Movatterモバイル変換


[0]ホーム

URL:


CN111926207A - Method for preparing nickel-based alloy - Google Patents

Method for preparing nickel-based alloy
Download PDF

Info

Publication number
CN111926207A
CN111926207ACN202010879933.8ACN202010879933ACN111926207ACN 111926207 ACN111926207 ACN 111926207ACN 202010879933 ACN202010879933 ACN 202010879933ACN 111926207 ACN111926207 ACN 111926207A
Authority
CN
China
Prior art keywords
powder
nickel
nano
based alloy
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010879933.8A
Other languages
Chinese (zh)
Other versions
CN111926207B (en
Inventor
章林
陈晓玮
刘烨
陈旭
秦明礼
曲选辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Xiangtan University
Original Assignee
University of Science and Technology Beijing USTB
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB, Xiangtan UniversityfiledCriticalUniversity of Science and Technology Beijing USTB
Priority to CN202010879933.8ApriorityCriticalpatent/CN111926207B/en
Publication of CN111926207ApublicationCriticalpatent/CN111926207A/en
Application grantedgrantedCritical
Publication of CN111926207BpublicationCriticalpatent/CN111926207B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

Translated fromChinese

本发明属于先进金属材料制备研究领域,特别提供了一种采用激光熔覆成形制备镍基合金的方法,具体步骤如下,前驱体粉末的配置:先调配适度浓度的溶液,再将成分为气雾化镍基合金粉加入溶液中浸渍一段时间,然后将纳米Y2O3或La2O3粉末中的一种加入溶液中进行搅拌后将溶液烘干。纳米氧化物包覆镍基合金粉末的制备:将步得到的前驱体粉末放入高速搅拌加热炉中,在气氛保护的条件下,在一定温度进行高速搅拌得到纳米氧化物包覆的镍基合金粉末。将纳米氧化物包覆的镍基合金粉末进行激光熔覆成形为氧化物弥散强化镍基合金。本发明为制备氧化物弥散强化镍基合金提供了新的思路,具有生产周期短、成本低、操作方便等优点。

Figure 202010879933

The invention belongs to the field of advanced metal material preparation research, and particularly provides a method for preparing nickel-based alloys by laser cladding. The nickel-based alloy powder is added into the solution for dipping for a period of time, and then one of nano-Y2 O3 or La2 O3 powder is added into the solution for stirring, and then the solution is dried. Preparation of nano-oxide-coated nickel-based alloy powder: put the precursor powder obtained in the first step into a high-speed stirring heating furnace, and under the condition of atmosphere protection, perform high-speed stirring at a certain temperature to obtain nano-oxide-coated nickel-based alloy. powder. The nano-oxide-coated nickel-based alloy powder is formed into oxide dispersion-strengthened nickel-based alloy by laser cladding. The invention provides a new idea for preparing the oxide dispersion strengthened nickel-based alloy, and has the advantages of short production cycle, low cost, convenient operation and the like.

Figure 202010879933

Description

Translated fromChinese
一种制备镍基合金的方法A kind of method for preparing nickel-based alloy

技术领域technical field

本发明属于先进金属材料制备研究领域,特别提供了一种采用激光熔覆成形制备镍基合金的方法。The invention belongs to the field of advanced metal material preparation research, and particularly provides a method for preparing a nickel-based alloy by laser cladding forming.

背景技术Background technique

镍基高温合金一般采用有序相γ′-Ni3Al进行析出沉淀强化。然而,随着使用温度升高,γ′相要粗化,强化作用减弱。当温度超过γ′相的溶解温度,γ′要重新固溶于奥氏体基体,从而失去沉淀强化效果。不同于析出沉淀相受使用温度限制,纳米氧化物热稳定更高,即使加热到接近合金熔点的温度仍不会溶解,故在0.7Tm到接近熔点的温度仍具有优异的高温蠕变性能、疲劳性能和抗氧化性能。使用纳米氧化物强化的机制称为弥散强化,利用弥散强化机制强化的镍基合金称为氧化物弥散强化(Oxides Dispersion strengthening,ODS)镍基合金。Nickel-based superalloys generally use ordered phase γ'-Ni3 Al for precipitation strengthening. However, as the use temperature increases, the γ' phase will be coarsened and the strengthening effect will be weakened. When the temperature exceeds the dissolution temperature of the γ' phase, the γ' will re-dissolve in the austenite matrix, thereby losing the precipitation strengthening effect. Unlike the precipitation phase, which is limited by the temperature of use, the thermal stability of nano-oxides is higher. Even if heated to a temperature close to the melting point of the alloy, it will not dissolve, so it still has excellent high-temperature creep performance from 0.7Tm to a temperature close to the melting point. Fatigue properties and antioxidant properties. The mechanism of using nano-oxides to strengthen is called dispersion strengthening, and the nickel-based alloy strengthened by using the dispersion strengthening mechanism is called oxide dispersion strengthening (ODS) nickel-based alloy.

具有复杂形状的先进燃气轮机中的叶片和汽车涡轮增压器中涡轮是ODS镍基合金的潜在替代材料。但是ODS镍基合金的硬度高、塑性低和加工成形性差,很难通过传统机加工方法制备出形状复杂的叶片或涡轮等零件,这严重制约了镍基合金的推广应用。国内外研究人员一直致力于ODS镍基高温合金的开发及其复杂形状近终成形技术的研究。其中,3D打印技术作为粉末近终成形的代表技术,适合于尺寸适中、形状复杂零件的成形。3D打印技术中的激光熔覆成形技术由于具有成本低、产品密度高、精度高、少切削甚至无切削等一系列优点受到了广泛的关注。Blades in advanced gas turbines with complex shapes and turbines in automotive turbochargers are potential alternatives to ODS nickel-based alloys. However, ODS nickel-based alloys have high hardness, low plasticity and poor formability, and it is difficult to fabricate parts with complex shapes such as blades or turbines by traditional machining methods, which seriously restricts the popularization and application of nickel-based alloys. Researchers at home and abroad have been working on the development of ODS nickel-based superalloys and their near-net-shape forming technology for complex shapes. Among them, 3D printing technology, as a representative technology of powder near-net-shape forming, is suitable for forming parts with moderate size and complex shape. Laser cladding forming technology in 3D printing technology has received extensive attention due to its low cost, high product density, high precision, less cutting or even no cutting.

为了保证近终成形过程中复杂微细结构的完整性,用于激光熔覆成形用的粉末通常需要球形的细粒径粉末,并且对粉末的纯净度有较高的要求。然而目前大多数制备ODS镍基合金的方法为机械合金化法。机械合金化工艺制备ODS镍基合金时,Al、Ti、Cr等元素容易在机械合金化过程中氧化,降低最终合金性能。同时,高能球磨过程粉末、球磨介质和球磨罐会进行高速碰撞,长时间的球磨导致球磨介质和球磨罐中的元素引入目标粉末中造成污染,进而影响最终材料性能。最后,机械合金化得到的粉末加工硬化严重,且大多数是形状不规则粉末、粉末流动性差,只能使用一些特殊方法如包套热挤压、包套热等静压或放电等离子烧结成形,不能满足激光熔覆成形技术对粉末的要求。In order to ensure the integrity of the complex microstructure in the near-net forming process, the powder used for laser cladding usually requires spherical fine-grained powder, and has high requirements on the purity of the powder. However, most of the current methods for preparing ODS nickel-based alloys are mechanical alloying methods. When ODS nickel-based alloys are prepared by mechanical alloying process, elements such as Al, Ti, and Cr are easily oxidized in the process of mechanical alloying, which reduces the properties of the final alloy. At the same time, the high-energy ball milling process powder, ball milling medium and ball milling tank will collide at high speed, and long-term ball milling will lead to the introduction of elements in the ball milling medium and ball milling tank into the target powder to cause pollution, which in turn affects the final material properties. Finally, the powders obtained by mechanical alloying are seriously hardened, and most of them are irregular-shaped powders with poor powder fluidity. Only some special methods such as wrapping hot extrusion, wrapping hot isostatic pressing or spark plasma sintering can be used. Can not meet the requirements of laser cladding technology for powder.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种制备镍基合金的方法,旨在开发一种高效方法制备具有超细氧化物弥散相的镍基合金。镍基合金的可设计性强、氧化物弥散相特别细小均匀。The purpose of the present invention is to provide a method for preparing a nickel-based alloy, and to develop an efficient method to prepare a nickel-based alloy with an ultrafine oxide dispersed phase. Nickel-based alloys have strong designability, and the oxide dispersion phase is particularly fine and uniform.

本发明首先采用目标合金的雾化粉和相应的纳米氧化物制备粉末前驱体,接着将粉末前驱体在特制的搅拌加热炉中获得超细氧化物弥散相包裹的镍基合金粉末,最终在通过将纳米氧化物包裹的镍基粉末进行激光熔覆成形获得具有复杂形状的ODS镍基合金。In the present invention, the atomized powder of the target alloy and the corresponding nano-oxide are used to prepare a powder precursor, and then the powder precursor is used in a special stirring heating furnace to obtain a nickel-based alloy powder wrapped in an ultra-fine oxide dispersion phase, and finally the nickel-based alloy powder is passed through ODS nickel-based alloys with complex shapes were obtained by laser cladding of nickel-based powders wrapped with nano-oxides.

因此,本发明提供一种制备镍基合金的方法,所述方法包括如下步骤,a、前驱体粉末的配置:先调配浓度为4-10g·L-1的聚二烯丙基二甲基氯化铵溶液或半胱氨酸溶液,再将成分为气雾化镍基合金粉加入溶液中浸渍10-30分钟,然后选取纳米Y2O3或La2O3粉末中的一种为纳米氧化物源,加入溶液中进行搅拌0.5-6小时后将溶液烘干,所述纳米氧化物和氩气雾化粉的用量为使得最终制备得到的粉末中的纳米氧化物占ODS镍基合金的重量百分含量为0.01-5wt.%。b、纳米氧化物包覆镍基合金粉末的制备:将步骤a得到的前驱体粉末放入高速搅拌加热炉中,在气氛保护的条件下,在一定温度进行高速搅拌,高速搅拌的过程中前驱体中剩余的有机物分解并被排除,粉末原料的团聚被打散,纳米氧化物渗入气雾化合金粉末颗粒表层,最终得到纳米氧化物包覆的镍基合金粉末。c、将纳米氧化物包覆的镍基合金粉末进行激光熔覆成形为ODS镍基合金:将步骤b得到的纳米氧化物包覆的镍基合金粉末进行激光熔覆成形,激光熔覆成形过程中控制工艺使金属粉末被激光熔化形成熔池,并由熔池中液化金属的流动将纳米氧化物带入熔池内部并均匀弥散分布,最终得到具有超细氧化物弥散相的镍基合金。Therefore, the present invention provides a method for preparing a nickel-based alloy. The method includes the following steps: a. Configuration of the precursor powder: firstly, a polydiallyl dimethyl chloride with a concentration of 4-10 g·L-1 is prepared ammonium solution or cysteine solution, and then add the aerosolized nickel-based alloy powder into the solution and soak it for 10-30 minutes, and then select one of the nano Y2 O3 or La2 O3 powder as nano-oxidation The source is added to the solution and stirred for 0.5-6 hours, and then the solution is dried. The dosage of the nano-oxide and argon atomized powder is such that the nano-oxide in the finally prepared powder accounts for the weight of the ODS nickel-based alloy. The percentage content is 0.01-5wt.%. b. Preparation of nano-oxide-coated nickel-based alloy powder: put the precursor powder obtained in step a into a high-speed stirring heating furnace, and under the condition of atmosphere protection, perform high-speed stirring at a certain temperature, and during the process of high-speed stirring, the precursor The remaining organic matter in the body is decomposed and eliminated, the agglomeration of the powder raw material is broken up, and the nano-oxide penetrates into the surface layer of the gas-atomized alloy powder particles, and finally a nickel-based alloy powder coated with nano-oxide is obtained. c. Perform laser cladding on the nickel-based alloy powder coated with nano-oxide to form an ODS nickel-based alloy: perform laser cladding on the nickel-based alloy powder coated with nano-oxide obtained in step b, and the laser cladding forming process The medium-controlled process makes the metal powder melted by laser to form a molten pool, and the flow of liquefied metal in the molten pool brings the nano-oxides into the molten pool and distributes them uniformly, and finally obtains a nickel-based alloy with ultra-fine oxide dispersed phase.

在一种具体的实施方式中,步骤a中,用于制备前驱体粉末的溶液为聚二烯丙基二甲基氯化铵溶液或半胱氨酸溶液,浓度为4-10g·L-1,优选6-8g·L-1In a specific embodiment, in step a, the solution used to prepare the precursor powder is a polydiallyldimethylammonium chloride solution or a cysteine solution with a concentration of 4-10 g·L-1 , preferably 6-8g·L-1 .

在一种具体的实施方式中,步骤a中,气雾化镍基合金为各种标准牌号的镍基高温合金,或者是根据实际工况设计的非标准合金,优选为:K418(国标)、K491(国标)、FGH96(国标)、Nimonic 90(美国标准)、Inconel718(美国标准)MA754(美国标准)、MA6000(美国标准)。In a specific embodiment, in step a, the gas atomized nickel-based alloys are nickel-based superalloys of various standard grades, or non-standard alloys designed according to actual working conditions, preferably: K418 (national standard), K491 (National Standard), FGH96 (National Standard), Nimonic 90 (American Standard), Inconel718 (American Standard), MA754 (American Standard), MA6000 (American Standard).

在一种具体的实施方式中,步骤a中,粉末原料加入溶液后搅拌时间为0.5-6小时,优选0.5-2小时。In a specific embodiment, in step a, the stirring time after the powder raw material is added to the solution is 0.5-6 hours, preferably 0.5-2 hours.

在一种具体的实施方式中,步骤a中,纳米氧化物源为纳米Y2O3或La2O3粉末中的一种,最终纳米氧化物占ODS镍基粉末的重量百分含量为0.01-5wt.%,优选0.1-2wt.%。In a specific embodiment, in step a, the nano oxide source is one of nano Y2 O3 or La2 O3 powder, and the final weight percentage of nano oxide in ODS nickel-based powder is 0.01 -5 wt.%, preferably 0.1-2 wt.%.

在一种具体的实施方式中,步骤b中的保护气氛为真空、氩气、氮气中的一种,优选保护气氛为真空和氩气保护。In a specific embodiment, the protective atmosphere in step b is one of vacuum, argon, and nitrogen, preferably the protective atmosphere is vacuum and argon protection.

在一种具体的实施方式中,步骤b中的保温温度为100℃到600℃,优选保温温度为200℃到400℃。In a specific embodiment, the holding temperature in step b is 100°C to 600°C, preferably the holding temperature is 200°C to 400°C.

在一种具体的实施方式中,步骤b中的搅拌螺旋桨的转速为15000-40000转/分钟,优选转速为20000-30000转/分钟。In a specific embodiment, the rotational speed of the stirring propeller in step b is 15,000-40,000 rpm, preferably 20,000-30,000 rpm.

在一种具体的实施方式中,步骤b中的搅拌时间为0.5小时到4小时,优选0.5小时到2小时。In a specific embodiment, the stirring time in step b is 0.5 hours to 4 hours, preferably 0.5 hours to 2 hours.

在一种具体的实施方式中,步骤c中激光扫描速度为500-4000mm/s,优选1000-2000mm/s。In a specific embodiment, the laser scanning speed in step c is 500-4000 mm/s, preferably 1000-2000 mm/s.

在一种具体的实施方式中,步骤c中激光扫描间距为0.02-0.075mm,优选0.03-0.05mm。In a specific embodiment, the laser scanning spacing in step c is 0.02-0.075 mm, preferably 0.03-0.05 mm.

在一种具体的实施方式中,步骤c中铺粉厚度为0.02-0.075mm,优选0.03-0.05mm。In a specific embodiment, the thickness of the powder in step c is 0.02-0.075mm, preferably 0.03-0.05mm.

本发明的优点:Advantages of the present invention:

1、本发明提供了一种制备SLM制备ODS镍基合金的方法,有效解决了机械合金化ODS镍基粉末流动性差、松装密度低、难以用于SLM成形的问题,为ODS镍基合金的近终成形提供了新的思路。1. The present invention provides a method for preparing ODS nickel-based alloy by preparing SLM, which effectively solves the problems of poor fluidity, low bulk density, and difficulty in SLM forming of mechanically alloyed ODS nickel-based powder. Near-net formation offers new ideas.

2、本发明中得到的ODS镍基合金致密度高,纳米氧化物弥散相粒径为5-20nm,且均匀弥散分布在基体中。2. The ODS nickel-based alloy obtained in the present invention has high density, the particle size of the nano-oxide dispersed phase is 5-20 nm, and is uniformly dispersed in the matrix.

3、本发明制备合金的成分可设计性强、成本较低,且可以在少加工或不加工的情况下制备具有复杂形状产品。3. The composition of the alloy prepared by the present invention has strong designability and low cost, and can prepare products with complex shapes with little or no processing.

附图说明Description of drawings

图1为本发明的一种制备镍基合金的方法的工艺流程图。1 is a process flow diagram of a method for preparing a nickel-based alloy according to the present invention.

具体实施方式Detailed ways

下面结合具体实施例对本发明的技术方案做进一步说明。The technical solutions of the present invention will be further described below with reference to specific embodiments.

如图1所示,本发明一种制备镍基合金的方法,所述方法包括如下步骤:As shown in Figure 1, a method for preparing a nickel-based alloy of the present invention comprises the following steps:

S1)前驱体粉末的配置:将氩气雾化镍基合金粉末加入适量前驱体溶液中,浸渍,同时加入含稀土纳米氧化物源,搅拌均匀后烘干,得到前驱体粉末;S1) configuration of precursor powder: adding argon atomized nickel-based alloy powder into an appropriate amount of precursor solution, dipping, adding rare earth-containing nano-oxide source at the same time, stirring evenly, and drying to obtain precursor powder;

S2)将S1)得到前驱体粉末在气氛保护条件下,进行加热,加热设定温度保温,同时高速搅拌,得到纳米氧化物包覆的镍基合金粉末;S2) heating the precursor powder obtained in S1) under an atmosphere protection condition, heating at a set temperature for heat preservation, and stirring at a high speed at the same time to obtain a nickel-based alloy powder coated with nano-oxide;

S3)将S2)得到纳米氧化物包覆的镍基合金粉末进行激光熔覆成形,控制工艺使金属粉末被激光熔化形成熔池,并由熔池中液化金属的流动将纳米氧化物带入熔池内部并均匀弥散分布,最终得到具有超细氧化物弥散相的镍基合金。S3) carry out laser cladding forming on the nickel-based alloy powder coated with nano-oxide obtained in S2), control the process so that the metal powder is melted by laser to form a molten pool, and the nano-oxide is brought into the molten pool by the flow of liquefied metal in the molten pool. The inside of the cell is uniformly dispersed, and finally a nickel-based alloy with ultrafine oxide dispersed phase is obtained.

所述S1)的具体步骤为:The concrete steps of described S1) are:

S1.1)先调配的前驱体溶液,再将气雾化镍基合金粉末加入所述前驱体溶液中浸渍10-30分钟,得到悬浮溶液;S1.1) the first prepared precursor solution, then adding the aerosolized nickel-based alloy powder into the precursor solution for immersion for 10-30 minutes to obtain a suspension solution;

S1.2)选取含稀土纳米氧化物源,加入悬浮溶液中进行搅拌0.5-6小时后将溶液烘干,得到前驱体粉末,S1.2) Select a rare earth-containing nano-oxide source, add it to the suspension solution, stir for 0.5-6 hours, and then dry the solution to obtain a precursor powder,

其中,所述稀土纳米氧化物的用量确保使得最终制备得到的合金中的纳米氧化物占具有超细氧化物弥散相的镍基合金的重量百分含量为0.01-5wt.%。Wherein, the amount of the rare earth nano oxide ensures that the nano oxide in the finally prepared alloy accounts for 0.01-5 wt.% by weight of the nickel-based alloy having the ultrafine oxide dispersed phase.

所述氩气雾化镍基合金粉末为K418合金、K491合金、FGH96合金、Nimonic 90合金、Inconel718合金、MA754合金或MA6000合金中的一种。The argon atomized nickel-based alloy powder is one of K418 alloy, K491 alloy, FGH96 alloy, Nimonic 90 alloy, Inconel718 alloy, MA754 alloy or MA6000 alloy.

述前驱体溶液为聚二烯丙基二甲基氯化铵溶液或半胱氨酸,浓度为4-10g·L-1The precursor solution is a polydiallyl dimethyl ammonium chloride solution or cysteine, and the concentration is 4-10 g·L−1 ;

所述稀土纳米氧化物源为Y2O3或La2O3粉末;The rare earth nano oxide source is Y2 O3 or La2 O3 powder;

所述S2)的具体步骤为:The concrete steps of described S2) are:

S2.1)将得到的前驱体粉末置于保护气氛下进行加热,加热至100-600℃;S2.1) heating the obtained precursor powder under a protective atmosphere to 100-600°C;

S2.2)进行保温,同时采用搅拌螺旋桨以转速为15000-40000转/分钟,搅拌0.5-4小时,得到纳米氧化物包覆的镍基合金粉末。S2.2) Insulation is carried out, and a stirring propeller is used at a rotational speed of 15,000-40,000 rpm for 0.5-4 hours to obtain a nickel-based alloy powder coated with nano-oxide.

所述保护气氛为氩气、氮气或真空。The protective atmosphere is argon, nitrogen or vacuum.

所述S3)的具体步骤为:Described S3) concrete steps are:

S3.1)将得到的纳米氧化物包覆的镍基合金粉末进行激光熔覆成形,铺粉厚度为0.02-0.075mm;S3.1) carry out laser cladding to the obtained nickel-based alloy powder coated with nano-oxide, and the thickness of the powder is 0.02-0.075mm;

S3.2)采用激光扫描,扫描速度为500-4000mm/s,扫描间距为0.02-0.075mm,熔池中液化金属的流动将纳米氧化物带入熔池内部并均匀弥散分布,最终得到具有超细氧化物弥散相的镍基合金。S3.2) Using laser scanning, the scanning speed is 500-4000mm/s, and the scanning distance is 0.02-0.075mm. The flow of the liquefied metal in the molten pool brings the nano-oxides into the molten pool and distributes them uniformly. Nickel-based alloy with fine oxide dispersed phase.

所述前驱体溶液浓度还可为6-8g·L-1The concentration of the precursor solution can also be 6-8 g·L−1 ;

所述稀土纳米氧化物的用量确保使得最终制备得到的合金中的纳米氧化物占具有超细氧化物弥散相的镍基合金的重量百分含量还可为0.1-2wt.%。The amount of the rare earth nano-oxides ensures that the nano-oxides in the finally prepared alloy can also account for 0.1-2 wt.% by weight of the nickel-based alloy with the ultrafine oxide dispersed phase.

所述S2)中加热温度还可为200-400℃;The heating temperature in the S2) can also be 200-400 °C;

转速还可为20000-30000转/分钟,搅拌0.5-2小时。The rotating speed can also be 20,000-30,000 rpm, and the stirring is performed for 0.5-2 hours.

所述S3中)所述铺粉厚度还可为0.03-0.05mm;扫描速度为1000-2000mm/s;扫描间距还可为0.03-0.05mm。In the S3), the thickness of the powder coating can also be 0.03-0.05mm; the scanning speed can be 1000-2000mm/s; the scanning distance can also be 0.03-0.05mm.

实施例1:Example 1:

成分Element

Ni-12wt.%Cr-6wt.%Al-1wt.%Ti-4wt.%Mo-2wt.%Nb-0.25wt.%La2O3镍基合金的制备Preparation of Ni-12wt.%Cr-6wt.%Al-1wt.%Ti-4wt.%Mo-2wt.%Nb-0.25wt.%La2 O3 Nickel-Based Alloy

将成分为Ni-12wt.%Cr-6wt.%Al-1wt.%Ti-4wt.%Mo-2wt.%Nb的氩气雾化粉和纳米La2O3粉以重量比99.75:0.25称量好备用。将称量好的Ni-12wt.%Cr-6wt.%Al-1wt.%Ti-4wt.%Mo-2wt.%Nb的氩气雾化粉溶于5g·L-1的聚二烯丙基二甲基氯化铵溶液,浸渍15分钟,然后将纳米La2O3粉加入溶液中搅拌1.5小时后将溶液烘干后得到粉末前驱体。将粉末前驱体在氩气气氛中,温度为320℃、搅拌螺旋桨转速为20000转/分钟的条件下进行搅拌1小时得到纳米氧化物包裹镍基合金粉末。最后将纳米氧化物包裹镍基合金粉末进行激光熔覆成形,成形参数为铺粉厚度0.03mm、扫描速度1000mm/s、扫描间距0.05mm,得到目标形状的ODS镍基合金产品。The composition of Ni-12wt.%Cr-6wt.%Al-1wt.%Ti-4wt.%Mo-2wt.%Nb argon atomized powder and nanoLa2O3 powderwere weighed in a weight ratio of 99.75:0.25 Good spare. Dissolve the weighed Ni-12wt.%Cr-6wt.%Al-1wt.%Ti-4wt.%Mo-2wt.%Nb argon atomized powder in 5g·L-1 polydiallyl Dimethylammonium chloride solution, soaked for 15 minutes, then added nano-sized La2 O3 powder into the solution, stirred for 1.5 hours, and dried the solution to obtain a powder precursor. The powder precursor was stirred for 1 hour in an argon atmosphere at a temperature of 320° C. and a stirring propeller speed of 20,000 rpm to obtain nano-oxide-coated nickel-based alloy powder. Finally, the nano-oxide coated nickel-based alloy powder is laser cladding and formed. The forming parameters are the powder thickness of 0.03 mm, the scanning speed of 1000 mm/s, and the scanning distance of 0.05 mm to obtain the ODS nickel-based alloy product of the target shape.

实施例2:Example 2:

成分Element

Ni-18wt.%Cr-21wt.%Fe-1wt.%Co-0.6wt.%Al-1wt.%Ti-3wt.%Mo-5wt.%Nb-0.4wt.%La2O3镍基合金的制备Ni-18wt.%Cr-21wt.%Fe-1wt.%Co-0.6wt.%Al-1wt.%Ti-3wt.%Mo-5wt.%Nb-0.4wt.%La2 O3 nickel-based alloy preparation

将成分为make the ingredients as

Ni-18wt.%Cr-21wt.%Fe-1wt.%Co-0.6wt.%Al-1wt.%Ti-3wt.%Mo-5wt.%Nb的氩气雾化粉和纳米La2O3粉以重量比99.6:0.4称量好备用。将称量好的Ni-18wt.%Cr-21wt.%Fe-1wt.%Co-0.6wt.%Al-1wt.%Ti-3wt.%Mo-5wt.%Nb的氩气雾化粉溶于8g·L-1的聚二烯丙基二甲基氯化铵溶液,浸渍30分钟,然后将纳米La2O3粉加入溶液中搅拌2小时后将溶液烘干后得到粉末前驱体。将粉末前驱体在氩气气氛中,温度为350℃、搅拌螺旋桨转速为25000转/分钟的条件下进行搅拌1小时得到纳米氧化物包裹镍基合金粉末。最后将纳米氧化物包裹镍基合金粉末进行激光熔覆成形,成形参数为铺粉厚度0.05mm、扫描速度1500mm/s、扫描间距0.04mm,得到目标形状的ODS镍基合金产品。Ni-18wt.%Cr-21wt.%Fe-1wt.%Co-0.6wt.%Al-1wt.%Ti-3wt.%Mo-5wt.%Nb ArgonAtomized Powder and NanoLa2O3 Powder Weigh it with a weight ratio of 99.6:0.4 for later use. Dissolve the weighed Ni-18wt.%Cr-21wt.%Fe-1wt.%Co-0.6wt.%Al-1wt.%Ti-3wt.%Mo-5wt.%Nb argon atomized powder 8 g·L-1 solution of polydiallyl dimethyl ammonium chloride was soaked for 30 minutes, then nano-sized La2 O3 powder was added to the solution, stirred for 2 hours, and the solution was dried to obtain a powder precursor. The powder precursor is stirred for 1 hour in an argon atmosphere at a temperature of 350° C. and a stirring propeller speed of 25,000 rpm to obtain nano-oxide-coated nickel-based alloy powder. Finally, the nano-oxide-wrapped nickel-based alloy powder is laser cladding and formed. The forming parameters are the powder thickness of 0.05mm, the scanning speed of 1500mm/s, and the scanning distance of 0.04mm, to obtain the ODS nickel-based alloy product of the target shape.

实施例3:Example 3:

成分Ni-20wt.%Cr-0.3wt.%Al-0.5wt.%Ti-0.1wt.%Fe-0.6wt.%Y2O3镍基合金的制备Composition Ni-20wt.%Cr-0.3wt.%Al-0.5wt.%Ti-0.1wt.%Fe-0.6wt.%Y2O3 nickel- based alloy

将成分为Ni-20wt.%Cr-0.3wt.%Al-0.5wt.%Ti-0.1wt.%Fe的氩气雾化粉和纳米Y2O3粉以重量比99.4:0.6称量好备用。将称量好的Ni-20wt.%Cr-0.3wt.%Al-0.5wt.%Ti-0.1wt.%Fe的氩气雾化粉溶于4g·L-1的半胱氨酸溶液,浸渍10分钟,然后将纳米Y2O3粉加入溶液中搅拌2小时后将溶液烘干后得到粉末前驱体。将粉末前驱体在氩气气氛中,温度为500℃、搅拌螺旋桨转速为20000转/分钟的条件下进行搅拌1小时得到纳米氧化物包裹镍基合金粉末。最后将纳米氧化物包裹镍基合金粉末进行激光熔覆成形,成形参数为铺粉厚度0.03mm、扫描速度2500mm/s、扫描间距0.03mm,得到目标形状的ODS镍基合金产品。The composition of Ni-20wt.%Cr-0.3wt.%Al-0.5wt.%Ti-0.1wt.%Fe argon atomized powder and nano Y2 O3 powder are weighed in a weight ratio of 99.4:0.6 and ready for use . The weighed Ni-20wt.%Cr-0.3wt.%Al-0.5wt.%Ti-0.1wt.%Fe argon atomized powder was dissolved in 4g·L-1 cysteine solution, and immersed. 10 minutes, then adding nano Y2 O3 powder into the solution and stirring for 2 hours, drying the solution to obtain a powder precursor. The powder precursor was stirred for 1 hour in an argon atmosphere at a temperature of 500° C. and a stirring propeller speed of 20,000 rpm to obtain nano-oxide-coated nickel-based alloy powder. Finally, the nano-oxide-wrapped nickel-based alloy powder is laser cladding and formed. The forming parameters are the powder thickness of 0.03mm, the scanning speed of 2500mm/s, and the scanning distance of 0.03mm to obtain the ODS nickel-based alloy product of the target shape.

实施例4:Example 4:

成分Element

Ni-15wt.%Cr-4.5wt.%Al-2.5wt.%Ti-4wt.%W-2wt.%Mo-2wt.%Ta-1.1wt.%Y2O3镍基合金的制备Preparation of Ni-15wt.%Cr-4.5wt.%Al-2.5wt.%Ti-4wt.%W-2wt.%Mo-2wt.%Ta-1.1wt.%Y2 O3 Nickel-Based Alloy

将成分为make the ingredients as

Ni-15wt.%Cr-4.5wt.%Al-2.5wt.%Ti-4wt.%W-2wt.%Mo-2wt.%Ta的氩气雾化粉和纳米Y2O3粉以重量比98.9:1.1称量好备用。将称量好的Ni-15wt.%Cr-4.5wt.%Al-2.5wt.%Ti-4wt.%W-2wt.%Mo-2wt.%Ta的氩气雾化粉溶于8g·L-1的半胱氨酸溶液,浸渍30分钟,然后将纳米Y2O3粉加入溶液中搅拌2小时后将溶液烘干后得到粉末前驱体。将粉末前驱体在氩气气氛中,温度为480℃、搅拌螺旋桨转速为30000转/分钟的条件下进行搅拌1小时得到纳米氧化物包裹镍基合金粉末。最后将纳米氧化物包裹镍基合金粉末进行激光熔覆成形,成形参数为铺粉厚度0.04mm、扫描速度1800mm/s、扫描间距0.04mm,得到目标形状的ODS镍基合金产品。Ni-15wt.%Cr-4.5wt.%Al-2.5wt.%Ti-4wt.%W-2wt.%Mo-2wt .%Ta Argon atomized powder and nanoY2O3 powder in weight ratio 98.9 : 1.1 Weigh it for later use. Dissolve the weighed Ni-15wt.%Cr-4.5wt.%Al-2.5wt.%Ti-4wt.%W-2wt.%Mo- 2wt.%Ta argon atomized powder in 8g L-1 cysteine solution, soaked for 30 minutes, then added nano Y2 O3 powder into the solution, stirred for 2 hours, and dried the solution to obtain a powder precursor. The powder precursor is stirred for 1 hour in an argon atmosphere at a temperature of 480° C. and a stirring propeller speed of 30,000 rpm to obtain nano-oxide-coated nickel-based alloy powder. Finally, the nano-oxide-wrapped nickel-based alloy powder is laser cladding and formed. The forming parameters are the powder thickness of 0.04mm, the scanning speed of 1800mm/s, and the scanning distance of 0.04mm to obtain the ODS nickel-based alloy product of the target shape.

以上内容是结合具体的优选实施方式对本发明作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演和替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field to which the present invention pertains, without departing from the concept of the present invention, some simple deductions and substitutions can also be made, all of which should be regarded as belonging to the protection scope of the present invention.

Claims (10)

CN202010879933.8A2020-08-272020-08-27Method for preparing nickel-based alloyActiveCN111926207B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202010879933.8ACN111926207B (en)2020-08-272020-08-27Method for preparing nickel-based alloy

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202010879933.8ACN111926207B (en)2020-08-272020-08-27Method for preparing nickel-based alloy

Publications (2)

Publication NumberPublication Date
CN111926207Atrue CN111926207A (en)2020-11-13
CN111926207B CN111926207B (en)2021-12-14

Family

ID=73309963

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202010879933.8AActiveCN111926207B (en)2020-08-272020-08-27Method for preparing nickel-based alloy

Country Status (1)

CountryLink
CN (1)CN111926207B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3533760A (en)*1965-04-021970-10-13Sherritt Gordon Mines LtdDispersion strengthened nickel-chromium alloy composition
CN102251131A (en)*2011-06-302011-11-23北京科技大学Method for preparing injection-molding nickel-base ODS (oxide dispersion strengthened) alloy
CN102912189A (en)*2012-11-152013-02-06江苏新亚特钢锻造有限公司Laser-cladding cobalt-based alloy powder and method for preparing same
CN103526077A (en)*2013-10-222014-01-22江苏盛伟模具材料有限公司Micro-nano oxide particle enhanced nickel base alloy powder as well as preparation method thereof
CN109332680A (en)*2018-11-072019-02-15南京航空航天大学 A nano-oxide particle/nickel-based superalloy composite spherical powder for high-energy beam 3D printing and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3533760A (en)*1965-04-021970-10-13Sherritt Gordon Mines LtdDispersion strengthened nickel-chromium alloy composition
CN102251131A (en)*2011-06-302011-11-23北京科技大学Method for preparing injection-molding nickel-base ODS (oxide dispersion strengthened) alloy
CN102912189A (en)*2012-11-152013-02-06江苏新亚特钢锻造有限公司Laser-cladding cobalt-based alloy powder and method for preparing same
CN103526077A (en)*2013-10-222014-01-22江苏盛伟模具材料有限公司Micro-nano oxide particle enhanced nickel base alloy powder as well as preparation method thereof
CN109332680A (en)*2018-11-072019-02-15南京航空航天大学 A nano-oxide particle/nickel-based superalloy composite spherical powder for high-energy beam 3D printing and preparation method thereof

Also Published As

Publication numberPublication date
CN111926207B (en)2021-12-14

Similar Documents

PublicationPublication DateTitle
CN113481412B (en) A kind of additive manufacturing nickel-based superalloy and its preparation method and application
CN103240412B (en)Method for preparing powder super-alloy by near net shape
CN112045183B (en) A method for preparing ODS-reinforced heat-resistant aluminum alloys by laser cladding
CN108441706B (en) A kind of high-entropy alloy reinforced nickel-aluminum composite material and preparation method thereof
CN102251131A (en)Method for preparing injection-molding nickel-base ODS (oxide dispersion strengthened) alloy
CN113201667B (en) A kind of nickel-based superalloy and design method thereof
CN101948970A (en)Mechanical alloying method for preparing strengthened dispersion alloy of nickel-based oxide
JP2011122246A (en)Method for processing nanostructured ferritic alloy and article produced thereby
WO2021078885A1 (en)Printable powder material of fecral for additive manufacturing and an additive manufactured object and the uses thereof
CN104630639A (en)Nano yttrium nitride dispersed reinforced iron-based alloy and preparation method
CN111118379A (en)Co-bonded TiZrNbMoTa refractory high-entropy alloy and preparation method thereof
CN118773483A (en) Cobalt-based high-temperature alloy powder for 3D printing, preparation method and application
CN101979691B (en)Method for preparing oxide dispersion strengthened cobalt-based super alloy
CN112063868B (en) A kind of preparation method of oxide dispersion strengthened Al-Mg-Si aluminum alloy
CN114480920B (en) A kind of nickel-based superalloy powder for 3D printing and its preparation method and application
CN111926208B (en)Method for preparing niobium-based alloy with superfine oxide dispersed phase
CN111957965B (en) A kind of method for preparing high entropy alloy
CN111926207A (en)Method for preparing nickel-based alloy
CN111054923B (en)Preparation method of iron-aluminum alloy part based on 3DP technology
CN110039062B (en)Method for preparing spherical nickel-based powder
CN112064011B (en)Method for preparing multi-nano-phase reinforced ferrite alloy with complex shape
CN117737505A (en)Additive manufacturing nickel-based superalloy with low cracking sensitivity
CN102650011A (en)Heat, wear and hot corrosion-resistant silicide reinforced high wolframium-nickel-iron-based alloy
CN115449659B (en) Oxide dispersion strengthened nickel-based superalloy and its preparation method and application
CN112063910B (en)Method for preparing ODS ferrite-based alloy and application thereof

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp