Detailed Description
In order that the invention may be more fully understood, a more particular description of the invention will now be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
Interpretation of terms
"antigen" refers to all substances that induce the immune response of the body, i.e., substances that are specifically recognized and bound by antigen receptors (TCR/BCR) on the surface of T/B lymphocytes, activate T/B cells, proliferate and differentiate to produce immune response products (sensitized lymphocytes or antibodies), and specifically bind to the corresponding products in vitro and in vivo. Thus, antigens have two basic properties, namely antigenicity and immunogenicity. Antigenicity refers to the ability of an antigen to specifically bind to the antibody or sensitized lymphocyte it induces. Immunogenicity refers to the property of eliciting an immune response, i.e., the ability of an antigen to stimulate a specific immune cell, activate, proliferate, differentiate the immune cell, and ultimately produce immune effector antibodies and sensitized lymphocytes.
"vector" refers to a nucleic acid delivery vehicle into which a polynucleotide can be inserted. When a vector is capable of expressing a protein encoded by an inserted polynucleotide, the vector is referred to as an expression vector. The vector may be introduced into a host cell by transformation, transduction, or transfection, and the genetic material elements carried thereby are expressed in the host cell. Vectors are well known to those skilled in the art and include, but are not limited to: a plasmid; phagemid; a cosmid; artificial chromosomes such as Yeast Artificial Chromosomes (YACs), Bacterial Artificial Chromosomes (BACs), or artificial chromosomes (PACs) derived from P1; bacteriophage such as lambda phage or M13 phage, animal virus, etc. Animal viruses that may be used as vectors include, but are not limited to, retroviruses (including lentiviruses), adenoviruses, adeno-associated viruses, herpes viruses (e.g., herpes simplex virus), poxviruses, baculoviruses, papilloma viruses, papilloma polyoma vacuolatum viruses (e.g., SV 40).
"host cell" means a cell which can be used for introducing a vector, and includes, but is not limited to, prokaryotic cells such as Escherichia coli or Bacillus subtilis, fungal cells such as yeast cells or Aspergillus, insect cells such as S2 Drosophila cells or Sf9, or animal cells such as fibroblast, CHO cells, COS cells, NSO cells, HeLa cells, BHK cells, HEK 293 cells or human cells.
A bovine herpes virus antigen composition of an embodiment of the invention includes at least two of the following proteins: a recombinant bovine herpes virus gB protein with an amino acid sequence shown as SEQ ID NO. 1, a recombinant bovine herpes virus gD protein with an amino acid sequence shown as SEQ ID NO. 2, a recombinant bovine herpes virus gH protein with an amino acid sequence shown as SEQ ID NO. 3 and a recombinant bovine herpes virus gL protein with an amino acid sequence shown as SEQ ID NO. 4.
The invention comprehensively analyzes the sequence information and the spatial structure of the gB protein, the gD protein, the gH protein and the gL protein of the bovine herpes virus, and carries out site-directed mutagenesis on the four proteins respectively. After mutation, the respective immunogenicity of the proteins is improved, and stable heterodimer proteins can be formed between the mutated gB protein and the mutated gD protein and between the mutated gH protein and the mutated gL protein, and are similar to dimers formed by the gB protein, the gD protein, the gH protein and the gL protein when natural wild viruses infect cells, and are close to the natural structural state of the proteins. Thus, the neutralizing antibody can be better stimulated, and the immune effect is better and the immune period is longer than that of the method of using the proteins respectively or directly mixing the proteins. The bovine herpes virus antigen composition has antigenicity, immunogenicity and functions similar to those of virus natural proteins, is high in expression level, and has strong immunogenicity, long immune period, no pathogenicity to cattle, high safety, strong humoral immunity in cattle and capacity of resisting strong virus and attacking virus. And the bovine herpes virus antigen composition can be prepared by large-scale serum-free suspension culture in a bioreactor, so that the production cost of the vaccine is greatly reduced.
In one particular example, a bovine herpes virus antigen composition includes a bovine herpes virus recombinant gB protein and a bovine herpes virus recombinant gD protein. In one particular example, a bovine herpes virus antigen composition includes a bovine herpes virus recombinant gH protein and a bovine herpes virus recombinant gL protein.
In one particular example, the bovine herpes virus antigen composition includes a bovine herpes virus recombinant gB protein, a bovine herpes virus recombinant gD protein, a bovine herpes virus recombinant gH protein, and a bovine herpes virus recombinant gL protein. The four proteins are used together, so that a better immune effect can be obtained.
In a specific example, the recombinant bovine herpes virus gB protein and the recombinant bovine herpes virus gD protein in the bovine herpes virus antigen composition form a heterodimer, and the recombinant bovine herpes virus gH protein and the recombinant bovine herpes virus gL protein form a heterodimer. Thus, the heterodimeric protein formed is similar to the dimer formed when the natural wild virus infects cells, is close to the natural structural state of the protein, and can better stimulate neutralizing antibodies.
The expressed gene composition of one embodiment of the present invention includes at least two of the gB gene, the gD gene, the gH gene, and the gL gene. The gB gene, gD gene, gH gene and gL gene encode the recombinant bovine herpes virus gB protein, recombinant bovine herpes virus gD protein, recombinant bovine herpes virus gH protein and recombinant bovine herpes virus gL protein, respectively.
In a specific example, the nucleotide sequences of the gB gene, the gD gene, the gH gene, and the gL gene are shown asSEQ ID NO 5,SEQ ID NO 6,SEQ ID NO 7, and SEQ ID NO 8, respectively. It will be appreciated that due to the degeneracy of the codons, the nucleic acid sequences capable of expressing the same protein have a variety of forms, the above being codon optimized nucleic acid sequences, but are not limited thereto.
The expression vector system of one embodiment of the invention comprises one or more vectors for expressing the bovine herpes virus antigen composition described above. It will be appreciated that one vector may contain one or more of the gB gene, gD gene, gH gene and gL gene, and that the four proteins may be expressed separately or together as desired.
In a specific example, the vector contains a gB gene and a gD gene, and the gB gene and the gD gene are linked by an IRES sequence; alternatively, the vector contains the gH gene and the gL gene, and the gH gene and the gL gene are linked by an IRES sequence. Thus, the recombinant gB protein and the recombinant gD protein, or the recombinant gH protein and the recombinant gL protein can be co-expressed by using one expression cassette, and the heterodimeric protein is directly formed after expression.
It will be appreciated that the vector may also contain regulatory elements commonly used in genetic engineering, such as enhancers, promoters and other expression control elements (e.g., transcription termination signals, or polyadenylation signals and poly-U sequences, etc.). In a specific example, the initial vector may be selected from pSV2-GS, pCI-GS, pcDNA4-GS, etc., preferably pCI-GS.
The host cell system of one embodiment of the invention comprises one or more cells for expressing the bovine herpes virus antigen composition described above. It is understood that one cell may contain one or more of the above genes or the above vectors.
In one particular example, the host cell is a CHO cell. Specifically, the CHO cell line may be DG44, DXB11, CHO-K1, CHO-S cell line, etc., preferably CHO-S. The CHO cell is used for expressing the modified bovine herpes virus recombinant protein, the glycosylation of eukaryotic expression protein is sufficient, the immunogenicity of antigen protein is good, the expression quantity is very high, the recombinant cell can be cultured in a suspension way on a large scale, the complexity of vaccine preparation is greatly reduced, and the production cost is reduced.
The preparation method of the bovine herpes virus recombinant protein provided by the embodiment of the invention comprises the following steps: culturing the host cell under appropriate conditions, collecting the culture solution and/or the host cell lysate, and then separating and purifying to obtain the recombinant bovine herpes virus protein.
In a specific example, the method of separation and purification includes nickel column affinity chromatography, molecular sieve chromatography, and the like, but is not limited thereto and may be selected as needed.
The infectious bovine rhinotracheitis vaccine provided by the embodiment of the invention comprises the bovine herpes virus antigen composition and a pharmaceutically acceptable adjuvant.
In one specific example, the adjuvant can be MONTANIDE ISA 206 VG, MONTANIDE ISA 201 VG, liquid paraffin, camphor oil, plant cell agglutinin, etc., or a combination of two or more, preferably MONTANIDE ISA 201 VG is used.
Embodiments of the present invention will be described in detail below with reference to specific examples.
Example 8 Final vaccine testing
Test one: safety inspection
The animal experiment substitute selects 6 healthy rabbits of 1.5-2.0 kg, wherein 4 rabbits in an immunization group, 2 rabbits in a blank group, 1.0mL of vaccine in the immunization group injected into the leg muscle of the rabbits in the immunization group, and 1.0mL of adjuvant injected into the leg muscle of the rabbits in the blank group, the body temperature is measured continuously for 7 days and at a fixed point every afternoon, no death and adverse reaction occur, no clinical abnormal expression occurs, and the body temperature is normal. The method comprises the steps of selecting 6 healthy female guinea pigs of 350-400 g, wherein 4 immune groups and 2 control groups are selected, 0.5mL of immune group vaccine is injected subcutaneously into each neck of the immune group guinea pigs, 0.5mL of adjuvant is injected subcutaneously into each neck of the blank group guinea pigs, and the continuous observation for 7 days has no death and adverse reaction and no clinical abnormal expression.
And (2) test II: efficacy test
(1) Elisa antibody detection: screening 55 heads of 4-5-month-old calves (IBRV antigen-antibody negative), randomly dividing into 11 groups, injecting 2mL of vaccine into muscles according to the table 11 for 5 heads of each group, boosting immunity once after three weeks of priming immunization, collecting serum before immunization, before secondary immunization and 21 days after secondary immunization, and detecting the titer of the antibody. The results are shown in Table 12, and the results using the bovine viral diarrhea virus antibody detection kit of IDEXX company show that: the modified bovine herpes virus recombinant protein can obtain better immune effect, and the effect is still remarkable after 21 days of secondary immunization.
TABLE 12
And (4) judging a result: criteria for judging antibody positivity: P/N is more than or equal to 2.1, OD450 is more than or equal to 0.1
(2) And (3) immunizing and attacking poison of cattle: the test selects 30 healthy susceptible cattle with 2-3 months old IBRV antigen and antibody double negative (the antibody negative is that the serum neutralizing antibody titer is less than or equal to 1:4 or the ELISA detects the antibody negative), 10 cattle are respectively selected from an immune group, acontrol group 2 and a blank group, three groups of cattle are respectively injected with 2.0mL through neck muscles according to the corresponding group of a table 11, the immunity is enhanced in the same way after 21 days, IBRV virulent challenge is carried out 21 days after the secondary immunization, 2.5mL IBRV virulent strains are respectively dripped into the nostrils in the morning and afternoon of each cattle, 14 days are continuously observed after the virulent challenge, the body temperature is measured at fixed points every morning, the clinical symptoms are observed, and the nasal swabs are collected for pathogen detection and virus separation. The immune group had 9 cattle protection, thecontrol group 2 had 5 cattle protection, and the blank group had 9 cattle.
TABLE 13 IBRV potency assay (bovine immune challenge) results
Note: the disease is judged to be the disease according to two items of the rising body temperature, the nasal discharge and the toxic brought by the nasal swab.
The relevant sequence information is as follows:
recombinant gB protein (SEQ ID NO: 1):
METDTLLLWVLLLWVPGSTGGMGEITDLANKKWRCLSKAEYLRSGRKVVAFDRDDDPWEAPLKPARLSAPGVRGWHTTDDVYTALGSAGLYRTGTSVNCIVEEVEARSVYPYDSFAFSTGDIIYMSPFYGLREGAHREHTSYSPERFQQIEGYYKRDMATGRRLKEPVSRNFLRTQHVTVAWDWVPKRKNVCSLAKWREADEMLRDESRGNFRFTARSLSATFVSDSHTFALQNVPLSDCVIEEAEAAVERVYRERYNGTHVLSGSLETYLARGGFVVAFRPMLSNELAKLYLQELARSNGTLEGLFAAAAPKPGPRRARRAAPSAPGGPGAANGPAGDGDAGGRVTTVSSAEFAALQFTYDHIQDHVNTMFSRLATSWCLLQNKERALWAEAAKLNPSAAASAALDRRAAARMLGCAMAVTYCHELGEGRVFIENSMRAPGGVCYSRPPVSFAFGNESECVEGQLGEDNELLPGRELVEPCTAN
recombinant gD protein (SEQ ID NO: 2):
METDTLLLWVLLLWVPGSTGHTTGPIPSPFADGREQPVEVRYATSAAACDMLALIADPQVGRTLWEAVRRHARAYNATVIWYKIESGCARPLYYMEYTECEPRKHFGYCRYRTPPFWDSFLAGFAYPTDDELGLIMAAPARLVEGQYRRALYIDGTVAYTDFMVSLPAGDCWFSKLGAARGYTFGACFPARDYEQKKVLRLTYLTQYYPQEAHKAIVDYWFMRHGGVVPSYFEESKGYEPPPAADGGSCAPPGDDEAREDEGETEDGAAGREGNGGPCGPEG
recombinant gH protein (SEQ ID NO: 3):
METDTLLLWVLLLWVPGSTGFSQARAESNAARPPPAPRVTPTPAGRVAAFDINDVLASGPEHFFVPVRADRKRRERHVADFAAVWPVSYIPAGRAVLSCERAAARLAVGLGFLSVSVTSRDLLPLEFMVAPADANVRMITAFNGGGAFPPPGPAAGPQRRAYVIGYGNSRLDSHMYLTMREVASYANEPADFRAHLTAAHREAFLMLREAAAARRGPSAGPAPNAAYHAYRVAARLGLALSALTEGALADGYVLAEELVDLDYHLKLLSRVLLGAGLGCAANGRVRARTIAQLAVPRELRPDAFIPEPAGAALESVVARGRKLRAVYAFSGPDAPLAARLLAHGVVSDLYDAFLRGELTWGPPMRHALFFAVAASAFPADAQALELARDVTRKCTAMCTAGHATAAALDLEEVYAHVGGGAGGDAGFELLDAFSPCMASFRLDLLEEAHVLDVLSAVPARAALDAWLECQPAAAAPNLSAAALGMLGRGGLFGPAHAAALAPELFAAPCGGWGAGAAVAIVPVAPNASYVITRAHPRRGLTY
recombinant gL protein (SEQ ID NO: 4):
METDTLLLWVLLLWVPGSTGTRRADSAESILAERCRGNLLLADRPQHEEAAPGLAGIFIRGRCSPPEAALWYEDTGETYWANPYAVARGLAEDIRRVLADTPVYRDLAIQVLNSAFGLPHEVRAPLPPPPRGCVLPPCYHTTGPCGPGDGIYR
recombinant gB protein gene (SEQ ID NO: 5):
atggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggcggcatgggcgaaattaccgatctggcgaacaaaaaatggcgctgcctgagcaaagcggaatatctgcgcagcggccgcaaagtggtggcgtttgatcgcgatgatgatccgtgggaagcgccgctgaaaccggcgcgcctgagcgcgccgggcgtgcgcggctggcataccaccgatgatgtgtataccgcgctgggcagcgcgggcctgtatcgcaccggcaccagcgtgaactgcattgtggaagaagtggaagcgcgcagcgtgtatccgtatgatagctttgcgtttagcaccggcgatattatttatatgagcccgttttatggcctgcgcgaaggcgcgcatcgcgaacataccagctatagcccggaacgctttcagcagattgaaggctattataaacgcgatatggcgaccggccgccgcctgaaagaaccggtgagccgcaactttctgcgcacccagcatgtgaccgtggcgtgggattgggtgccgaaacgcaaaaacgtgtgcagcctggcgaaatggcgcgaagcggatgaaatgctgcgcgatgaaagccgcggcaactttcgctttaccgcgcgcagcctgagcgcgacctttgtgagcgatagccatacctttgcgctgcagaacgtgccgctgagcgattgcgtgattgaagaagcggaagcggcggtggaacgcgtgtatcgcgaacgctataacggcacccatgtgctgagcggcagcctggaaacctatctggcgcgcggcggctttgtggtggcgtttcgcccgatgctgagcaacgaactggcgaaactgtatctgcaggaactggcgcgcagcaacggcaccctggaaggcctgtttgcggcggcggcgccgaaaccgggcccgcgccgcgcgcgccgcgcggcgccgagcgcgccgggcggcccgggcgcggcgaacggcccggcgggcgatggcgatgcgggcggccgcgtgaccaccgtgagcagcgcggaatttgcggcgctgcagtttacctatgatcatattcaggatcatgtgaacaccatgtttagccgcctggcgaccagctggtgcctgctgcagaacaaagaacgcgcgctgtgggcggaagcggcgaaactgaacccgagcgcggcggcgagcgcggcgctggatcgccgcgcggcggcgcgcatgctgggcTGCgcgatggcggtgacctattgccatgaactgggcgaaggccgcgtgtttattgaaaacagcatgcgcgcgccgggcggcgtgtgctatagccgcccgccggtgagctttgcgtttggcaacgaaagcgaaTGCgtggaaggccagctgggcgaagataacgaactgctgccgggccgcgaactggtggaaccgtgcaccgcgaac
recombinant gD protein gene (SEQ ID NO: 6):
atggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggccataccaccggcccgattccgagcccgtttgcggatggccgcgaacagccggtggaagtgcgctatgcgaccagcgcggcggcgtgcgatatgctggcgctgattgcggatccgcaggtgggccgcaccctgtgggaagcggtgcgccgccatgcgcgcgcgtataacgcgaccgtgatttggtataaaattgaaagcggctgcgcgcgcccgctgtattatatggaatataccgaatgcgaaccgcgcaaacattttggctattgccgctatcgcaccccgccgttttgggatagctttctggcgggctttgcgtatccgaccgatgatgaactgggcctgattatggcggcgccggcgcgcctggtggaaggccagtatcgccgcgcgctgtatattgatggcaccgtggcgtataccgattttatggtgagcctgccggcgggcgattgctggtttagcaaactgggcgcggcgcgcggctatacctttggcgcgtgctttccggcgcgcgattatgaacagaaaaaagtgctgcgcctgacctatctgacccagtattatccgcaggaagcgcataaagcgattgtggattattggtttatgcgccatggcggcgtggtgccgagctattttgaagaaagcaaaggctatgaaccgccgccggcggcggatggcggcagcTGCgcgccgccgggcgatgatgaagcgcgcgaagatgaaggcgaaaccgaagatggcgcggcgggccgcgaaggcaacggcggcccgTGCggcccggaaggc
recombinant gH protein gene (SEQ ID NO: 7):
atggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggctttagccaggcgcgcgcggaaagcaacgcggcgcgcccgccgccggcgccgcgcgtgaccccgaccccggcgggccgcgtggcggcgtttgatattaacgatgtgctggcgagcggcccggaacatttttttgtgccggtgcgcgcggatcgcaaacgccgcgaacgccatgtggcggattttgcggcggtgtggccggtgagctatattccggcgggccgcgcggtgctgagctgcgaacgcgcggcggcgcgcctggcggtgggcctgggctttctgagcgtgagcgtgaccagccgcgatctgctgccgctggaatttatggtggcgccggcggatgcgaacgtgcgcatgattaccgcgtttaacggcggcggcgcgtttccgccgccgggcccggcggcgggcccgcagcgccgcgcgtatgtgattggctatggcaacagccgcctggatagccatatgtatctgaccatgcgcgaagtggcgagctatgcgaacgaaccggcggattttcgcgcgcatctgaccgcggcgcatcgcgaagcgtttctgatgctgcgcgaagcggcggcggcgcgccgcggcccgagcgcgggcccggcgccgaacgcggcgtatcatgcgtatcgcgtggcggcgcgcctgggcctggcgctgagcgcgctgaccgaaggcgcgctggcggatggctatgtgctggcggaagaactggtggatctggattatcatctgaaactgctgagccgcgtgctgctgggcgcgggcctgggctgcgcggcgaacggccgcgtgcgcgcgcgcaccattgcgcagctggcggtgccgcgcgaactgcgcccggatgcgtttattccggaaccggcgggcgcggcgctggaaagcgtggtggcgcgcggccgcaaactgcgcgcggtgtatgcgtttagcggcccggatgcgccgctggcggcgcgcctgctggcgcatggcgtggtgagcgatctgtatgatgcgtttctgcgcggcgaactgacctggggcccgccgatgcgccatgcgctgttttttgcggtggcggcgagcgcgtttccggcggatgcgcaggcgctggaactggcgcgcgatgtgacccgcaaatgcaccgcgatgtgcaccgcgggccatgcgaccgcggcggcgctggatctggaagaagtgtatgcgcatgtgggcggcggcgcgggcggcgatgcgggctttgaactgctggatgcgtttagcccgtgcatggcgagctttcgcctggatctgctggaagaagcgcatgtgctggatgtgctgagcgcggtgccggcgcgcgcggcgctggatgcgtggctggaaTGTcagccggcggcggcggcgccgaacctgagcgcggcggcgctgggcatgctgggccgcggcggcctgtttggcccggcgcatgcggcggcgctggcgccggaactgtttgcggcgccgtgcggcggctggggcgcgggcgcggcggtggcgattgtgccggtggcgccgaacgcgagctatgtgattacccgcgcgcatccgcgccgcggcctgacctat
recombinant gL protein gene (SEQ ID NO: 8):
atggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggcacccgccgcgcggatagcgcggaaagcattctggcggaacgctgccgcggcaacctgctgctggcggatcgcccgcagcatgaagaagcggcgccgggcctggcgggcatttttattcgcggccgctgcagcccgccggaagcggcgctgtggtatgaagataccggcgaaacctattgggcgaacccgtatgcggtggcgcgcggcctggcggaagatattcgccgcgtgctggcggataccccggtgtatcgcgatctggcgattcaggtgctgaacagcgcgtttggcctgccgcatgaagtgcgcgcgccgctgccgccgccgccgcgcggctgcgtgctgccgccgTGTtatcataccaccggcccgtgcggcccgggcgatggcatttatcgc
IRES sequence:
cgcccctctccctcccccccccctaacgttactggccgaagccgcttggaataaggccggtgtgcgtttgtctatatgttattttccaccatattgccgtcttttggcaatgtgagggcccggaaacctggccctgtcttcttgacgagcattcctaggggtctttcccctctcgccaaaggaatgcaaggtctgttgaatgtcgtgaaggaagcagttcctctggaagcttcttgaagacaaacaacgtctgtagcgaccctttgcaggcagcggaaccccccacctggcgacaggtgcctctgcggccaaaagccacgtgtataagatacacctgcaaaggcggcacaaccccagtgccacgttgtgagttggatagttgtggaaagagtcaaatggctctcctcaagcgtattcaacaaggggctgaaggatgcccagaaggtaccccattgtatgggatctgatctggggcctcggtgcacatgctttacatgtgtttagtcgaggttaaaaaaacgtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgatgataa
gB-gD gene expression cassette (SEQ ID NO: 9):
gccgccaccatggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggcggcatgggcgaaattaccgatctggcgaacaaaaaatggcgctgcctgagcaaagcggaatatctgcgcagcggccgcaaagtggtggcgtttgatcgcgatgatgatccgtgggaagcgccgctgaaaccggcgcgcctgagcgcgccgggcgtgcgcggctggcataccaccgatgatgtgtataccgcgctgggcagcgcgggcctgtatcgcaccggcaccagcgtgaactgcattgtggaagaagtggaagcgcgcagcgtgtatccgtatgatagctttgcgtttagcaccggcgatattatttatatgagcccgttttatggcctgcgcgaaggcgcgcatcgcgaacataccagctatagcccggaacgctttcagcagattgaaggctattataaacgcgatatggcgaccggccgccgcctgaaagaaccggtgagccgcaactttctgcgcacccagcatgtgaccgtggcgtgggattgggtgccgaaacgcaaaaacgtgtgcagcctggcgaaatggcgcgaagcggatgaaatgctgcgcgatgaaagccgcggcaactttcgctttaccgcgcgcagcctgagcgcgacctttgtgagcgatagccatacctttgcgctgcagaacgtgccgctgagcgattgcgtgattgaagaagcggaagcggcggtggaacgcgtgtatcgcgaacgctataacggcacccatgtgctgagcggcagcctggaaacctatctggcgcgcggcggctttgtggtggcgtttcgcccgatgctgagcaacgaactggcgaaactgtatctgcaggaactggcgcgcagcaacggcaccctggaaggcctgtttgcggcggcggcgccgaaaccgggcccgcgccgcgcgcgccgcgcggcgccgagcgcgccgggcggcccgggcgcggcgaacggcccggcgggcgatggcgatgcgggcggccgcgtgaccaccgtgagcagcgcggaatttgcggcgctgcagtttacctatgatcatattcaggatcatgtgaacaccatgtttagccgcctggcgaccagctggtgcctgctgcagaacaaagaacgcgcgctgtgggcggaagcggcgaaactgaacccgagcgcggcggcgagcgcggcgctggatcgccgcgcggcggcgcgcatgctgggcTGCgcgatggcggtgacctattgccatgaactgggcgaaggccgcgtgtttattgaaaacagcatgcgcgcgccgggcggcgtgtgctatagccgcccgccggtgagctttgcgtttggcaacgaaagcgaaTGCgtggaaggccagctgggcgaagataacgaactgctgccgggccgcgaactggtggaaccgtgcaccgcgaaccatcatcatcatcatcattaacgcccctctccctcccccccccctaacgttactggccgaagccgcttggaataaggccggtgtgcgtttgtctatatgttattttccaccatattgccgtcttttggcaatgtgagggcccggaaacctggccctgtcttcttgacgagcattcctaggggtctttcccctctcgccaaaggaatgcaaggtctgttgaatgtcgtgaaggaagcagttcctctggaagcttcttgaagacaaacaacgtctgtagcgaccctttgcaggcagcggaaccccccacctggcgacaggtgcctctgcggccaaaagccacgtgtataagatacacctgcaaaggcggcacaaccccagtgccacgttgtgagttggatagttgtggaaagagtcaaatggctctcctcaagcgtattcaacaaggggctgaaggatgcccagaaggtaccccattgtatgggatctgatctggggcctcggtgcacatgctttacatgtgtttagtcgaggttaaaaaaacgtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgatgataagccgccaccatggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggccataccaccggcccgattccgagcccgtttgcggatggccgcgaacagccggtggaagtgcgctatgcgaccagcgcggcggcgtgcgatatgctggcgctgattgcggatccgcaggtgggccgcaccctgtgggaagcggtgcgccgccatgcgcgcgcgtataacgcgaccgtgatttggtataaaattgaaagcggctgcgcgcgcccgctgtattatatggaatataccgaatgcgaaccgcgcaaacattttggctattgccgctatcgcaccccgccgttttgggatagctttctggcgggctttgcgtatccgaccgatgatgaactgggcctgattatggcggcgccggcgcgcctggtggaaggccagtatcgccgcgcgctgtatattgatggcaccgtggcgtataccgattttatggtgagcctgccggcgggcgattgctggtttagcaaactgggcgcggcgcgcggctatacctttggcgcgtgctttccggcgcgcgattatgaacagaaaaaagtgctgcgcctgacctatctgacccagtattatccgcaggaagcgcataaagcgattgtggattattggtttatgcgccatggcggcgtggtgccgagctattttgaagaaagcaaaggctatgaaccgccgccggcggcggatggcggcagcTGCgcgccgccgggcgatgatgaagcgcgcgaagatgaaggcgaaaccgaagatggcgcggcgggccgcgaaggcaacggcggcccgTGCggcccggaaggccatcatcatcatcatcattaa
gH-gL gene expression cassette (SEQ ID NO: 10):
gccgccaccatggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggctttagccaggcgcgcgcggaaagcaacgcggcgcgcccgccgccggcgccgcgcgtgaccccgaccccggcgggccgcgtggcggcgtttgatattaacgatgtgctggcgagcggcccggaacatttttttgtgccggtgcgcgcggatcgcaaacgccgcgaacgccatgtggcggattttgcggcggtgtggccggtgagctatattccggcgggccgcgcggtgctgagctgcgaacgcgcggcggcgcgcctggcggtgggcctgggctttctgagcgtgagcgtgaccagccgcgatctgctgccgctggaatttatggtggcgccggcggatgcgaacgtgcgcatgattaccgcgtttaacggcggcggcgcgtttccgccgccgggcccggcggcgggcccgcagcgccgcgcgtatgtgattggctatggcaacagccgcctggatagccatatgtatctgaccatgcgcgaagtggcgagctatgcgaacgaaccggcggattttcgcgcgcatctgaccgcggcgcatcgcgaagcgtttctgatgctgcgcgaagcggcggcggcgcgccgcggcccgagcgcgggcccggcgccgaacgcggcgtatcatgcgtatcgcgtggcggcgcgcctgggcctggcgctgagcgcgctgaccgaaggcgcgctggcggatggctatgtgctggcggaagaactggtggatctggattatcatctgaaactgctgagccgcgtgctgctgggcgcgggcctgggctgcgcggcgaacggccgcgtgcgcgcgcgcaccattgcgcagctggcggtgccgcgcgaactgcgcccggatgcgtttattccggaaccggcgggcgcggcgctggaaagcgtggtggcgcgcggccgcaaactgcgcgcggtgtatgcgtttagcggcccggatgcgccgctggcggcgcgcctgctggcgcatggcgtggtgagcgatctgtatgatgcgtttctgcgcggcgaactgacctggggcccgccgatgcgccatgcgctgttttttgcggtggcggcgagcgcgtttccggcggatgcgcaggcgctggaactggcgcgcgatgtgacccgcaaatgcaccgcgatgtgcaccgcgggccatgcgaccgcggcggcgctggatctggaagaagtgtatgcgcatgtgggcggcggcgcgggcggcgatgcgggctttgaactgctggatgcgtttagcccgtgcatggcgagctttcgcctggatctgctggaagaagcgcatgtgctggatgtgctgagcgcggtgccggcgcgcgcggcgctggatgcgtggctggaaTGTcagccggcggcggcggcgccgaacctgagcgcggcggcgctgggcatgctgggccgcggcggcctgtttggcccggcgcatgcggcggcgctggcgccggaactgtttgcggcgccgtgcggcggctggggcgcgggcgcggcggtggcgattgtgccggtggcgccgaacgcgagctatgtgattacccgcgcgcatccgcgccgcggcctgacctatcatcatcatcatcatcattgacgcccctctccctcccccccccctaacgttactggccgaagccgcttggaataaggccggtgtgcgtttgtctatatgttattttccaccatattgccgtcttttggcaatgtgagggcccggaaacctggccctgtcttcttgacgagcattcctaggggtctttcccctctcgccaaaggaatgcaaggtctgttgaatgtcgtgaaggaagcagttcctctggaagcttcttgaagacaaacaacgtctgtagcgaccctttgcaggcagcggaaccccccacctggcgacaggtgcctctgcggccaaaagccacgtgtataagatacacctgcaaaggcggcacaaccccagtgccacgttgtgagttggatagttgtggaaagagtcaaatggctctcctcaagcgtattcaacaaggggctgaaggatgcccagaaggtaccccattgtatgggatctgatctggggcctcggtgcacatgctttacatgtgtttagtcgaggttaaaaaaacgtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgatgataagccgccaccatggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggcacccgccgcgcggatagcgcggaaagcattctggcggaacgctgccgcggcaacctgctgctggcggatcgcccgcagcatgaagaagcggcgccgggcctggcgggcatttttattcgcggccgctgcagcccgccggaagcggcgctgtggtatgaagataccggcgaaacctattgggcgaacccgtatgcggtggcgcgcggcctggcggaagatattcgccgcgtgctggcggataccccggtgtatcgcgatctggcgattcaggtgctgaacagcgcgtttggcctgccgcatgaagtgcgcgcgccgctgccgccgccgccgcgcggctgcgtgctgccgccgTGTtatcataccaccggcccgtgcggcccgggcgatggcatttatcgccatcatcatcatcatcattaa
unmutated gB protein gene:
atggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggcggcatgggcgaaattaccgatctggcgaacaaaaaatggcgctgcctgagcaaagcggaatatctgcgcagcggccgcaaagtggtggcgtttgatcgcgatgatgatccgtgggaagcgccgctgaaaccggcgcgcctgagcgcgccgggcgtgcgcggctggcataccaccgatgatgtgtataccgcgctgggcagcgcgggcctgtatcgcaccggcaccagcgtgaactgcattgtggaagaagtggaagcgcgcagcgtgtatccgtatgatagctttgcgtttagcaccggcgatattatttatatgagcccgttttatggcctgcgcgaaggcgcgcatcgcgaacataccagctatagcccggaacgctttcagcagattgaaggctattataaacgcgatatggcgaccggccgccgcctgaaagaaccggtgagccgcaactttctgcgcacccagcatgtgaccgtggcgtgggattgggtgccgaaacgcaaaaacgtgtgcagcctggcgaaatggcgcgaagcggatgaaatgctgcgcgatgaaagccgcggcaactttcgctttaccgcgcgcagcctgagcgcgacctttgtgagcgatagccatacctttgcgctgcagaacgtgccgctgagcgattgcgtgattgaagaagcggaagcggcggtggaacgcgtgtatcgcgaacgctataacggcacccatgtgctgagcggcagcctggaaacctatctggcgcgcggcggctttgtggtggcgtttcgcccgatgctgagcaacgaactggcgaaactgtatctgcaggaactggcgcgcagcaacggcaccctggaaggcctgtttgcggcggcggcgccgaaaccgggcccgcgccgcgcgcgccgcgcggcgccgagcgcgccgggcggcccgggcgcggcgaacggcccggcgggcgatggcgatgcgggcggccgcgtgaccaccgtgagcagcgcggaatttgcggcgctgcagtttacctatgatcatattcaggatcatgtgaacaccatgtttagccgcctggcgaccagctggtgcctgctgcagaacaaagaacgcgcgctgtgggcggaagcggcgaaactgaacccgagcgcggcggcgagcgcggcgctggatcgccgcgcggcggcgcgcatgctgggcGATgcgatggcggtgacctattgccatgaactgggcgaaggccgcgtgtttattgaaaacagcatgcgcgcgccgggcggcgtgtgctatagccgcccgccggtgagctttgcgtttggcaacgaaagcgaaCCGgtggaaggccagctgggcgaagataacgaactgctgccgggccgcgaactggtggaaccgtgcaccgcgaac
unmutated gD protein gene:
atggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggccataccaccggcccgattccgagcccgtttgcggatggccgcgaacagccggtggaagtgcgctatgcgaccagcgcggcggcgtgcgatatgctggcgctgattgcggatccgcaggtgggccgcaccctgtgggaagcggtgcgccgccatgcgcgcgcgtataacgcgaccgtgatttggtataaaattgaaagcggctgcgcgcgcccgctgtattatatggaatataccgaatgcgaaccgcgcaaacattttggctattgccgctatcgcaccccgccgttttgggatagctttctggcgggctttgcgtatccgaccgatgatgaactgggcctgattatggcggcgccggcgcgcctggtggaaggccagtatcgccgcgcgctgtatattgatggcaccgtggcgtataccgattttatggtgagcctgccggcgggcgattgctggtttagcaaactgggcgcggcgcgcggctatacctttggcgcgtgctttccggcgcgcgattatgaacagaaaaaagtgctgcgcctgacctatctgacccagtattatccgcaggaagcgcataaagcgattgtggattattggtttatgcgccatggcggcgtggtgccgagctattttgaagaaagcaaaggctatgaaccgccgccggcggcggatggcggcagcCCGgcgccgccgggcgatgatgaagcgcgcgaagatgaaggcgaaaccgaagatggcgcggcgggccgcgaaggcaacggcggcccgCCGggcccggaaggc
unmutated gH protein gene:
atggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggctttagccaggcgcgcgcggaaagcaacgcggcgcgcccgccgccggcgccgcgcgtgaccccgaccccggcgggccgcgtggcggcgtttgatattaacgatgtgctggcgagcggcccggaacatttttttgtgccggtgcgcgcggatcgcaaacgccgcgaacgccatgtggcggattttgcggcggtgtggccggtgagctatattccggcgggccgcgcggtgctgagctgcgaacgcgcggcggcgcgcctggcggtgggcctgggctttctgagcgtgagcgtgaccagccgcgatctgctgccgctggaatttatggtggcgccggcggatgcgaacgtgcgcatgattaccgcgtttaacggcggcggcgcgtttccgccgccgggcccggcggcgggcccgcagcgccgcgcgtatgtgattggctatggcaacagccgcctggatagccatatgtatctgaccatgcgcgaagtggcgagctatgcgaacgaaccggcggattttcgcgcgcatctgaccgcggcgcatcgcgaagcgtttctgatgctgcgcgaagcggcggcggcgcgccgcggcccgagcgcgggcccggcgccgaacgcggcgtatcatgcgtatcgcgtggcggcgcgcctgggcctggcgctgagcgcgctgaccgaaggcgcgctggcggatggctatgtgctggcggaagaactggtggatctggattatcatctgaaactgctgagccgcgtgctgctgggcgcgggcctgggctgcgcggcgaacggccgcgtgcgcgcgcgcaccattgcgcagctggcggtgccgcgcgaactgcgcccggatgcgtttattccggaaccggcgggcgcggcgctggaaagcgtggtggcgcgcggccgcaaactgcgcgcggtgtatgcgtttagcggcccggatgcgccgctggcggcgcgcctgctggcgcatggcgtggtgagcgatctgtatgatgcgtttctgcgcggcgaactgacctggggcccgccgatgcgccatgcgctgttttttgcggtggcggcgagcgcgtttccggcggatgcgcaggcgctggaactggcgcgcgatgtgacccgcaaatgcaccgcgatgtgcaccgcgggccatgcgaccgcggcggcgctggatctggaagaagtgtatgcgcatgtgggcggcggcgcgggcggcgatgcgggctttgaactgctggatgcgtttagcccgtgcatggcgagctttcgcctggatctgctggaagaagcgcatgtgctggatgtgctgagcgcggtgccggcgcgcgcggcgctggatgcgtggctggaaGCGcagccggcggcggcggcgccgaacctgagcgcggcggcgctgggcatgctgggccgcggcggcctgtttggcccggcgcatgcggcggcgctggcgccggaactgtttgcggcgccgtgcggcggctggggcgcgggcgcggcggtggcgattgtgccggtggcgccgaacgcgagctatgtgattacccgcgcgcatccgcgccgcggcctgacctat
unmutated gL protein gene:
atggaaaccgataccctgctgctgtgggtgctgctgctgtgggtgccgggcagcaccggcacccgccgcgcggatagcgcggaaagcattctggcggaacgctgccgcggcaacctgctgctggcggatcgcccgcagcatgaagaagcggcgccgggcctggcgggcatttttattcgcggccgctgcagcccgccggaagcggcgctgtggtatgaagataccggcgaaacctattgggcgaacccgtatgcggtggcgcgcggcctggcggaagatattcgccgcgtgctggcggataccccggtgtatcgcgatctggcgattcaggtgctgaacagcgcgtttggcctgccgcatgaagtgcgcgcgccgctgccgccgccgccgcgcggctgcgtgctgccgccgCGCtatcataccaccggcccgtgcggcccgggcgatggcatttatcgc
the technical features of the embodiments described above may be arbitrarily combined, and for the sake of brevity, all possible combinations of the technical features in the embodiments described above are not described, but should be considered as being within the scope of the present specification as long as there is no contradiction between the combinations of the technical features.
The above-mentioned embodiments only express several embodiments of the present invention, and the description thereof is more specific and detailed, but not construed as limiting the scope of the invention. It should be noted that, for a person skilled in the art, several variations and modifications can be made without departing from the inventive concept, which falls within the scope of the present invention. Therefore, the protection scope of the present patent shall be subject to the appended claims.
Sequence listing
<110> Suzhou Shino Biotechnology Ltd
<120> bovine herpes virus antigen composition and use thereof
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 485
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 1
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1               5                   10                  15
Gly Ser Thr Gly Gly Met Gly Glu Ile Thr Asp Leu Ala Asn Lys Lys
            20                  25                  30
Trp Arg Cys Leu Ser Lys Ala Glu Tyr Leu Arg Ser Gly Arg Lys Val
        35                  40                  45
Val Ala Phe Asp Arg Asp Asp Asp Pro Trp Glu Ala Pro Leu Lys Pro
    50                  55                  60
Ala Arg Leu Ser Ala Pro Gly Val Arg Gly Trp His Thr Thr Asp Asp
65                  70                  75                  80
Val Tyr Thr Ala Leu Gly Ser Ala Gly Leu Tyr Arg Thr Gly Thr Ser
                85                  90                  95
Val Asn Cys Ile Val Glu Glu Val Glu Ala Arg Ser Val Tyr Pro Tyr
            100                 105                 110
Asp Ser Phe Ala Phe Ser Thr Gly Asp Ile Ile Tyr Met Ser Pro Phe
        115                 120                 125
Tyr Gly Leu Arg Glu Gly Ala His Arg Glu His Thr Ser Tyr Ser Pro
    130                 135                 140
Glu Arg Phe Gln Gln Ile Glu Gly Tyr Tyr Lys Arg Asp Met Ala Thr
145                 150                 155                 160
Gly Arg Arg Leu Lys Glu Pro Val Ser Arg Asn Phe Leu Arg Thr Gln
                165                 170                 175
His Val Thr Val Ala Trp Asp Trp Val Pro Lys Arg Lys Asn Val Cys
            180                 185                 190
Ser Leu Ala Lys Trp Arg Glu Ala Asp Glu Met Leu Arg Asp Glu Ser
        195                 200                 205
Arg Gly Asn Phe Arg Phe Thr Ala Arg Ser Leu Ser Ala Thr Phe Val
    210                 215                 220
Ser Asp Ser His Thr Phe Ala Leu Gln Asn Val Pro Leu Ser Asp Cys
225                 230                 235                 240
Val Ile Glu Glu Ala Glu Ala Ala Val Glu Arg Val Tyr Arg Glu Arg
                245                 250                 255
Tyr Asn Gly Thr His Val Leu Ser Gly Ser Leu Glu Thr Tyr Leu Ala
            260                 265                 270
Arg Gly Gly Phe Val Val Ala Phe Arg Pro Met Leu Ser Asn Glu Leu
        275                 280                 285
Ala Lys Leu Tyr Leu Gln Glu Leu Ala Arg Ser Asn Gly Thr Leu Glu
    290                 295                 300
Gly Leu Phe Ala Ala Ala Ala Pro Lys Pro Gly Pro Arg Arg Ala Arg
305                 310                 315                 320
Arg Ala Ala Pro Ser Ala Pro Gly Gly Pro Gly Ala Ala Asn Gly Pro
                325                 330                 335
Ala Gly Asp Gly Asp Ala Gly Gly Arg Val Thr Thr Val Ser Ser Ala
            340                 345                 350
Glu Phe Ala Ala Leu Gln Phe Thr Tyr Asp His Ile Gln Asp His Val
        355                 360                 365
Asn Thr Met Phe Ser Arg Leu Ala Thr Ser Trp Cys Leu Leu Gln Asn
    370                 375                 380
Lys Glu Arg Ala Leu Trp Ala Glu Ala Ala Lys Leu Asn Pro Ser Ala
385                 390                 395                 400
Ala Ala Ser Ala Ala Leu Asp Arg Arg Ala Ala Ala Arg Met Leu Gly
                405                 410                 415
Cys Ala Met Ala Val Thr Tyr Cys His Glu Leu Gly Glu Gly Arg Val
            420                 425                 430
Phe Ile Glu Asn Ser Met Arg Ala Pro Gly Gly Val Cys Tyr Ser Arg
        435                 440                 445
Pro Pro Val Ser Phe Ala Phe Gly Asn Glu Ser Glu Cys Val Glu Gly
    450                 455                 460
Gln Leu Gly Glu Asp Asn Glu Leu Leu Pro Gly Arg Glu Leu Val Glu
465                 470                 475                 480
Pro Cys Thr Ala Asn
                485
<210> 2
<211> 282
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 2
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1               5                   10                  15
Gly Ser Thr Gly His Thr Thr Gly Pro Ile Pro Ser Pro Phe Ala Asp
            20                  25                  30
Gly Arg Glu Gln Pro Val Glu Val Arg Tyr Ala Thr Ser Ala Ala Ala
        35                  40                  45
Cys Asp Met Leu Ala Leu Ile Ala Asp Pro Gln Val Gly Arg Thr Leu
    50                  55                  60
Trp Glu Ala Val Arg Arg His Ala Arg Ala Tyr Asn Ala Thr Val Ile
65                  70                  75                  80
Trp Tyr Lys Ile Glu Ser Gly Cys Ala Arg Pro Leu Tyr Tyr Met Glu
                85                  90                  95
Tyr Thr Glu Cys Glu Pro Arg Lys His Phe Gly Tyr Cys Arg Tyr Arg
            100                 105                 110
Thr Pro Pro Phe Trp Asp Ser Phe Leu Ala Gly Phe Ala Tyr Pro Thr
        115                 120                 125
Asp Asp Glu Leu Gly Leu Ile Met Ala Ala Pro Ala Arg Leu Val Glu
    130                 135                 140
Gly Gln Tyr Arg Arg Ala Leu Tyr Ile Asp Gly Thr Val Ala Tyr Thr
145                 150                 155                 160
Asp Phe Met Val Ser Leu Pro Ala Gly Asp Cys Trp Phe Ser Lys Leu
                165                 170                 175
Gly Ala Ala Arg Gly Tyr Thr Phe Gly Ala Cys Phe Pro Ala Arg Asp
            180                 185                 190
Tyr Glu Gln Lys Lys Val Leu Arg Leu Thr Tyr Leu Thr Gln Tyr Tyr
        195                 200                 205
Pro Gln Glu Ala His Lys Ala Ile Val Asp Tyr Trp Phe Met Arg His
    210                 215                 220
Gly Gly Val Val Pro Ser Tyr Phe Glu Glu Ser Lys Gly Tyr Glu Pro
225                 230                 235                 240
Pro Pro Ala Ala Asp Gly Gly Ser Cys Ala Pro Pro Gly Asp Asp Glu
                245                 250                 255
Ala Arg Glu Asp Glu Gly Glu Thr Glu Asp Gly Ala Ala Gly Arg Glu
            260                 265                 270
Gly Asn Gly Gly Pro Cys Gly Pro Glu Gly
        275                 280
<210> 3
<211> 542
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 3
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1               5                   10                  15
Gly Ser Thr Gly Phe Ser Gln Ala Arg Ala Glu Ser Asn Ala Ala Arg
            20                  25                  30
Pro Pro Pro Ala Pro Arg Val Thr Pro Thr Pro Ala Gly Arg Val Ala
        35                  40                  45
Ala Phe Asp Ile Asn Asp Val Leu Ala Ser Gly Pro Glu His Phe Phe
    50                  55                  60
Val Pro Val Arg Ala Asp Arg Lys Arg Arg Glu Arg His Val Ala Asp
65                  70                  75                  80
Phe Ala Ala Val Trp Pro Val Ser Tyr Ile Pro Ala Gly Arg Ala Val
                85                  90                  95
Leu Ser Cys Glu Arg Ala Ala Ala Arg Leu Ala Val Gly Leu Gly Phe
            100                 105                 110
Leu Ser Val Ser Val Thr Ser Arg Asp Leu Leu Pro Leu Glu Phe Met
        115                 120                 125
Val Ala Pro Ala Asp Ala Asn Val Arg Met Ile Thr Ala Phe Asn Gly
    130                 135                 140
Gly Gly Ala Phe Pro Pro Pro Gly Pro Ala Ala Gly Pro Gln Arg Arg
145                 150                 155                 160
Ala Tyr Val Ile Gly Tyr Gly Asn Ser Arg Leu Asp Ser His Met Tyr
                165                 170                 175
Leu Thr Met Arg Glu Val Ala Ser Tyr Ala Asn Glu Pro Ala Asp Phe
            180                 185                 190
Arg Ala His Leu Thr Ala Ala His Arg Glu Ala Phe Leu Met Leu Arg
        195                 200                 205
Glu Ala Ala Ala Ala Arg Arg Gly Pro Ser Ala Gly Pro Ala Pro Asn
    210                 215                 220
Ala Ala Tyr His Ala Tyr Arg Val Ala Ala Arg Leu Gly Leu Ala Leu
225                 230                 235                 240
Ser Ala Leu Thr Glu Gly Ala Leu Ala Asp Gly Tyr Val Leu Ala Glu
                245                 250                 255
Glu Leu Val Asp Leu Asp Tyr His Leu Lys Leu Leu Ser Arg Val Leu
            260                 265                 270
Leu Gly Ala Gly Leu Gly Cys Ala Ala Asn Gly Arg Val Arg Ala Arg
        275                 280                 285
Thr Ile Ala Gln Leu Ala Val Pro Arg Glu Leu Arg Pro Asp Ala Phe
    290                 295                 300
Ile Pro Glu Pro Ala Gly Ala Ala Leu Glu Ser Val Val Ala Arg Gly
305                 310                 315                 320
Arg Lys Leu Arg Ala Val Tyr Ala Phe Ser Gly Pro Asp Ala Pro Leu
                325                 330                 335
Ala Ala Arg Leu Leu Ala His Gly Val Val Ser Asp Leu Tyr Asp Ala
            340                 345                 350
Phe Leu Arg Gly Glu Leu Thr Trp Gly Pro Pro Met Arg His Ala Leu
        355                 360                 365
Phe Phe Ala Val Ala Ala Ser Ala Phe Pro Ala Asp Ala Gln Ala Leu
    370                 375                 380
Glu Leu Ala Arg Asp Val Thr Arg Lys Cys Thr Ala Met Cys Thr Ala
385                 390                 395                 400
Gly His Ala Thr Ala Ala Ala Leu Asp Leu Glu Glu Val Tyr Ala His
                405                 410                 415
Val Gly Gly Gly Ala Gly Gly Asp Ala Gly Phe Glu Leu Leu Asp Ala
            420                 425                 430
Phe Ser Pro Cys Met Ala Ser Phe Arg Leu Asp Leu Leu Glu Glu Ala
        435                 440                 445
His Val Leu Asp Val Leu Ser Ala Val Pro Ala Arg Ala Ala Leu Asp
    450                 455                 460
Ala Trp Leu Glu Cys Gln Pro Ala Ala Ala Ala Pro Asn Leu Ser Ala
465                 470                 475                 480
Ala Ala Leu Gly Met Leu Gly Arg Gly Gly Leu Phe Gly Pro Ala His
                485                 490                 495
Ala Ala Ala Leu Ala Pro Glu Leu Phe Ala Ala Pro Cys Gly Gly Trp
            500                 505                 510
Gly Ala Gly Ala Ala Val Ala Ile Val Pro Val Ala Pro Asn Ala Ser
        515                 520                 525
Tyr Val Ile Thr Arg Ala His Pro Arg Arg Gly Leu Thr Tyr
    530                 535                 540
<210> 4
<211> 153
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 4
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1               5                   10                  15
Gly Ser Thr Gly Thr Arg Arg Ala Asp Ser Ala Glu Ser Ile Leu Ala
            20                  25                  30
Glu Arg Cys Arg Gly Asn Leu Leu Leu Ala Asp Arg Pro Gln His Glu
        35                  40                  45
Glu Ala Ala Pro Gly Leu Ala Gly Ile Phe Ile Arg Gly Arg Cys Ser
    50                  55                  60
Pro Pro Glu Ala Ala Leu Trp Tyr Glu Asp Thr Gly Glu Thr Tyr Trp
65                  70                  75                  80
Ala Asn Pro Tyr Ala Val Ala Arg Gly Leu Ala Glu Asp Ile Arg Arg
                85                  90                  95
Val Leu Ala Asp Thr Pro Val Tyr Arg Asp Leu Ala Ile Gln Val Leu
            100                 105                 110
Asn Ser Ala Phe Gly Leu Pro His Glu Val Arg Ala Pro Leu Pro Pro
        115                 120                 125
Pro Pro Arg Gly Cys Val Leu Pro Pro Cys Tyr His Thr Thr Gly Pro
    130                 135                 140
Cys Gly Pro Gly Asp Gly Ile Tyr Arg
145                 150
<210> 5
<211> 1455
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
atggaaaccg ataccctgct gctgtgggtg ctgctgctgt gggtgccggg cagcaccggc 60
ggcatgggcg aaattaccga tctggcgaac aaaaaatggc gctgcctgag caaagcggaa 120
tatctgcgca gcggccgcaa agtggtggcg tttgatcgcg atgatgatcc gtgggaagcg 180
ccgctgaaac cggcgcgcct gagcgcgccg ggcgtgcgcg gctggcatac caccgatgat 240
gtgtataccg cgctgggcag cgcgggcctg tatcgcaccg gcaccagcgt gaactgcatt 300
gtggaagaag tggaagcgcg cagcgtgtat ccgtatgata gctttgcgtt tagcaccggc 360
gatattattt atatgagccc gttttatggc ctgcgcgaag gcgcgcatcg cgaacatacc 420
agctatagcc cggaacgctt tcagcagatt gaaggctatt ataaacgcga tatggcgacc 480
ggccgccgcc tgaaagaacc ggtgagccgc aactttctgc gcacccagca tgtgaccgtg 540
gcgtgggatt gggtgccgaa acgcaaaaac gtgtgcagcc tggcgaaatg gcgcgaagcg 600
gatgaaatgc tgcgcgatga aagccgcggc aactttcgct ttaccgcgcg cagcctgagc 660
gcgacctttg tgagcgatag ccataccttt gcgctgcaga acgtgccgct gagcgattgc 720
gtgattgaag aagcggaagc ggcggtggaa cgcgtgtatc gcgaacgcta taacggcacc 780
catgtgctga gcggcagcct ggaaacctat ctggcgcgcg gcggctttgt ggtggcgttt 840
cgcccgatgc tgagcaacga actggcgaaa ctgtatctgc aggaactggc gcgcagcaac 900
ggcaccctgg aaggcctgtt tgcggcggcg gcgccgaaac cgggcccgcg ccgcgcgcgc 960
cgcgcggcgc cgagcgcgcc gggcggcccg ggcgcggcga acggcccggc gggcgatggc 1020
gatgcgggcg gccgcgtgac caccgtgagc agcgcggaat ttgcggcgct gcagtttacc 1080
tatgatcata ttcaggatca tgtgaacacc atgtttagcc gcctggcgac cagctggtgc 1140
ctgctgcaga acaaagaacg cgcgctgtgg gcggaagcgg cgaaactgaa cccgagcgcg 1200
gcggcgagcg cggcgctgga tcgccgcgcg gcggcgcgca tgctgggctg cgcgatggcg 1260
gtgacctatt gccatgaact gggcgaaggc cgcgtgttta ttgaaaacag catgcgcgcg 1320
ccgggcggcg tgtgctatag ccgcccgccg gtgagctttg cgtttggcaa cgaaagcgaa 1380
tgcgtggaag gccagctggg cgaagataac gaactgctgc cgggccgcga actggtggaa 1440
ccgtgcaccg cgaac 1455
<210> 6
<211> 846
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
atggaaaccg ataccctgct gctgtgggtg ctgctgctgt gggtgccggg cagcaccggc 60
cataccaccg gcccgattcc gagcccgttt gcggatggcc gcgaacagcc ggtggaagtg 120
cgctatgcga ccagcgcggc ggcgtgcgat atgctggcgc tgattgcgga tccgcaggtg 180
ggccgcaccc tgtgggaagc ggtgcgccgc catgcgcgcg cgtataacgc gaccgtgatt 240
tggtataaaa ttgaaagcgg ctgcgcgcgc ccgctgtatt atatggaata taccgaatgc 300
gaaccgcgca aacattttgg ctattgccgc tatcgcaccc cgccgttttg ggatagcttt 360
ctggcgggct ttgcgtatcc gaccgatgat gaactgggcc tgattatggc ggcgccggcg 420
cgcctggtgg aaggccagta tcgccgcgcg ctgtatattg atggcaccgt ggcgtatacc 480
gattttatgg tgagcctgcc ggcgggcgat tgctggttta gcaaactggg cgcggcgcgc 540
ggctatacct ttggcgcgtg ctttccggcg cgcgattatg aacagaaaaa agtgctgcgc 600
ctgacctatc tgacccagta ttatccgcag gaagcgcata aagcgattgt ggattattgg 660
tttatgcgcc atggcggcgt ggtgccgagc tattttgaag aaagcaaagg ctatgaaccg 720
ccgccggcgg cggatggcgg cagctgcgcg ccgccgggcg atgatgaagc gcgcgaagat 780
gaaggcgaaa ccgaagatgg cgcggcgggc cgcgaaggca acggcggccc gtgcggcccg 840
gaaggc 846
<210> 7
<211> 1626
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
atggaaaccg ataccctgct gctgtgggtg ctgctgctgt gggtgccggg cagcaccggc 60
tttagccagg cgcgcgcgga aagcaacgcg gcgcgcccgc cgccggcgcc gcgcgtgacc 120
ccgaccccgg cgggccgcgt ggcggcgttt gatattaacg atgtgctggc gagcggcccg 180
gaacattttt ttgtgccggt gcgcgcggat cgcaaacgcc gcgaacgcca tgtggcggat 240
tttgcggcgg tgtggccggt gagctatatt ccggcgggcc gcgcggtgct gagctgcgaa 300
cgcgcggcgg cgcgcctggc ggtgggcctg ggctttctga gcgtgagcgt gaccagccgc 360
gatctgctgc cgctggaatt tatggtggcg ccggcggatg cgaacgtgcg catgattacc 420
gcgtttaacg gcggcggcgc gtttccgccg ccgggcccgg cggcgggccc gcagcgccgc 480
gcgtatgtga ttggctatgg caacagccgc ctggatagcc atatgtatct gaccatgcgc 540
gaagtggcga gctatgcgaa cgaaccggcg gattttcgcg cgcatctgac cgcggcgcat 600
cgcgaagcgt ttctgatgct gcgcgaagcg gcggcggcgc gccgcggccc gagcgcgggc 660
ccggcgccga acgcggcgta tcatgcgtat cgcgtggcgg cgcgcctggg cctggcgctg 720
agcgcgctga ccgaaggcgc gctggcggat ggctatgtgc tggcggaaga actggtggat 780
ctggattatc atctgaaact gctgagccgc gtgctgctgg gcgcgggcct gggctgcgcg 840
gcgaacggcc gcgtgcgcgc gcgcaccatt gcgcagctgg cggtgccgcg cgaactgcgc 900
ccggatgcgt ttattccgga accggcgggc gcggcgctgg aaagcgtggt ggcgcgcggc 960
cgcaaactgc gcgcggtgta tgcgtttagc ggcccggatg cgccgctggc ggcgcgcctg 1020
ctggcgcatg gcgtggtgag cgatctgtat gatgcgtttc tgcgcggcga actgacctgg 1080
ggcccgccga tgcgccatgc gctgtttttt gcggtggcgg cgagcgcgtt tccggcggat 1140
gcgcaggcgc tggaactggc gcgcgatgtg acccgcaaat gcaccgcgat gtgcaccgcg 1200
ggccatgcga ccgcggcggc gctggatctg gaagaagtgt atgcgcatgt gggcggcggc 1260
gcgggcggcg atgcgggctt tgaactgctg gatgcgttta gcccgtgcat ggcgagcttt 1320
cgcctggatc tgctggaaga agcgcatgtg ctggatgtgc tgagcgcggt gccggcgcgc 1380
gcggcgctgg atgcgtggct ggaatgtcag ccggcggcgg cggcgccgaa cctgagcgcg 1440
gcggcgctgg gcatgctggg ccgcggcggc ctgtttggcc cggcgcatgc ggcggcgctg 1500
gcgccggaac tgtttgcggc gccgtgcggc ggctggggcg cgggcgcggc ggtggcgatt 1560
gtgccggtgg cgccgaacgc gagctatgtg attacccgcg cgcatccgcg ccgcggcctg 1620
acctat 1626
<210> 8
<211> 459
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
atggaaaccg ataccctgct gctgtgggtg ctgctgctgt gggtgccggg cagcaccggc 60
acccgccgcg cggatagcgc ggaaagcatt ctggcggaac gctgccgcgg caacctgctg 120
ctggcggatc gcccgcagca tgaagaagcg gcgccgggcc tggcgggcat ttttattcgc 180
ggccgctgca gcccgccgga agcggcgctg tggtatgaag ataccggcga aacctattgg 240
gcgaacccgt atgcggtggc gcgcggcctg gcggaagata ttcgccgcgt gctggcggat 300
accccggtgt atcgcgatct ggcgattcag gtgctgaaca gcgcgtttgg cctgccgcat 360
gaagtgcgcg cgccgctgcc gccgccgccg cgcggctgcg tgctgccgcc gtgttatcat 420
accaccggcc cgtgcggccc gggcgatggc atttatcgc 459
<210> 9
<211> 2937
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
gccgccacca tggaaaccga taccctgctg ctgtgggtgc tgctgctgtg ggtgccgggc 60
agcaccggcg gcatgggcga aattaccgat ctggcgaaca aaaaatggcg ctgcctgagc 120
aaagcggaat atctgcgcag cggccgcaaa gtggtggcgt ttgatcgcga tgatgatccg 180
tgggaagcgc cgctgaaacc ggcgcgcctg agcgcgccgg gcgtgcgcgg ctggcatacc 240
accgatgatg tgtataccgc gctgggcagc gcgggcctgt atcgcaccgg caccagcgtg 300
aactgcattg tggaagaagt ggaagcgcgc agcgtgtatc cgtatgatag ctttgcgttt 360
agcaccggcg atattattta tatgagcccg ttttatggcc tgcgcgaagg cgcgcatcgc 420
gaacatacca gctatagccc ggaacgcttt cagcagattg aaggctatta taaacgcgat 480
atggcgaccg gccgccgcct gaaagaaccg gtgagccgca actttctgcg cacccagcat 540
gtgaccgtgg cgtgggattg ggtgccgaaa cgcaaaaacg tgtgcagcct ggcgaaatgg 600
cgcgaagcgg atgaaatgct gcgcgatgaa agccgcggca actttcgctt taccgcgcgc 660
agcctgagcg cgacctttgt gagcgatagc catacctttg cgctgcagaa cgtgccgctg 720
agcgattgcg tgattgaaga agcggaagcg gcggtggaac gcgtgtatcg cgaacgctat 780
aacggcaccc atgtgctgag cggcagcctg gaaacctatc tggcgcgcgg cggctttgtg 840
gtggcgtttc gcccgatgct gagcaacgaa ctggcgaaac tgtatctgca ggaactggcg 900
cgcagcaacg gcaccctgga aggcctgttt gcggcggcgg cgccgaaacc gggcccgcgc 960
cgcgcgcgcc gcgcggcgcc gagcgcgccg ggcggcccgg gcgcggcgaa cggcccggcg 1020
ggcgatggcg atgcgggcgg ccgcgtgacc accgtgagca gcgcggaatt tgcggcgctg 1080
cagtttacct atgatcatat tcaggatcat gtgaacacca tgtttagccg cctggcgacc 1140
agctggtgcc tgctgcagaa caaagaacgc gcgctgtggg cggaagcggc gaaactgaac 1200
ccgagcgcgg cggcgagcgc ggcgctggat cgccgcgcgg cggcgcgcat gctgggctgc 1260
gcgatggcgg tgacctattg ccatgaactg ggcgaaggcc gcgtgtttat tgaaaacagc 1320
atgcgcgcgc cgggcggcgt gtgctatagc cgcccgccgg tgagctttgc gtttggcaac 1380
gaaagcgaat gcgtggaagg ccagctgggc gaagataacg aactgctgcc gggccgcgaa 1440
ctggtggaac cgtgcaccgc gaaccatcat catcatcatc attaacgccc ctctccctcc 1500
ccccccccta acgttactgg ccgaagccgc ttggaataag gccggtgtgc gtttgtctat 1560
atgttatttt ccaccatatt gccgtctttt ggcaatgtga gggcccggaa acctggccct 1620
gtcttcttga cgagcattcc taggggtctt tcccctctcg ccaaaggaat gcaaggtctg 1680
ttgaatgtcg tgaaggaagc agttcctctg gaagcttctt gaagacaaac aacgtctgta 1740
gcgacccttt gcaggcagcg gaacccccca cctggcgaca ggtgcctctg cggccaaaag 1800
ccacgtgtat aagatacacc tgcaaaggcg gcacaacccc agtgccacgt tgtgagttgg 1860
atagttgtgg aaagagtcaa atggctctcc tcaagcgtat tcaacaaggg gctgaaggat 1920
gcccagaagg taccccattg tatgggatct gatctggggc ctcggtgcac atgctttaca 1980
tgtgtttagt cgaggttaaa aaaacgtcta ggccccccga accacgggga cgtggttttc 2040
ctttgaaaaa cacgatgata agccgccacc atggaaaccg ataccctgct gctgtgggtg 2100
ctgctgctgt gggtgccggg cagcaccggc cataccaccg gcccgattcc gagcccgttt 2160
gcggatggcc gcgaacagcc ggtggaagtg cgctatgcga ccagcgcggc ggcgtgcgat 2220
atgctggcgc tgattgcgga tccgcaggtg ggccgcaccc tgtgggaagc ggtgcgccgc 2280
catgcgcgcg cgtataacgc gaccgtgatt tggtataaaa ttgaaagcgg ctgcgcgcgc 2340
ccgctgtatt atatggaata taccgaatgc gaaccgcgca aacattttgg ctattgccgc 2400
tatcgcaccc cgccgttttg ggatagcttt ctggcgggct ttgcgtatcc gaccgatgat 2460
gaactgggcc tgattatggc ggcgccggcg cgcctggtgg aaggccagta tcgccgcgcg 2520
ctgtatattg atggcaccgt ggcgtatacc gattttatgg tgagcctgcc ggcgggcgat 2580
tgctggttta gcaaactggg cgcggcgcgc ggctatacct ttggcgcgtg ctttccggcg 2640
cgcgattatg aacagaaaaa agtgctgcgc ctgacctatc tgacccagta ttatccgcag 2700
gaagcgcata aagcgattgt ggattattgg tttatgcgcc atggcggcgt ggtgccgagc 2760
tattttgaag aaagcaaagg ctatgaaccg ccgccggcgg cggatggcgg cagctgcgcg 2820
ccgccgggcg atgatgaagc gcgcgaagat gaaggcgaaa ccgaagatgg cgcggcgggc 2880
cgcgaaggca acggcggccc gtgcggcccg gaaggccatc atcatcatca tcattaa 2937
<210> 10
<211> 2721
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
gccgccacca tggaaaccga taccctgctg ctgtgggtgc tgctgctgtg ggtgccgggc 60
agcaccggct ttagccaggc gcgcgcggaa agcaacgcgg cgcgcccgcc gccggcgccg 120
cgcgtgaccc cgaccccggc gggccgcgtg gcggcgtttg atattaacga tgtgctggcg 180
agcggcccgg aacatttttt tgtgccggtg cgcgcggatc gcaaacgccg cgaacgccat 240
gtggcggatt ttgcggcggt gtggccggtg agctatattc cggcgggccg cgcggtgctg 300
agctgcgaac gcgcggcggc gcgcctggcg gtgggcctgg gctttctgag cgtgagcgtg 360
accagccgcg atctgctgcc gctggaattt atggtggcgc cggcggatgc gaacgtgcgc 420
atgattaccg cgtttaacgg cggcggcgcg tttccgccgc cgggcccggc ggcgggcccg 480
cagcgccgcg cgtatgtgat tggctatggc aacagccgcc tggatagcca tatgtatctg 540
accatgcgcg aagtggcgag ctatgcgaac gaaccggcgg attttcgcgc gcatctgacc 600
gcggcgcatc gcgaagcgtt tctgatgctg cgcgaagcgg cggcggcgcg ccgcggcccg 660
agcgcgggcc cggcgccgaa cgcggcgtat catgcgtatc gcgtggcggc gcgcctgggc 720
ctggcgctga gcgcgctgac cgaaggcgcg ctggcggatg gctatgtgct ggcggaagaa 780
ctggtggatc tggattatca tctgaaactg ctgagccgcg tgctgctggg cgcgggcctg 840
ggctgcgcgg cgaacggccg cgtgcgcgcg cgcaccattg cgcagctggc ggtgccgcgc 900
gaactgcgcc cggatgcgtt tattccggaa ccggcgggcg cggcgctgga aagcgtggtg 960
gcgcgcggcc gcaaactgcg cgcggtgtat gcgtttagcg gcccggatgc gccgctggcg 1020
gcgcgcctgc tggcgcatgg cgtggtgagc gatctgtatg atgcgtttct gcgcggcgaa 1080
ctgacctggg gcccgccgat gcgccatgcg ctgttttttg cggtggcggc gagcgcgttt 1140
ccggcggatg cgcaggcgct ggaactggcg cgcgatgtga cccgcaaatg caccgcgatg 1200
tgcaccgcgg gccatgcgac cgcggcggcg ctggatctgg aagaagtgta tgcgcatgtg 1260
ggcggcggcg cgggcggcga tgcgggcttt gaactgctgg atgcgtttag cccgtgcatg 1320
gcgagctttc gcctggatct gctggaagaa gcgcatgtgc tggatgtgct gagcgcggtg 1380
ccggcgcgcg cggcgctgga tgcgtggctg gaatgtcagc cggcggcggc ggcgccgaac 1440
ctgagcgcgg cggcgctggg catgctgggc cgcggcggcc tgtttggccc ggcgcatgcg 1500
gcggcgctgg cgccggaact gtttgcggcg ccgtgcggcg gctggggcgc gggcgcggcg 1560
gtggcgattg tgccggtggc gccgaacgcg agctatgtga ttacccgcgc gcatccgcgc 1620
cgcggcctga cctatcatca tcatcatcat cattgacgcc cctctccctc ccccccccct 1680
aacgttactg gccgaagccg cttggaataa ggccggtgtg cgtttgtcta tatgttattt 1740
tccaccatat tgccgtcttt tggcaatgtg agggcccgga aacctggccc tgtcttcttg 1800
acgagcattc ctaggggtct ttcccctctc gccaaaggaa tgcaaggtct gttgaatgtc 1860
gtgaaggaag cagttcctct ggaagcttct tgaagacaaa caacgtctgt agcgaccctt 1920
tgcaggcagc ggaacccccc acctggcgac aggtgcctct gcggccaaaa gccacgtgta 1980
taagatacac ctgcaaaggc ggcacaaccc cagtgccacg ttgtgagttg gatagttgtg 2040
gaaagagtca aatggctctc ctcaagcgta ttcaacaagg ggctgaagga tgcccagaag 2100
gtaccccatt gtatgggatc tgatctgggg cctcggtgca catgctttac atgtgtttag 2160
tcgaggttaa aaaaacgtct aggccccccg aaccacgggg acgtggtttt cctttgaaaa 2220
acacgatgat aagccgccac catggaaacc gataccctgc tgctgtgggt gctgctgctg 2280
tgggtgccgg gcagcaccgg cacccgccgc gcggatagcg cggaaagcat tctggcggaa 2340
cgctgccgcg gcaacctgct gctggcggat cgcccgcagc atgaagaagc ggcgccgggc 2400
ctggcgggca tttttattcg cggccgctgc agcccgccgg aagcggcgct gtggtatgaa 2460
gataccggcg aaacctattg ggcgaacccg tatgcggtgg cgcgcggcct ggcggaagat 2520
attcgccgcg tgctggcgga taccccggtg tatcgcgatc tggcgattca ggtgctgaac 2580
agcgcgtttg gcctgccgca tgaagtgcgc gcgccgctgc cgccgccgcc gcgcggctgc 2640
gtgctgccgc cgtgttatca taccaccggc ccgtgcggcc cgggcgatgg catttatcgc 2700
catcatcatc atcatcatta a 2721