






技术领域technical field
本发明涉及机器人领域,特别涉及一种基于多重感知的机器人安全控制方法及装置。The invention relates to the field of robots, in particular to a method and device for safety control of robots based on multiple perceptions.
背景技术Background technique
机器人是整合控制论、机械电子、计算机、材料和仿生学的产物,它既可接受人类指挥,也可运行预先编排的计算机程序,还可根据以人工智能技术制定的原则纲领行动,以协助或取代人类的工作。A robot is a product that integrates cybernetics, mechatronics, computers, materials and bionics. It can accept human commands, run pre-arranged computer programs, and act according to principles and programs formulated with artificial intelligence technology to assist or Replacing human jobs.
在实际使用时,可能需要人与机器人协同工作,以完成某项任务。而在人与机器人协同工作时,需保证机器人具备足够的安全性,以避免机器人与人体发生碰撞,或者在检测到碰撞时采取相应的安全防护措施,从而保证人身安全。In actual use, humans and robots may be required to work together to complete a certain task. When humans and robots work together, it is necessary to ensure that the robot has sufficient safety to avoid collision between the robot and the human body, or take corresponding safety protection measures when a collision is detected, so as to ensure personal safety.
为此,现有的机器人采用基于电流环的接触式碰撞检测,以触发机器人停止。但是,现有的碰撞检测方式依靠人与机器人接触后所引起的电流变化而触发机器人停止,而当机器人触发停止时,人与机器人已经发生碰撞,在某些场景下,这种碰撞已经对人体造成了伤害。并且,现有的碰撞检测方式在检测到碰撞后,需对整个机器人系统执行安全停机操作,但停机后的重启操作需要耗费大量的时间和人力。To this end, existing robots employ contact collision detection based on current loops to trigger the robot to stop. However, the existing collision detection method relies on the current change caused by the contact between the human and the robot to trigger the robot to stop, and when the robot is triggered to stop, the human and the robot have collided. Injured. In addition, the existing collision detection method needs to perform a safe shutdown operation for the entire robot system after detecting a collision, but the restart operation after the shutdown requires a lot of time and manpower.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提出一种基于多重感知的机器人安全控制方法,以解决现有的机器人存在所存在的安全性问题。The main purpose of the present invention is to propose a multi-sensing-based robot safety control method to solve the existing safety problems of existing robots.
为实现上述目的,本发明提出一种基于多重感知的机器人安全控制方法,该机器人安全控制方法包括:在接收到3D视觉装置发送的障碍物运动信息时,根据所述障碍物运动信息和机器人运动信息,生成供机器人执行的第一控制策略,以避开所述障碍物,所述运动信息包括运动速度和运动轨迹;在接收到接近觉电子皮肤发送的接近觉信息时,根据人工势场法,生成供机器人执行的第二控制策略,以避开所述障碍物;在接收到触觉电子皮肤发送的力反馈信息时,根据所述力反馈信息和机械臂的电流反馈信息,生成供机器人执行的第三控制策略,以减小所述机器人与障碍物之间的碰撞力。In order to achieve the above object, the present invention proposes a multi-sensing-based robot safety control method. The robot safety control method includes: when receiving obstacle motion information sent by a 3D vision device, according to the obstacle motion information and the robot motion information to generate a first control strategy for the robot to execute to avoid the obstacle, and the motion information includes motion speed and motion trajectory; when receiving the proximity sensory information sent by the proximity sensory electronic skin, according to the artificial potential field method , to generate a second control strategy for the robot to execute to avoid the obstacle; when receiving the force feedback information sent by the tactile electronic skin, generate a second control strategy for the robot to execute according to the force feedback information and the current feedback information of the robotic arm The third control strategy to reduce the collision force between the robot and the obstacle.
优选地,在接收到3D视觉装置发送的障碍物运动信息时,根据障碍物运动信息和机器人运动信息,生成供机器人执行的第一控制策略的步骤之前,还包括:通过3D视觉装置对障碍物进行实时跟踪,以获取所述障碍物的实时运动信息,并根据所述运动信息建立第一运动模型;通过所述机器人的控制器获取所述机器人的实时运动信息,并根据所述运动信息建立第二运动模型;根据所述第一运动模型和第二运动模型,对所述机器人与障碍物进行碰撞演练,并获取碰撞演练的结果;根据所述碰撞演练的结果,确定是否生成所述第一控制策略。Preferably, before the step of generating the first control strategy for the robot to execute according to the obstacle motion information and the robot motion information when the obstacle motion information sent by the 3D vision device is received, the method further includes: using the 3D vision device to monitor the obstacles. Carry out real-time tracking to obtain the real-time motion information of the obstacle, and establish a first motion model according to the motion information; obtain the real-time motion information of the robot through the controller of the robot, and establish according to the motion information a second motion model; according to the first motion model and the second motion model, perform collision drills on the robot and obstacles, and obtain the results of the collision drills; determine whether to generate the first motion model according to the results of the collision drills a control strategy.
优选地,所述根据障碍物运动信息和机器人运动信息,生成供机器人执行的第一控制策略包括:在碰撞演练过程中,生成自主避障路径,并将所述自主避障路径与所述机器人的当前路径合成;若无法合成自主避障路径,则控制所述机器人减速运行。Preferably, the generating the first control strategy for the robot to execute according to the obstacle motion information and the robot motion information includes: during the collision drill, generating an autonomous obstacle avoidance path, and comparing the autonomous obstacle avoidance path with the robot The current path is synthesized; if the autonomous obstacle avoidance path cannot be synthesized, the robot is controlled to decelerate.
优选地,所述根据力反馈信息和机械臂的电流反馈信息,生成供机器人执行的第三控制策略包括:建立阻抗控制模型,所述阻抗控制模型包括碰撞时的碰撞力、碰撞参数、预设位置、预设速度和预设减速度;根据预先建立的碰撞试验,获取碰撞时的碰撞参数,所述碰撞参数包括刚度参数、阻尼参数和质量矩阵参数;将触觉电子皮肤所反馈的碰撞力,输入至所述阻抗控制模型,以获取所述机器人的预设位置。Preferably, generating the third control strategy for the robot to execute according to the force feedback information and the current feedback information of the manipulator includes: establishing an impedance control model, where the impedance control model includes a collision force, a collision parameter, a preset position, preset speed and preset deceleration; according to the pre-established collision test, the collision parameters during the collision are obtained, and the collision parameters include stiffness parameters, damping parameters and mass matrix parameters; the collision force fed back by the haptic electronic skin, Input to the impedance control model to obtain the preset position of the robot.
优选地,所述阻抗控制模型按以下公式建立:F=K*X+B*X’+M*X”;其中,F为碰撞力;X,X’,X”分别为机器人的预设位置、预设速度、预设减速度;K,B,M分别为障碍物的刚度参数、阻尼参数和质量矩阵参数;所述减速度按以下公式计算获得:X”=(F-K*X+B*X’)/M;对所述减速度进行积分运算,以得到所述机器人的预设位置。Preferably, the impedance control model is established according to the following formula: F=K*X+B*X'+M*X"; wherein, F is the collision force; X, X', X" are the preset positions of the robot respectively , preset speed, preset deceleration; K, B, M are the stiffness parameter, damping parameter and mass matrix parameter of the obstacle respectively; the deceleration is calculated according to the following formula: X”=(F-K*X+B* X')/M; perform integral operation on the deceleration to obtain the preset position of the robot.
本发明还提出一种基于多重感知的机器人安全控制装置,该机器人安全控制装置包括:第一控制模块,用于在接收到3D视觉装置发送的障碍物运动信息时,根据所述障碍物运动信息和机器人运动信息,生成供机器人执行的第一控制策略,以避开所述障碍物,所述运动信息包括运动速度和运动轨迹;第二控制模块,用于在接收到接近觉电子皮肤发送的接近觉信息时,根据人工势场法,生成供机器人执行的第二控制策略,以避开所述障碍物;第三控制模块,用于在接收到触觉电子皮肤发送的力反馈信息时,根据所述力反馈信息和机械臂的电流反馈信息,生成供机器人执行的第三控制策略,以减小所述机器人与障碍物之间的碰撞力。The present invention also proposes a robot safety control device based on multiple perceptions. The robot safety control device includes: a first control module, configured to, when receiving the obstacle motion information sent by the 3D vision device, according to the obstacle motion information and robot motion information to generate a first control strategy for the robot to execute to avoid the obstacle, and the motion information includes motion speed and motion trajectory; the second control module is used to receive the information sent by the proximity sensor electronic skin. When approaching the sense information, according to the artificial potential field method, a second control strategy is generated for the robot to execute to avoid the obstacle; the third control module is used for receiving the force feedback information sent by the tactile electronic skin, according to The force feedback information and the current feedback information of the robot arm generate a third control strategy for the robot to execute, so as to reduce the collision force between the robot and the obstacle.
优选地,所述基于多重感知的机器人安全控制装置还包括:第一模型建立模块,用于通过3D视觉装置对障碍物进行实时跟踪,以获取所述障碍物的实时运动信息,并根据所述运动信息建立第一运动模型;第二模型建立模块,用于通过所述机器人的控制器获取所述机器人的实时运动信息,并根据所述运动信息建立第二运动模型;碰撞演练模块,用于根据所述第一运动模型和第二运动模型,对所述机器人与障碍物进行碰撞演练,并获取碰撞演练的结果;判断模块,用于根据所述碰撞演练的结果,确定是否生成所述第一控制策略。Preferably, the multi-sensing-based robot safety control device further includes: a first model building module for tracking obstacles in real time through a 3D vision device, so as to obtain real-time motion information of the obstacles, and according to the The motion information establishes a first motion model; the second model establishment module is used to obtain the real-time motion information of the robot through the controller of the robot, and establish a second motion model according to the motion information; the collision drill module is used for According to the first motion model and the second motion model, a collision exercise is performed on the robot and the obstacle, and the result of the collision exercise is obtained; the judgment module is used for determining whether to generate the first collision exercise according to the result of the collision exercise a control strategy.
优选地,所述第一控制模块包括:路径生成单元,用于在碰撞演练过程中,生成自主避障路径,并将所述自主避障路径与所述机器人的当前路径合成;减速控制单元,用于在无法合成自主避障路径时,控制所述机器人减速运行。Preferably, the first control module includes: a path generation unit, configured to generate an autonomous obstacle avoidance path during the collision drill, and synthesize the autonomous obstacle avoidance path with the current path of the robot; a deceleration control unit, It is used to control the robot to decelerate and run when the autonomous obstacle avoidance path cannot be synthesized.
优选地,所述第三控制模块包括:第三模型建立单元,用于建立阻抗控制模型,所述阻抗控制模型包括碰撞时的碰撞力、碰撞参数、预设位置、预设速度和预设减速度;碰撞参数获取单元,用于根据预先建立的碰撞试验,获取碰撞时的碰撞参数,所述碰撞参数包括刚度参数、阻尼参数和质量矩阵参数;预设位置获取单元,用于将触觉电子皮肤所反馈的碰撞力,输入至所述阻抗控制模型,以获取所述机器人的预设位置。Preferably, the third control module includes: a third model establishment unit for establishing an impedance control model, where the impedance control model includes a collision force, a collision parameter, a preset position, a preset speed, and a preset reduction during the collision. speed; a collision parameter acquisition unit for acquiring collision parameters during collision according to a pre-established collision test, where the collision parameters include stiffness parameters, damping parameters and mass matrix parameters; a preset position acquisition unit for tactile electronic skin The feedback collision force is input to the impedance control model to obtain the preset position of the robot.
优选地,所述阻抗控制模型按以下公式建立:F=K*X+B*X’+M*X”;其中,F为碰撞力;X,X’,X”分别为机器人的预设位置、预设速度、预设减速度;K,B,M分别为障碍物的刚度参数、阻尼参数和质量矩阵参数;所述减速度按以下公式计算获得:X”=(F-K*X+B*X’)/M;对所述减速度进行积分运算,以得到所述机器人的预设位置。Preferably, the impedance control model is established according to the following formula: F=K*X+B*X'+M*X"; wherein, F is the collision force; X, X', X" are the preset positions of the robot respectively , preset speed, preset deceleration; K, B, M are the stiffness parameter, damping parameter and mass matrix parameter of the obstacle respectively; the deceleration is calculated according to the following formula: X”=(F-K*X+B* X')/M; perform integral operation on the deceleration to obtain the preset position of the robot.
与现有技术相比,本发明实施例的有益效果在于:首先,通过3D视觉装置对障碍物进行实时跟踪,以获取障碍物的实时运动信息,再结合机器人的实时运动信息,预判机器人按照当前的运动速度和运动轨迹,是否会与障碍物发生碰撞;若预判结果为碰撞,则根据机器人与障碍物的实时运动信息,生成供机器人执行的第一控制策略,以供机器人避开障碍物,使得机器人与障碍物不会发生碰撞。其次,在接收到接近觉信号时,表明障碍物与机器人距离较近,3D视觉装置在此处是检测盲区,其无法检测到障碍物的运动信息,因此,通过人工势场法,生成共机器人执行的第二控制策略,以供机器人避开障碍物,使得机器人与障碍物不会发生碰撞。最后,在接收到触觉信号时,表明障碍物与机器人已经发生碰撞,则根据电子皮肤触觉的力反馈信息和机械臂的电流反馈信息,生成供机器人执行的第三控制策略,以减小机器人与障碍物之间的碰撞力,从而产生对障碍物的缓冲效果,进而实现对于机器人的安全控制。本发明通过3D视觉、电子皮肤接近觉和电子皮肤触觉,对机器人执行分级安全控制策略,实现预碰撞主动避障和接触主动缓冲,从而达到3D视觉主动避障、接近觉紧急避障及碰撞缓冲的目的。Compared with the prior art, the beneficial effects of the embodiments of the present invention are as follows: first, the obstacles are tracked in real time through a 3D vision device to obtain real-time motion information of the obstacles, and then combined with the real-time motion information of the robot, the robot can be pre-judged as follows: Whether the current movement speed and movement trajectory will collide with the obstacle; if the predicted result is a collision, the first control strategy for the robot to execute is generated according to the real-time movement information of the robot and the obstacle, so that the robot can avoid the obstacle objects, so that the robot does not collide with obstacles. Secondly, when the proximity signal is received, it indicates that the distance between the obstacle and the robot is relatively close. The 3D vision device is a detection blind spot here, and it cannot detect the motion information of the obstacle. Therefore, the artificial potential field method is used to generate a co-robot. The second control strategy is executed for the robot to avoid obstacles, so that the robot does not collide with the obstacles. Finally, when the tactile signal is received, it indicates that the obstacle and the robot have collided. According to the force feedback information of the electronic skin touch and the current feedback information of the robot arm, a third control strategy for the robot to execute is generated to reduce the interaction between the robot and the robot. The collision force between obstacles produces a buffering effect on the obstacles, thereby realizing the safe control of the robot. Through 3D vision, electronic skin proximity sense and electronic skin touch sense, the invention implements a hierarchical safety control strategy for the robot to realize pre-collision active obstacle avoidance and contact active buffering, thereby achieving 3D visual active obstacle avoidance, proximity sense emergency obstacle avoidance and collision buffering the goal of.
附图说明Description of drawings
图1为本发明基于多重感知的机器人安全控制方法第一实施例的流程图;FIG. 1 is a flow chart of the first embodiment of the multi-sensing-based robot safety control method of the present invention;
图2为本发明基于多重感知的机器人安全控制方法的控制示意图;Fig. 2 is the control schematic diagram of the multi-sensing-based robot safety control method of the present invention;
图3为本发明基于多重感知的机器人安全控制方法第二实施例的流程图;FIG. 3 is a flowchart of a second embodiment of a multi-sensing-based robot safety control method according to the present invention;
图4为本发明基于多重感知的机器人安全控制方法第三实施例的流程图;FIG. 4 is a flowchart of a third embodiment of a robot safety control method based on multiple perceptions of the present invention;
图5为本发明基于多重感知的机器人安全控制方法第五实施例的流程图;FIG. 5 is a flowchart of a fifth embodiment of a robot safety control method based on multiple perceptions of the present invention;
图6为本发明所提供的机器人与操作人员之间对保护性间距产生影响的部分的图形化示意图;6 is a schematic diagram of the part that affects the protective distance between the robot and the operator provided by the present invention;
图7为本发明基于多重感知的机器人安全控制装置的功能模块图。FIG. 7 is a functional block diagram of the multi-sensing-based robot safety control device of the present invention.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to be used to explain the present invention, but should not be construed as a limitation of the present invention. Based on the embodiments of the present invention, those of ordinary skill in the art do not make any creative work premise. All other embodiments obtained below belong to the protection scope of the present invention.
本发明提出一种基于多重感知的机器人安全控制方法,在一实施方式中,参见图1,该机器人安全控制方法包括:The present invention proposes a multi-sensing-based robot safety control method. In one embodiment, referring to FIG. 1 , the robot safety control method includes:
步骤S10,在接收到3D视觉装置发送的障碍物运动信息时,根据障碍物运动信息和机器人运动信息,生成供机器人执行的第一控制策略,以避开障碍物,运动信息包括运动速度和运动轨迹;Step S10, when receiving the obstacle motion information sent by the 3D vision device, generate a first control strategy for the robot to execute according to the obstacle motion information and the robot motion information to avoid the obstacle, and the motion information includes the motion speed and the motion information. track;
本实施例中,机器人以工业机器人为例,障碍物以人体为例,以对本发明所提出的机器人安全控制方法进行说明。应当注意的是,机器人以工业机器人为例,障碍物以人体为例,此仅为示例性的,而非限制性的。此外,本实施例所涉及的3D视觉装置可以设置在机器人上,也可以设置在机器人所在区域内,以通过3D视觉装置获取机器人所在区域的三维视觉信息,其包括工业机器人、人和其它物体的三维信息。In this embodiment, an industrial robot is used as an example for the robot, and a human body is used as an obstacle as an example, so as to illustrate the robot safety control method proposed by the present invention. It should be noted that the robot takes an industrial robot as an example, and the obstacle takes a human body as an example, which is only an example and not a limitation. In addition, the 3D vision device involved in this embodiment can be installed on the robot or in the area where the robot is located, so as to obtain the three-dimensional visual information of the area where the robot is located through the 3D vision device, which includes industrial robots, people and other objects. three-dimensional information.
在检测到机器人所在区域内出现运动人体时,获取此运动人体的运动信息,并结合此运动人体的运动信息与机器人的运动信息,规划出可避开运动人体的路径,以供机器人按照此路径行进。需要说明的是,在已知运动人体和机器人运动轨迹的前提下,再结合机器人所在区域的环境信息,可较为容易的实现对于避障路径的规划,即:在避开运动人体的运动轨迹的前提下,再避开环境中的其它障碍物,从而生成可避开运动人体且不会与环境中的其它障碍物发生碰撞的路径。When a moving human body is detected in the area where the robot is located, the motion information of the moving human body is obtained, and the motion information of the moving human body and the motion information of the robot are combined to plan a path that can avoid the moving human body, so that the robot can follow this path. march. It should be noted that, on the premise that the moving human body and the movement trajectory of the robot are known, combined with the environmental information of the area where the robot is located, it is relatively easy to realize the planning of the obstacle avoidance path, that is, when avoiding the movement trajectory of the moving human body. On the premise, other obstacles in the environment are avoided, so as to generate a path that can avoid the moving human body and will not collide with other obstacles in the environment.
对于人体运动信息,可通过3D视觉装置对运动人体进行实时跟踪,以得到包括运动速度和运动轨迹在内的运动信息,当然,还可以通过其它方式得到,包括但不限于此。而对于机器人运动信息,可通过机器人控制器得到,机器人控制器可监测到机器人的行进速度和行进路线,更具体的,机器人的行进速度由速度传感器实时监测,机器人行进路线则是按照事先规划的路线运动的,因此,通过机器人控制器便可获取速度传感器反馈的速度数据以及事先规划的运动路径。For the human body motion information, the moving human body can be tracked in real time by the 3D vision device to obtain the motion information including the motion speed and the motion trajectory. Of course, it can also be obtained in other ways, including but not limited to this. For the robot motion information, it can be obtained through the robot controller. The robot controller can monitor the travel speed and travel route of the robot. More specifically, the travel speed of the robot is monitored in real time by the speed sensor, and the travel route of the robot is planned in advance. Therefore, the speed data fed back by the speed sensor and the pre-planned movement path can be obtained through the robot controller.
步骤S20,在接收到接近觉电子皮肤发送的接近觉信息时,根据人工势场法,生成供机器人执行的第二控制策略,以避开障碍物;Step S20, when receiving the proximity sensing information sent by the proximity sensing electronic skin, according to the artificial potential field method, generate a second control strategy for the robot to execute to avoid obstacles;
需要说明的是,基于人工势场法的路径规划的基本思想是在机器人所在区域中构造一个人工势场,势场中包括斥力极和吸引极,不希望器人进入的区域定义为斥力极,目标及建议机器人进入的区域定义为引力极,以使得在该势场中的机器人受到其目标位姿引力场和障碍物周围斥力场的共同作用,朝目标前进。It should be noted that the basic idea of the path planning based on the artificial potential field method is to construct an artificial potential field in the area where the robot is located. The potential field includes the repulsion pole and the attraction pole. The target and the area that the robot is advised to enter is defined as the gravitational pole, so that the robot in this potential field is subject to the combined action of the gravitational field of its target pose and the repulsion field around the obstacle, and moves towards the target.
当运动人体与机器人的距离比较近时,3D视觉装置在此处为检测盲区,其无法检测到障碍物,因此,可通过人工势场法,实现机器人对于运动人体的主动避障。更具体的,在机器人所在区域中构造一个人工势场,将运动人体的运动区域定义为势场中的斥力极,而将运动人体的运动区域以外的区域定义为引力极,从而使得机器人在引力极和斥力极的共同作用下,朝向运动人体的运动区域以外的区域运动,进而避开运动人体,避免机器人与运动人体发生碰撞。When the distance between the moving human body and the robot is relatively close, the 3D vision device is a detection blind spot here, and it cannot detect obstacles. Therefore, the artificial potential field method can be used to realize the robot's active obstacle avoidance for the moving human body. More specifically, an artificial potential field is constructed in the area where the robot is located, the movement area of the moving body is defined as the repulsion pole in the potential field, and the area outside the movement area of the moving body is defined as the gravitational pole, so that the robot is in the gravitational field. Under the combined action of the pole and the repulsion pole, it moves towards the area outside the moving area of the moving human body, thereby avoiding the moving human body and avoiding the collision between the robot and the moving human body.
步骤S30,在接收到触觉电子皮肤发送的力反馈信息时,根据力反馈信息和机械臂的电流反馈信息,生成供机器人执行的第三控制策略,以减小机器人与障碍物之间的碰撞力。Step S30, when receiving the force feedback information sent by the tactile electronic skin, generate a third control strategy for the robot to execute according to the force feedback information and the current feedback information of the robotic arm, so as to reduce the collision force between the robot and the obstacle .
在接收到触觉电子皮肤发送的力反馈信息时,表明机器人已经与运动人体发生碰撞,此时,可根据触觉电子皮肤发送的碰撞力,计算得到机器人相对运动人体向后运动的位移,以对运动人体进行缓冲,从而减少运动人体与机器人碰撞所产生的伤害。可以理解的是,当运动人体与机器人发生碰撞时,通过控制机器人相对人体向后运动,可对运动人体起到缓冲的效果,此效果与通过弹簧进行缓冲类似。When the force feedback information sent by the tactile electronic skin is received, it indicates that the robot has collided with the moving human body. The human body is buffered, thereby reducing the damage caused by the collision between the moving human body and the robot. It can be understood that when the moving human body collides with the robot, by controlling the robot to move backward relative to the human body, the moving human body can be buffered, and the effect is similar to buffering by a spring.
参见图2,本发明通过3D视觉、电子皮肤接近觉和电子皮肤触觉,对机器人执行分级安全控制策略,实现预碰撞主动避障和接触主动缓冲,从而达到3D视觉主动避障、接近觉紧急避障及碰撞缓冲的目的。Referring to FIG. 2 , the present invention implements a hierarchical safety control strategy for the robot through 3D vision, electronic skin proximity sense and electronic skin touch, and realizes pre-collision active obstacle avoidance and contact active buffering, thereby achieving 3D vision active obstacle avoidance, proximity sense emergency avoidance obstacle and collision buffering purposes.
在一实施例中,参见图3,在接收到3D视觉装置发送的障碍物运动信息时,根据障碍物运动信息和机器人运动信息,生成供机器人执行的第一控制策略的步骤之前,还包括:In one embodiment, referring to Fig. 3, when receiving the obstacle motion information sent by the 3D vision device, before the step of generating the first control strategy for the robot to execute according to the obstacle motion information and the robot motion information, it also includes:
步骤S40,通过3D视觉装置对障碍物进行实时跟踪,以获取障碍物的实时运动信息,并根据运动信息建立第一运动模型;Step S40, the obstacle is tracked in real time by the 3D vision device to obtain the real-time motion information of the obstacle, and a first motion model is established according to the motion information;
步骤S50,通过机器人的控制器获取机器人的实时运动信息,并根据运动信息建立第二运动模型;Step S50, obtaining real-time motion information of the robot through the controller of the robot, and establishing a second motion model according to the motion information;
步骤S60,根据第一运动模型和第二运动模型,对机器人与障碍物进行碰撞演练,并获取碰撞演练的结果;Step S60, according to the first motion model and the second motion model, carry out a collision exercise between the robot and the obstacle, and obtain the result of the collision exercise;
步骤S70,根据碰撞演练的结果,确定是否生成第一控制策略。Step S70, according to the result of the collision exercise, determine whether to generate the first control strategy.
本实施例中,分别通过3D视觉装置和机器人控制器获取运动人体和机器人的运动信息,然后根据运动人体的运动信息建立第一运动模型,再根据机器人的运动信息建立第二运动模型,最后根据第一运动模型和第二运动模型建立情景状态演练模型。在此情景状态演练模型中,可模拟机器人与运动人体的运动情况,据此预判机器人按照当前运行状态行进,是否会与运动人体发生碰撞。In this embodiment, the motion information of the moving human body and the robot is obtained through the 3D vision device and the robot controller respectively, then a first motion model is established according to the motion information of the moving body, and a second motion model is established according to the motion information of the robot, and finally The first motion model and the second motion model establish a situational state exercise model. In this scenario state exercise model, the movement of the robot and the moving human body can be simulated, and based on this, it can be predicted whether the robot will collide with the moving human body when it travels according to the current operating state.
工业机器人在工作时,会基于3D视觉装置设定安全距离,当检修或维修人员进入安全工作区时,会对检修或维修人员进行警示,并控制机器人避开检修或维修人员,检修或维修人员即为机器人所在区域内的运动人体。也就是说,在设定的安全距离外,机器人与运动人体是不会发生碰撞的,也就不需要控制机器人避开或减速运行。但是,由于运动人体与机器人间的距离是会变化的,因此,基于3D视觉装置所设定的安全距离是动态变化的,具体的安全距离可参考国标中保护性间距。When the industrial robot is working, it will set a safe distance based on the 3D vision device. When the maintenance or repair personnel enter the safe work area, the maintenance or repair personnel will be warned, and the robot will be controlled to avoid the maintenance or repair personnel. That is, the moving human body in the area where the robot is located. That is to say, outside the set safety distance, the robot will not collide with the moving human body, and there is no need to control the robot to avoid or decelerate. However, since the distance between the moving human body and the robot will change, the safety distance set based on the 3D vision device changes dynamically. For the specific safety distance, please refer to the protective distance in the national standard.
更具体的,上述所提及到的保护性间距可根据如下公式获取:More specifically, the protective distance mentioned above can be obtained according to the following formula:
SP(t0)=Sh+Sr+SS+C+Zd+Zr (1)SP (t0 )=Sh +Sr +SS +C+Zd +Zr (1)
其中,SP(t0)是t0时间点的保护性间距;t0是即时或当前时间;Sh是由障碍物体位置改变对保护间距产生影响的部分;Sr是由机器人系统反应时间对保护间距产生影响的部分;SS是由机器人系统停止距离对保护性间距产生影响的部分;C是侵扰距离,由ISO13855定义,是身体的一部分在被检测到之前所侵入传感区的距离;Zd是障碍物体在协同工作空间中的位置不确定性,其由当前传感设备的测量误差导致;Zr是机器人系统的位置不确定性,其由机器人位置测量系统的精度导致。SP(t0)允许动态计算保护性间距,以运行机器人在应用器件变速,也允许被用来计算一个保护性间距的固定值,基于最恶劣情况的值。Among them, SP (t0 ) is the protective distance at time t0 ; t0 is the immediate or current time;Sh is the part that affects the protective distance due to the position change of the obstacle; Sr is the response time of the robot system The part that affects the protective spacing; SS is the part that affects the protective spacing by the stopping distance of the robot system; C is the intrusion distance, defined by ISO13855, the distance that a part of the body invades the sensing area before it is detected ; Zd is the position uncertainty of the obstacle object in the collaborative workspace, which is caused by the measurement error of the current sensing device; Zr is the position uncertainty of the robot system, which is caused by the accuracy of the robot position measurement system. SP (t0 ) allows the protective distance to be calculated dynamically to run the robot at the applied device speed, and also allows it to be used to calculate a fixed value of the protective distance, based on worst-case values.
公式(1)适用于协同工作空间中的所有障碍物体如操作人员和移动机器人部件的组合。比如,离操作人员最近的机器人部件与操作人员越来越远,但是机器人的另一个部件可能越来越接近操作人员。Equation (1) applies to all combinations of obstacle objects such as operators and mobile robot parts in the collaborative workspace. For example, the part of the robot closest to the operator is getting further and further away from the operator, but another part of the robot may be getting closer and closer to the operator.
操作人员位置改变对保护性间距产生影响的部分Sh,表示为公式(2):The part Sh that affects the protective distance due to the change of the operator's position is expressed as formula (2):
其中,Tr是机器人系统反应时间,包括操作人员位置检测时间,该信号的处理时间、触发机器人停止时间,但排除掉机器人停止时间Ts是机器人停止时间,从停止命令发出到机器人刹停;Ts不是一个常值,而是一个机器人配置、已规划的运动、速度、末端与负载的函数;Vh是协同工作空间中操作人员在机器人运动方向上的定向速度,可正可负,正负取决于间距增加还是减少;t是公式(2)、(4)、(6)中的变量。Among them,Tr is the response time of the robot system, including the detection time of the operator's position, the processing time of the signal, and the time to trigger the robot to stop, but excluding the robot stop time Ts is the robot stop time, from the time the stop command is issued until the robot stops; Ts is not a constant value, but a function of robot configuration, planned motion, speed, end and load; Vh is the orientation speed of the operator in the direction of robot motion in the collaborative workspace, which can be positive or negative. Negative depending on whether the spacing increases or decreases; t is a variable in equations (2), (4), (6).
Sh表示由人从当前时刻到机器人停止这段时间的运动对间距产生的产生影响的部分。此处Vh是时间的函数,可能随人的速度或方向的改变而变化。涉及系统时应考虑Vh的变化以最大程度减少间距。若人的速度未被监测,系统设计应假定Vh在这个方向速度为1.6m/s以便最大程度减小间距。根据ISO13855及IEC/TS62046:2008中4.4.2.3,依据风险评估Vh的值可以不同于1.6m/s。Sh represents the part that affects the distance by the movement of the person from the current moment to the time when the robot stops. Here Vh is a function of time and may vary with changes in the person's speed or direction. Variations in Vh should be considered when involving systems to minimize spacing. If the person's speed is not monitored, the system design should assume a Vh speed of 1.6 m/s in this direction to minimize separation. According to ISO13855 and 4.4.2.3 of IEC/TS62046:2008, the value of Vh can be different from 1.6m/s according to the risk assessment.
使用估计的人的速度(1.6m/s)来估算Sh的定值用式(3):Use the estimated speed of the person (1.6m/s) to estimate the constant value ofSh using equation (3):
Sh=1.6*(Tr+Ts) (3)Sh = 1.6*(Tr +Ts ) (3)
因此,机器人反应时间而对保护性间距产生影响的部分,Sr表示式如下:Therefore, the part that affects the protective distance due to the robot's reaction time, Sr is expressed as follows:
其中,Vr是协同工作空间机器人在操作人员方向上的定向速度,可正可负,正负取决于间距增加还是减少;Sr表示从人进入传感区到控制系统触发停止这段时间里机器人运动对间距产生影响的部分,此处Vr是时间的函数,能随机器人的速度或方向的改变而变化。涉及系统时应考虑Vr的变化以及最大程度减少间距。Among them, Vr is the orientation speed of the collaborative workspace robot in the direction of the operator, which can be positive or negative, depending on whether the distance increases or decreases; Sr represents the time from when the person enters the sensing area to when the control system triggers the stop The part where the robot motion affects the distance, where Vr is a function of time and can vary with the speed or direction of the robot. Variations in Vr as well as minimizing spacing should be considered when involving the system.
如果机器人速度没有被监测,系统涉及应假定Vr为机器人最大速度。如果机器人速度被监测,系统涉及可以使用机器人当前速度,但应考虑机器人加速能力以最大程度减少间距。如果安全适用的速度限值有效,当该速度限值对机器人部件来说可使用时,则在系统设计可以使用该速度限值。如果安全适用的速度限制只监测机器人工具中兴电的笛卡尔速度而不监测其他部分,可能对操作人员造成危险,为此可能也需要利用安全适用的速度限制来监测机器人关节速度。If the robot speed is not monitored, the system involved should assume Vr to be the robot's maximum speed. If the robot speed is monitored, the system involves using the robot's current speed, but should take into account the robot's acceleration capabilities to minimize spacing. If a safety applicable speed limit is in effect, the speed limit may be used in the system design when it is available for the robot component. If the safety applicable speed limit only monitors the Cartesian speed of the robot tool ZTE and not other parts, it may be dangerous to the operator, for this reason, it may also be necessary to use the safety applicable speed limit to monitor the robot joint speed.
Sr的估计一个常值按公式(5):Estimate a constant value of Sr according to formula (5):
Sr=Vr*Tr (5)Sr =Vr *Tr (5)
机器人停止器件对保护性间距所产生影响的部分可以表达为公式(6):The part of the effect of the robot stop device on the protective distance can be expressed as formula (6):
其中,Vs是停止过程中的机器人速度,即从触发停止命令到机器人刹停的这个过程。Ss表示机器人停止期间的运动对保护性间距产生影响的部分。此处,Vs是一个时间的函数,并可以随着机器人的速度或方向的改变而变化,涉及系统时应考虑Vs的变化以最大程度减少间距。Among them, Vs is the speed of the robot during the stopping process, that is, the process from triggering the stop command to the braking of the robot. Ss represents the part where the motion during robot stop has an effect on the protective distance. Here,Vs is a function of time and can vary with changes in the speed or direction of the robot, and changes inVs should be considered when involving systems to minimize spacing.
如果机器人速度未被监测,系统涉及应假定该积分是机器人的停止距离,在最大程度减少间距的方向上。如果机器人速度被监测,系设计可采用该速度来计算机器人的停止距离,并应用在最大程度减小间距的方向上。Ss的值宜从IOS10218-1:2011的数据中获取。If the robot speed is not monitored, the system involved should assume that this integral is the robot's stopping distance, in the direction that minimizes the distance. If the robot speed is monitored, the system design can use this speed to calculate the stopping distance of the robot and apply it in the direction that minimizes the distance. The value of Ss should be obtained from the data of IOS10218-1:2011.
对保护性间距产生影响的各个部分从图6中可以看出,图6中,机器人与操作人员之间对保护性间距产生影响的部分的图形化表示。操作人员向机器人的速度Vh为正值。而机器人向操作人员的速度(Vr,Vs)为负值。The various parts that affect the protective distance can be seen in Figure 6, which is a graphical representation of the parts between the robot and the operator that affect the protective distance. The speed Vh of the operator towards the robot is a positive value. On the other hand, the speed of the robot towards the operator (Vr , Vs ) is negative.
在另一实施例中,参见图4,在根据障碍物运动信息和机器人运动信息,生成供机器人执行的第一控制策略的步骤中包括:In another embodiment, referring to FIG. 4 , the step of generating a first control strategy for the robot to execute according to the obstacle motion information and the robot motion information includes:
步骤S11,在碰撞演练过程中,生成自主避障路径,并将自主避障路径与机器人的当前路径合成;Step S11, during the collision drill, generate an autonomous obstacle avoidance path, and synthesize the autonomous obstacle avoidance path with the current path of the robot;
步骤S12,若无法生成自主避障路径,则控制机器人减速运行。Step S12, if the autonomous obstacle avoidance path cannot be generated, control the robot to decelerate.
在情景状态演练模型中,模拟机器人与运动人体的运动,以通过虚拟的模型预判机器人是否会与运动人体发生碰撞。若机器人按照当前的运动状态行进,会与运动人体发生碰撞,则在此情景状态演练模型中生成新的行进路径,以避开运动人体。当然,还要考虑到机器人所在区域内除运动人体以外的其它障碍物,避免机器人与其它障碍物发生碰撞。In the situational state exercise model, the movements of the robot and the moving human body are simulated to predict whether the robot will collide with the moving human body through the virtual model. If the robot travels according to the current motion state and will collide with the moving human body, a new travel path is generated in this scenario state exercise model to avoid the moving human body. Of course, other obstacles other than the moving human body in the area where the robot is located should also be considered to avoid collision between the robot and other obstacles.
若在情景状态演练模型中,无法生成可避开运动人体的自主避障路径,则可控制机器人减速,并同时发出警报以警示运动人体,运动人体在收到报警信号后,会折返运动以远离机器人所在区域。在运动人体折返之前,机器人以预设速度行进,以保证其不会与运动人体发生碰撞。If the autonomous obstacle avoidance path that can avoid the moving body cannot be generated in the situational state exercise model, the robot can be controlled to decelerate, and at the same time, an alarm will be issued to warn the moving body. The area where the robot is located. Before the moving body turns back, the robot travels at a preset speed to ensure that it does not collide with the moving body.
在又一实施例中,参见图5,在根据力反馈信息和机械臂的电流反馈信息,生成供机器人执行的第三控制策略的步骤中包括:In yet another embodiment, referring to FIG. 5 , the step of generating a third control strategy for the robot to execute according to the force feedback information and the current feedback information of the robot arm includes:
步骤S31,建立阻抗控制模型,阻抗控制模型包括碰撞时的碰撞力、碰撞参数、预设位置、预设速度和预设减速度;Step S31, establishing an impedance control model, where the impedance control model includes the collision force, collision parameters, preset position, preset speed and preset deceleration during the collision;
步骤S32,根据预先建立的碰撞试验,获取碰撞时的碰撞参数,碰撞参数包括刚度参数、阻尼参数和质量矩阵参数;Step S32, according to the pre-established collision test, obtain collision parameters during the collision, and the collision parameters include stiffness parameters, damping parameters and mass matrix parameters;
步骤S33,将触觉电子皮肤所反馈的碰撞力,输入至阻抗控制模型,以获取机器人的预设位置。In step S33, the collision force fed back by the tactile electronic skin is input into the impedance control model to obtain the preset position of the robot.
需要说明的是,对预设减速度进行积分得到的是预设速度,对预设速度进行积分得到的是预设位置,三个变量之间相互关联。在机器人与运动人体发生碰撞后,为对运动人体进行缓冲,可控制机器人相对运动人体向后运动预设距离,以抵达预设位置处。在此预设位置处,可使得运动人体与机器人碰撞时产生的冲击伤害最小化,此预设位置是根据机器人与运动人体碰撞时所产生的碰撞力大小运算得到的。It should be noted that the preset speed is obtained by integrating the preset deceleration, and the preset position is obtained by integrating the preset speed, and the three variables are related to each other. After the robot collides with the moving human body, in order to buffer the moving human body, the robot can be controlled to move backward relative to the moving human body by a preset distance to reach the preset position. At this preset position, the impact damage generated when the moving body collides with the robot can be minimized, and the preset position is calculated according to the magnitude of the collision force generated when the robot collides with the moving body.
可以理解的是,在运动人体与机器人碰撞的瞬间,会产生一个碰撞力,而为了避免此碰撞力持续对运动人体造成冲击,本实施例通过阻抗控制模型控制机器人运动至预设位置,以对运动人体进行缓冲。在所建立的阻抗控制模型中,碰撞参数预先通过碰撞试验得到,为常量,碰撞力可通过触觉电子皮肤得到,也可通过机械臂的电流反馈信息计算得到,为已知量,而阻抗控制模型中的变量为预设位置、预设速度和预设减速度,因此,将发生碰撞时产生的碰撞力输入至此阻抗控制模型中,即可得到机器人的预设位置,以控制机器人运动至此预设位置。It can be understood that at the moment when the moving human body collides with the robot, a collision force will be generated, and in order to avoid this collision force continuously impacting the moving human body, this embodiment uses an impedance control model to control the robot to move to a preset position, so as to avoid the impact of the collision force on the moving human body. Motion body is buffered. In the established impedance control model, the collision parameters are obtained in advance through the collision test and are constant, and the collision force can be obtained through the tactile electronic skin or calculated through the current feedback information of the manipulator, which is a known quantity, while the impedance control model The variables in are preset position, preset speed and preset deceleration. Therefore, input the collision force generated when a collision occurs into this impedance control model, and then the preset position of the robot can be obtained to control the movement of the robot to this preset Location.
在再一实施例中,本发明所提出的阻抗控制模型按以下公式建立:In yet another embodiment, the impedance control model proposed by the present invention is established according to the following formula:
F=K*X+B*X’+M*X”;F=K*X+B*X'+M*X";
其中,F为碰撞力;Among them, F is the collision force;
X,X’,X”分别为机器人的预设位置、预设速度、预设减速度;X, X', X" are the preset position, preset speed and preset deceleration of the robot respectively;
K,B,M分别为障碍物的刚度参数、阻尼参数和质量矩阵参数;K, B, M are the stiffness parameter, damping parameter and mass matrix parameter of the obstacle, respectively;
所述减速度按以下公式计算获得:The deceleration is calculated according to the following formula:
X”=(F-K*X+B*X’)/M;X"=(F-K*X+B*X')/M;
对减速度进行积分运算,以得到机器人的预设位置。Integrate the deceleration to get the preset position of the robot.
基于上述所提出的基于多重感知的机器人安全控制方法,本发明还提出一种基于多重感知的机器人安全控制装置,参见图7,该机器人安全控制装置包括:Based on the above-mentioned multi-sensing-based robot safety control method, the present invention also proposes a multiple-sensing-based robot safety control device. Referring to FIG. 7 , the robot safety control device includes:
第一控制模块10,用于在接收到3D视觉装置发送的障碍物运动信息时,根据障碍物运动信息和机器人运动信息,生成供机器人执行的第一控制策略,以避开障碍物,运动信息包括运动速度和运动轨迹;The
第二控制模块20,用于在接收到接近觉电子皮肤发送的接近觉信息时,根据人工势场法,生成供机器人执行的第二控制策略,以避开障碍物;The
第三控制模块30,用于在接收到触觉电子皮肤发送的力反馈信息时,根据力反馈信息和机械臂的电流反馈信息,生成供机器人执行的第三控制策略,以减小机器人与障碍物之间的碰撞力。The
在一实施例中,本发明所提出的基于多重感知的机器人安全控制方法还包括:In one embodiment, the multi-sensing-based robot safety control method proposed by the present invention further includes:
第一模型建立模块40,用于通过3D视觉装置对障碍物进行实时跟踪,以获取障碍物的实时运动信息,并根据运动信息建立第一运动模型;The first
第二模型建立模块50,用于通过机器人的控制器获取机器人的实时运动信息,并根据运动信息建立第二运动模型;The second
碰撞演练模块60,用于根据第一运动模型和第二运动模型,对机器人与障碍物进行碰撞演练,并获取碰撞演练的结果;The
判断模块70,用于根据碰撞演练的结果,确定是否生成第一控制策略。The
在另一实施例中,本发明所提出的第一控制模块10包括:In another embodiment, the
路径生成单元11,用于在碰撞演练过程中,生成自主避障路径,并将自主避障路径与机器人的当前路径合成;The path generation unit 11 is used for generating an autonomous obstacle avoidance path during the collision exercise process, and synthesizing the autonomous obstacle avoidance path with the current path of the robot;
减速控制单元12,用于在无法生成自主避障路径时,控制机器人减速运行。The
在又一实施例中,本发明所提出的第三控制模块30包括:In yet another embodiment, the
第三模型建立单元31,用于建立阻抗控制模型,阻抗控制模型包括碰撞时的碰撞力、碰撞参数、预设位置、预设速度和预设减速度;The third
碰撞参数获取单元32,用于根据预先建立的碰撞试验,获取碰撞时的碰撞参数,碰撞参数包括刚度参数、阻尼参数和质量矩阵参数;The collision
预设位置获取单元33,用于将触觉电子皮肤所反馈的碰撞力,输入至阻抗控制模型,以获取机器人的预设位置。The preset
在再一实施例中,阻抗控制模型按以下公式建立:In yet another embodiment, the impedance control model is established according to the following formula:
F=K*X+B*X’+M*X”;F=K*X+B*X'+M*X";
其中,F为碰撞力;Among them, F is the collision force;
X,X’,X”分别为机器人的预设位置、预设速度、预设减速度;X, X', X" are the preset position, preset speed and preset deceleration of the robot respectively;
K,B,M分别为障碍物的刚度参数、阻尼参数和质量矩阵参数;K, B, M are the stiffness parameter, damping parameter and mass matrix parameter of the obstacle, respectively;
减速度按以下公式计算获得:The deceleration is calculated according to the following formula:
X”=(F-K*X+B*X’)/M;X"=(F-K*X+B*X')/M;
对减速度进行积分运算,以得到机器人的预设位置。Integrate the deceleration to get the preset position of the robot.
基于上述所提出的基于多重感知的机器人安全控制方法,本发明还提出一种基于多重感知的机器人安全控制系统,该机器人安全控制系统包括:Based on the above-mentioned multi-sensing-based robot safety control method, the present invention also proposes a multiple-sensing-based robot safety control system, which includes:
存储器,用于存储计算机程序;memory for storing computer programs;
处理器,用于执行计算机程序时实现上述各个实施例中基于多重感知的机器人安全控制方法的步骤,该机器人安全控制方法至少包括以下步骤:The processor is used to implement the steps of the multi-sensing-based robot safety control method in the above-mentioned various embodiments when executing the computer program, and the robot safety control method at least includes the following steps:
步骤S10,在接收到3D视觉装置发送的障碍物运动信息时,根据所障碍物运动信息和机器人运动信息,生成供机器人执行的第一控制策略,以避开障碍物,运动信息包括运动速度和运动轨迹;Step S10, when receiving the obstacle motion information sent by the 3D vision device, according to the obstacle motion information and the robot motion information, generate the first control strategy for the robot to execute to avoid the obstacle, and the motion information includes the motion speed and the robot motion information. movement track;
步骤S20,在接收到接近觉电子皮肤发送的接近觉信息时,根据人工势场法,生成供机器人执行的第二控制策略,以避开障碍物;Step S20, when receiving the proximity sensing information sent by the proximity sensing electronic skin, according to the artificial potential field method, generate a second control strategy for the robot to execute to avoid obstacles;
步骤S30,在接收到触觉电子皮肤发送的力反馈信息时,根据力反馈信息和机械臂的电流反馈信息,生成供机器人执行的第三控制策略,以减小机器人与障碍物之间的碰撞力。Step S30, when receiving the force feedback information sent by the tactile electronic skin, generate a third control strategy for the robot to execute according to the force feedback information and the current feedback information of the robotic arm, so as to reduce the collision force between the robot and the obstacle .
基于上述所提出的基于多重感知的机器人安全控制方法,本发明还提出一种计算接可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述各个实施例中基于多重感知的机器人安全控制方法的步骤,该机器人安全控制方法至少包括以下步骤:Based on the above-mentioned multi-sensing-based robot safety control method, the present invention also proposes a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by the processor, the above implementations are implemented The steps of the robot safety control method based on multiple perceptions in the example, the robot safety control method at least includes the following steps:
步骤S10,在接收到3D视觉装置发送的障碍物运动信息时,根据所障碍物运动信息和机器人运动信息,生成供机器人执行的第一控制策略,以避开障碍物,运动信息包括运动速度和运动轨迹;Step S10, when receiving the obstacle motion information sent by the 3D vision device, according to the obstacle motion information and the robot motion information, generate the first control strategy for the robot to execute to avoid the obstacle, and the motion information includes the motion speed and the robot motion information. movement track;
步骤S20,在接收到接近觉电子皮肤发送的接近觉信息时,根据人工势场法,生成供机器人执行的第二控制策略,以避开障碍物;Step S20, when receiving the proximity sensing information sent by the proximity sensing electronic skin, according to the artificial potential field method, generate a second control strategy for the robot to execute to avoid obstacles;
步骤S30,在接收到触觉电子皮肤发送的力反馈信息时,根据力反馈信息和机械臂的电流反馈信息,生成供机器人执行的第三控制策略,以减小机器人与障碍物之间的碰撞力。Step S30, when receiving the force feedback information sent by the tactile electronic skin, generate a third control strategy for the robot to execute according to the force feedback information and the current feedback information of the robotic arm, so as to reduce the collision force between the robot and the obstacle .
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed method and apparatus may be implemented in other manners. For example, the apparatus embodiments described above are only illustrative. For example, the division of the modules is only a logical function division. In actual implementation, there may be other division methods. For example, multiple modules or components may be combined or May be integrated into another device, or some features may be omitted, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。The modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。In addition, each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention. The aforementioned storage medium includes: U disk, removable hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.
以上所述的仅为本发明的部分或优选实施例,无论是文字还是附图都不能因此限制本发明保护的范围,凡是在与本发明一个整体的构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明保护的范围内。The above descriptions are only part or preferred embodiments of the present invention, and neither the text nor the accompanying drawings can therefore limit the scope of protection of the present invention. Under the overall concept of the present invention, the contents of the description and the accompanying drawings of the present invention are used. Equivalent structural transformations made, or direct/indirect applications in other related technical fields are all included in the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010590912.4ACN111906778B (en) | 2020-06-24 | 2020-06-24 | Robot safety control method and device based on multiple perceptions |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010590912.4ACN111906778B (en) | 2020-06-24 | 2020-06-24 | Robot safety control method and device based on multiple perceptions |
| Publication Number | Publication Date |
|---|---|
| CN111906778Atrue CN111906778A (en) | 2020-11-10 |
| CN111906778B CN111906778B (en) | 2023-04-28 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010590912.4AActiveCN111906778B (en) | 2020-06-24 | 2020-06-24 | Robot safety control method and device based on multiple perceptions |
| Country | Link |
|---|---|
| CN (1) | CN111906778B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112917475A (en)* | 2021-01-27 | 2021-06-08 | 哈尔滨工程大学 | Safe nursing control method for assisting eating by eating-assisting robot based on multiple perceptions |
| CN113183147A (en)* | 2021-03-30 | 2021-07-30 | 苏州大学 | Large-area coverage electronic skin system with remote proximity sense |
| CN113721515A (en)* | 2021-08-30 | 2021-11-30 | 太原理工大学 | Active safety device of mechanical arm and safety control method thereof |
| CN113733089A (en)* | 2021-05-27 | 2021-12-03 | 深圳市越疆科技有限公司 | Mechanical arm control method, device, equipment, system, storage medium and mechanical arm |
| US20220111527A1 (en)* | 2021-12-22 | 2022-04-14 | Intel Corporation | Risk-based robot system configurator |
| CN114770559A (en)* | 2022-05-27 | 2022-07-22 | 中迪机器人(盐城)有限公司 | Fetching control system and method of robot |
| CN115026826A (en)* | 2022-06-22 | 2022-09-09 | 深圳市普渡科技有限公司 | Manipulator control method, device and robot |
| CN115229772A (en)* | 2022-08-23 | 2022-10-25 | 深圳市越疆科技有限公司 | Robot, robot control method, robot control device, robot control equipment, storage medium and mechanical arm |
| CN116749196A (en)* | 2023-07-26 | 2023-09-15 | 睿尔曼智能科技(北京)有限公司 | Multi-axis mechanical arm collision detection system and method and mechanical arm |
| CN117067199A (en)* | 2023-07-26 | 2023-11-17 | 睿尔曼智能科技(北京)有限公司 | Mechanical arm electronic skin, mechanical arm and collision detection system thereof |
| CN118952189A (en)* | 2024-07-16 | 2024-11-15 | 深圳市华盛控科技有限公司 | A protective robot with sensing skin and sensing protection method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06278081A (en)* | 1993-03-26 | 1994-10-04 | Nec Corp | Robot arm provided with collision prevention function |
| CN104764481A (en)* | 2015-04-08 | 2015-07-08 | 合肥工业大学 | Full-compliancy capacitance and resistance dual mode proximate sense transducer |
| CN107677296A (en)* | 2017-09-25 | 2018-02-09 | 合肥工业大学 | A kind of Grazing condition is close to touch-pressure sensation sensor |
| US20180141213A1 (en)* | 2016-11-24 | 2018-05-24 | Institute For Information Industry | Anti-collision system and anti-collision method |
| CN109048926A (en)* | 2018-10-24 | 2018-12-21 | 河北工业大学 | A kind of intelligent robot obstacle avoidance system and method based on stereoscopic vision |
| CN109163824A (en)* | 2018-10-10 | 2019-01-08 | 北京理工大学 | A kind of flexible electronic skin with tactile and close feel bimodulus perceptional function |
| CN109910011A (en)* | 2019-03-29 | 2019-06-21 | 齐鲁工业大学 | A multi-sensor based obstacle avoidance method for a robotic arm and a robotic arm |
| CN110125936A (en)* | 2019-05-15 | 2019-08-16 | 清华大学深圳研究生院 | A kind of the Shared control method and ground experiment verifying system of robot for space |
| CN110625610A (en)* | 2018-06-25 | 2019-12-31 | 西门子股份公司 | Method, device and system for determining motion trajectory of end effector of robot |
| US20200001458A1 (en)* | 2018-06-27 | 2020-01-02 | Abb Schweiz Ag | Method and system to generate a 3d model for a robot scene |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06278081A (en)* | 1993-03-26 | 1994-10-04 | Nec Corp | Robot arm provided with collision prevention function |
| CN104764481A (en)* | 2015-04-08 | 2015-07-08 | 合肥工业大学 | Full-compliancy capacitance and resistance dual mode proximate sense transducer |
| US20180141213A1 (en)* | 2016-11-24 | 2018-05-24 | Institute For Information Industry | Anti-collision system and anti-collision method |
| CN107677296A (en)* | 2017-09-25 | 2018-02-09 | 合肥工业大学 | A kind of Grazing condition is close to touch-pressure sensation sensor |
| CN110625610A (en)* | 2018-06-25 | 2019-12-31 | 西门子股份公司 | Method, device and system for determining motion trajectory of end effector of robot |
| US20200001458A1 (en)* | 2018-06-27 | 2020-01-02 | Abb Schweiz Ag | Method and system to generate a 3d model for a robot scene |
| CN109163824A (en)* | 2018-10-10 | 2019-01-08 | 北京理工大学 | A kind of flexible electronic skin with tactile and close feel bimodulus perceptional function |
| CN109048926A (en)* | 2018-10-24 | 2018-12-21 | 河北工业大学 | A kind of intelligent robot obstacle avoidance system and method based on stereoscopic vision |
| CN109910011A (en)* | 2019-03-29 | 2019-06-21 | 齐鲁工业大学 | A multi-sensor based obstacle avoidance method for a robotic arm and a robotic arm |
| CN110125936A (en)* | 2019-05-15 | 2019-08-16 | 清华大学深圳研究生院 | A kind of the Shared control method and ground experiment verifying system of robot for space |
| Title |
|---|
| 蒋志宏: "《机械人学基础》", 30 April 2018* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112917475A (en)* | 2021-01-27 | 2021-06-08 | 哈尔滨工程大学 | Safe nursing control method for assisting eating by eating-assisting robot based on multiple perceptions |
| CN112917475B (en)* | 2021-01-27 | 2022-05-20 | 哈尔滨工程大学 | Safety nursing control method of food aid robot assisted feeding based on multiple perception |
| CN113183147A (en)* | 2021-03-30 | 2021-07-30 | 苏州大学 | Large-area coverage electronic skin system with remote proximity sense |
| CN113183147B (en)* | 2021-03-30 | 2022-08-23 | 苏州大学 | Large-area coverage electronic skin system with remote proximity sense |
| CN113733089A (en)* | 2021-05-27 | 2021-12-03 | 深圳市越疆科技有限公司 | Mechanical arm control method, device, equipment, system, storage medium and mechanical arm |
| CN113721515A (en)* | 2021-08-30 | 2021-11-30 | 太原理工大学 | Active safety device of mechanical arm and safety control method thereof |
| US20220111527A1 (en)* | 2021-12-22 | 2022-04-14 | Intel Corporation | Risk-based robot system configurator |
| CN114770559A (en)* | 2022-05-27 | 2022-07-22 | 中迪机器人(盐城)有限公司 | Fetching control system and method of robot |
| CN115026826A (en)* | 2022-06-22 | 2022-09-09 | 深圳市普渡科技有限公司 | Manipulator control method, device and robot |
| CN115229772A (en)* | 2022-08-23 | 2022-10-25 | 深圳市越疆科技有限公司 | Robot, robot control method, robot control device, robot control equipment, storage medium and mechanical arm |
| CN115229772B (en)* | 2022-08-23 | 2023-07-18 | 深圳市越疆科技股份有限公司 | Robot, control method, control device, control equipment, storage medium and mechanical arm thereof |
| WO2024041577A1 (en)* | 2022-08-23 | 2024-02-29 | 深圳市越疆科技股份有限公司 | Robot control method and apparatus, and device and robot |
| CN116749196A (en)* | 2023-07-26 | 2023-09-15 | 睿尔曼智能科技(北京)有限公司 | Multi-axis mechanical arm collision detection system and method and mechanical arm |
| CN117067199A (en)* | 2023-07-26 | 2023-11-17 | 睿尔曼智能科技(北京)有限公司 | Mechanical arm electronic skin, mechanical arm and collision detection system thereof |
| CN116749196B (en)* | 2023-07-26 | 2024-06-18 | 睿尔曼智能科技(北京)有限公司 | Multi-axis robotic arm collision detection system and method, and robotic arm |
| CN118952189A (en)* | 2024-07-16 | 2024-11-15 | 深圳市华盛控科技有限公司 | A protective robot with sensing skin and sensing protection method |
| Publication number | Publication date |
|---|---|
| CN111906778B (en) | 2023-04-28 |
| Publication | Publication Date | Title |
|---|---|---|
| CN111906778B (en) | Robot safety control method and device based on multiple perceptions | |
| Halme et al. | Review of vision-based safety systems for human-robot collaboration | |
| US11396099B2 (en) | Safe operation of machinery using potential occupancy envelopes | |
| US11548153B2 (en) | Robot comprising safety system ensuring stopping time and distance | |
| JP2019123022A (en) | Robot control device and automatic assembly system | |
| US20220234209A1 (en) | Safe operation of machinery using potential occupancy envelopes | |
| CN112476438A (en) | Mechanical arm obstacle avoidance method and device, mechanical arm and robot | |
| CN112706158B (en) | Industrial Human-Computer Interaction System and Method Based on Vision and Inertial Navigation Positioning | |
| CN113370210A (en) | Robot active collision avoidance system and method | |
| KR20190079322A (en) | Robot control system | |
| CN117297791A (en) | Control method of mechanical arm, medical system and computer equipment | |
| Lim et al. | Internet-based teleoperation of a mobile robot with force-reflection | |
| US20210379763A1 (en) | Motion planning and task execution using potential occupancy envelopes | |
| CN116766228B (en) | Robot interaction control method, equipment and medium | |
| Reddy et al. | A Review of Safety Methods for Human-robot Collaboration and a Proposed Novel Approach. | |
| Morato et al. | Safe human robot interaction by using exteroceptive sensing based human modeling | |
| Tsetserukou et al. | Intelligent variable joint impedance control and development of a new whole-sensitive anthropomorphic robot arm | |
| Zhang et al. | Gesture-based human-robot interface for dual-robot with hybrid sensors | |
| US20230173682A1 (en) | Context-sensitive safety monitoring of collaborative work environments | |
| CN110549375A (en) | protective door anti-collision method and system for mechanical arm | |
| Zhang et al. | Real‐Time Motion Generation for Robot Manipulators in Complex Dynamic Environments | |
| Ostermann et al. | Freed from fences-Safeguarding industrial robots with ultrasound | |
| De Santis et al. | Reactive collision avoidance for safer human–robot interaction | |
| US20250050502A1 (en) | Robot control apparatus, robot control system, and robot control method | |
| Ismaeel et al. | The collaboration between humans and robots in the industrial environment |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address | Address after:518000 1003, building 2, Chongwen Park, Nanshan wisdom Park, 3370 Liuxian Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province Patentee after:Shenzhen Yuejiang Technology Co.,Ltd. Country or region after:China Address before:518000 1003, building 2, Chongwen Park, Nanshan wisdom Park, 3370 Liuxian Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province Patentee before:SHENZHEN YUEJIANG TECHNOLOGY Co.,Ltd. Country or region before:China |