时考虑到需要将力信号转化为电压信号由控制器的模拟输入(ADC)识别。考虑到控制器(13)ADC的分辨率为12位,最大输入电压为5V。由此得出ADC的最小能分辨电压为The robot body mainly includes: a mechanical arm for supporting the entire upper limb. The mechanical arm includes a
v为ADC的最小能分辨电压。因此这里选用压力传感器的灵敏度为1mV。三维力传感器将压力或者拉力信号转换为电信号通过传感器变送器扩大至0V-2.5V-5V范围中,当传感器未受力时,三维力传感器三个方向的电压输出值皆为2.5V。当传感器受力时,受力方向的电压数值产生变化。最终选用三维压力传感器的参数如下表:v is the minimum resolvable voltage of the ADC. Therefore, the sensitivity of the pressure sensor used here is 1mV. The three-dimensional force sensor converts the pressure or tension signal into an electrical signal and expands it to the range of 0V-2.5V-5V through the sensor transmitter. When the sensor is not under force, the voltage output values of the three-dimensional force sensor in three directions are all 2.5V. When the sensor is stressed, the voltage value in the direction of the force changes. The parameters of the final selection of the three-dimensional pressure sensor are as follows:
表1.1三维力传感器参数表Table 1.1 Three-dimensional force sensor parameter table
机器人本体还包括:L型悬臂1,L型悬臂1一端通过固定座2固定到设备的支撑架(未画出)上,用于支撑整个机械臂。L型悬臂1另一端固定有连接座3,连接座3上固定两个安装板4、7;后端臂6的后端安装有转轴5,转轴5的两端分别转动装配在两个安装板4、7上,使得机械臂能够绕转轴5的轴线转动,以调节机械臂的角度,使患者处于一个相对舒适的状态。安装板4或7上安装一个电机(电机处于安装板4、7之间),电机通过皮带传动连接所述转轴5,为机械臂的转动提供动力。The robot body also includes: an L-shaped cantilever 1, and one end of the L-shaped cantilever 1 is fixed to a support frame (not shown) of the equipment through a holder 2 to support the entire mechanical arm. The other end of the L-shaped cantilever 1 is fixed with a connecting seat 3, and two mounting plates 4, 7 are fixed on the connecting seat 3; the rear end of the rear arm 6 is equipped with a rotating shaft 5, and the two ends of the rotating shaft 5 are respectively rotated and assembled on the two mounting plates 4 and 7, so that the mechanical arm can rotate around the axis of the rotating shaft 5 to adjust the angle of the mechanical arm so that the patient is in a relatively comfortable state. A motor is installed on the mounting plate 4 or 7 (the motor is between the mounting plates 4 and 7), and the motor is connected to the rotating shaft 5 through a belt drive to provide power for the rotation of the mechanical arm.
作为其他实施方式,电机还可以通过齿轮传动连接所述转轴5。另外,电机不仅可以设置在安装板4、7之间,还可以设置在安装板4或安装板7之外(此时电机可以直接驱动转轴5)。As other implementation manners, the motor can also be connected to the rotating shaft 5 through gear transmission. In addition, the motor can be arranged not only between the mounting plates 4 and 7, but also outside the mounting plate 4 or the mounting plate 7 (in this case, the motor can directly drive the rotating shaft 5).
使用本系统时,应先测量使用者的手臂的重量,根据该重量将三维力传感器输出值初始化为零,将患者的电极片粘贴位置(一般为肱二头肌位置)擦拭酒精,减小皮肤电阻,将电极片粘贴至肌肉合适位置;然后开始进行康复训练。机器人的相关软件程序部分在LabVIEW上编写并部署到控制器13中,采用PWM波占空比大小来控制电刺激信号的强弱,从而实现在人身体上安全的电刺激。电刺激作用在人体的上肢系统,产生力的大小由三维力传感器9进行采集,并反馈给控制器13,由控制器13做出策略调整从而达到高精度的输出力控制。控制器13与上位机16通讯连接,在最终数据在上位机界面上呈现。When using this system, the weight of the user's arm should be measured first, and the output value of the three-dimensional force sensor should be initialized to zero according to the weight. Resistance, paste the electrode pads to the appropriate position of the muscle; then start rehabilitation training. The relevant software program part of the robot is written on LabVIEW and deployed in the
本发明的主要特点在于,将机械臂分为两个部分——前端臂和后端臂,并且在前端臂和后端臂之间安装三维力传感器,利用三维力传感器采集肌肉接收电刺激后的反馈,相比于采集肌电信号,大大降低了信号处理的难度,也降低了操作的复杂度,提高了效率。The main feature of the present invention is that the mechanical arm is divided into two parts—the front end arm and the rear end arm, and a three-dimensional force sensor is installed between the front end arm and the rear end arm. Feedback, compared to collecting EMG signals, greatly reduces the difficulty of signal processing, reduces the complexity of operations, and improves efficiency.
以上实施例中,前端臂、后端臂是条形的,通过在其上固定托架来固定上肢的手腕、肱二头肌。作为其他实施方式,前端臂、后端臂可以设置为筒状以容纳患者的手臂。In the above embodiment, the front end arm and the rear end arm are bar-shaped, and the wrist and biceps of the upper limb are fixed by fixing the bracket thereon. As another embodiment, the front end arm and the rear end arm can be set in a cylindrical shape to accommodate the patient's arm.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010686636.1ACN111991693B (en) | 2020-07-16 | 2020-07-16 | Limb rehabilitation robot |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010686636.1ACN111991693B (en) | 2020-07-16 | 2020-07-16 | Limb rehabilitation robot |
| Publication Number | Publication Date |
|---|---|
| CN111991693A CN111991693A (en) | 2020-11-27 |
| CN111991693Btrue CN111991693B (en) | 2023-03-14 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010686636.1AActiveCN111991693B (en) | 2020-07-16 | 2020-07-16 | Limb rehabilitation robot |
| Country | Link |
|---|---|
| CN (1) | CN111991693B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107224669A (en)* | 2017-05-24 | 2017-10-03 | 上海理工大学 | The control system of the submissive exoskeleton rehabilitation manipulator of adaptive Wearable |
| CN108187310A (en)* | 2017-12-21 | 2018-06-22 | 东南大学 | The limb motion for feeling information and attitude information based on power is intended to understand and upper-limbs rehabilitation training robot and its control method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI554262B (en)* | 2013-05-13 | 2016-10-21 | Univ Nat Taiwan | Limb rehabilitation and training system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107224669A (en)* | 2017-05-24 | 2017-10-03 | 上海理工大学 | The control system of the submissive exoskeleton rehabilitation manipulator of adaptive Wearable |
| CN108187310A (en)* | 2017-12-21 | 2018-06-22 | 东南大学 | The limb motion for feeling information and attitude information based on power is intended to understand and upper-limbs rehabilitation training robot and its control method |
| Title |
|---|
| 《用于全髋关节置换术后康复与助残辅助假肢的设计》;吴琪等;《东南国防医药》;20190920;第21卷(第5期);第491-495页* |
| Publication number | Publication date |
|---|---|
| CN111991693A (en) | 2020-11-27 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103691059B (en) | Electrical stimulation rehabilitation device and method based on angle information and myoelectric signal feedback control | |
| CN108743215B (en) | Rehabilitation training system based on flexible rehabilitation gloves | |
| WO2013029196A1 (en) | Feedback-control wearable upper-limb electrical stimulation device | |
| CN104027111B (en) | A kind of dual purpose electrodes and employing dual purpose electrodes realize the device of surface myoelectric extraction and transcutaneous electrostimulation | |
| CN107224669A (en) | The control system of the submissive exoskeleton rehabilitation manipulator of adaptive Wearable | |
| CN110522999B (en) | Electrical stimulation system with fatigue evaluation function | |
| CN102949783B (en) | Feedback-controlled wearable upper limb electrical stimulation device | |
| CN104353184A (en) | Electromyographic feedback stimulator | |
| CN102309816A (en) | Electrical stimulation treatment instrument for masticatory muscle | |
| CN112915385A (en) | Portable device for upper limb rehabilitation therapy training with electrical stimulation function | |
| CN110404168A (en) | An adaptive electrical stimulation training system | |
| CN110882485A (en) | Paralyzed limb motor function reconstruction system using body surface electrodes to stimulate target muscles | |
| CN209917079U (en) | Hand rehabilitation training device | |
| CN111991693B (en) | Limb rehabilitation robot | |
| O'Keeffe et al. | The development of a potential optimized stimulation intensity envelope for drop foot applications | |
| CN211214974U (en) | Electrical stimulation device with fatigue assessment | |
| CN209915990U (en) | Vagina probe with myoelectricity collection function | |
| Serbia | INTFES: a multi-pad electrode system for selective transcutaneous electrical muscle stimulation | |
| CN101411920A (en) | Multichannel micro-current stimulator in vitro | |
| CN118477259A (en) | Wearable equipment for inhibiting parkinsonism resting tremors based on functional electrical stimulation | |
| CN114470520B (en) | Myoelectric feedback electric stimulation control system and control method | |
| CN212490660U (en) | A spinal cord injury lower limb rehabilitation equipment | |
| TW201309358A (en) | Feedback controllable electrical stimulation device for upper limb | |
| CN211884975U (en) | Paralyzed limb movement function reconstruction system for stimulating target muscles by adopting body surface electrodes | |
| CN211797568U (en) | Lower limb rehabilitation equipment suitable for patient with spinal cord injury |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |