
技术领域technical field
本发明属于异质外延单晶金刚石制备领域,具体涉及一种采用电子束蒸镀工艺制备异质外延单晶金刚石用Ir(111)/α-Al2O3(0001)复合衬底的方法。The invention belongs to the field of preparation of heterogeneous epitaxial single crystal diamond, and in particular relates to a method for preparing an Ir(111)/α-Al2 O3 (0001) composite substrate for heterogeneous epitaxial single crystal diamond by using an electron beam evaporation process.
背景技术Background technique
相比多晶金刚石,单晶金刚石集电学、光学、力学、声学和热学等优异特性于一体,在高温、高效、超大功率毫米波电子器件,电力电子器件,生物传感器,光电探测与成像,粒子探测与成像,航空航天等系统方面有着极其重要的应用前景,被业界誉为“终极半导体”。目前要使单晶金刚石得以广泛应用,必须解决两大关键科学技术问题,即大尺寸单晶金刚石的高质量生长和单晶金刚石的N型有效掺杂。Compared with polycrystalline diamond, single crystal diamond integrates excellent properties such as electricity, optics, mechanics, acoustics and thermals. Detection and imaging, aerospace and other systems have extremely important application prospects, and are hailed as the "ultimate semiconductor" by the industry. At present, in order to make single crystal diamond widely used, two key scientific and technological problems must be solved, namely, the high-quality growth of large-size single crystal diamond and the effective N-type doping of single crystal diamond.
金刚石(001)晶面由于是密排面,是最适合用于生产高质量外延金刚石薄膜的,缺陷密度低,生长质量优,异质外延单晶金刚石目前都是在该晶面获得的。(111)晶面是最适合进行N型和P型掺杂的晶面,且具有择优取向分布的NV色心,能与纤锌矿结构半导体形成异质结,但是生长质量缺陷密度高,容易形成孪晶。如何在生长高质量单晶金刚石的同时并且实现N型有效掺杂,已经成为了该领域的研究热点。目前已经有研究者在Ir(111)衬底上获得了无孪晶的高质量金刚石,因此在(111)晶面单晶异质衬底上进行金刚石异质外延生长是解决该问题的一个有效方法,而制备Ir(111)单晶异质衬底是上述工作的基础。The diamond (001) crystal plane is the most suitable for producing high-quality epitaxial diamond films because it is a close-packed plane, with low defect density and excellent growth quality. Heteroepitaxial single crystal diamonds are currently obtained on this crystal plane. The (111) crystal plane is the most suitable crystal plane for N-type and P-type doping, and has an NV color center with a preferred orientation distribution, which can form a heterojunction with a wurtzite structure semiconductor, but the growth quality has a high defect density and is easy to Form twins. How to achieve N-type effective doping while growing high-quality single crystal diamond has become a research hotspot in this field. At present, some researchers have obtained high-quality diamond without twins on Ir(111) substrates. Therefore, diamond heteroepitaxial growth on (111) crystal plane single crystal heterogeneous substrates is an effective way to solve this problem. method, and the preparation of Ir(111) single crystal heterogeneous substrates is the basis of the above work.
发明内容Contents of the invention
本发明的目的是为了现有技术中难以在蓝宝石上获得(111)取向的Ir外延层的技术问题,而提供一种电子束蒸镀工艺制备异质外延单晶金刚石用Ir(111)复合衬底的方法。The purpose of the present invention is to provide a kind of Ir (111) composite lining for the preparation of heterogeneous epitaxial single crystal diamond by electron beam evaporation process for the technical problem that it is difficult to obtain (111) oriented Ir epitaxial layer on sapphire in the prior art. bottom method.
本发明电子束蒸镀工艺制备外延单晶金刚石用Ir(111)/α-Al2O3(0001)复合衬底的方法按照以下步骤实现:The method for preparing the Ir(111)/α-Al2 O3 (0001) composite substrate for epitaxial single crystal diamond by the electron beam evaporation process of the present invention is realized according to the following steps:
一、将α-Al2O3(0001)基底依次在去离子水、无水乙醇和丙酮里进行超声清洗,得到清洗后的α-Al2O3(0001)单晶基底;1. Ultrasonic cleaning the α-Al2 O3 (0001) substrate in deionized water, absolute ethanol and acetone in sequence to obtain a cleaned α-Al2 O3 (0001) single crystal substrate;
二、将清洗后的α-Al2O3(0001)基底固定在样品托的凹槽中,然后放入具有加热装置(旋转基片加热台)的电子束蒸发设备腔体里,把Ir颗粒靶材置于石墨坩埚里;2. Fix the cleaned α-Al2 O3 (0001) substrate in the groove of the sample holder, and then put it into the cavity of the electron beam evaporation equipment with a heating device (rotary substrate heating table), and put the Ir particles The target is placed in a graphite crucible;
三、依次启动电子束蒸发设备的机械泵和分子泵,使腔体的真空度为8.0×10-5~6.0×10-4Pa,启动加热装置,样品托开始升温;3. Start the mechanical pump and the molecular pump of the electron beam evaporation equipment in sequence to make the vacuum degree of the cavity 8.0×10-5 ~ 6.0×10-4 Pa, start the heating device, and the sample holder starts to heat up;
四、升温使样品托中的α-Al2O3(0001)基底温度达到400~1000℃,稳定温度5~10min,然后打开电子枪电源,控制电子枪的灯丝电流为0.4~1.0A,得到表面温度均匀的α-Al2O3(0001)基底;4. Raise the temperature so that the temperature of the α-Al2 O3 (0001) substrate in the sample holder reaches 400-1000°C, stabilize the temperature for 5-10 minutes, then turn on the power supply of the electron gun, and control the filament current of the electron gun to 0.4-1.0A to obtain the surface temperature Uniform α-Al2 O3 (0001) substrate;
五、打开电子枪高压及靶材挡板,调节束流大小为0.180~0.300A,控制蒸镀速率,在表面温度均匀的α-Al2O3(0001)基底表面沉积Ir外延层,得到带有Ir外延层的α-Al2O3(0001)复合衬底;5. Turn on the high voltage of the electron gun and the target baffle, adjust the beam current size to 0.180-0.300A, control the evaporation rate, and deposit an Ir epitaxial layer on the surface of the α-Al2 O3 (0001) substrate with a uniform surface temperature, and obtain an epitaxial layer with α-Al2 O3 (0001) composite substrate with Ir epitaxial layer;
六、沉积结束后,降低束流到0,关闭靶材挡板和电子枪系统,关闭样品托的加热装置,自然冷却到室温,关闭分子泵及机械泵,充气到大气压,取出复合衬底;6. After the deposition, reduce the beam current to 0, close the target baffle and electron gun system, close the heating device of the sample holder, cool down to room temperature naturally, close the molecular pump and mechanical pump, inflate to atmospheric pressure, and take out the composite substrate;
七、将冷却后的复合衬底放置在红外退火炉中,控制退火温度为400~1000℃,通入N2作为保护气,气体流速为20~40sccm,控制退火时间为0.5~2h进行退火,退火结束后,获得Ir(111)/α-Al2O3(0001)复合衬底。7. Place the cooled composite substrate in an infrared annealing furnace, control the annealing temperature to 400-1000°C, feedN2 as a protective gas, the gas flow rate is 20-40sccm, and control the annealing time to 0.5-2h for annealing. After the annealing, the Ir(111)/α-Al2 O3 (0001) composite substrate was obtained.
与传统的电阻加热式真空退火工艺相比,本发明通过红外快速退火结合N2气氛保护,采用红外热辐射技术使得升温速率更快,最大能达到100℃/s,能够在快速升温及保温过程中快速释放Ir外延层内部的残余应力,不仅提高了退火效率,还有效缓解了Ir外延层与基底之间的热应力,释放了大部分应变能,增强了二者之间的膜基结合力,抑制了在高温等离子环境里的Ir晶粒的异常长大行为,很好地防止该复合衬底用于外延金刚石生长过程及生长结束降温过程中金刚石膜的脱落及破裂;另外该退火工艺对于提高Ir外延层的结晶质量,利于(111)晶面的结晶化,降低其马赛克度也有很好的作用。相比于Ir(100)晶面等其他晶面,Ir(111)晶面在电子束沉积过程中的温度条件下与α-Al2O3(0001)面的表面能差异更小,因此更容易在基底的“模板”作用下实现外延生长。Compared with the traditional resistance heating vacuum annealing process, the present invention uses infrared rapid annealing combined with N2 atmosphere protection, and adopts infrared heat radiation technology to make the heating rate faster, the maximum can reach 100°C/s, and can be used in the rapid heating and heat preservation process. The rapid release of the residual stress inside the Ir epitaxial layer not only improves the annealing efficiency, but also effectively relieves the thermal stress between the Ir epitaxial layer and the substrate, releases most of the strain energy, and enhances the film-substrate bonding force between the two , which inhibits the abnormal growth behavior of Ir grains in the high-temperature plasma environment, and prevents the composite substrate from being used in the epitaxial diamond growth process and the diamond film from falling off and cracking during the cooling process at the end of the growth; in addition, the annealing process is for Improving the crystallization quality of the Ir epitaxial layer is beneficial to the crystallization of the (111) crystal plane, and reducing its mosaic degree also has a good effect. Compared with other crystal planes such as Ir(100) crystal plane, the surface energy difference between Ir(111) crystal plane and α-Al2 O3 (0001) plane is smaller under the temperature conditions during electron beam deposition, so it is more stable. It is easy to achieve epitaxial growth under the action of the "template" of the substrate.
本发明所述的采用电子束蒸镀工艺制备外延单晶金刚石用Ir(111)/α-Al2O3(0001)复合衬底的方法,主要包括以下有益效果:The method for preparing an Ir(111)/α-Al2 O3 (0001) composite substrate for epitaxial single crystal diamond by using an electron beam evaporation process according to the present invention mainly includes the following beneficial effects:
1.基于α-Al2O3(0001),提出了一种采用电子束蒸发法制备Ir(111)外延层的方法;1. Based on α-Al2 O3 (0001), a method for preparing Ir(111) epitaxial layer by electron beam evaporation was proposed;
2.相比于常用的在其他氧化物衬底上外延生长,本方法制备的Ir外延层与α-Al2O3之间热膨胀系数差异更小,热应力更小,结合力更强;2. Compared with the commonly used epitaxial growth on other oxide substrates, the thermal expansion coefficient difference between the Ir epitaxial layer prepared by this method and α-Al2 O3 is smaller, the thermal stress is smaller, and the bonding force is stronger;
3、相比于通过磁控溅射工艺或者分子束外延工艺制备Ir层,本发明结合红外快速退火工艺制备的复合衬底结晶质量更优、结合力更强、方法更简单、成本更低。3. Compared with the Ir layer prepared by magnetron sputtering process or molecular beam epitaxy process, the composite substrate prepared by the present invention combined with infrared rapid annealing process has better crystal quality, stronger binding force, simpler method and lower cost.
附图说明Description of drawings
图1为实施例制备得到的Ir外延层的XRD物相结构图(面外取向关系)。Fig. 1 is the XRD phase structure diagram (out-of-plane orientation relationship) of the Ir epitaxial layer prepared in the embodiment.
具体实施方式Detailed ways
具体实施方式一:本实施方式电子束蒸镀工艺制备外延单晶金刚石用Ir(111)/α-Al2O3(0001)复合衬底的方法按照以下步骤实施:Specific Embodiment 1: In this embodiment, the method for preparing an Ir(111)/α-Al2 O3 (0001) composite substrate for epitaxial single crystal diamond by electron beam evaporation process is implemented according to the following steps:
一、将α-Al2O3(0001)基底依次在去离子水、无水乙醇和丙酮里进行超声清洗,得到清洗后的α-Al2O3(0001)单晶基底;1. Ultrasonic cleaning the α-Al2 O3 (0001) substrate in deionized water, absolute ethanol and acetone in sequence to obtain a cleaned α-Al2 O3 (0001) single crystal substrate;
二、将清洗后的α-Al2O3(0001)基底固定在样品托的凹槽中,然后放入具有加热功能的电子束蒸发设备腔体里,把Ir颗粒靶材置于石墨坩埚里;2. Fix the cleaned α-Al2 O3 (0001) substrate in the groove of the sample holder, then put it into the cavity of the electron beam evaporation equipment with heating function, and place the Ir particle target in the graphite crucible ;
三、依次启动电子束蒸发设备的机械泵和分子泵,使腔体的真空度为8.0×10-5~6.0×10-4Pa,启动样品托中的加热装置,样品托开始升温;3. Turn on the mechanical pump and the molecular pump of the electron beam evaporation equipment in sequence, so that the vacuum degree of the cavity is 8.0×10-5 ~ 6.0×10-4 Pa, start the heating device in the sample holder, and the sample holder starts to heat up;
四、升温使样品托中的α-Al2O3(0001)基底温度达到400~1000℃,稳定温度5~10min,然后打开电子枪电源,控制电子枪的灯丝电流为0.4~1.0A,得到表面温度均匀的α-Al2O3(0001)基底;4. Raise the temperature so that the temperature of the α-Al2 O3 (0001) substrate in the sample holder reaches 400-1000°C, stabilize the temperature for 5-10 minutes, then turn on the power supply of the electron gun, and control the filament current of the electron gun to 0.4-1.0A to obtain the surface temperature Uniform α-Al2 O3 (0001) substrate;
五、打开电子枪高压及靶材挡板,调节束流大小为0.180~0.300A,控制蒸镀速率,在表面温度均匀的α-Al2O3(0001)基底表面沉积Ir外延层,得到带有Ir外延层的α-Al2O3(0001)复合衬底;5. Turn on the high voltage of the electron gun and the target baffle, adjust the beam current size to 0.180-0.300A, control the evaporation rate, and deposit an Ir epitaxial layer on the surface of the α-Al2 O3 (0001) substrate with a uniform surface temperature, and obtain an epitaxial layer with α-Al2 O3 (0001) composite substrate with Ir epitaxial layer;
六、沉积结束后,降低束流到0,关闭靶材挡板和电子枪系统,关闭样品托的加热装置,自然冷却到室温,关闭分子泵及机械泵,充气到大气压,取出复合衬底;6. After the deposition, reduce the beam current to 0, close the target baffle and electron gun system, close the heating device of the sample holder, cool down to room temperature naturally, close the molecular pump and mechanical pump, inflate to atmospheric pressure, and take out the composite substrate;
七、将冷却后的复合衬底放置在红外退火炉中,控制退火温度为400~1000℃,通入N2作为保护气,气体流速为20~40sccm,控制退火时间为0.5~2h进行退火,退火结束后,获得Ir(111)/α-Al2O3(0001)复合衬底。7. Place the cooled composite substrate in an infrared annealing furnace, control the annealing temperature to 400-1000°C, feedN2 as a protective gas, the gas flow rate is 20-40sccm, and control the annealing time to 0.5-2h for annealing. After the annealing, the Ir(111)/α-Al2 O3 (0001) composite substrate was obtained.
本实施方式蓝宝石相比于钛酸锶、氧化镁、YSZ等氧化物,在H等离子体环境里更稳定,具有更小的热膨胀系数,具有沉积Ir金属外延层的优势。Compared with oxides such as strontium titanate, magnesium oxide, and YSZ, the sapphire in this embodiment is more stable in the H plasma environment, has a smaller thermal expansion coefficient, and has the advantage of depositing an Ir metal epitaxial layer.
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中在去离子水、无水乙醇和丙酮里进行超声清洗的时间均为10~30min。Embodiment 2: The difference between this embodiment and Embodiment 1 is that in step 1, the time for ultrasonic cleaning in deionized water, absolute ethanol and acetone is 10-30 minutes.
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤二中Ir颗粒的纯度大于99.99%。Embodiment 3: This embodiment differs from Embodiment 1 or Embodiment 2 in that the purity of Ir particles in step 2 is greater than 99.99%.
具体实施方式四:本实施方式与具体实施方式一至三之一不同的步骤三中使腔体的真空度为3.0×10-4~6.0×10-4Pa。Embodiment 4: This embodiment is different from Embodiments 1 to 3 in that in step 3, the vacuum degree of the chamber is set to 3.0×10-4 ~ 6.0×10-4 Pa.
具体实施方式五:本实施方式与具体实施方式一至四之一不同的步骤四中升温使样品托中的α-Al2O3(0001)基底温度达到600℃,稳定温度5~10min。Embodiment 5: This embodiment is different from one of Embodiments 1 to 4 in that step 4 raises the temperature to make the α-Al2 O3 (0001) substrate temperature in the sample holder reach 600° C., and stabilize the temperature for 5-10 minutes.
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤五中控制电子枪高压为8kV。Embodiment 6: The difference between this embodiment and one of Embodiments 1 to 5 is that in step 5, the high voltage of the electron gun is controlled to be 8kV.
具体实施方式七:本实施方式与具体实施方式一至五之一不同的是步骤五中控制Ir外延层的沉积速率为0.04~0.10nm/s。Embodiment 7: The difference between this embodiment and one of Embodiments 1 to 5 is that in step 5, the deposition rate of the Ir epitaxial layer is controlled to be 0.04-0.10 nm/s.
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤五中沉积Ir外延层的厚度为120~200nm。Embodiment 8: This embodiment differs from Embodiments 1 to 7 in that the thickness of the Ir epitaxial layer deposited in step 5 is 120-200 nm.
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是步骤七中以20℃/s~35℃/s的升温速率升温至退火温度。Embodiment 9: This embodiment differs from Embodiments 1 to 8 in that in step 7, the temperature is raised to the annealing temperature at a heating rate of 20° C./s˜35° C./s.
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是步骤七中退火结束控制降温速率为2℃/s~30℃/s。Embodiment 10: The difference between this embodiment and Embodiment 1 to Embodiment 9 is that in step 7, the cooling rate is controlled to be 2° C./s to 30° C./s after annealing.
实施例:本实施例电子束蒸镀工艺制备外延单晶金刚石用Ir(111)/α-Al2O3(0001)复合衬底的方法按照以下步骤实施:Embodiment: The method for preparing the Ir(111)/α-Al2 O3 (0001) composite substrate for epitaxial single crystal diamond by the electron beam evaporation process in this embodiment is implemented according to the following steps:
一、将单面抛光的厚度为0.5mm的α-Al2O3(0001)基底依次在去离子水、无水乙醇和丙酮里进行超声清洗,时间均为15min,得到清洗后的α-Al2O3(0001)单晶基底;1. The α-Al2 O3 (0001) substrate with a thickness of 0.5mm polished on one side was ultrasonically cleaned in deionized water, absolute ethanol and acetone in sequence for 15 minutes, and the cleaned α-Al2 O3 (0001) single crystal substrate;
二、将清洗后的α-Al2O3(0001)基底固定在样品托的凹槽中,然后放入具有加热装置的电子束蒸发设备腔体里,加热装置为旋转基片加热台,加热装置位于样品托的上方,把纯度为99.99%的Ir颗粒靶材置于石墨坩埚里;2. Fix the cleaned α-Al2 O3 (0001) substrate in the groove of the sample holder, and then put it into the cavity of the electron beam evaporation equipment with a heating device. The heating device is a rotating substrate heating table. The device is located above the sample holder, and the Ir particle target with a purity of 99.99% is placed in a graphite crucible;
三、依次启动电子束蒸发设备的机械泵和分子泵,使腔体的真空度为4.0×10-4Pa,启动样品托上方的加热装置,样品托开始升温;3. Turn on the mechanical pump and the molecular pump of the electron beam evaporation equipment in sequence to make the vacuum of the cavity 4.0×10-4 Pa, start the heating device above the sample holder, and the sample holder starts to heat up;
四、升温使样品托中的α-Al2O3(0001)基底温度达到600℃,稳定温度7min,然后打开电子枪电源,控制电子枪的灯丝电流为0.5A,得到表面温度均匀的α-Al2O3(0001)基底;4. Raise the temperature so that the substrate temperature of α-Al2 O3 (0001) in the sample holder reaches 600°C, stabilize the temperature for 7 minutes, then turn on the power supply of the electron gun, and control the filament current of the electron gun to 0.5A to obtain α-Al2 with a uniform surface temperature. O3 (0001) substrate;
五、打开电子枪高压及靶材挡板,高压为8kV,控制束流大小为0.19A,控制Ir沉积速率为0.04nm/s,在表面温度均匀的α-Al2O3(0001)表面沉积Ir外延层,得到带有厚度为160nm的Ir外延层的α-Al2O3(0001)复合衬底;5. Turn on the high voltage of the electron gun and the target baffle, the high voltage is 8kV, the beam current size is controlled to 0.19A, the Ir deposition rate is controlled to 0.04nm/s, and Ir is deposited on the surface of α-Al2 O3 (0001) with uniform surface temperature epitaxial layer to obtain α-Al2 O3 (0001) composite substrate with a thickness of 160nm Ir epitaxial layer;
六、沉积结束后,降低束流到0,关闭靶材挡板和电子枪系统,关闭样品托的加热装置,自然冷却到室温,关闭分子泵及机械泵,充气到大气压,取出复合衬底;6. After the deposition, reduce the beam current to 0, close the target baffle and electron gun system, close the heating device of the sample holder, cool down to room temperature naturally, close the molecular pump and mechanical pump, inflate to atmospheric pressure, and take out the composite substrate;
七、将冷却后的复合衬底放置在红外退火炉中,控制升温速率为30℃/s,控制退火温度为600℃,通入N2作为保护气,气体流速为30sccm,控制退火时间为1h进行退火,退火结束后,获得Ir(111)/α-Al2O3(0001)复合衬底。7. Place the cooled composite substrate in an infrared annealing furnace, control the heating rate to 30°C/s, control the annealing temperature to 600°C, feed N2 as a protective gas, the gas flow rate to 30 sccm, and control the annealing time to 1h Annealing is performed, and after the annealing is completed, an Ir(111)/α-Al2 O3 (0001) composite substrate is obtained.
本实施例步骤一中所述的α-Al2O3(0001)商购自上海多朴光学材料有限公司。The α-Al2 O3 (0001) described in Step 1 of this example was purchased from Shanghai Dopo Optical Material Co., Ltd. commercially.
本实施例制备的Ir(111)/α-Al2O3(0001)复合衬底进行XRD物相分析得到面外取向关系,结果如图1所示,由图可知存在Ir(111)和(222)峰,因此可以确定本实施例实现了α-Al2O3(0001)的Ir(111)外延生长。The Ir(111)/α-Al2 O3 (0001) composite substrate prepared in this example was subjected to XRD phase analysis to obtain the out-of-plane orientation relationship. The results are shown in Figure 1. It can be seen from the figure that there are Ir(111) and ( 222) peak, so it can be confirmed that this embodiment achieves Ir(111) epitaxial growth of α-Al2 O3 (0001).
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010806924.6ACN111933514B (en) | 2020-08-12 | 2020-08-12 | Method for preparing Ir(111) composite substrate for epitaxial single crystal diamond by electron beam evaporation process |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010806924.6ACN111933514B (en) | 2020-08-12 | 2020-08-12 | Method for preparing Ir(111) composite substrate for epitaxial single crystal diamond by electron beam evaporation process |
| Publication Number | Publication Date |
|---|---|
| CN111933514A CN111933514A (en) | 2020-11-13 |
| CN111933514Btrue CN111933514B (en) | 2023-02-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010806924.6AActiveCN111933514B (en) | 2020-08-12 | 2020-08-12 | Method for preparing Ir(111) composite substrate for epitaxial single crystal diamond by electron beam evaporation process |
| Country | Link |
|---|---|
| CN (1) | CN111933514B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114134566B (en)* | 2021-06-29 | 2023-02-24 | 哈尔滨工业大学 | Method for improving heterogeneous epitaxial nucleation uniformity of diamond |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004061923A1 (en)* | 2002-12-27 | 2004-07-22 | General Electric Company | Gallium nitride crystal, homoepitaxial gallium-nitride-based devices and method for producing same |
| JP2007270272A (en)* | 2006-03-31 | 2007-10-18 | Imai Yoshio | Epitaxial diamond film underlaying substrate and its manufacturing method, and epitaxial diamond film manufactured by the epitaxial diamond film underlaying substrate and its manufacturing method |
| DE102010023952A1 (en)* | 2010-06-16 | 2011-12-22 | Universität Augsburg | Process for producing diamond films and diamonds prepared by the process |
| CN103194795A (en)* | 2013-04-25 | 2013-07-10 | 哈尔滨工业大学 | Method for low-cost preparation of large-size monocrystal graphene |
| CN104499047A (en)* | 2014-12-20 | 2015-04-08 | 哈尔滨工业大学 | Substrate for realizing heteroepitaxial growth of large-size monocrystal diamond and preparation method thereof |
| CN104972189A (en)* | 2015-07-30 | 2015-10-14 | 哈尔滨工业大学 | Vacuum brazing method for seed crystal substrate for homoepitaxial growing of monocrystal diamond |
| US9812595B1 (en)* | 2013-02-19 | 2017-11-07 | Hrl Laboratories, Llc | All-wavelength (VIS-LWIR) transparent electrical contacts and interconnects and methods of making them |
| WO2018012529A1 (en)* | 2016-07-14 | 2018-01-18 | 並木精密宝石株式会社 | Single-crystal diamond substrate |
| CN108707965A (en)* | 2018-06-15 | 2018-10-26 | 西安碳星半导体科技有限公司 | A kind of structure and preparation method of CVD single-crystal diamonds hetero-epitaxy substrate |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1321104A1 (en)* | 2001-12-06 | 2003-06-25 | GFD-Gesellschaft für Diamantprodukte MBH | Ablation tool and process for cutting, fragmenting and/or removing material |
| US7060130B2 (en)* | 2002-08-27 | 2006-06-13 | Board Of Trustees Of Michigan State University | Heteroepitaxial diamond and diamond nuclei precursors |
| US8007910B2 (en)* | 2007-07-19 | 2011-08-30 | City University Of Hong Kong | Ultrahard multilayer coating comprising nanocrystalline diamond and nanocrystalline cubic boron nitride |
| WO2010048607A2 (en)* | 2008-10-24 | 2010-04-29 | Carnegie Institution Of Washington | Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing |
| WO2010093364A1 (en)* | 2009-02-12 | 2010-08-19 | Alliance For Sustainable Energy, Llc | Crystal silicon processes and products |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004061923A1 (en)* | 2002-12-27 | 2004-07-22 | General Electric Company | Gallium nitride crystal, homoepitaxial gallium-nitride-based devices and method for producing same |
| JP2007270272A (en)* | 2006-03-31 | 2007-10-18 | Imai Yoshio | Epitaxial diamond film underlaying substrate and its manufacturing method, and epitaxial diamond film manufactured by the epitaxial diamond film underlaying substrate and its manufacturing method |
| DE102010023952A1 (en)* | 2010-06-16 | 2011-12-22 | Universität Augsburg | Process for producing diamond films and diamonds prepared by the process |
| US9812595B1 (en)* | 2013-02-19 | 2017-11-07 | Hrl Laboratories, Llc | All-wavelength (VIS-LWIR) transparent electrical contacts and interconnects and methods of making them |
| CN103194795A (en)* | 2013-04-25 | 2013-07-10 | 哈尔滨工业大学 | Method for low-cost preparation of large-size monocrystal graphene |
| CN104499047A (en)* | 2014-12-20 | 2015-04-08 | 哈尔滨工业大学 | Substrate for realizing heteroepitaxial growth of large-size monocrystal diamond and preparation method thereof |
| CN104972189A (en)* | 2015-07-30 | 2015-10-14 | 哈尔滨工业大学 | Vacuum brazing method for seed crystal substrate for homoepitaxial growing of monocrystal diamond |
| WO2018012529A1 (en)* | 2016-07-14 | 2018-01-18 | 並木精密宝石株式会社 | Single-crystal diamond substrate |
| CN108707965A (en)* | 2018-06-15 | 2018-10-26 | 西安碳星半导体科技有限公司 | A kind of structure and preparation method of CVD single-crystal diamonds hetero-epitaxy substrate |
| Title |
|---|
| Heteroepitaxial diamond film growth: the a-plane sapphire–iridium;C. Bednarski-Meinke;《Diamond and Related Materials》;20040401;全文* |
| 异质外延单晶金刚石的研究进展;王伟华等;《中国科学:技术科学》;20200706(第07期);全文* |
| 硼掺杂半导体金刚石薄膜的合成与红外吸收特性;张仿清,谢二庆,杨斌,才永明,陈光华;《半导体学报》;19950608(第06期);全文* |
| 铱衬底上异质外延单晶金刚石: 过程与机理;王 杨, 朱嘉琦, 扈忠波, 代 兵;《无机材料学报》;20190930;第34卷(第9期);全文* |
| Publication number | Publication date |
|---|---|
| CN111933514A (en) | 2020-11-13 |
| Publication | Publication Date | Title |
|---|---|---|
| CN107785241B (en) | A method of preparing beta-gallium oxide film on a silicon substrate | |
| CN105826362B (en) | A kind of gallium oxide nano-wire array and preparation method thereof | |
| CN109545657B (en) | Method for improving gallium oxide film grown on silicon carbide substrate | |
| CN113078046B (en) | Gallium nitride homogeneous substrate and preparation method thereof | |
| CN110335809B (en) | Method for growing single crystal gamma-phase indium selenide film on mica substrate | |
| CN102995124B (en) | Seed crystal for aluminum nitride (ALN) crystal growth | |
| CN111826714B (en) | Method for enhancing CVD diamond heteroepitaxial nucleation by applying bias voltage based on radio frequency power supply | |
| CN107058962A (en) | A kind of method that low temperature magnetic sputtering prepares low-resistivity titanium nitride membrane | |
| CN112831768A (en) | A kind of preparation method and application of hafnium nitride thin film with high crystalline quality | |
| CN109989107A (en) | A kind of seed crystal processing method growing high quality SiC crystal | |
| CN111933514B (en) | Method for preparing Ir(111) composite substrate for epitaxial single crystal diamond by electron beam evaporation process | |
| CN112609240B (en) | A method for improving the uniformity of large-scale nucleation of diamond heteroepitaxy based on a composite structure sample stage | |
| CN110172733B (en) | A kind of high-quality zinc stannate single crystal film and preparation method thereof | |
| CN117690780B (en) | Method for preparing aluminum nitride single crystal composite substrate | |
| CN107022749A (en) | A kind of method that utilization substep annealing technology prepares submicron order flawless ferrite film | |
| CN105002561B (en) | The method that ZnTe extension thick films are prepared on (100) GaAs substrates | |
| CN104392908A (en) | Preparation method of polysilicon thin film material | |
| CN110373714B (en) | A method for rapid preparation of large-scale high-quality single-layer graphene at room temperature | |
| CN115652422A (en) | A method for increasing the nucleation density of large-scale single crystal diamond heteroepitaxial growth based on iridium-amorphous carbon pre-planted layer | |
| CN112725746B (en) | A method for improving the grain size of cuprous oxide thin films and its application | |
| CN107059119B (en) | Method for preparing polycrystalline SiC film through sapphire substrate | |
| CN113430642B (en) | Method for reducing heteroepitaxial bias threshold | |
| CN112837993B (en) | A nickel-copper (111) twin film with an in-plane angle of 60° and a preparation method thereof | |
| CN103361600B (en) | Solar cell light absorption layer preparation method | |
| CN116971027A (en) | A method of heteroepitaxial single crystal diamond based on a diamond polycrystalline substrate structure |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | Effective date of registration:20250414 Address after:Building 3, 1st Floor, National Beidou Industry Product Quality Supervision and Inspection Center, Cuibai Road and Qingmei Street Intersection, High tech Development Zone, Zhengzhou City, Henan Province, 450000 Patentee after:Henan Carbon True Core Material Technology Co.,Ltd. Country or region after:China Address before:150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin Patentee before:HARBIN INSTITUTE OF TECHNOLOGY Country or region before:China | |
| TR01 | Transfer of patent right |