Movatterモバイル変換


[0]ホーム

URL:


CN111837130A - Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment - Google Patents

Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment
Download PDF

Info

Publication number
CN111837130A
CN111837130ACN202080001558.5ACN202080001558ACN111837130ACN 111837130 ACN111837130 ACN 111837130ACN 202080001558 ACN202080001558 ACN 202080001558ACN 111837130 ACN111837130 ACN 111837130A
Authority
CN
China
Prior art keywords
prism film
fingerprint
liquid crystal
crystal display
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080001558.5A
Other languages
Chinese (zh)
Inventor
葛丛
刘杨赞
蔡斐欣
何毅
皮波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Goodix Technology Co Ltd
Original Assignee
Shenzhen Goodix Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Goodix Technology Co LtdfiledCriticalShenzhen Goodix Technology Co Ltd
Publication of CN111837130ApublicationCriticalpatent/CN111837130A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

A fingerprint identification device (20, 200), backlight unit (120), display screen (10) and electronic equipment (1, 2), optical fingerprint identification performance under can promoting the LCD screen. Fingerprint identification device (20, 200) are used for setting up in backlight unit (120) below of liquid crystal display (10) in order to carry out fingerprint identification under the screen, and backlight unit (120) include first prism membrane (121) and second prism membrane (122), and first prism membrane (121) and second prism membrane (122) all face towards liquid crystal display (10)'s liquid crystal display panel (110), and fingerprint identification device (20, 200) include: fingerprint identification module (201), be located the oblique below of fingerprint detection area (103) in liquid crystal display (10) for receive first fingerprint light signal (102), first fingerprint light signalThe fingerprint identification device is characterized in that the number (102) is used for fingerprint identification, wherein the first fingerprint optical signal (102) is an optical signal of the fingerprint optical signal (101) after passing through one prism film side face (1211) of the first prism film (121) and one prism film side face (1221) of the second prism film (122), and the fingerprint optical signal (101) is an optical signal returned after being reflected or scattered by a finger (140) above the fingerprint detection area (103); two base angles (alpha) in the first prism film (121)1、α2) Are different from each other, and two base angles (beta) in the second prism film (122)1、β2) Are not equal to each other.

Description

Translated fromChinese
指纹识别装置、背光模组、液晶显示屏和电子设备Fingerprint identification devices, backlight modules, liquid crystal displays and electronic equipment

本申请要求以下申请的优先权,其全部内容通过应用结合在本申请中:2019年9月20日提交美国专利局、申请号为62/903,672、发明名称为“UNDER-DISPLAY OPTICAL SENSORWITH COMPENSATED LIGHT PATHS AND COMPENSATION PARTS OPTIMIZATION”的临时申请。This application claims priority to the following applications, the entire contents of which are incorporated herein by application: US Patent Office, Application No. 62/903,672, filed September 20, 2019, titled "UNDER-DISPLAY OPTICAL SENSORWITH COMPENSATED LIGHT PATHS AND COMPENSATION PARTS OPTIMIZATION” provisional application.

技术领域technical field

本申请涉及光学指纹技术领域,并且更具体地,涉及一种指纹识别装置、背光模组、液晶显示屏和电子设备。The present application relates to the technical field of optical fingerprints, and more particularly, to a fingerprint identification device, a backlight module, a liquid crystal display screen and an electronic device.

背景技术Background technique

随着生物识别技术的发展,屏下指纹识别技术在手机等便携式终端的应用越来越广泛。目前,液晶显示(Liquid Crystal Display,LCD)屏等被动式显示屏幕通过背光模组提供光源,背光模组中各种膜层结构会对屏下指纹识别装置的指纹光学成像有严重干扰,导致基于LCD显示屏的屏下指纹识别技术的商用受阻。With the development of biometric identification technology, under-screen fingerprint identification technology is more and more widely used in portable terminals such as mobile phones. At present, passive display screens such as Liquid Crystal Display (LCD) screens provide light sources through backlight modules, and various film structures in the backlight modules will seriously interfere with the fingerprint optical imaging of the fingerprint identification device under the screen, resulting in LCD-based fingerprint recognition. The commercial use of the fingerprint recognition technology under the display screen is blocked.

因此,如何提升LCD屏下光学指纹识别性能是本领域急需解决的技术难题。Therefore, how to improve the optical fingerprint recognition performance under the LCD screen is a technical problem that needs to be solved urgently in the art.

发明内容SUMMARY OF THE INVENTION

本申请实施例提供了一种指纹识别装置、背光模组、液晶显示屏和电子设备,能够提升LCD屏下光学指纹识别性能。The embodiments of the present application provide a fingerprint identification device, a backlight module, a liquid crystal display screen and an electronic device, which can improve the optical fingerprint identification performance under the LCD screen.

第一方面,提供了一种指纹识别装置,用于设置在液晶显示屏的背光模组下方以进行屏下指纹识别,该背光模组包括第一棱镜膜和第二棱镜膜,该第一棱镜膜和该第二棱镜膜均朝向该液晶显示屏的液晶面板,该指纹识别装置包括:指纹识别模组,位于在该液晶显示屏中指纹检测区域的斜下方,用于接收第一指纹光信号,该第一指纹光信号用于进行指纹识别,其中,该第一指纹光信号为指纹光信号经过该第一棱镜膜中其中一个棱镜膜侧面和该第二棱镜膜中其中一个棱镜膜侧面后的光信号,该指纹光信号为经该指纹检测区域上方的手指反射或散射而返回的光信号;该第一棱镜膜中的两个底角互不相等,且该第二棱镜膜中两个底角互不相等,该第一棱镜膜中的两个底角为该第一棱镜膜中两个棱镜膜侧面与该液晶显示屏所在的平面的夹角,该第二棱镜膜中的两个底角为该第二棱镜膜中两个棱镜膜侧面与该液晶显示屏所在的平面的夹角。In a first aspect, a fingerprint identification device is provided, which is arranged under a backlight module of a liquid crystal display screen for fingerprint identification under the screen, the backlight module includes a first prism film and a second prism film, and the first prism film Both the film and the second prism film face the liquid crystal panel of the liquid crystal display screen, and the fingerprint identification device includes: a fingerprint identification module, which is located at the diagonally lower part of the fingerprint detection area in the liquid crystal display screen, and is used for receiving the first fingerprint light signal , the first fingerprint light signal is used for fingerprint identification, wherein, the first fingerprint light signal is that the fingerprint light signal passes through one of the side surfaces of the prism film in the first prism film and one of the side surfaces of the prism film in the second prism film. The fingerprint light signal is the light signal returned by the finger reflection or scattering above the fingerprint detection area; the two bottom angles in the first prism film are not equal to each other, and the two bottom angles in the second prism film are not equal to each other. The bottom angles are not equal to each other, the two bottom angles in the first prism film are the included angles between the side surfaces of the two prism films in the first prism film and the plane where the liquid crystal display screen is located, and the two bottom angles in the second prism film The bottom angle is the included angle between the side surfaces of the two prism films in the second prism film and the plane where the liquid crystal display screen is located.

通过本申请实施例的方案,将液晶显示屏的背光模组中的棱镜膜改进为第一棱镜膜和第二棱镜膜,该第一棱镜膜的两个底角和第二棱镜膜的两个底角不同,对应的两个棱镜膜侧面的面积也不同,将指纹识别模组设置在液晶显示屏中的指纹检测区域的斜下方,而不是正下方,旨在使得指纹识别模组仅接收第一棱镜膜中的一个棱镜膜侧面和第二棱镜膜中一个棱镜膜侧面折射的光信号,实现液晶显示屏下的指纹识别。Through the solution of the embodiment of the present application, the prism film in the backlight module of the liquid crystal display screen is improved into a first prism film and a second prism film, the two bottom corners of the first prism film and the two bottom corners of the second prism film are improved. The bottom angle is different, and the area of the corresponding two prism film sides is also different. The fingerprint recognition module is arranged diagonally below the fingerprint detection area in the LCD screen, not directly below, so that the fingerprint recognition module can only receive the first The light signal refracted by the side surface of one prism film in the first prism film and the side surface of one prism film in the second prism film realizes fingerprint recognition under the liquid crystal display screen.

在一种可能的实现方式中,该第一棱镜膜中的第一底角α1小于第二底角α2,30°≤α1<45°,该第一底角为该第一棱镜膜中第一棱镜膜侧面与该液晶显示屏所在的平面的夹角,该第二底角为该第一棱镜膜中第二棱镜膜侧面与该液晶显示屏所在的平面的夹角。In a possible implementation manner, the first base angle α1 in the first prism film is smaller than the second base angle α2 , 30°≤α1 <45°, and the first base angle is the first base angle of the first prism film The included angle between the side surface of the first prism film and the plane where the liquid crystal display screen is located, and the second bottom angle is the included angle between the side surface of the second prism film in the first prism film and the plane where the liquid crystal display screen is located.

在一种可能的实现方式中,该第一指纹光信号为该指纹光信号经过该第一棱镜膜侧面和该第二棱镜膜中其中一个棱镜膜侧面后的光信号。In a possible implementation manner, the first fingerprint optical signal is an optical signal after the fingerprint optical signal passes through the side surface of the first prism film and the side surface of one of the prism film of the second prism film.

在一种可能的实现方式中,该指纹识别模组的位置使得其接收不到该指纹光信号经过该第二棱镜膜侧面和该第二棱镜膜中另一个棱镜膜侧面后的光信号。In a possible implementation manner, the fingerprint identification module is positioned so that it cannot receive the optical signal of the fingerprint light signal after passing through the side surface of the second prism film and the side surface of another prism film in the second prism film.

在一种可能的实现方式中,该第二棱镜膜中的第三底角β1小于第四底角β2,30°≤β1<45°,该第三底角为该第二棱镜膜中第三棱镜膜侧面与该液晶显示屏所在的平面的夹角,该第四底角为该第二棱镜膜中第四棱镜膜侧面与该液晶显示屏所在的平面的夹角。In a possible implementation manner, the third base angle β1 in the second prism film is smaller than the fourth base angle β2 , 30°≤β1 <45°, and the third base angle is the second prism film The included angle between the side surface of the third prism film and the plane where the liquid crystal display screen is located, and the fourth bottom angle is the included angle between the side surface of the fourth prism film in the second prism film and the plane where the liquid crystal display screen is located.

在一种可能的实现方式中,该第一指纹光信号为该指纹光信号经过该第一棱镜膜侧面和该第三棱镜膜侧面后的光信号。In a possible implementation manner, the first fingerprint optical signal is an optical signal after the fingerprint optical signal passes through the side surface of the first prism film and the side surface of the third prism film.

在一种可能的实现方式中,该指纹识别模组的位置使得其接收不到该指纹光信号经过该第一棱镜膜侧面和该第四棱镜膜后的光信号。In a possible implementation manner, the position of the fingerprint identification module is such that it cannot receive the light signal of the fingerprint light signal after passing through the side surface of the first prism film and the fourth prism film.

在一种可能的实现方式中,该第一棱镜膜中两个棱镜膜侧面的夹角为该第一棱镜膜的顶角γ1,该第二棱镜膜中两个棱镜膜侧面的夹角为该第二棱镜膜的顶角γ2,70°<γ1<110°,70°<γ2<110°。In a possible implementation manner, the included angle between the two prism film sides in the first prism film is the vertex angle γ1 of the first prism film, and the included angle between the two prism film sides in the second prism film is The vertex angle γ2 of the second prism film is 70°<γ1 <110°, and 70°<γ2 <110°.

在一种可能的实现方式中,γ1=γ2=90°。In one possible implementation, γ12 =90°.

在一种可能的实现方式中,该第一棱镜膜和该第二棱镜膜的结构相同。In a possible implementation manner, the structures of the first prism film and the second prism film are the same.

在一种可能的实现方式中,该第二棱镜膜中一个棱镜的棱脊与该第一棱镜膜中一个棱镜的棱脊在第一平面的投影的夹角为θ,70°≤θ≤90°,其中,该第一平面为平行于该液晶显示屏的平面。In a possible implementation manner, the included angle between the ridge of a prism in the second prism film and the projection of the ridge of a prism in the first prism film on the first plane is θ, 70°≤θ≤90 °, wherein the first plane is a plane parallel to the liquid crystal display screen.

在一种可能的实现方式中,该指纹识别模组包括:光学组件以及光检测阵列;该光学组件用于接收该第一指纹光信号,并将该第一指纹光信号至传输至该光检测阵列,该光检测阵列用于将该第一指纹光信号并转换为指纹图像信号,以进行指纹识别。In a possible implementation, the fingerprint identification module includes: an optical component and a light detection array; the optical component is used for receiving the first fingerprint light signal, and transmitting the first fingerprint light signal to the light detection The light detection array is used for converting the first fingerprint light signal into a fingerprint image signal for fingerprint identification.

在一种可能的实现方式中,该光学组件包括至少一个光学透镜,该至少一个光学透镜为球面或者非球面透镜。In a possible implementation manner, the optical component includes at least one optical lens, and the at least one optical lens is a spherical or aspherical lens.

在一种可能的实现方式中,该光检测阵列包括至少一个光学指纹传感器。In one possible implementation, the light detection array includes at least one optical fingerprint sensor.

第二方面,提供一种背光模组,适用于具有液晶显示屏的电子设备,包括:第一棱镜膜和第二棱镜膜,该第一棱镜膜和该第二棱镜膜均朝向该液晶显示屏的液晶面板;该第一棱镜膜中的两个底角互不相等,且该第二棱镜膜中两个底角互不相等,该第一棱镜膜中的两个底角为该第一棱镜膜中两个棱镜膜侧面与该液晶显示屏所在的平面的夹角,该第二棱镜膜中的两个底角为该第二棱镜膜中两个棱镜膜侧面与该液晶显示屏所在的平面的夹角。In a second aspect, a backlight module is provided, suitable for an electronic device having a liquid crystal display screen, comprising: a first prism film and a second prism film, both of which face the liquid crystal display screen The two bottom angles in the first prism film are not equal to each other, and the two bottom angles in the second prism film are not equal to each other, and the two bottom angles in the first prism film are the first prisms The angle between the sides of the two prism films in the film and the plane where the liquid crystal display is located, and the two bottom angles in the second prism film are the sides of the two prism films in the second prism film and the plane where the liquid crystal display is located angle.

在一种可能的实现方式中,指纹光信号经过该第一棱镜膜中其中一个棱镜膜侧面和该第二棱镜膜中其中一个棱镜膜侧面后形成第一指纹光信号,该第一指纹光信号用于进行指纹识别,该指纹光信号为经该指纹检测区域上方的手指反射或散射而返回的光信号。In a possible implementation manner, the fingerprint light signal passes through one of the side surfaces of the first prism film and one of the side surfaces of the second prism film to form a first fingerprint light signal, and the first fingerprint light signal For fingerprint identification, the fingerprint light signal is the light signal returned by the reflection or scattering of the finger above the fingerprint detection area.

通过本申请中的背光模组,对原始的背光模组进行改进,能够实现液晶显示屏下的指纹识别功能。Through the backlight module in the present application, the original backlight module is improved, and the fingerprint identification function under the liquid crystal display screen can be realized.

在一种可能的实现方式中,该第一棱镜膜中的第一底角α1小于第二底角α2,30°≤α1<45°,该第一底角为该第一棱镜膜中第一棱镜膜侧面与该液晶显示屏所在的平面的夹角,该第二底角为该第一棱镜膜中第二棱镜膜侧面与该液晶显示屏所在的平面的夹角。In a possible implementation manner, the first base angle α1 in the first prism film is smaller than the second base angle α2 , 30°≤α1 <45°, and the first base angle is the first base angle of the first prism film The included angle between the side surface of the first prism film and the plane where the liquid crystal display screen is located, and the second bottom angle is the included angle between the side surface of the second prism film in the first prism film and the plane where the liquid crystal display screen is located.

在一种可能的实现方式中,该第一指纹光信号为该指纹光信号经过该第一棱镜膜侧面和该第二棱镜膜中其中一个棱镜膜侧面后的光信号。In a possible implementation manner, the first fingerprint optical signal is an optical signal after the fingerprint optical signal passes through the side surface of the first prism film and the side surface of one of the prism film of the second prism film.

在一种可能的实现方式中,该第二棱镜膜中的第三底角β1小于第四底角β2,30°≤β1<45°,该第三底角为该第二棱镜膜中第三棱镜膜侧面与该液晶显示屏所在的平面的夹角,该第四底角为该第二棱镜膜中第四棱镜膜侧面与该液晶显示屏所在的平面的夹角。In a possible implementation manner, the third base angle β1 in the second prism film is smaller than the fourth base angle β2 , 30°≤β1 <45°, and the third base angle is the second prism film The included angle between the side surface of the third prism film and the plane where the liquid crystal display screen is located, and the fourth bottom angle is the included angle between the side surface of the fourth prism film in the second prism film and the plane where the liquid crystal display screen is located.

在一种可能的实现方式中,该第一指纹光信号为该指纹光信号经过该第一棱镜膜侧面和该第三棱镜膜侧面后的光信号。In a possible implementation manner, the first fingerprint optical signal is an optical signal after the fingerprint optical signal passes through the side surface of the first prism film and the side surface of the third prism film.

在一种可能的实现方式中,该第一棱镜膜中两个棱镜膜侧面的夹角为该第一棱镜膜的顶角γ1,该第二棱镜膜中两个棱镜膜侧面的夹角为该第二棱镜膜的顶角γ2,70°<γ1<110°,70°<γ2<110°。In a possible implementation manner, the included angle between the two prism film sides in the first prism film is the vertex angle γ1 of the first prism film, and the included angle between the two prism film sides in the second prism film is The vertex angle γ2 of the second prism film is 70°<γ1 <110°, and 70°<γ2 <110°.

在一种可能的实现方式中,γ1=γ2=90°。In one possible implementation, γ12 =90°.

在一种可能的实现方式中,该第一棱镜膜和该第二棱镜膜的结构相同。In a possible implementation manner, the structures of the first prism film and the second prism film are the same.

在一种可能的实现方式中,该第二棱镜膜中一个棱镜的棱脊与该第一棱镜膜中一个棱镜的棱脊在第一平面的投影的夹角为θ,70°≤θ≤90°,其中,该第一平面为平行于该液晶显示屏的平面。In a possible implementation manner, the included angle between the ridge of a prism in the second prism film and the projection of the ridge of a prism in the first prism film on the first plane is θ, 70°≤θ≤90 °, wherein the first plane is a plane parallel to the liquid crystal display screen.

第三方面,提供一种电子设备,包括:液晶显示屏以及,根据第一方面以及第一方面中任一可能实现的方式中的指纹识别装置,其中,该液晶显示屏包括背光模组,该指纹识别模组设置于该背光模组下方。In a third aspect, an electronic device is provided, comprising: a liquid crystal display screen and a fingerprint identification device according to the first aspect and any possible implementation manner of the first aspect, wherein the liquid crystal display screen includes a backlight module, the The fingerprint identification module is arranged below the backlight module.

在一种可能的实现方式中,该电子设备还包括:红外光源,用于为该指纹识别模组的指纹检测提供红外激励光,该红外激励光照射到该液晶显示屏的至少部分显示区域,该至少部分显示区域至少部分覆盖该指纹识别模组的指纹检测区域;其中,该第一指纹光信号包括该红外光源的红外激励光经过手指反射后经过该背光模组的第一指纹红外光信号。In a possible implementation manner, the electronic device further includes: an infrared light source for providing infrared excitation light for fingerprint detection by the fingerprint identification module, and the infrared excitation light illuminates at least part of the display area of the liquid crystal display screen, The at least part of the display area at least partially covers the fingerprint detection area of the fingerprint recognition module; wherein, the first fingerprint light signal includes the first fingerprint infrared light signal of the infrared excitation light of the infrared light source after being reflected by the finger and passing through the backlight module .

在本实现方式中,通过采用红外光源产生第一指纹红外光信号,并基于该第一指纹红外光信号进行光学指纹检测,能够减少屏幕可见光对于红外光指纹检测的干扰,且均衡红外光指纹图像的光学照度,进一步提高指纹成像的质量。In this implementation, by using an infrared light source to generate a first fingerprint infrared light signal, and performing optical fingerprint detection based on the first fingerprint infrared light signal, the interference of visible light on the screen to infrared light fingerprint detection can be reduced, and the infrared light fingerprint image can be balanced. The optical illuminance can further improve the quality of fingerprint imaging.

在一种可能的实现方式中,该红外光源为单颗或者多颗红外发光二极管;该单颗或多颗红外发光二极管分布在该指纹检测区域的四周。In a possible implementation manner, the infrared light source is a single or multiple infrared light-emitting diodes; the single or multiple infrared light-emitting diodes are distributed around the fingerprint detection area.

在一种可能的实现方式中,该红外光源设置在该液晶显示屏的玻璃盖板的下方,且与该液晶显示屏的液晶面板并排设置。In a possible implementation manner, the infrared light source is arranged under the glass cover plate of the liquid crystal display screen, and is arranged side by side with the liquid crystal panel of the liquid crystal display screen.

在一种可能的实现方式中,该红外光源斜贴在该玻璃盖板的下方。In a possible implementation manner, the infrared light source is obliquely attached below the glass cover plate.

在一种可能的实现方式中,该电子设备还包括:红外光透过层,设置于该红外光源与该玻璃盖板之间和/或该红外光源与该液晶显示屏之间,用于透过该红外激励光且阻挡可见光。In a possible implementation manner, the electronic device further includes: an infrared light transmission layer, disposed between the infrared light source and the glass cover and/or between the infrared light source and the liquid crystal display, for transmitting Pass the infrared excitation light and block visible light.

第四方面,提供一种液晶显示屏,包括:第二方面或者第二方面中任一可能实现方式中的背光模组。In a fourth aspect, a liquid crystal display screen is provided, including: the second aspect or the backlight module in any possible implementation manner of the second aspect.

第五方面,提供一种电子设备,包括:第四方面的液晶显示屏。A fifth aspect provides an electronic device, including: the liquid crystal display of the fourth aspect.

采用本申请的方案,该电子设备能够实现液晶显示屏下的大视场的指纹识别功能。By adopting the solution of the present application, the electronic device can realize the fingerprint recognition function with a large field of view under the liquid crystal display screen.

附图说明Description of drawings

图1是本申请实施例所适用的电子设备的结构示意图。FIG. 1 is a schematic structural diagram of an electronic device to which an embodiment of the present application is applied.

图2是根据本申请实施例的背光模组的立体结构示意图。FIG. 2 is a schematic three-dimensional structural diagram of a backlight module according to an embodiment of the present application.

图3是根据本申请实施例的棱镜膜的结构示意图。FIG. 3 is a schematic structural diagram of a prism film according to an embodiment of the present application.

图4是根据本申请实施例的一种液晶显示屏下指纹识别装置进行指纹识别时的光路示意图。4 is a schematic diagram of an optical path when a fingerprint identification device under a liquid crystal display screen performs fingerprint identification according to an embodiment of the present application.

图5是根据本申请实施例的一种指纹图像示意图。FIG. 5 is a schematic diagram of a fingerprint image according to an embodiment of the present application.

图6是根据本申请实施例的另一指纹图像示意图。FIG. 6 is a schematic diagram of another fingerprint image according to an embodiment of the present application.

图7是根据本申请实施例的一种指纹识别装置的示意性结构图。FIG. 7 is a schematic structural diagram of a fingerprint identification device according to an embodiment of the present application.

图8是根据本申请实施例的一种放大后的第一棱镜膜的截面示意图。FIG. 8 is a schematic cross-sectional view of an enlarged first prism film according to an embodiment of the present application.

图9是根据本申请实施例的另一指纹图像示意图。FIG. 9 is a schematic diagram of another fingerprint image according to an embodiment of the present application.

图10是根据本申请实施例的一种指纹识别模组的光学视场和指纹检测区域的相对位置关系的截面图。10 is a cross-sectional view of a relative positional relationship between an optical field of view and a fingerprint detection area of a fingerprint identification module according to an embodiment of the present application.

图11是根据本申请实施例的另一指纹识别模组的光学视场和指纹检测区域的相对位置关系的截面图。11 is a cross-sectional view of a relative positional relationship between an optical field of view and a fingerprint detection area of another fingerprint identification module according to an embodiment of the present application.

图12是根据本申请实施例的背光模组中两个棱镜膜的立体结构示意图。12 is a schematic three-dimensional structural diagram of two prism films in a backlight module according to an embodiment of the present application.

图13是图12在XZ平面中的截面示意图。FIG. 13 is a schematic cross-sectional view of FIG. 12 in the XZ plane.

图14是根据本申请实施例的背光模组中两个棱镜膜的另一种截面示意图。14 is another schematic cross-sectional view of two prism films in a backlight module according to an embodiment of the present application.

图15是根据本申请实施例的一种指纹图像示意图。FIG. 15 is a schematic diagram of a fingerprint image according to an embodiment of the present application.

图16是根据本申请实施例的另一指纹图像示意图。FIG. 16 is a schematic diagram of another fingerprint image according to an embodiment of the present application.

图17是根据本申请实施例的一种指纹识别模组在液晶显示屏中的光学视场区域与指纹检测区域俯视图。17 is a top view of an optical field of view area and a fingerprint detection area of a fingerprint identification module in a liquid crystal display screen according to an embodiment of the present application.

图18是根据本申请实施例的另一指纹识别模组在液晶显示屏中的光学视场区域与指纹检测区域俯视图。18 is a top view of an optical field of view area and a fingerprint detection area of another fingerprint identification module in a liquid crystal display screen according to an embodiment of the present application.

图19是根据本申请实施例的另一指纹识别装置的示意性结构图。FIG. 19 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.

图20是根据本申请实施例的一种放大后的第二棱镜膜的截面示意图。20 is a schematic cross-sectional view of an enlarged second prism film according to an embodiment of the present application.

图21是根据本申请实施例的一种指纹图像示意图。FIG. 21 is a schematic diagram of a fingerprint image according to an embodiment of the present application.

图22是根据本申请实施例的另一指纹识别模组在液晶显示屏中的光学视场区域与指纹检测区域俯视图。22 is a top view of an optical field of view area and a fingerprint detection area of another fingerprint identification module in a liquid crystal display screen according to an embodiment of the present application.

图23是根据本申请实施例的一种电子设备的结构示意图。FIG. 23 is a schematic structural diagram of an electronic device according to an embodiment of the present application.

具体实施方式Detailed ways

随着智能终端步入全面屏时代,电子设备正面指纹采集区域受到全面屏的挤压,因此屏下(Under-display或者Under-screen)指纹识别技术越来越受到关注。屏下指纹识别技术是指将指纹识别装置(比如指纹识别模组)安装在显示屏下方,从而实现在显示屏的显示区域内部进行指纹识别操作,不需要在电子设备正面除显示区域外的区域设置指纹采集区域。As smart terminals enter the era of full screen, the fingerprint collection area on the front of electronic devices is squeezed by the full screen, so the under-display or Under-screen fingerprint recognition technology has attracted more and more attention. Under-screen fingerprint recognition technology refers to installing a fingerprint recognition device (such as a fingerprint recognition module) under the display screen, so as to realize the fingerprint recognition operation inside the display area of the display screen, without the need for an area other than the display area on the front of the electronic device Set the fingerprint collection area.

屏下指纹识别技术可以包括屏下光学指纹识别技术、屏下超声波指纹识别技术或者其他类型的屏下指纹识别技术。The off-screen fingerprint recognition technology may include off-screen optical fingerprint recognition technology, off-screen ultrasonic fingerprint recognition technology, or other types of off-screen fingerprint recognition technologies.

以屏下光学指纹识别技术为例,屏下光学指纹识别技术使用从设备显示组件的顶面返回的光来进行指纹感应和其他感应操作。该返回的光携带与顶面接触的物体(例如手指)的信息,通过捕获和检测该返回的光实现位于显示屏幕下方的特定光学传感器模块进行屏下光学指纹识别。该特定光学传感器模块的设计可以为通过恰当地配置用于捕获和检测返回的光的光学元件来实现期望的光学成像。Taking the under-screen optical fingerprint recognition technology as an example, the under-screen optical fingerprint recognition technology uses light returned from the top surface of the device display assembly for fingerprint sensing and other sensing operations. The returned light carries the information of the object in contact with the top surface (such as a finger). By capturing and detecting the returned light, a specific optical sensor module located under the display screen is implemented to perform off-screen optical fingerprint recognition. The design of this particular optical sensor module can be such that the desired optical imaging is achieved by properly configuring the optical elements for capturing and detecting the returned light.

应理解,本申请实施例的技术方案可以应用于各种电子设备,更具体地,可以应用于具有显示屏的电子设备。例如智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备,但本申请实施例对此并不限定。It should be understood that the technical solutions of the embodiments of the present application can be applied to various electronic devices, and more specifically, can be applied to electronic devices having a display screen. For example, portable or mobile computing devices such as smart phones, notebook computers, tablet computers, and game devices, as well as other electronic devices such as electronic databases, automobiles, and bank automated teller machines (ATMs), but the embodiments of the present application are not limited thereto. .

还应理解,本申请实施例的技术方案除了可以进行指纹识别外,还可以进行其他生物特征识别,例如,活体识别,掌纹识别等,本申请实施例对此也不限定。It should also be understood that, in addition to fingerprint identification, the technical solutions of the embodiments of the present application can also perform other biometric identifications, such as living body identification, palmprint identification, etc., which are not limited in the embodiments of the present application.

下面将结合附图,对本申请实施例中的技术方案进行描述。The technical solutions in the embodiments of the present application will be described below with reference to the accompanying drawings.

需要说明的是,为便于说明,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。It should be noted that, for convenience of description, in the embodiments of the present application, the same reference numerals denote the same components, and for the sake of brevity, detailed descriptions of the same components are omitted in different embodiments.

应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及指纹识别装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。It should be understood that the thickness, length, width and other dimensions of various components in the embodiments of the present application shown in the accompanying drawings, as well as the overall thickness, length and width, etc. of the fingerprint identification device are only exemplary descriptions, and should not constitute any limited.

如图1所示为本申请实施例可以适用的电子设备的结构示意图,电子设备1包括显示屏10和指纹识别装置20,其中,指纹识别装置20设置在显示屏10下方的局部区域。FIG. 1 is a schematic structural diagram of an electronic device to which this embodiment of the present application is applicable. Theelectronic device 1 includes adisplay screen 10 and afingerprint identification device 20 , wherein thefingerprint identification device 20 is disposed in a local area below thedisplay screen 10 .

作为一种可选的实现方式,如图1所示,指纹识别装置20包括光学组件300和光检测阵列400,该光检测阵列400以及与该光检测阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(De)比如光学成像芯片或者光学指纹传感器,该光检测阵列具体可以为光学指纹传感器上的光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,该光探测器可以称为像素单元或者像素;该光学组件300可以设置在光检测阵列400的上方,可以具体包括导光层或光路引导结构以及其他光学元件,该导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至感应阵列进行光学检测。光检测阵列400所在区域或者其感应区域为指纹识别装置20的指纹检测区域103。如图1所示,指纹检测区域103位于显示屏10的显示区域之中。As an optional implementation, as shown in FIG. 1 , thefingerprint identification device 20 includes anoptical assembly 300 and alight detection array 400 , thelight detection array 400 , a reading circuit and other auxiliary circuits electrically connected to the light detection array , which can be fabricated on a chip (De) by a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor, the light detection array can specifically be a photo detector array on the optical fingerprint sensor, which includes a plurality of arrays. The photodetector can be referred to as a pixel unit or a pixel; theoptical component 300 can be arranged above thephotodetection array 400, and can specifically include a light guide layer or an optical path guiding structure and other optical elements. The optical layer or the optical path guiding structure is mainly used to guide the reflected light reflected from the surface of the finger to the sensing array for optical detection. The area where thelight detection array 400 is located or its sensing area is thefingerprint detection area 103 of thefingerprint identification device 20 . As shown in FIG. 1 , thefingerprint detection area 103 is located in the display area of thedisplay screen 10 .

在一种替代实施例中,指纹识别装置20还可以设置在其他位置,比如显示屏10的侧面或者电子设备1的边缘非透光区域,并通过光路设计来将显示屏10的至少部分显示区域的光信号导引到指纹识别装置20,从而使得指纹检测区域103实际上位于显示屏10的显示区域。In an alternative embodiment, thefingerprint identification device 20 can also be arranged in other positions, such as the side of thedisplay screen 10 or the non-light-transmitting area of the edge of theelectronic device 1, and at least part of the display area of thedisplay screen 10 is designed by the optical path. The light signal is guided to thefingerprint identification device 20 , so that thefingerprint detection area 103 is actually located in the display area of thedisplay screen 10 .

应当理解,指纹检测区域103的面积可以与指纹识别装置20的光检测阵列400的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得指纹识别装置20的指纹检测区域103的面积大于光检测阵列400的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,指纹识别装置20的指纹检测区域103也可以设计成与指纹识别装置20的感应阵列的面积基本一致。It should be understood that the area of thefingerprint detection area 103 may be different from the area of thelight detection array 400 of thefingerprint identification device 20. For example, through the optical path design of lens imaging, reflective folding optical path design, or other optical path designs such as light convergence or reflection, the The area of thefingerprint detection area 103 of thefingerprint identification device 20 is larger than that of thelight detection array 400 . In other alternative implementations, if the light path guidance is carried out by, for example, light collimation, thefingerprint detection area 103 of thefingerprint identification device 20 can also be designed to be substantially the same as the area of the sensing array of thefingerprint identification device 20 .

因此,使用者在需要对电子设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于显示屏10的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏下实现,因此采用上述结构的电子设备1无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即显示屏10的显示区域可以基本扩展到整个电子设备1的正面。Therefore, when the user needs to unlock the electronic device or perform other fingerprint verification, the user only needs to press the finger on thefingerprint detection area 103 located on thedisplay screen 10 to realize the fingerprint input. Since the fingerprint detection can be realized under the screen, theelectronic device 1 using the above structure does not need to reserve a space on the front to set the fingerprint button (such as the Home button), so that a full-screen solution can be adopted, that is, the display area of thedisplay screen 10 can be basically Extends to the entire front of theelectronic device 1 .

在具体实现上,光学组件300可以与光检测阵列400封装在同一个光学指纹部件。比如,光学组件300可以与光检测阵列400封装在同一个光学指纹芯片,也可以将光学组件300设置在光检测阵列400所在的芯片外部,比如将光学组件300贴合在芯片上方,或者将光学组件300的部分元件集成在上述芯片之中。In a specific implementation, theoptical assembly 300 and thelight detection array 400 can be packaged in the same optical fingerprint component. For example, theoptical assembly 300 and thelight detection array 400 may be packaged in the same optical fingerprint chip, or theoptical assembly 300 may be arranged outside the chip where thelight detection array 400 is located, for example, theoptical assembly 300 may be attached to the top of the chip, or theoptical assembly 300 may be mounted on the chip. Some of the components of theassembly 300 are integrated into the aforementioned chip.

其中,光学组件300的导光层或者光路引导结构有多种实现方案,比如,该导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,该准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到该准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在该准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而感应阵列便可以检测出手指的指纹图像。There are various implementation schemes for the light guide layer or the light path guide structure of theoptical component 300. For example, the light guide layer may be a collimator layer fabricated on a semiconductor silicon wafer, which has a plurality of collimator layers. unit or micro-hole array, the collimation unit can be specifically a small hole, from the reflected light from the finger, the light perpendicularly incident to the collimation unit can pass through and be received by the optical sensing unit below it, and the incident angle Excessive light is attenuated by multiple reflections inside the collimating unit, so each optical sensing unit can basically only receive the reflected light from the fingerprint lines directly above it, so that the sensing array can detect the finger. Fingerprint image.

在另一种实施例中,导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得该感应阵列可以基于该反射光进行成像,从而得到该手指的指纹图像。可选地,该光学透镜层在该透镜单元的光路中还可以形成有针孔,该针孔可以配合该光学透镜层扩大光学指纹装置的视场,以提高指纹识别装置20的指纹成像效果。In another embodiment, the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspherical lenses, which are used for The reflected light reflected from the finger is collected to the sensing array of the light detection part 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger. Optionally, the optical lens layer may further be formed with pinholes in the optical path of the lens unit, and the pinholes may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device to improve the fingerprint imaging effect of thefingerprint identification device 20 .

在其他实施例中,导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,该微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于感应阵列的其中一个感应单元。并且,微透镜层和感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,微透镜层和感应单元之间还可以包括具有微孔的挡光层,其中该微孔形成在其对应的微透镜和感应单元之间,挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得感应单元所对应的光线通过微透镜汇聚到微孔内部并经由该微孔传输到该感应单元以进行光学指纹成像。应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在准直器层或者光学透镜层下方进一步设置微透镜层。当然,在准直器层或者光学透镜层与微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。In other embodiments, the light guide layer or the light path guide structure may also specifically use a micro-lens (Micro-Lens) layer, and the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses, which can be produced by a semiconductor growth process or other The process is formed over the sensing array of the light detection part 134, and each microlens may respectively correspond to one of the sensing units of the sensing array. In addition, other optical film layers, such as a dielectric layer or a passivation layer, may also be formed between the microlens layer and the sensing unit. The micro-hole is formed between its corresponding micro-lens and the sensing unit, and the light blocking layer can block the optical interference between adjacent micro-lenses and the sensing unit, and make the light corresponding to the sensing unit converge to the inside of the micro-hole through the micro-lens and transmitted to the sensing unit through the micro-hole for optical fingerprint imaging. It should be understood that several implementation solutions of the above-mentioned optical path guiding structure may be used alone or in combination, for example, a microlens layer may be further provided under the collimator layer or the optical lens layer. Of course, when the collimator layer or the optical lens layer is used in combination with the microlens layer, its specific laminated structure or optical path may need to be adjusted according to actual needs.

应理解,在具体实现上,电子设备1还包括透明保护盖板130,该盖板可以为玻璃盖板或者蓝宝石盖板,其位于显示屏10的上方并覆盖电子设备1的正面。因为,本申请实施例中,所谓的手指按压在显示屏10实际上是指按压在显示屏10上方的盖板或者覆盖盖板的保护层表面。It should be understood that, in specific implementation, theelectronic device 1 further includes a transparentprotective cover plate 130 , which may be a glass cover plate or a sapphire cover plate, which is located above thedisplay screen 10 and covers the front surface of theelectronic device 1 . Because, in the embodiment of the present application, the so-called finger pressing on thedisplay screen 10 actually refers to pressing the cover plate above thedisplay screen 10 or the surface of the protective layer covering the cover plate.

还应理解,指纹识别装置20的下方还可以设置有电路板150。指纹识别装置20可以通过背胶粘接在该电路板150上,并通过焊盘及金属线焊接与该电路板150实现电性连接。指纹识别装置20可以通过电路板150实现与其他外围电路或者电子设备1的其他元件的电性互连和信号传输。比如,指纹识别装置20可以通过电路板150接收电子设备1的处理单元的控制信号,并且还可以通过电路板150将来自指纹识别装置20的指纹图像信号输出给电子设备1的处理单元或者控制单元等。It should also be understood that acircuit board 150 may also be disposed below thefingerprint identification device 20 . Thefingerprint identification device 20 may be adhered to thecircuit board 150 by adhesive, and electrically connected to thecircuit board 150 by soldering pads and metal wires. Thefingerprint identification device 20 can realize electrical interconnection and signal transmission with other peripheral circuits or other elements of theelectronic device 1 through thecircuit board 150 . For example, thefingerprint identification device 20 can receive the control signal of the processing unit of theelectronic device 1 through thecircuit board 150 , and can also output the fingerprint image signal from thefingerprint identification device 20 to the processing unit or the control unit of theelectronic device 1 through thecircuit board 150 . Wait.

另一方面,在某些实施例中,指纹识别装置20可以仅包括一个光学指纹传感器,此时指纹识别装置20的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到指纹检测区域103的特定位置,否则指纹识别装置20可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,指纹识别装置20可以具体包括多个光学指纹传感器;该多个光学指纹传感器可以通过拼接方式并排设置在显示屏120的下方,且该多个光学指纹传感器的感应区域共同构成指纹识别装置20的指纹检测区域103。也即是说,指纹识别装置20的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将指纹识别装置20的指纹采集区域103可以扩展到显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当光学指纹传感器数量足够时,指纹检测区域103还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。On the other hand, in some embodiments, thefingerprint identification device 20 may only include one optical fingerprint sensor, and thefingerprint detection area 103 of thefingerprint identification device 20 has a small area and a fixed position, so the user needs to input the fingerprint. Press the finger to a specific position of thefingerprint detection area 103 , otherwise thefingerprint identification device 20 may fail to collect the fingerprint image, resulting in poor user experience. In other alternative embodiments, thefingerprint identification device 20 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side under thedisplay screen 120 by splicing, and the sensing areas of the multiple optical fingerprint sensors share a common Thefingerprint detection area 103 of thefingerprint recognition device 20 is constituted. That is to say, thefingerprint detection area 103 of thefingerprint identification device 20 may include a plurality of sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that thefingerprint collection area 103 of thefingerprint identification device 20 may be extended to display The main area of the lower part of the screen is extended to the area where the finger is usually pressed, so as to realize the blind-pressing fingerprint input operation. Alternatively, when the number of optical fingerprint sensors is sufficient, thefingerprint detection area 103 can also be extended to half the display area or even the entire display area, so as to realize fingerprint detection on a half screen or a full screen.

需要说明的是,本申请实施例中的光学指纹装置也可以称为光学指纹识别模组、指纹识别装置、指纹识别模组、指纹模组、指纹采集装置等,上述术语可相互替换。It should be noted that the optical fingerprint device in the embodiments of the present application may also be referred to as an optical fingerprint identification module, a fingerprint identification device, a fingerprint identification module, a fingerprint module, a fingerprint collection device, etc., and the above terms can be interchanged.

需要注意的是,显示屏10为具有自发光显示单元的显示屏时,比如有机发光二极管(Organic Light Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,指纹识别装置20可以利用OLED显示屏10位于指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。显示屏10向指纹检测区域103上方的目标手指140发出一束光,该光在手指140的表面发生反射形成反射光或者经过手指140内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的脊(ridge)与谷(valley)对于光的反射能力不同,因此,来自指纹脊的反射光和来自指纹谷的反射光具有不同的光强,反射光经过光学组件300后,被指纹识别装置20中的光检测阵列400所接收并转换为相应的电信号,即指纹图像信号;基于指纹图像信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在电子设备1实现光学指纹识别功能。It should be noted that when thedisplay screen 10 is a display screen with a self-luminous display unit, such as an organic light emitting diode (Organic Light Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro-LED) display screen. Taking an OLED display screen as an example, thefingerprint identification device 20 can use the display unit (ie, the OLED light source) of theOLED display screen 10 located in thefingerprint detection area 103 as the excitation light source for optical fingerprint detection. Thedisplay screen 10 emits a beam of light to thetarget finger 140 above thefingerprint detection area 103. The light is reflected on the surface of thefinger 140 to form reflected light or scattered through the interior of thefinger 140 to form scattered light. In the related patent application, for the convenience of description , the above reflected light and scattered light are collectively referred to as reflected light. Since the ridges and valleys of the fingerprint have different reflection capabilities for light, the reflected light from the fingerprint ridges and the reflected light from the fingerprint valleys have different light intensities. Thelight detection array 400 in theidentification device 20 receives and converts it into a corresponding electrical signal, that is, a fingerprint image signal; based on the fingerprint image signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so as to realize the optical signal in theelectronic device 1. Fingerprint recognition function.

而当显示屏10为不具有自发光显示单元的显示屏时,比如液晶显示屏或者其他的被动发光显示屏,需要采用背光模组作为显示屏10的光源。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹识别,如图1所示,显示屏10包括液晶面板110和背光模组120,该背光模组120用于向液晶面板110发出光信号,该液晶面板110包括液晶层以及控制电路,用于控制液晶的偏转以透过光信号。When thedisplay screen 10 is a display screen without a self-luminous display unit, such as a liquid crystal display screen or other passive light-emitting display screens, a backlight module needs to be used as the light source of thedisplay screen 10 . Taking a liquid crystal display with a backlight module and a liquid crystal panel as an example, in order to support fingerprint recognition under the LCD screen, as shown in FIG. 1 , thedisplay screen 10 includes aliquid crystal panel 110 and abacklight module 120. Thegroup 120 is used for sending the light signal to theliquid crystal panel 110, and theliquid crystal panel 110 includes a liquid crystal layer and a control circuit for controlling the deflection of the liquid crystal to transmit the light signal.

可选地,本申请实施例中,该电子设备1还可以包括用于光学指纹检测的激励光源160,指纹识别装置20设置在背光模组120下方,当手指140按压在指纹检测区域103时,激励光源160向指纹检测区域103上方的目标手指140发出激励光111,该激励光111在手指140的表面发生反射形成指纹脊的第一反射光151和指纹谷的第二反射光152,第一反射光151和第二反射光152需经过液晶面板110和背光模组120后,再经过光学组件300后,被指纹识别装置20中的光检测阵列400所接收并转换为指纹图像信号。可选地,在一些实施方式中,该激励光源为红外光源,不会影响液晶显示屏的正常显示,并基于红外光信号进行指纹识别,去除环境光的干扰,提高指纹识别的效果。Optionally, in the embodiment of the present application, theelectronic device 1 may further include anexcitation light source 160 for optical fingerprint detection, and thefingerprint identification device 20 is arranged under thebacklight module 120. When thefinger 140 is pressed on thefingerprint detection area 103, Theexcitation light source 160 emits excitation light 111 to thetarget finger 140 above thefingerprint detection area 103, and the excitation light 111 is reflected on the surface of thefinger 140 to form the first reflectedlight 151 of fingerprint ridges and the second reflectedlight 152 of fingerprint valleys. The reflectedlight 151 and the second reflected light 152 need to pass through theliquid crystal panel 110 and thebacklight module 120, and then pass through theoptical assembly 300, and are received by thelight detection array 400 in thefingerprint identification device 20 and converted into fingerprint image signals. Optionally, in some embodiments, the excitation light source is an infrared light source, which does not affect the normal display of the liquid crystal display screen, and performs fingerprint identification based on infrared light signals to remove the interference of ambient light and improve the effect of fingerprint identification.

但在此过程中,背光模组120中的膜层结构,尤其是棱镜膜,会对指纹识别装置20的成像造成较大干扰。However, in this process, the film layer structure in thebacklight module 120 , especially the prism film, will greatly interfere with the imaging of thefingerprint identification device 20 .

为了便于理解,首先结合图2对液晶显示屏中的背光模组120进行一个简单的说明。For ease of understanding, a brief description of thebacklight module 120 in the liquid crystal display screen is first given with reference to FIG. 2 .

如图2所示,背光模组120包括光源(Light Source)、导光板(Light GuidePlate)、扩散片(Diffuser)、棱镜膜(Brightness Enhancement Film,BEF)、反射板(Reflector)等,其中,光源的光信号从侧面进入导光板,经导光板的散射转化为均匀分布的面光源,然后经过下扩散片的均光作用入射至棱镜膜。由于棱镜膜的聚光作用,符合某种角度的光线被射出,不符合的光线再次被反射值导光板和扩散板中,经过导光板和扩散板的作用后,重新被棱镜膜接收,并以符合角度要求的光线射出。As shown in FIG. 2 , thebacklight module 120 includes a light source (Light Source), a light guide plate (Light GuidePlate), a diffuser (Diffuser), a prism film (Brightness Enhancement Film, BEF), a reflector (Reflector), etc., wherein the light source The light signal enters the light guide plate from the side, and is converted into a uniformly distributed surface light source by the scattering of the light guide plate, and then enters the prism film through the uniform light effect of the lower diffuser. Due to the concentrating effect of the prism film, the light that meets a certain angle is emitted, and the light that does not meet the value is again reflected in the light guide plate and the diffuser plate. Light rays that meet the angle requirements are emitted.

一般而言,在背光模组中,通常设置有两个棱镜膜,即图2中所述的垂直方向的棱镜膜以及水平方向的棱镜膜,该两个棱镜膜的结构相同,但棱镜膜的棱脊的方向不同,两个棱镜膜的棱脊在同一平面上的投影的夹角呈90°,该平面为平行于显示屏中液晶面板的平面。该两个棱镜膜共同作用,保证水平面上360°范围内的光信号,均被有效会聚至液晶面板。Generally speaking, in the backlight module, there are usually two prism films, namely, the prism film in the vertical direction and the prism film in the horizontal direction described in FIG. 2 . The structures of the two prism films are the same, but the The directions of the ridges are different, and the included angle of the projections of the ridges of the two prism films on the same plane is 90°, and the plane is parallel to the plane of the liquid crystal panel in the display screen. The two prism films work together to ensure that light signals within a range of 360° on the horizontal plane are effectively converged to the liquid crystal panel.

在一些实施方式中,经过棱镜膜后的光线被收拢至70°,即经过棱镜膜后的光信号,与垂直于显示屏的方向的夹角在0至70°之间,而其在显示屏上的投影可以为0至360°中任意的角度。因此,通过在背光模组中设置棱镜膜,有效的增加了正视的亮度,较于不设置棱镜膜的情况,液晶显示屏的亮度增加了70%。在本申请的一些实施例中,背光模组中的两个棱镜膜也可以称为增亮棱镜膜。In some embodiments, the light after passing through the prism film is condensed to 70°, that is, the angle between the light signal after passing through the prism film and the direction perpendicular to the display screen is between 0 and 70°, and the angle between the light signal passing through the prism film and the direction perpendicular to the display screen is between 0 and 70° The projection on can be any angle from 0 to 360°. Therefore, by arranging the prism film in the backlight module, the brightness of the front view is effectively increased, and the brightness of the liquid crystal display is increased by 70% compared with the case where the prism film is not arranged. In some embodiments of the present application, the two prism films in the backlight module may also be referred to as brightness enhancement prism films.

图3中的(a)和图3中的(b)示出了本申请实施例中背光模组120中一个棱镜膜1200的立体结构图以及截面图,其中,图3中的(b)为图3中的(a)在XZ平面上的截面示意图。该棱镜膜1200可以为图2中两个棱镜膜中的任意一个。(a) in FIG. 3 and (b) in FIG. 3 show a three-dimensional structural view and a cross-sectional view of aprism film 1200 in thebacklight module 120 in the embodiment of the present application, wherein (b) in FIG. 3 is (a) is a schematic cross-sectional view on the XZ plane in FIG. 3 . Theprism film 1200 can be any one of the two prism films in FIG. 2 .

具体地,该棱镜膜1200为多个相同的三棱镜1210在基底1220上规律地排成一排,其中,每一个三棱镜1210是从基底1220向上凸出而形成的,且每一个三棱镜1210为具有两个倾斜侧面的结构,两个倾斜侧面之间具有夹角,为三棱镜1210的顶角(Apex Angle),由于棱镜膜中所有的三棱镜结构相同,因此,为了方便描述,在本申请中,下文也将棱镜膜中任意一个三棱镜的顶角称之为棱镜膜的顶角。Specifically, theprism film 1200 is a plurality of identicaltriangular prisms 1210 regularly arranged in a row on thesubstrate 1220, wherein eachtriangular prism 1210 is formed by protruding upward from thesubstrate 1220, and eachtriangular prism 1210 has two The structure of two inclined sides has an included angle between the two inclined sides, which is the Apex Angle of thetriangular prism 1210. Since all the triangular prisms in the prism film have the same structure, for the convenience of description, in this application, the following also The apex angle of any one of the triangular prisms in the prism film is called the apex angle of the prism film.

此外,一个三棱镜1210的两个倾斜侧面与水平面的夹角分别为该三棱镜的两个底角。例如,图3中的(b)所示,三棱镜1210中两个倾斜侧面分别为第一侧面1211和第二侧面1212,该第一侧面1211与水平方向的夹角为三棱镜1210的第一底角α,该第二侧面1212与水平方向的夹角为三棱镜1210的第二底角β。同样为了方便描述,在本申请中,下文也将棱镜膜中任意一个三棱镜的两个底角称之为棱镜膜的两个底角,棱镜膜中每个三棱镜的第一侧面称之为第一棱镜膜侧面,棱镜膜中每个三棱镜的第二侧面称之为第二棱镜膜侧面。In addition, the included angles between the two inclined sides of atriangular prism 1210 and the horizontal plane are respectively the two bottom angles of the triangular prism. For example, as shown in (b) of FIG. 3 , the two inclined sides of thetriangular prism 1210 are thefirst side 1211 and thesecond side 1212 respectively, and the angle between thefirst side 1211 and the horizontal direction is the first base angle of thetriangular prism 1210 α, the included angle between thesecond side surface 1212 and the horizontal direction is the second base angle β of thetriangular prism 1210 . Also for the convenience of description, in this application, the two bottom corners of any triangular prism in the prism film are also referred to as the two bottom corners of the prism film, and the first side of each triangular prism in the prism film is referred to as the first side. The side of the prism film, the second side of each triangular prism in the prism film is called the side of the second prism film.

为了提高棱镜膜的聚光作用,经过试验数据统计,目前现有技术中棱镜膜的顶角一般为90°,该角度下,棱镜膜的聚光效果最优。若顶角不为90°,则可能会损失部分光信号,影响液晶显示屏的显示亮度。In order to improve the light-gathering effect of the prism film, according to the statistics of the test data, the apex angle of the prism film in the prior art is generally 90°, and at this angle, the light-gathering effect of the prism film is the best. If the top angle is not 90°, part of the light signal may be lost, affecting the display brightness of the LCD screen.

此外,也为了保证棱镜膜聚光的均匀性,即各个角度的光信号均能够有良好的聚光效果,一般而言,棱镜膜中两个底角一般相等,即棱镜膜中多个三棱镜的两个侧面的面积相同,若棱镜膜的顶角为90°,则棱镜膜由多个等腰直角三棱镜在基底上排列组成。In addition, in order to ensure the uniformity of the light condensing of the prism film, that is, the light signals at all angles can have a good light condensing effect. Generally speaking, the two bottom angles in the prism film are generally equal, that is, the multiple prisms in the prism film The areas of the two sides are the same, and if the apex angle of the prism film is 90°, the prism film is composed of a plurality of isosceles right-angled triangular prisms arranged on the substrate.

由于液晶显示屏中设置棱镜膜提高液晶显示屏的亮度,但手指按压在液晶显示屏的表面,指纹识别装置设置在手指下方进行指纹识别时,从手指反射或散射返回后的光信号,经过棱镜膜会被折射为不同方向的两个光信号,从而影响液晶显示屏下的指纹识别功能。Since the prism film is arranged in the LCD screen to improve the brightness of the LCD screen, but the finger is pressed on the surface of the LCD screen, and the fingerprint recognition device is arranged under the finger to perform fingerprint recognition, the light signal reflected or scattered from the finger and returned, passes through the prism. The film will be refracted into two light signals in different directions, thus affecting the fingerprint recognition function under the LCD screen.

图4示出了一种液晶显示屏下指纹识别装置进行指纹识别时的光路示意图,其中,液晶显示屏10包括液晶面板110以及背光模组120,该背光模组120中包括棱镜膜1200以及其他膜层124,该其他膜层124包括但不限于是以上图2中的导光板、反射膜以及扩散膜等膜层结构。4 shows a schematic diagram of an optical path of a fingerprint identification device under a liquid crystal display screen for fingerprint identification, wherein the liquidcrystal display screen 10 includes aliquid crystal panel 110 and abacklight module 120, and thebacklight module 120 includes aprism film 1200 and other Thefilm layer 124, the other film layers 124 include, but are not limited to, the above-mentioned film structures such as the light guide plate, the reflective film, and the diffusion film in FIG. 2 .

如图4所示,第三反射光153为经过手指中心区域反射或透射的指纹检测光信号,手指中心区域对应指纹检测区域103的中心区域,指纹识别装置20设置于指纹检测区域103的中心区域下方,第三反射光153被棱镜膜1200中两个方向的棱镜膜侧面折射为方向不同的第一折射光161和第二折射光162,该第一折射光线161和第二折射光162无法进入指纹识别装置20中的光学组件300进行成像。因此,手指中心的光信号无法被指纹识别装置20接收,光检测阵列400检测得到的指纹图像中会形成一个如图5所示的暗区,指纹识别装置20的视场被一分为二,形成均等的两部分视场,导致严重的视场损失和图像畸变。As shown in FIG. 4 , the third reflected light 153 is the fingerprint detection light signal reflected or transmitted through the central area of the finger, the central area of the finger corresponds to the central area of thefingerprint detection area 103 , and thefingerprint identification device 20 is arranged in the central area of thefingerprint detection area 103 Below, the third reflected light 153 is refracted by the sides of the prism film in two directions in theprism film 1200 into the first refractedlight 161 and the second refracted light 162 with different directions, and the first refractedlight 161 and the second refracted light 162 cannot enter Theoptical assembly 300 in thefingerprint identification device 20 performs imaging. Therefore, the light signal at the center of the finger cannot be received by thefingerprint identification device 20, and a dark area as shown in FIG. 5 will be formed in the fingerprint image detected by thelight detection array 400, and the field of view of thefingerprint identification device 20 is divided into two. Forms an equal two-part field of view, resulting in severe field loss and image distortion.

另外,第四光信号154为指纹检测区域103外的其它区域的环境光信号或者杂散光信号,该第四光信号154经过棱镜膜折射后形成大角度的折射光信号进入光学组件300并被光学组件300传输至光检测阵列400,在光检测阵列400中成像,影响指纹图像的质量。In addition, the fourthoptical signal 154 is an ambient light signal or a stray light signal in other areas outside thefingerprint detection area 103 . The fourthoptical signal 154 is refracted by the prism film to form a large-angle refracted light signal, which enters theoptical component 300 and is optically transmitted by theoptical component 300 . Theassembly 300 is transmitted to thelight detection array 400 where it is imaged, affecting the quality of the fingerprint image.

应理解,图4中以一个棱镜膜作为举例说明了该棱镜膜对于指纹光信号的影响,若液晶显示屏中包括如图2中所示的两个棱镜膜,则另一个棱镜膜对于指纹光信号的干扰情况也可以参见以上描述。若两个棱镜膜均由等腰直角三棱镜构成,光检测阵列400检测得到的指纹图像中心会形成如图6所示的暗区,指纹识别装置20的视场被一分为四,形成均等的四部分视场,造成更为严重的视场的损失。It should be understood that a prism film is used as an example to illustrate the influence of the prism film on the fingerprint light signal. If the liquid crystal display includes two prism films as shown in FIG. The interference situation of the signal can also be referred to the above description. If the two prism films are composed of isosceles right angle triangular prisms, the center of the fingerprint image detected by thelight detection array 400 will form a dark area as shown in FIG. Four-part field of view, resulting in a more serious loss of field of view.

综上,由于液晶显示屏中的棱镜膜对于指纹检测光信号的影响,造成指纹识别装置的视场损失和指纹图像的图像畸变,因而无法实现屏下指纹识别。To sum up, due to the influence of the prism film in the liquid crystal display on the fingerprint detection light signal, the loss of the field of view of the fingerprint identification device and the image distortion of the fingerprint image are caused, so the fingerprint identification under the screen cannot be realized.

本申请提出一种适用于液晶显示屏的指纹识别装置,将该指纹装置设置于指纹检测区域的斜下方,使得指纹识别装置接收被棱镜膜中的一个侧面折射后的折射光,并改进液晶显示屏的背光模组中的棱镜膜结构,增大指纹识别装置接收指纹光信号的有效视场,从而形成较大面积的连续的指纹图像,实现液晶显示屏下指纹识别。The present application proposes a fingerprint identification device suitable for a liquid crystal display screen. The fingerprint device is arranged diagonally below the fingerprint detection area, so that the fingerprint identification device receives the refracted light refracted by one side of the prism film, and improves the liquid crystal display. The prismatic film structure in the backlight module of the screen increases the effective field of view for the fingerprint identification device to receive the fingerprint light signal, thereby forming a large-area continuous fingerprint image and realizing fingerprint identification under the liquid crystal display.

以下,结合图7至图21,详细介绍本申请实施例的指纹识别装置。Hereinafter, with reference to FIG. 7 to FIG. 21 , the fingerprint identification device according to the embodiment of the present application will be described in detail.

图7是本申请实施例提供的一种指纹识别装置200的示意性结构图,适用于具有液晶显示屏的电子设备,并用于设置在液晶显示屏的背光模组下方以进行屏下指纹识别,其中,该背光模组包括第一棱镜膜。FIG. 7 is a schematic structural diagram of afingerprint identification device 200 provided by an embodiment of the present application, which is suitable for an electronic device having a liquid crystal display screen, and is used for being disposed under the backlight module of the liquid crystal display screen for fingerprint identification under the screen, Wherein, the backlight module includes a first prism film.

如图7所示,该指纹识别装置200包括:As shown in Figure 7, thefingerprint identification device 200 includes:

指纹识别模组201,位于在液晶显示屏10中指纹检测区域103的斜下方,用于接收第一指纹光信号102,该第一指纹光信号101用于进行指纹识别,其中,该第一指纹光信号102为指纹光信号101经过第一棱镜膜121中第一棱镜膜侧面折射的光信号,该指纹光信号101为经指纹检测区域103上方的手指反射或散射而返回的光信号;Thefingerprint recognition module 201 is located at the diagonally lower part of thefingerprint detection area 103 in the liquidcrystal display screen 10, and is used for receiving the firstfingerprint light signal 102, and the firstfingerprint light signal 101 is used for fingerprint recognition, wherein the first fingerprint Theoptical signal 102 is the optical signal of the fingerprintoptical signal 101 refracted by the side surface of the first prism film in thefirst prism film 121, and the fingerprintoptical signal 101 is the optical signal returned by the reflection or scattering of the finger above thefingerprint detection area 103;

第一棱镜膜121中的第一底角与第二底角不相等,该第一底角为第一棱镜膜121中第一棱镜膜侧面与液晶显示屏所在的平面的夹角,第二底角为第一棱镜膜121中第二棱镜膜侧面与所述液晶显示屏所在的平面的夹角。The first bottom angle in thefirst prism film 121 is not equal to the second bottom angle, the first bottom angle is the angle between the side surface of the first prism film in thefirst prism film 121 and the plane where the liquid crystal display screen is located, and the second bottom angle is The angle is the included angle between the side surface of the second prism film in thefirst prism film 121 and the plane where the liquid crystal display screen is located.

可选地,在本申请实施例中,指纹识别模组201可以为图1中指纹识别装置20,其可以包括光学组件300和光检测阵列400。Optionally, in this embodiment of the present application, thefingerprint identification module 201 may be thefingerprint identification device 20 in FIG. 1 , which may include anoptical assembly 300 and alight detection array 400 .

其中,光学组件300用于接收第一指纹光信号101,并将该第一指纹光信号至传输至光检测阵列400,该光检测阵列400用于将该第一指纹光信号101并转换为指纹图像信号,以进行指纹识别。Theoptical component 300 is used for receiving the firstfingerprint light signal 101 and transmitting the first fingerprint light signal to thelight detection array 400, and thelight detection array 400 is used for converting the firstfingerprint light signal 101 into a fingerprint image signal for fingerprint recognition.

具体地,在本申请实施例中,光学组件300可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个光学透镜组成的透镜组。可选地,该光学透镜层中的光学透镜的表面可以为球面或者非球面,光学透镜的材料可以为玻璃,树脂等透明材料。Specifically, in this embodiment of the present application, theoptical component 300 may be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more optical lenses. Optionally, the surface of the optical lens in the optical lens layer may be a spherical surface or an aspherical surface, and the material of the optical lens may be a transparent material such as glass or resin.

具体地,在本申请实施例中,光检测阵列400包括多个感应单元。其中,该感应单元可以采用光电二极管(Photo Diode)、金属氧化物半导体场效应管(Metal OxideSemiconductor Field Effect Transistor,MOSFET)等器件进行光信号的检测以及指纹图像信号的输出。可选地,该感应单元对于特定波长光具有较高的光灵敏度和较高的量子效率,以便于检测相应波长的光信号。Specifically, in this embodiment of the present application, thelight detection array 400 includes a plurality of sensing units. Wherein, the sensing unit can use a photodiode (Photo Diode), a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor, MOSFET) and other devices to detect the optical signal and output the fingerprint image signal. Optionally, the sensing unit has higher optical sensitivity and higher quantum efficiency for light of a specific wavelength, so as to detect the optical signal of the corresponding wavelength.

在本申请实施例中,指纹检测区域103为光检测阵列400在液晶显示屏10中的感应区域,即用户手指按压在指纹检测区域103上方时,光信号经过指纹检测区域103上方的手指反射或散射而返回指纹光信号,该指纹检测信号用来检测所述手指的指纹信息,该光检测阵列400对该指纹检测区域103上方的手指进行指纹成像。In the embodiment of the present application, thefingerprint detection area 103 is the sensing area of thelight detection array 400 in the liquidcrystal display screen 10 , that is, when the user's finger is pressed on thefingerprint detection area 103 , the light signal is reflected or reflected by the finger above thefingerprint detection area 103 . The fingerprint light signal is scattered and returned, and the fingerprint detection signal is used to detect the fingerprint information of the finger. Thelight detection array 400 performs fingerprint imaging on the finger above thefingerprint detection area 103 .

可选地,指纹识别模组201可以仅包括一个光学指纹传感器,此时指纹识别模组201的指纹检测区域103的面积较小且位置固定。在其他替代实施例中,指纹识别模组201可以具体包括多个光学指纹传感器;该多个光学指纹传感器可以通过拼接方式并排设置在液晶显示屏的下方,且该多个光学指纹传感器的感应区域共同构成指纹识别模组201的指纹检测区域103。Optionally, thefingerprint identification module 201 may include only one optical fingerprint sensor, and in this case, thefingerprint detection area 103 of thefingerprint identification module 201 has a small area and a fixed position. In other alternative embodiments, thefingerprint identification module 201 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side under the liquid crystal display screen by splicing, and the sensing areas of the multiple optical fingerprint sensors Together, they constitute thefingerprint detection area 103 of thefingerprint recognition module 201 .

在一种可能的实施方式中,该指纹识别装置200可以适用于上述电子设备1中,其具体可以设置在上述液晶显示屏10的背光模组120的下方。在本申请实施例中,液晶显示屏10和背光模组120的相关特征可以参考上文中液晶显示屏10和背光模组120的相关描述。In a possible implementation manner, thefingerprint identification device 200 can be applied to the above-mentionedelectronic device 1 , and it can be specifically arranged below thebacklight module 120 of the above-mentioned liquidcrystal display screen 10 . In the embodiment of the present application, for the relevant features of the liquidcrystal display screen 10 and thebacklight module 120, reference may be made to the relevant descriptions of the liquidcrystal display screen 10 and thebacklight module 120 above.

具体地,本申请实施例的第一棱镜膜121也为棱镜膜结构,其同样由多个三棱镜在基底上排列形成,该第一棱镜膜121可以理解为在上述棱镜膜1200上进行改进形成的改进后的棱镜膜结构。Specifically, thefirst prism film 121 in the embodiment of the present application is also a prism film structure, which is also formed by arranging a plurality of triangular prisms on a substrate. Thefirst prism film 121 can be understood as being formed by improving the above-mentionedprism film 1200 Improved prismatic membrane structure.

为了更清楚的说明该改进后的第一棱镜膜121的结构,图8示出了一种放大后的第一棱镜膜121的截面示意图。In order to illustrate the structure of the improvedfirst prism film 121 more clearly, FIG. 8 shows a schematic cross-sectional view of an enlargedfirst prism film 121 .

如图8所示,该第一棱镜膜121的基底在下方,其第一棱镜膜侧面1211以及第二棱镜膜侧面1212均朝基底的上方凸出,该第一棱镜膜侧面1211和第二棱镜膜侧面1212均朝向液晶显示屏的液晶面板110,该第一棱镜膜121的基底平行于液晶面板110所在的平面。在本申请实施例中,第一棱镜膜121中多个三棱镜的第一侧面均称之为第一棱镜膜侧面1211,多个三棱镜的第二侧面均称之为第二棱镜膜侧面1212。As shown in FIG. 8 , the base of thefirst prism film 121 is at the bottom, the firstprism film side 1211 and the secondprism film side 1212 are both protruding toward the top of the base, the firstprism film side 1211 and the second prism film The side surfaces 1212 of the film are all facing theliquid crystal panel 110 of the liquid crystal display screen, and the base of thefirst prism film 121 is parallel to the plane where theliquid crystal panel 110 is located. In the embodiment of the present application, the first side surfaces of the plurality of triangular prisms in thefirst prism film 121 are referred to as the first prism film side surfaces 1211 , and the second side surfaces of the plurality of triangular prisms are referred to as the second prism film side surfaces 1212 .

为了方便描述,在本申请中,将液晶显示屏中液晶面板所在平面也称为第一平面,将垂直于该第一平面的方向称为垂直方向。一般情况下,若液晶显示屏水平放置,则该第一平面也为水平面,垂直方向为竖直方向。For the convenience of description, in this application, the plane where the liquid crystal panel is located in the liquid crystal display screen is also referred to as the first plane, and the direction perpendicular to the first plane is referred to as the vertical direction. Generally, if the liquid crystal display screen is placed horizontally, the first plane is also a horizontal plane, and the vertical direction is a vertical direction.

如图8所示,第一棱镜膜侧面1211与其基底的夹角,也即第一棱镜膜侧面1211与第一平面的夹角为第一底角α1,第二棱镜膜侧面1212与其基底的夹角,也即第二棱镜膜侧面1212与第一平面的夹角为第二底角α2,α1≠α2,第一棱镜膜侧面1211的面积与第二棱镜膜侧面1212的面积不相等。As shown in FIG. 8 , the angle between theside surface 1211 of the first prism film and its base, that is, the angle between theside surface 1211 of the first prism film and the first plane is the first base angle α1 , the angle between theside surface 1212 of the second prism film and its base is the firstbase angle α 1 . The included angle, that is, the included angle between theside surface 1212 of the second prism film and the first plane is the second base angle α2 , α1 ≠α2 , the area of theside surface 1211 of the first prism film and the area of theside surface 1212 of the second prism film are different. equal.

换言之,该第一棱镜膜121与上述棱镜膜1200的区别在于,上述棱镜膜1200的两个棱镜膜侧面的面积相等,两个底角相等,而本申请实施例中,第一棱镜膜121的两个棱镜膜侧面的面积不等,两个底角也不相等。In other words, the difference between thefirst prism film 121 and the above-mentionedprism film 1200 is that the areas of the two prism film sides of the above-mentionedprism film 1200 are equal, and the two bottom angles are equal. The areas of the sides of the two prism films are not equal, and the two bottom angles are not equal.

可选地,α1<α2,对应的,第一棱镜膜121中第一棱镜膜侧面1211的面积大于第二棱镜膜侧面1212的面积。Optionally, α12 , correspondingly, the area of theside surface 1211 of the first prism film in thefirst prism film 121 is larger than the area of theside surface 1212 of the second prism film.

如图8所示,第一棱镜膜侧面1211接收光信号a,第二棱镜膜侧面1212接收光信号b,该光信号a和光信号b为平行光信号,特别地,该光信号a和光信号b均为垂直于第一平面的光信号。在指纹识别的过程中,该光信号a和光信号b均为经过指纹检测区域上方手指反射或者散射而返回的光信号,携带有指纹信息。且可以理解的是,垂直于手指的方向上光信号的光强较大,有利于提高指纹图像的质量以提高指纹识别的效果。As shown in FIG. 8 , theside surface 1211 of the first prism film receives the light signal a, and theside surface 1212 of the second prism film receives the light signal b. The light signal a and the light signal b are parallel light signals. In particular, the light signal a and the light signal b are parallel light signals. Both are optical signals perpendicular to the first plane. In the process of fingerprint recognition, the optical signal a and the optical signal b are both optical signals returned by reflection or scattering of the finger above the fingerprint detection area, and carry fingerprint information. And it can be understood that the light intensity of the light signal in the direction perpendicular to the finger is larger, which is beneficial to improve the quality of the fingerprint image and improve the effect of fingerprint recognition.

光信号a被第一棱镜膜侧面1211接收后,经过第一棱镜膜121的折射后,出射为光信号c。光信号b被第二棱镜膜侧面1212接收后,经过第一棱镜膜121的折射后,出射为光信号d。由于α1<α2,则光信号a在第一棱镜膜侧面1211上的入射角小于光信号b在第二棱镜膜侧面上的入射角,由折射定律可知,光信号c与垂直方向的夹角小于光信号d与垂直方向的夹角,下文也将光信号c与垂直方向的夹角也称为光信号c的出射角度,光信号d与垂直方向的夹角也称为光信号d的出射角度。After the optical signal a is received by theside surface 1211 of the first prism film, after being refracted by thefirst prism film 121, it is emitted as the optical signal c. After the optical signal b is received by theside surface 1212 of the second prism film, after being refracted by thefirst prism film 121, the light signal b is emitted as the optical signal d. Since α12 , the incident angle of the optical signal a on theside surface 1211 of the first prism film is smaller than the incident angle of the optical signal b on the side surface of the second prism film. It can be known from the law of refraction that the angle between the optical signal c and the vertical direction is The angle is smaller than the angle between the optical signal d and the vertical direction. The angle between the optical signal c and the vertical direction is also called the exit angle of the optical signal c, and the angle between the optical signal d and the vertical direction is also called the optical signal d. Exit angle.

可选地,在图8的实施例中,光信号a可以为图7中的指纹光信号101,光信号c可以为图7中的第一指纹光信号102。Optionally, in the embodiment of FIG. 8 , the optical signal a may be the fingerprintoptical signal 101 in FIG. 7 , and the optical signal c may be the first fingerprintoptical signal 102 in FIG. 7 .

应理解,上述图8仅以垂直方向的光信号a和光信号b进行举例进行了说明,本申请实施例中的指纹光信号101还可以为第一棱镜膜侧面接收的其它方向的光信号,本申请实施例对该第一棱镜膜侧面接收的指纹光信号的方向不做具体限定,其可以包括任意方向的指纹光信号。It should be understood that the above-mentioned FIG. 8 only takes the optical signal a and the optical signal b in the vertical direction as examples for illustration, and the fingerprintoptical signal 101 in the embodiment of the present application may also be the optical signal in other directions received by the side of the first prism film. The embodiments of the application do not specifically limit the direction of the fingerprint light signal received on the side surface of the first prism film, which may include fingerprint light signals in any direction.

通过上述说明可知,对于平行光信号而言,第一棱镜膜侧面接收的光信号经过第一棱镜膜折射后,出射的光信号角度较小,而第二棱镜膜侧面接收的光信号经过第一棱镜膜折射后,出射的光信号角度较大,因而,若指纹识别模组设置在指纹检测区域的正下方,如图9所示,指纹识别模组的指纹图像中同样出现暗区,将指纹图像一分为二,第一棱镜膜中第一棱镜膜侧面接收的光信号经过折射后,在指纹识别模组中的成像面积S1较大,而第二棱镜膜侧面接收的光信号经过折射后,在指纹识别模组中的成像面积S2较小。It can be seen from the above description that for parallel light signals, after the light signal received on the side of the first prism film is refracted by the first prism film, the angle of the light signal emitted is smaller, while the light signal received on the side of the second prism film passes through the first prism film. After the prism film is refracted, the angle of the outgoing light signal is relatively large. Therefore, if the fingerprint recognition module is placed directly below the fingerprint detection area, as shown in Figure 9, a dark area also appears in the fingerprint image of the fingerprint recognition module. The image is divided into two parts. After the light signal received by the side of the first prism film in thefirst prism film is refracted, the imaging area S1 in the fingerprint recognition module is larger, while the light signal received by the side of the second prism film is refracted. After that, the imaging area S2 in thefingerprint identification module is small.

此时,若将指纹识别模组201设置在指纹检测区域103的斜下方,该指纹检测区域103设置在指纹识别模组201的光学视场(Field of View,FOV)的一侧,使得指纹识别模组201仅接收第一棱镜膜侧面折射的光信号,既可以解决指纹图像中的暗区问题,实现液晶显示屏下的指纹识别功能,也可以使得指纹识别模组具有相对大的有效光学视场,对应较大面积的指纹检测区域。At this time, if thefingerprint recognition module 201 is arranged diagonally below thefingerprint detection area 103, thefingerprint detection area 103 is arranged on the side of the optical field of view (FOV) of thefingerprint recognition module 201, so that the fingerprint recognition Themodule 201 only receives the light signal refracted from the side of the first prism film, which can not only solve the problem of dark areas in the fingerprint image, realize the fingerprint identification function under the liquid crystal display, but also make the fingerprint identification module have a relatively large effective optical view. field, corresponding to a larger area of fingerprint detection area.

在本申请实施例中,α1越小,第一棱镜膜侧面1211的面积越大,可以使得指纹识别模组具有更大的有效光学视场,指纹识别的效果更佳。但α1越小,对液晶显示屏的亮度影响越大,为了均衡液晶显示屏的亮度与指纹识别的效果,在一些实施方式中,上述第一底角α1的取值范围在30°至45°之间,即30°≤α1<45°。In the embodiment of the present application, the smaller α1 is, the larger the area of theside surface 1211 of the first prism film is, so that the fingerprint identification module can have a larger effective optical field of view, and the effect of fingerprint identification is better. However, the smaller α1 is, the greater the influence on the brightness of the LCD screen is. In order to balance the brightness of the LCD screen and the effect of fingerprint recognition, in some embodiments, the value of the first base angle α1 ranges from 30° to 45°, that is, 30°≤α1 <45°.

如图8所示,上述第一棱镜膜侧面1211与第二棱镜膜侧面1212的夹角可以称为第一棱镜膜121的顶角,该第一棱镜膜121的顶角为γ1,在一些实施方式中,70°<γ1<110°。As shown in FIG. 8 , the angle between theside surface 1211 of the first prism film and theside surface 1212 of the second prism film can be referred to as the apex angle of thefirst prism film 121 , and the apex angle of thefirst prism film 121 is γ1 . In an embodiment, 70°<γ1 <110°.

此外,在图8中,第一棱镜膜121中两个相邻的三棱镜的棱脊之间的间距(Pitch)为P1,可选地,P1的取值范围可以在15μm至40μm之间,一些实施方式中,P1=24μm。In addition, in FIG. 8 , the pitch (Pitch) between the ridges of two adjacent triangular prisms in thefirst prism film 121 is P1 , and optionally, the value range of P1 can be between 15 μm and 40 μm , in some embodiments, P1 =24 μm.

可选地,在本申请实施例中,指纹识别模组201的光学视场可以为指纹识别模组201中光学组件300的光学视场,可选地,该指纹识别模组201的视场区域为该指纹识别模组201在液晶显示屏中的视场区域,该视场区域可以大于上述指纹检测区域103。Optionally, in the embodiment of the present application, the optical field of view of thefingerprint recognition module 201 may be the optical field of view of theoptical component 300 in thefingerprint recognition module 201 , optionally, the field of view area of thefingerprint recognition module 201 For the field of view area of thefingerprint identification module 201 in the liquid crystal display, the field of view area may be larger than thefingerprint detection area 103 described above.

此外,指纹识别模组201的视场区域中,除了部分区域为指纹检测区域外,其它区域无手指覆盖,为无效视场区域,因此,也将该指纹检测区域103与该指纹识别模组201的视场区域重合的区域称之为该指纹识别模组201的有效光学视场区域,该指纹检测区域103下方的空间区域与该指纹识别模组201的视场空间重合的区域称之为该指纹识别模组201的有效光学视场。In addition, in the field of view area of thefingerprint recognition module 201, except for some areas that are fingerprint detection areas, other areas are not covered by fingers, which are invalid field of view areas. Therefore, thefingerprint detection area 103 and thefingerprint recognition module 201 are also The area where the field of view areas overlap is called the effective optical field of view area of thefingerprint recognition module 201, and the space area below thefingerprint detection area 103 and the field of view space of thefingerprint recognition module 201 overlap area is called the The effective optical field of view of thefingerprint recognition module 201 .

图10示出了一种指纹识别模组201的光学视场和指纹检测区域的相对位置关系的截面图。FIG. 10 shows a cross-sectional view of the relative positional relationship between the optical field of view of thefingerprint identification module 201 and the fingerprint detection area.

如图10所示,指纹识别模组201设置在指纹检测区域103的左下方,指纹识别模组201上方的虚线表示其光学视场,该光学视场与指纹识别模组中的光学组件的结构和光学参数相关。该光学视场在液晶面板110上可以形成一个圆形的视场区域,其中,该指纹检测区域103位于该圆形视场区域的右侧,指纹检测区域103上方手指反射或散射后的指纹光信号,经过第一棱镜膜121中的第一棱镜膜侧面折射后被指纹识别模组201接收。而经过该指纹检测区域103上方手指反射或散射后的指纹光信号(例如,图10中的光信号103),经过第一棱镜膜121中的第二棱镜膜侧面折射后(例如,图10中的光信号104)无法被指纹识别模组201接收。As shown in FIG. 10 , thefingerprint recognition module 201 is arranged at the lower left of thefingerprint detection area 103 , and the dotted line above thefingerprint recognition module 201 represents its optical field of view, which is related to the structure of the optical components in the fingerprint recognition module. related to optical parameters. The optical field of view can form a circular field of view area on theliquid crystal panel 110 , wherein thefingerprint detection area 103 is located on the right side of the circular field of view area, and the fingerprint light reflected or scattered by the finger above thefingerprint detection area 103 The signal is received by thefingerprint identification module 201 after being refracted by the side surface of the first prism film in thefirst prism film 121 . The fingerprint light signal reflected or scattered by the finger above the fingerprint detection area 103 (for example, thelight signal 103 in FIG. 10 ) is refracted by the side surface of the second prism film in the first prism film 121 (for example, in FIG. 10 ) The optical signal 104) cannot be received by thefingerprint recognition module 201.

图11示出了另一种指纹识别模组的视场和指纹检测区域的相对位置关系的截面图。FIG. 11 is a cross-sectional view showing the relative positional relationship between the field of view and the fingerprint detection area of another fingerprint identification module.

图11所示,指纹识别模组201设置在指纹检测区域103的右下方,其中,指纹检测区域103位于指纹识别模组201的光学视场的左侧,指纹检测区域103上方手指反射或散射后的指纹光信号,经过第一棱镜膜121中的第二棱镜膜侧面折射后被指纹识别模组接收。而经过该指纹检测区域103上方手指反射或散射后的指纹光信号(例如,图11中的光信号101),经过第一棱镜膜121中的第一棱镜膜侧面折射后(例如,图11中的光信号102)无法被指纹识别模组接收。As shown in FIG. 11 , thefingerprint recognition module 201 is disposed at the lower right of thefingerprint detection area 103 , wherein thefingerprint detection area 103 is located on the left side of the optical field of view of thefingerprint recognition module 201 , and the fingerprint above thefingerprint detection area 103 is reflected or scattered by the finger The fingerprint light signal is received by the fingerprint recognition module after being refracted by the side surface of the second prism film in thefirst prism film 121 . The fingerprint light signal (for example, thelight signal 101 in FIG. 11 ) reflected or scattered by the finger above thefingerprint detection area 103 is refracted by the side surface of the first prism film in the first prism film 121 (for example, the light signal in FIG. 11 ) The optical signal 102) cannot be received by the fingerprint identification module.

由于第一棱镜膜121中不同侧面对光信号的折射角度不同,图11中的指纹检测区域103与图10中的指纹检测区域103相比,面积较小,若指纹识别模组按照图11进行设置,则指纹识别模组仅接收第一棱镜膜中第二棱镜膜侧面折射的光信号,虽然也可以解决暗区问题,但此时指纹识别模组的有效光学视场相对较小,也只能对应较小面积的指纹检测区域,指纹识别效果不佳。Since different sides of thefirst prism film 121 have different refraction angles facing the optical signal, thefingerprint detection area 103 in FIG. 11 has a smaller area than thefingerprint detection area 103 in FIG. 10 . If it is set, the fingerprint identification module only receives the light signal refracted by the side of the second prism film in the first prism film. Although the dark area problem can also be solved, the effective optical field of view of the fingerprint identification module is relatively small at this time, and only It can correspond to a small area of fingerprint detection area, and the fingerprint recognition effect is not good.

因此,在本申请实施例中,将指纹识别模组201设置在指纹检测区域103的斜下方,而不是正下方,旨在使得指纹识别模组201仅接收面积较大的第一棱镜膜侧面折射的光信号,而不接收面积较小的第二棱镜膜侧面折射的光信号,提高指纹识别模组的有效视场,对较大面积的指纹检测区域上方的手指进行指纹识别。Therefore, in the embodiment of the present application, thefingerprint identification module 201 is arranged diagonally below thefingerprint detection area 103, rather than directly below, so that thefingerprint identification module 201 only receives the lateral refraction of the first prism film with a larger area It does not receive the light signal refracted on the side of the second prism film with a smaller area, improves the effective field of view of the fingerprint identification module, and performs fingerprint identification on the finger above the larger area of the fingerprint detection area.

此外,又由于第一棱镜膜侧面的面积大于第二棱镜膜侧面的面积,第一棱镜膜侧面能够接收的光信号较多,光强较大,在提高指纹识别模组的有效视场外,也有利于提高指纹图像的质量。In addition, because the area of the side of the first prism film is larger than the area of the side of the second prism film, the side of the first prism film can receive more light signals, and the light intensity is larger. In addition to improving the effective field of view of the fingerprint identification module, It is also beneficial to improve the quality of fingerprint images.

以上结合图7至图11说明了背光模组中仅包括一个第一棱镜膜121时,第一棱镜膜121的结构以及指纹识别模组201的位置。The structure of thefirst prism film 121 and the position of thefingerprint identification module 201 have been described above with reference to FIGS. 7 to 11 when the backlight module includes only onefirst prism film 121 .

可选地,背光模组中还可以包括两个棱镜膜,即如图2所示的两个不同方向的棱镜膜。Optionally, the backlight module may further include two prism films, that is, two prism films in different directions as shown in FIG. 2 .

可选地,该两个棱镜膜的棱脊在第一平面的投影的夹角为θ,70°≤θ≤90°,其中棱镜膜的棱脊可以为棱脊膜中任意一个三棱镜的棱脊。Optionally, the included angle of the projection of the ridges of the two prism films on the first plane is θ, 70°≤θ≤90°, wherein the ridge of the prism film can be any one of the prism ridges in the prism film. .

可选地,该两个棱镜膜之间的距离可以小于1μm或者其它任意数值,本申请实施例对此不做限定。Optionally, the distance between the two prism films may be less than 1 μm or any other value, which is not limited in this embodiment of the present application.

此外,在本申请实施例中,该两个棱镜膜之间可以设置有背光模组中的其它光学膜层,该两个棱镜膜之间也可以不设置其它膜层,本申请实施例对此也不做具体限定。In addition, in the embodiment of the present application, other optical film layers in the backlight module may be disposed between the two prism films, and no other film layer may be disposed between the two prism films. There is no specific limitation.

在一种实施方式中,该两个棱镜膜中的其中一个棱镜膜可以与上述经过改进后的第一棱镜膜121的结构相同,而另一个棱镜膜可以为未经过改进的原始棱镜膜1200(第二棱镜膜的一例)的结构相同。In one embodiment, one of the two prism films may have the same structure as the above-mentioned improvedfirst prism film 121, and the other prism film may be the original unimproved prism film 1200 ( An example of the second prism film) has the same structure.

图12示出了该情况下,背光模组中两个棱镜膜的立体结构示意图。图13示出了图12的立体图在XZ平面中的截面示意图。如图12和图13所示,其上方的棱镜膜为上述第一棱镜膜121,下方的棱镜膜为上述棱镜膜1200。当然,在本实施方式中,例如,如图14所示,棱镜膜1200也可以位于第一棱镜膜121的上方。FIG. 12 shows a schematic three-dimensional structure diagram of two prism films in the backlight module in this case. FIG. 13 shows a schematic cross-sectional view of the perspective view of FIG. 12 in the XZ plane. As shown in FIG. 12 and FIG. 13 , the upper prism film is the above-mentionedfirst prism film 121 , and the lower prism film is the above-mentionedprism film 1200 . Of course, in this embodiment, for example, as shown in FIG. 14 , theprism film 1200 may also be located above thefirst prism film 121 .

在图12和图13所示的棱镜膜结构下,若指纹识别模组设置在指纹检测区域的下方,经过第一棱镜膜121的指纹光信号被折射为两部分,其中,经过第一棱镜膜121中第一棱镜膜侧面折射后的第一指纹光信号形成的指纹图像面积大于经过第一棱镜膜121中第二棱镜膜侧面折射后的第二指纹光信号形成的指纹图像面积。经过第一棱镜膜121折射后,如图15所示,指纹图像在Y方向上一分为二,形成左右两部分,且两部分的面积不等。经过第一棱镜膜121折射后的光信号再次经过棱镜膜1200的两个棱镜膜侧面,被折射为两部分,指纹图像在X方向上再次被一分为二,形成四部分。Under the prism film structure shown in FIGS. 12 and 13 , if the fingerprint recognition module is arranged below the fingerprint detection area, the fingerprint light signal passing through thefirst prism film 121 is refracted into two parts, wherein the fingerprint light signal passing through thefirst prism film 121 is refracted into two parts. The area of the fingerprint image formed by the first fingerprint light signal refracted by the side of the first prism film in 121 is larger than the area of the fingerprint image formed by the second fingerprint light signal refracted by the side of the second prism film in thefirst prism film 121 . After being refracted by thefirst prism film 121 , as shown in FIG. 15 , the fingerprint image is divided into two parts in the Y direction to form left and right parts, and the areas of the two parts are unequal. The light signal refracted by thefirst prism film 121 passes through the two prism film sides of theprism film 1200 again, and is refracted into two parts. The fingerprint image is divided into two parts in the X direction again to form four parts.

在图14所示的棱镜膜结构下,若指纹识别模组设置在指纹检测区域的下方,同上述情况类似,如图16所示,经过棱镜膜1200折射后,指纹图像在X方向上一分为二,且均等划分为左右两部分。经过棱镜膜1200折射后的光信号再次经过第一棱镜膜121的两个棱镜膜侧面,被折射为两部分,指纹图像在Y方向上再次被一分为二,且划分为面积不等的四部分。Under the prism film structure shown in FIG. 14 , if the fingerprint recognition module is arranged below the fingerprint detection area, it is similar to the above situation. As shown in FIG. 16 , after being refracted by theprism film 1200 , the fingerprint image is divided in the X direction. It is divided into two parts, and it is divided into left and right parts equally. The optical signal refracted by theprism film 1200 passes through the two prism film sides of thefirst prism film 121 again, and is refracted into two parts. The fingerprint image is divided into two parts in the Y direction again, and divided into four parts with different areas. part.

因此,在上述两种情况下,指纹图像被划分为2个较大面积的区域以及2个较小面积的区域,其中,两个较大面积的区域对应于经过第一棱镜膜中第一棱镜膜侧面折射的光信号。Therefore, in the above two cases, the fingerprint image is divided into 2 larger areas and 2 smaller areas, wherein the two larger areas correspond to passing through the first prism in the first prism film Optical signal refracted from the side of the film.

为了能够在去除图像暗区的同时,提高指纹识别模组的有效视场,需要移动指纹识别模组,且指纹识别模组能够接收经过第一棱镜膜中第一棱镜膜侧面以及棱镜膜中一个棱镜膜侧面折射后的光信号,此时,指纹检测区域位于指纹识别模组的视场的一角。In order to improve the effective field of view of the fingerprint identification module while removing the dark area of the image, the fingerprint identification module needs to be moved, and the fingerprint identification module can receive the side of the first prism film and one of the prism films in the first prism film. The light signal refracted by the side of the prism film, at this time, the fingerprint detection area is located in a corner of the field of view of the fingerprint identification module.

具体地,在上文中,背光模组仅有一个第一棱镜膜的情况下,将指纹识别模组从指纹检测区域的正下方,向一侧移动,其可以沿其所在平面的X方向进行平移。在本申请实施例中,除了将指纹识别模组从指纹检测区域的正下方向X方向进行平移以外,还需要将指纹识别模组向Y方向进行平移,移动之后,指纹检测区域位于指纹识别模组的视场的一角,其中,X方向和Y方向为同一平面中相互垂直的方向。Specifically, in the above, in the case where the backlight module has only one first prism film, the fingerprint recognition module is moved from right below the fingerprint detection area to one side, and it can be translated along the X direction of the plane where it is located. . In the embodiment of the present application, in addition to translating the fingerprint identification module in the X direction from directly below the fingerprint detection area, it is also necessary to translate the fingerprint identification module in the Y direction. After the movement, the fingerprint detection area is located in the fingerprint identification module. A corner of the field of view of the group, where the X and Y directions are mutually perpendicular directions in the same plane.

例如,图17示出了背光模组仅包括一个第一棱镜膜121的情况下,指纹识别模组在液晶显示屏中的光学视场区域与指纹检测区域俯视图。图18示出了背光模组包括第一棱镜膜121以及原始棱镜膜1200的情况下,指纹识别模组在液晶显示屏中的光学视场区域与指纹检测区域俯视图。For example, FIG. 17 shows a top view of the optical field of view area and the fingerprint detection area of the fingerprint identification module in the liquid crystal display when the backlight module includes only onefirst prism film 121 . 18 shows a top view of the optical field of view area and the fingerprint detection area of the fingerprint identification module in the liquid crystal display when the backlight module includes thefirst prism film 121 and theoriginal prism film 1200 .

图17和图18中,圆形虚线表示指纹识别模组在液晶显示屏中的光学视场区域,比较图17和图18可以看出,相较于背光模组仅有一个第一棱镜膜的情况,在背光模组具有第一棱镜膜以及原始棱镜膜的情况下,指纹检测区域103的面积减小一半,该换言之,指纹识别模组的有效视场也减小一半。In FIGS. 17 and 18 , the dotted circles represent the optical field of view of the fingerprint identification module in the liquid crystal display. Comparing FIGS. 17 and 18 , it can be seen that compared to the backlight module with only one first prism film In some cases, when the backlight module has the first prism film and the original prism film, the area of thefingerprint detection area 103 is reduced by half, in other words, the effective field of view of the fingerprint identification module is also reduced by half.

但在该方式下,由于增加了一个棱镜膜,相比于一个棱镜膜的情况,液晶显示屏的亮度也得到的提高。However, in this manner, due to the addition of a prism film, the brightness of the liquid crystal display is also improved compared to the case of a prism film.

为了综合考虑液晶显示屏的亮度以及指纹识别模组的有效视场,在另一种实施方式中,该两个棱镜膜均可以为经过改进的棱镜膜。In order to comprehensively consider the brightness of the liquid crystal display screen and the effective field of view of the fingerprint identification module, in another embodiment, the two prism films can both be improved prism films.

可选地,该两个棱镜膜均可以与上述经过改进后的第一棱镜膜121的结构相同,即两个棱镜膜的结构相同。Optionally, the structures of the two prism films can be the same as the above-mentioned improvedfirst prism film 121 , that is, the structures of the two prism films are the same.

可选地,该两个棱镜膜中的一个棱镜膜可以与上述经过改进后的第一棱镜膜121的结构相同,另一个同样为经过改进的棱镜膜,即棱镜膜的两个棱镜膜侧面面积不等,但该棱镜膜的结构与上述第一棱镜膜的结构不同。Optionally, one of the two prism films may have the same structure as the above-mentioned improvedfirst prism film 121, and the other is also an improved prism film, that is, the area of the side surfaces of the two prism films of the prism film. However, the structure of the prism film is different from that of the first prism film described above.

为了方便描述,下文的实施例中,背光模组中的一个棱镜膜为上文中的第一棱镜膜121,另一个棱镜膜称之为第二棱镜膜122。可选地,该第二棱镜膜122平行设置于第一棱镜膜121的下方。For convenience of description, in the following embodiments, one prism film in the backlight module is referred to as thefirst prism film 121 above, and the other prism film is referred to as thesecond prism film 122 . Optionally, thesecond prism film 122 is disposed under thefirst prism film 121 in parallel.

本申请实施例的第二棱镜膜122也为棱镜膜结构,其同样由多个三棱镜在基底上排列形成,该第二棱镜膜122也可以理解为在上述棱镜膜1200上进行改进形成的改进后的棱镜膜结构。Thesecond prism film 122 in the embodiment of the present application is also a prism film structure, which is also formed by arranging a plurality of triangular prisms on a substrate. Thesecond prism film 122 can also be understood as an improved product formed on the above-mentionedprism film 1200. the prismatic membrane structure.

图19是本申请实施例提供的另一种指纹识别装置200的示意性结构图,适用于具有液晶显示屏的电子设备,并用于设置在液晶显示屏的背光模组下方以进行屏下指纹识别,其中,该背光模组包括第一棱镜膜和第二棱镜膜,该第一棱镜膜和第二棱镜膜均朝向液晶显示屏的液晶面板。19 is a schematic structural diagram of anotherfingerprint identification device 200 provided by an embodiment of the present application, which is suitable for an electronic device with a liquid crystal display screen, and is used to be disposed under the backlight module of the liquid crystal display screen to perform off-screen fingerprint identification , wherein the backlight module comprises a first prism film and a second prism film, and the first prism film and the second prism film both face the liquid crystal panel of the liquid crystal display screen.

如图19所示,该指纹识别装置200包括:As shown in Figure 19, thefingerprint identification device 200 includes:

指纹识别模组201,位于在所述液晶显示屏10中指纹检测区域103的斜下方,用于接收第一指纹光信号,该第一指纹光信号用于进行指纹识别,其中,第一指纹光信号为指纹光信号经过第一棱镜膜121中其中一个棱镜膜侧面和第二棱镜膜122中其中一个棱镜膜侧面后的光信号,该指纹光信号为经所述指纹检测区域上方的手指反射或散射而返回的光信号;Thefingerprint identification module 201 is located at the diagonally lower part of thefingerprint detection area 103 in the liquidcrystal display screen 10, and is used for receiving the first fingerprint light signal, and the first fingerprint light signal is used for fingerprint identification, wherein the first fingerprint light The signal is the light signal of the fingerprint light signal after passing through one of the side surfaces of thefirst prism film 121 and one of the side surfaces of thesecond prism film 122, and the fingerprint light signal is reflected by the finger above the fingerprint detection area or The light signal returned by scattering;

第一棱镜膜121中的两个底角互不相等,且第二棱镜膜122中两个底角互不相等,第一棱镜膜121中的两个底角为第一棱镜膜121中两个棱镜膜侧面与液晶显示屏10所在的平面的夹角,第二棱镜膜122中的两个底角为第二棱镜膜122中两个棱镜膜侧面与液晶显示屏10所在的平面的夹角。The two base angles in thefirst prism film 121 are not equal to each other, and the two base angles in thesecond prism film 122 are not equal to each other, and the two base angles in thefirst prism film 121 are two in thefirst prism film 121 The angle between the sides of the prism film and the plane where theLCD 10 is located, and the two bottom angles in thesecond prism film 122 are the angles between the sides of the two prism films in thesecond prism film 122 and the plane where theLCD 10 is located.

图20示出了一种放大后的第二棱镜膜122的截面示意图。FIG. 20 shows a schematic cross-sectional view of an enlargedsecond prism film 122 .

如图20所示,该第二棱镜膜122的基底在下方,其第三棱镜膜侧面1221以及第四棱镜膜侧面1222均朝基底的上方凸出,该第三棱镜膜侧面1221和第四棱镜膜侧面1222均朝向液晶显示屏的液晶面板110,该第二棱镜膜122的基底平行于液晶面板110所在的平面。在本申请实施例中,第二棱镜膜122中多个三棱镜的第一侧面均称之为第三棱镜膜侧面1221,多个三棱镜的第二侧面均称之为第四棱镜膜侧面1222。As shown in FIG. 20 , the base of thesecond prism film 122 is at the bottom, theside 1221 of the third prism film and theside 1222 of the fourth prism film are both protruding toward the top of the base, and theside 1221 of the third prism film and the side surface of the fourth prism film are 1222 are all facing theliquid crystal panel 110 of the liquid crystal display screen, and the base of thesecond prism film 122 is parallel to the plane where theliquid crystal panel 110 is located. In the embodiment of the present application, the first sides of the plurality of triangular prisms in thesecond prism film 122 are referred to as the thirdprism film side 1221 , and the second sides of the plurality of triangular prisms are referred to as the fourthprism film side 1222 .

如图20所示,第三棱镜膜侧面1221与其基底的夹角,也即第三棱镜膜侧面1221与第一平面的夹角为第三底角β1,第四棱镜膜侧面1222与其基底的夹角,也即第四棱镜膜侧面1222与第一平面的夹角为第四底角β2,β1≠β2,第三棱镜膜侧面1221的面积与第四棱镜膜侧面1222的面积不相等。As shown in FIG. 20 , the angle between theside surface 1221 of the third prism film and its base, that is, the angle between theside surface 1221 of the third prism film and the first plane is the third base angle β1 , and the angle between theside surface 1222 of the fourth prism film and its base is the thirdbase angle β 1 . That is, the angle between theside surface 1222 of the fourth prism film and the first plane is the fourth base angle β2 , and β1 ≠β2 , and the area of theside surface 1221 of the third prism film is not equal to the area of theside surface 1222 of the fourth prism film.

可选地,β1<β2,对应的,第二棱镜膜122中第三棱镜膜侧面1221的面积大于第四棱镜膜侧面1222的面积。Optionally, β12 , correspondingly, the area of theside surface 1221 of the third prism film in thesecond prism film 122 is larger than the area of theside surface 1222 of the fourth prism film.

在本申请实施例中,β1越小,第三棱镜膜侧面1221的面积越大,可以使得指纹识别模组具有更大的有效光学视场,指纹识别的效果更佳。但β1越小,对液晶显示屏的亮度影响越大,为了均衡液晶显示屏的亮度与指纹识别的效果,进一步地,在一些实施方式中,上述第三底角β1的取值范围在30°至45°之间,即30°<β1≤45°。可选地,β1=α1In the embodiment of the present application, the smaller β1 is, the larger the area of theside surface 1221 of the third prism film is, so that the fingerprint identification module can have a larger effective optical field of view, and the effect of fingerprint identification is better. However, the smaller β1 is, the greater the impacton the brightness of the LCD screen. In order to balance the brightness of the LCD screen and the effect of fingerprint recognition, further, in some embodiments, the value range of the third bottom angle β1 is 30 Between ° and 45°, that is, 30°<β1 ≤45°. Optionally, β11 .

如图20所示,上述第三棱镜膜侧面1221与第四棱镜膜侧面1222的夹角可以称为第二棱镜膜122的顶角,该第二棱镜膜122的顶角为γ2,在一些实施方式中,70°<γ2<110°。可选地,γ1=γ2As shown in FIG. 20 , the angle between theside surface 1221 of the third prism film and theside surface 1222 of the fourth prism film can be referred to as the apex angle of thesecond prism film 122 , and the apex angle of thesecond prism film 122 is γ2 . In some implementations In the mode, 70°<γ2 <110°. Optionally, γ12 .

可选地,在一些实施方式中,γ1=γ2=90°,采用该实施方式,可以在实现指纹识别的同时,最大化的保证液晶显示屏的亮度。Optionally, in some embodiments, γ12 =90°, and by adopting this embodiment, the brightness of the liquid crystal display screen can be ensured to the greatest extent while realizing fingerprint recognition.

此外,在图20中,第二棱镜膜122中两个相邻的三棱镜的棱脊之间的间距(Pitch)为P2,可选地,P1的取值范围可以在15μm至40μm之间,一些实施方式中,P2=P1=24μm,在另一些实施方式中,P2和P1也可以不相等,本申请实施例对两个棱镜膜的Pitch值不做具体限定。In addition, in FIG. 20 , the pitch (Pitch) between the ridges of two adjacent triangular prisms in thesecond prism film 122 is P2 , and optionally, the value range of P1 can be between 15 μm and 40 μm , in some embodiments, P2 =P1 =24 μm, and in other embodiments, P2 and P1 may also be unequal, and the Pitch values of the two prism films are not specifically limited in the examples of this application.

若第二棱镜膜122设置在上述第一棱镜膜121的下方,则该第二棱镜膜122中的部分区域接收的是第一棱镜膜121中第一棱镜膜侧面1211折射的光信号,例如上述光信号c,而另一部分区域接收的是第一棱镜膜121中第二棱镜膜侧面1212折射的光信号,例如上述光信号d。If thesecond prism film 122 is disposed below thefirst prism film 121, a part of thesecond prism film 122 receives the light signal refracted by theside surface 1211 of thefirst prism film 121 in thefirst prism film 121, such as the above The light signal c, and another part of the region receives the light signal refracted by theside surface 1212 of the second prism film in thefirst prism film 121, such as the above-mentioned light signal d.

如图20所示,第二棱镜膜122上第三棱镜膜侧面1221接收光信号c1,第四棱镜膜侧面1222接收光信号c2,该光信号c1和光信号c2均为经过第一棱镜膜121中的第一棱镜膜侧面1211折射后的光信号。As shown in FIG. 20 , theside surface 1221 of the third prism film on thesecond prism film 122 receives the light signal c1 , and theside surface 1222 of the fourth prism film receives the light signal c2 , and both the light signal c1 and the light signal c2 pass through the first prism The optical signal refracted by theside surface 1211 of the first prism film in thefilm 121 .

光信号c1被第三棱镜膜侧面1221接收后,经过第二棱镜膜122的折射后,出射为光信号e。光信号c2被第四棱镜膜侧面1222接收后,经过第二棱镜膜122的折射后,出射为光信号f。由于β1<β2,则光信号c1在第三棱镜膜侧面1221上的入射角小于光信号c2在第二棱镜膜侧面上的入射角,由折射定律可知,光信号e与垂直方向的夹角小于光信号f与垂直方向的夹角。After the optical signal c1 is received by theside surface 1221 of the third prism film, after being refracted by thesecond prism film 122, it is output as the optical signal e. After the optical signal c2 is received by theside surface 1222 of the fourth prism film, after being refracted by thesecond prism film 122, it is output as the optical signal f. Since β12 , the incident angle of the optical signal c1 on theside surface 1221 of the third prism film is smaller than the incident angle of the optical signal c2 on the side surface of the second prism film. It can be known from the law of refraction that the optical signal e and the vertical direction are The included angle is smaller than the included angle between the optical signal f and the vertical direction.

可选地,在一种实施方式中,图20中的光信号e可以为图7中的第一指纹光信号102,被指纹识别模组201接收以进行指纹识别。Optionally, in an embodiment, the optical signal e in FIG. 20 may be the first fingerprintoptical signal 102 in FIG. 7 , which is received by thefingerprint identification module 201 for fingerprint identification.

可选地,在另一种实施方式中,图20中的光信号f也可以为图7中的第一指纹光信号102,被指纹识别模组201接收以进行指纹识别。Optionally, in another implementation manner, the optical signal f in FIG. 20 may also be the first fingerprintoptical signal 102 in FIG. 7 , which is received by thefingerprint identification module 201 for fingerprint identification.

换言之,在本申请实施例中,第一指纹光信号为指纹光信号经过第一棱镜膜121中第一棱镜膜侧面1211和第二棱镜膜122中其中一个棱镜膜侧面后的光信号。指纹识别模组201的位置使得其接收不到指纹光信号经过第一棱镜膜121中第二棱镜膜侧面1212和第二棱镜膜122中另一个棱镜膜侧面后的光信号。In other words, in the embodiment of the present application, the first fingerprint light signal is the light signal after the fingerprint light signal passes through one of the side surfaces of thefirst prism film 1211 in thefirst prism film 121 and one of the side surfaces of thesecond prism film 122 . The position of thefingerprint recognition module 201 is such that it cannot receive the fingerprint light signal after passing through theside surface 1212 of the second prism film in thefirst prism film 121 and the side surface of another prism film in thesecond prism film 122 .

应理解,上述图20仅以垂直方向的光信号c1和c2进行举例进行了说明,本申请实施例对该第三棱镜膜侧面接收的指纹光信号的方向不做具体限定,其可以包括任意方向的指纹光信号。It should be understood that the above-mentioned FIG. 20 only takes the optical signals c1 and c2 in the vertical direction as examples for illustration, and the embodiment of the present application does not specifically limit the direction of the fingerprint optical signal received on the side of the third prism film, which may include any Orientation fingerprint light signal.

与上文对于第一棱镜膜中经过两个侧面的光信号的成像分析类似,第三棱镜膜侧面接收的光信号经过第二棱镜膜折射后,出射的光信号角度较小,而第四棱镜膜侧面接收的光信号经过第二棱镜膜折射后,出射的光信号角度较大。若指纹识别模组设置在指纹检测区域的正下方,在图9的指纹图像的基础上,将指纹图像再次一分为四,形成图21中的指纹图像。其中,S1对应经过第一棱镜膜侧面1211以及第三棱镜膜侧面1221的折射后的光信号,S2对应经过第二棱镜膜侧面1212以及第三棱镜膜侧面1221的折射后的光信号,S3对应经过第一棱镜膜侧面1211以及第四棱镜膜侧面1222的折射后的光信号,S4对应经过第二棱镜膜侧面1212以及第四棱镜膜侧面1222的折射后的光信号。Similar to the imaging analysis of the optical signals passing through the two sides in the first prism film above, after the light signal received on the side of the third prism film is refracted by the second prism film, the angle of the outgoing light signal is smaller, while the fourth prism film After the optical signal received on the side is refracted by the second prism film, the angle of the outgoing optical signal is relatively large. If the fingerprint recognition module is arranged just below the fingerprint detection area, on the basis of the fingerprint image in FIG. 9 , the fingerprint image is divided into four again to form the fingerprint image in FIG. 21 . Wherein, S1 corresponds to the optical signal refracted through theside 1211 of the first prism film and theside 1221 of the third prism film, S2 corresponds to the optical signal refracted through theside 1212 of the second prism film and theside 1221 of the third prism film, S3 Corresponding to the light signal refracted by theside 1211 of the first prism film and theside 1222 of the fourth prism film, S4 corresponds to the light signal refracted by theside 1212 of the second prism film and theside 1222 of the fourth prism film.

此时,若将指纹识别模组设置在指纹检测区域的斜下方,该指纹检测区域设置在指纹识别模组的光学视场的一角,使得指纹识别模组仅接收第一棱镜膜侧面以及第三棱镜膜侧面折射的光信号(对应于图20中的S1),而接收不到其它棱镜膜侧面折射的光信号,既可以解决指纹图像中的暗区问题,可实现液晶显示屏下的指纹识别功能,也可以使得指纹识别模组具有相对大的有效光学视场,对应较大面积的指纹检测区域。At this time, if the fingerprint identification module is arranged diagonally below the fingerprint detection area, the fingerprint detection area is arranged at a corner of the optical field of view of the fingerprint identification module, so that the fingerprint identification module only receives the side surface of the first prism film and the third prism. The light signal refracted on the side of the film (corresponding to S1 in Fig. 20 ) cannot receive the light signal refracted on the side of other prism films, which can not only solve the problem of dark areas in the fingerprint image, but also realize the fingerprint recognition under the liquid crystal display. It can also make the fingerprint recognition module have a relatively large effective optical field of view, corresponding to a large area of fingerprint detection area.

图22示出了背光模组包括第一棱镜膜121以及第二棱镜膜121的情况下,指纹识别模组的光学视场区域与指纹检测区域俯视图。FIG. 22 shows a top view of the optical field of view area and the fingerprint detection area of the fingerprint recognition module when the backlight module includes thefirst prism film 121 and thesecond prism film 121 .

图22中,圆形虚线表示指纹识别模组在液晶面板中的光学视场区域,比较图18和图22可以看出,相较于背光模组包括第一棱镜膜121以及原始棱镜膜1200的情况,在背光模组包括第一棱镜膜121以及第二棱镜膜122的情况下,指纹检测区域103的面积增大,该换言之,指纹识别模组的有效视场也增大。In FIG. 22 , the circular dotted line represents the optical field of view area of the fingerprint recognition module in the liquid crystal panel. Comparing FIG. 18 and FIG. 22 , it can be seen that compared with the backlight module including thefirst prism film 121 and theoriginal prism film 1200 In some cases, when the backlight module includes thefirst prism film 121 and thesecond prism film 122, the area of thefingerprint detection area 103 is increased, in other words, the effective field of view of the fingerprint identification module is also increased.

因此,采样本申请实施例,在兼顾液晶显示屏的亮度的同时,还能进一步增大指纹识别模组的有效视场,增加指纹检测区域103的面积,从而采集到较大面积的指纹图像,提高液晶显示屏下的指纹识别性能。Therefore, by sampling the embodiments of the present application, while taking into account the brightness of the liquid crystal display, the effective field of view of the fingerprint identification module can be further increased, and the area of thefingerprint detection area 103 can be increased, thereby collecting a larger area of fingerprint images. Improve the fingerprint recognition performance under the LCD screen.

另外,本申请实施例还提供了一种背光模组,适用于具有液晶显示屏的电子设备,该液晶显示屏包括背光模组120;In addition, the embodiment of the present application also provides a backlight module, which is suitable for an electronic device having a liquid crystal display screen, and the liquid crystal display screen includes abacklight module 120;

可选地,本申请实施例中的背光模组120的相关特征可以参见上述实施例中的背光模组120的相关描述。Optionally, for the relevant features of thebacklight module 120 in the embodiment of the present application, reference may be made to the relevant description of thebacklight module 120 in the foregoing embodiment.

具体地,背光模组120包括第一棱镜膜121和第二棱镜膜122,第一棱镜膜121和第二棱镜膜122均朝向液晶显示屏的液晶面板;Specifically, thebacklight module 120 includes afirst prism film 121 and asecond prism film 122, and both thefirst prism film 121 and thesecond prism film 122 face the liquid crystal panel of the liquid crystal display screen;

第一棱镜膜121中的两个底角互不相等,且第二棱镜膜122中两个底角互不相等,第一棱镜膜121中的两个底角为第一棱镜膜121中两个棱镜膜侧面与液晶显示屏所在的平面的夹角,第二棱镜膜122中的两个底角为第二棱镜膜122中两个棱镜膜侧面与液晶显示屏所在的平面的夹角。The two base angles in thefirst prism film 121 are not equal to each other, and the two base angles in thesecond prism film 122 are not equal to each other, and the two base angles in thefirst prism film 121 are two in thefirst prism film 121 The angle between the side surface of the prism film and the plane where the LCD screen is located, and the two bottom angles in thesecond prism film 122 are the angles between the side surfaces of the two prism films in thesecond prism film 122 and the plane where the LCD screen is located.

在一种实施方式中,指纹光信号经过第一棱镜膜121中其中一个棱镜膜侧面和第二棱镜膜122中其中一个棱镜膜侧面后形成第一指纹光信号,第一指纹光信号用于进行指纹识别,指纹光信号为经指纹检测区域上方的手指反射或散射而返回的光信号。In one embodiment, the fingerprint light signal passes through one of the side surfaces of thefirst prism film 121 and one of the side surfaces of thesecond prism film 122 to form a first fingerprint light signal, and the first fingerprint light signal is used for Fingerprint recognition, the fingerprint light signal is the light signal returned by the finger reflection or scattering above the fingerprint detection area.

可选地,第一棱镜膜121中的第一底角α1小于第二底角α2,30°≤α1<45°,第一底角为第一棱镜膜121中第一棱镜膜侧面1211与液晶显示屏所在的平面的夹角,第二底角为第一棱镜膜121中第二棱镜膜侧面1212与液晶显示屏所在的平面的夹角。Optionally, the first base angle α1 in thefirst prism film 121 is smaller than the second base angle α2 , 30°≤α1 <45°, and the first base angle is the side surface of the first prism film in thefirst prism film 121 The included angle between 1211 and the plane where the liquid crystal display screen is located, and the second bottom angle is the included angle between theside surface 1212 of the second prism film in thefirst prism film 121 and the plane where the liquid crystal display screen is located.

在一种实施方式中,第一指纹光信号为指纹光信号经过第一棱镜膜侧面1211和第二棱镜膜122中其中一个棱镜膜侧面后的光信号。In one embodiment, the first fingerprint optical signal is an optical signal after the fingerprint optical signal passes through one of the side surfaces of thefirst prism film 1211 and thesecond prism film 122 .

可选地,第二棱镜膜122中的第三底角β1小于第四底角β2,30°≤β1<45°,第三底角为第二棱镜膜122中第三棱镜膜侧面1221与液晶显示屏所在的平面的夹角,第四底角为第二棱镜膜122中第四棱镜膜侧面1222与液晶显示屏所在的平面的夹角。Optionally, the third base angle β1 in thesecond prism film 122 is smaller than the fourth base angle β2 , 30°≤β1 <45°, and the third base angle is theside surface 1221 of the third prism film in thesecond prism film 122 The fourth bottom angle is the included angle between theside surface 1222 of the fourth prism film in thesecond prism film 122 and the plane where the liquid crystal display screen is positioned.

在一种实施方式中,第一指纹光信号为指纹光信号经过第一棱镜膜侧面1211和第三棱镜膜侧面1221后的光信号。In one embodiment, the first fingerprint light signal is the light signal after the fingerprint light signal passes through theside surface 1211 of the first prism film and theside surface 1221 of the third prism film.

可选地,第一棱镜膜121中两个棱镜膜侧面的夹角为第一棱镜膜121的顶角γ1,第二棱镜膜122中两个棱镜膜侧面的夹角为第二棱镜膜122的顶角γ2,70°<γ1<110°,70°<γ2<110°。可选地,γ1=γ2=90°。Optionally, the included angle between the two prism film sides in thefirst prism film 121 is the vertex angle γ1 of thefirst prism film 121 , and the included angle between the two prism film sides in thesecond prism film 122 is thesecond prism film 122 The vertex angle γ2 , 70°<γ1 <110°, 70°<γ2 <110°. Optionally, γ12 =90°.

在一些实施方式中,第一棱镜膜121和第二棱镜膜122的结构相同。In some embodiments, the structures of thefirst prism film 121 and thesecond prism film 122 are the same.

可选地,第二棱镜膜122中一个棱镜的棱脊与第一棱镜膜121中一个棱镜的棱脊在第一平面的投影的夹角为θ,70°≤θ≤90°,其中,第一平面为平行于液晶显示屏的平面。Optionally, the included angle of the projection of the ridge of a prism in thesecond prism film 122 and the ridge of a prism in thefirst prism film 121 on the first plane is θ, 70°≤θ≤90°, wherein the first A plane is a plane parallel to the liquid crystal display.

采用本申请实施例的背光模组,可以在保证液晶显示屏亮度的同时,实现液晶显示屏下的大视场的指纹识别功能。By using the backlight module of the embodiment of the present application, the fingerprint recognition function of a large field of view under the liquid crystal display screen can be realized while ensuring the brightness of the liquid crystal display screen.

如图23所示,本申请实施例还提供了一种电子设备2,该电子设备2可以包括上述液晶显示屏10以及上述申请实施例的指纹识别装置200,其中,该液晶显示屏10包括上述申请实施例中的背光模组120,该指纹识别装置200设置于背光模组120下方。As shown in FIG. 23 , an embodiment of the present application further provides an electronic device 2 , and the electronic device 2 may include the above-mentioned liquidcrystal display screen 10 and thefingerprint identification device 200 of the above-mentioned embodiment of the application, wherein the liquidcrystal display screen 10 includes the above-mentioned liquidcrystal display screen 10 . In thebacklight module 120 in the application embodiment, thefingerprint identification device 200 is disposed below thebacklight module 120 .

可选地,该电子设备2可以为任何具有液晶显示屏和背光模组的电子设备。Optionally, the electronic device 2 can be any electronic device having a liquid crystal display screen and a backlight module.

可选地,该电子设备2还可以包括红外光源30。Optionally, the electronic device 2 may further include an infraredlight source 30 .

可选地,该红外光源30可以设置在电子设备的玻璃盖板130的下方,且与该液晶显示屏的液晶面板并排设置。Optionally, the infraredlight source 30 may be disposed under theglass cover plate 130 of the electronic device, and be disposed side by side with the liquid crystal panel of the liquid crystal display screen.

在一种可能的实施方式中,如图23所示,该红外光源30设置在电子设备2的玻璃盖板130的下方,与液晶显示屏10的液晶面板110并排设置,且设置于液晶显示屏10的背光模组120的斜上方。具体地,该背光模组120包括第一棱镜膜121和/或第二棱镜膜122,以及背光模组其他结构124。In a possible implementation manner, as shown in FIG. 23 , the infraredlight source 30 is arranged under theglass cover 130 of the electronic device 2 , is arranged side by side with theliquid crystal panel 110 of the liquidcrystal display screen 10 , and is arranged on the liquidcrystal display screen 10 is diagonally above thebacklight module 120 . Specifically, thebacklight module 120 includes afirst prism film 121 and/or asecond prism film 122, andother structures 124 of the backlight module.

在另一种可能的实施方式中,该红外光源30设置在电子设备2的玻璃盖板130的下方,与液晶显示屏10中的液晶面板110以及背光模组120并排设置。In another possible implementation manner, the infraredlight source 30 is disposed under theglass cover plate 130 of the electronic device 2 , and is disposed side by side with theliquid crystal panel 110 and thebacklight module 120 in the liquidcrystal display screen 10 .

可选地,该红外光源30可以斜贴在该玻璃盖板130的下方。例如,该红外光源30可以通过光学胶斜贴在该显示屏10的下方。可选地,该光学胶可以是任一种光学液态胶或者光学固态胶。Optionally, the infraredlight source 30 may be obliquely attached below theglass cover plate 130 . For example, the infraredlight source 30 can be obliquely attached below thedisplay screen 10 through optical glue. Optionally, the optical glue can be any optical liquid glue or optical solid glue.

可选地,如图23所示,该红外光源30与该玻璃盖板之间,和/或该红外光源30与该液晶显示屏10之间可以设置红外光透过层301,该红外光透过层301用于透过该红外激励光且阻挡可见光。可选地,该红外光透过层301可以为透红外油墨。Optionally, as shown in FIG. 23 , between the infraredlight source 30 and the glass cover plate, and/or between the infraredlight source 30 and the liquidcrystal display screen 10, an infraredlight transmission layer 301 may be arranged, and the infrared light transmits Theoverlayer 301 is used to transmit the infrared excitation light and block the visible light. Optionally, the infrared light-transmittinglayer 301 may be infrared-transmitting ink.

可选地,如图23所示,该红外光源30与该液晶显示屏10中的液晶面板110之间可以设置阻光泡棉302,用于阻挡可见光。Optionally, as shown in FIG. 23 , a light-blockingfoam 302 may be arranged between the infraredlight source 30 and theliquid crystal panel 110 in the liquidcrystal display screen 10 to block visible light.

此外,在本申请实施例中,该红外光源30可以设置在该电子设备2边缘的非显示区域。例如,电子设备2为手机,非显示区域为手机表面非显示图像的手机边框区域,具体地,该红外光源30设置在非显示图像的手机边框区域对应的下方区域中。In addition, in the embodiment of the present application, the infraredlight source 30 may be disposed in the non-display area of the edge of the electronic device 2 . For example, the electronic device 2 is a mobile phone, and the non-display area is the mobile phone frame area on the surface of the mobile phone that does not display images.

在一些实施方式中,该红外光源30可以为单颗或者多颗发光二极管(Light-Emitting Diode,LED)。可选地,多颗红外发光二极管可以组成带状红外发光源,分布在指纹检测区域103的四周。In some embodiments, the infraredlight source 30 may be a single or multiple light-emitting diodes (Light-Emitting Diode, LED). Optionally, a plurality of infrared light-emitting diodes may form a band-shaped infrared light-emitting source, which is distributed around thefingerprint detection area 103 .

在本申请实施例中,通过采用红外光源产生第一指纹红外光信号,并基于该第一指纹红外光信号进行光学指纹检测,能够减少屏幕可见光对于红外光指纹检测的干扰,且均衡红外光指纹图像的光学照度,进一步提高指纹成像的质量。In the embodiment of the present application, by using an infrared light source to generate an infrared light signal of the first fingerprint, and performing optical fingerprint detection based on the infrared light signal of the first fingerprint, the interference of the visible light on the screen to the detection of the infrared light fingerprint can be reduced, and the infrared light fingerprint can be balanced. The optical illumination of the image further improves the quality of fingerprint imaging.

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working process of the above-described systems, devices and units may refer to the corresponding processes in the foregoing method embodiments, which will not be repeated here.

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed system, apparatus and method may be implemented in other manners. For example, the apparatus embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.

所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。The functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited to this. should be covered within the scope of protection of this application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.

Claims (32)

CN202080001558.5A2019-09-202020-01-23Fingerprint identification device, backlight unit, liquid crystal display and electronic equipmentPendingCN111837130A (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US201962903672P2019-09-202019-09-20
US62/903,6722019-09-20
PCT/CN2020/074011WO2021051737A1 (en)2019-09-202020-01-23Fingerprint recognition apparatus, backlight module, liquid crystal display screen and electronic device

Publications (1)

Publication NumberPublication Date
CN111837130Atrue CN111837130A (en)2020-10-27

Family

ID=72056257

Family Applications (3)

Application NumberTitlePriority DateFiling Date
CN202020150242.XUActiveCN211319247U (en)2019-09-202020-01-23Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment
CN202080001558.5APendingCN111837130A (en)2019-09-202020-01-23Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment
CN202020150150.1UActiveCN211319246U (en)2019-09-202020-01-23Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
CN202020150242.XUActiveCN211319247U (en)2019-09-202020-01-23Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
CN202020150150.1UActiveCN211319246U (en)2019-09-202020-01-23Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment

Country Status (2)

CountryLink
CN (3)CN211319247U (en)
WO (1)WO2021051737A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN113469140A (en)*2021-07-302021-10-01成都易迅光电科技有限公司Optical fingerprint identification module under translation formula screen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10936847B1 (en)*2019-09-202021-03-02Shenzhen GOODIX Technology Co., Ltd.Under-display optical sensor with compensated light paths
WO2021051737A1 (en)*2019-09-202021-03-25深圳市汇顶科技股份有限公司Fingerprint recognition apparatus, backlight module, liquid crystal display screen and electronic device
WO2021146965A1 (en)*2020-01-212021-07-29深圳市汇顶科技股份有限公司Fingerprint detection device, backlight module, display screen, and electronic device
WO2022016445A1 (en)*2020-07-232022-01-273M Innovative Properties CompanyElectronic device with optical sensor module
CN114002769A (en)*2021-10-202022-02-01武汉华星光电技术有限公司 Filter and collimation composite film, its manufacturing method, and display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR20100092173A (en)*2009-02-122010-08-20인제대학교 산학협력단Optical finger print recognition system
KR20140079681A (en)*2012-12-192014-06-27엘지디스플레이 주식회사Prism sheet, and back light unit and display device comprising the same
US20170316248A1 (en)*2015-10-232017-11-02Shenzhen GOODIX Technology Co., Ltd.Optical fingerprint sensor with force sensing capability
CN109613756A (en)*2019-01-292019-04-12华勤通讯技术有限公司LCD display, electronic equipment and control system
CN109791613A (en)*2018-12-292019-05-21深圳市汇顶科技股份有限公司Optical finger print identifies mould group and electronic equipment
CN110088768A (en)*2019-03-122019-08-02深圳市汇顶科技股份有限公司 Under-screen fingerprint recognition device and electronic equipment
CN110235143A (en)*2019-04-302019-09-13深圳市汇顶科技股份有限公司Shield lower fingerprint identification device and electronic equipment
CN211319247U (en)*2019-09-202020-08-21深圳市汇顶科技股份有限公司Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2010026280A (en)*2008-07-222010-02-04Hitachi Maxell LtdLiquid crystal display device
CN107610590A (en)*2017-09-252018-01-19深圳市华星光电技术有限公司Multifunction advertising display screen
CN208173153U (en)*2018-05-112018-11-30印象认知(北京)科技有限公司A kind of display screen and electronic equipment
CN108957768A (en)*2018-06-222018-12-07张家港康得新光电材料有限公司Realize the structure and method of naked eye 3D, 2D/3D switching
CN109863508B (en)*2019-01-232023-05-26深圳市汇顶科技股份有限公司Fingerprint identification module under LCD screen, LCD device and terminal equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR20100092173A (en)*2009-02-122010-08-20인제대학교 산학협력단Optical finger print recognition system
KR20140079681A (en)*2012-12-192014-06-27엘지디스플레이 주식회사Prism sheet, and back light unit and display device comprising the same
US20170316248A1 (en)*2015-10-232017-11-02Shenzhen GOODIX Technology Co., Ltd.Optical fingerprint sensor with force sensing capability
CN109791613A (en)*2018-12-292019-05-21深圳市汇顶科技股份有限公司Optical finger print identifies mould group and electronic equipment
CN109613756A (en)*2019-01-292019-04-12华勤通讯技术有限公司LCD display, electronic equipment and control system
CN110088768A (en)*2019-03-122019-08-02深圳市汇顶科技股份有限公司 Under-screen fingerprint recognition device and electronic equipment
CN110235143A (en)*2019-04-302019-09-13深圳市汇顶科技股份有限公司Shield lower fingerprint identification device and electronic equipment
CN211319247U (en)*2019-09-202020-08-21深圳市汇顶科技股份有限公司Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment
CN211319246U (en)*2019-09-202020-08-21深圳市汇顶科技股份有限公司Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢洪波 等: "液晶背光组中棱镜膜结构参数影响显示效果的模拟分析与验证", 液晶与显示, no. 05, 15 October 2008 (2008-10-15)*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN113469140A (en)*2021-07-302021-10-01成都易迅光电科技有限公司Optical fingerprint identification module under translation formula screen

Also Published As

Publication numberPublication date
CN211319246U (en)2020-08-21
WO2021051737A1 (en)2021-03-25
CN211319247U (en)2020-08-21

Similar Documents

PublicationPublication DateTitle
US11275922B2 (en)Fingerprint identification apparatus and electronic device
US11455823B2 (en)Under-screen fingerprint identification apparatus and electronic device
CN110235143B (en)Under-screen fingerprint identification device and electronic equipment
CN113065472B (en) Fingerprint recognition device and electronic device
CN113343829B (en)Fingerprint identification device and electronic equipment
CN110720106B (en)Fingerprint identification device and electronic equipment
CN210109828U (en) Fingerprint recognition devices and electronic equipment
CN211319247U (en)Fingerprint identification device, backlight unit, liquid crystal display and electronic equipment
WO2020133378A1 (en)Fingerprint identification device and electronic device
CN111095275B (en)Fingerprint identification device, fingerprint identification method and electronic equipment
CN111095277B (en)Optical fingerprint device and electronic equipment
WO2020191600A1 (en)Fingerprint recognition apparatus and electronic device
CN111837132B (en) Fingerprint detection devices and electronic equipment
CN209496385U (en) Under-screen fingerprint recognition device and electronic equipment
CN111095281B (en) Fingerprint detection devices and electronic equipment
CN210864756U (en)Optical fingerprint device and electronic equipment
CN111133442B (en)Fingerprint detection device and electronic equipment
WO2021077368A1 (en)Fingerprint recognition apparatus and electronic device
CN210295124U (en)Fingerprint detection device and electronic equipment
WO2021056392A1 (en)Optical fingerprint apparatus, electronic device, and method for measuring distance
CN210402402U (en)Fingerprint identification device and electronic equipment
WO2020206983A1 (en)Optical fingerprint device and electronic device
CN111837126A (en)Fingerprint detection device and electronic equipment

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
WD01Invention patent application deemed withdrawn after publication
WD01Invention patent application deemed withdrawn after publication

Application publication date:20201027


[8]ページ先頭

©2009-2025 Movatter.jp