Movatterモバイル変換


[0]ホーム

URL:


CN111755014B - Domain-adaptive replay attack detection method and system - Google Patents

Domain-adaptive replay attack detection method and system
Download PDF

Info

Publication number
CN111755014B
CN111755014BCN202010630019.XACN202010630019ACN111755014BCN 111755014 BCN111755014 BCN 111755014BCN 202010630019 ACN202010630019 ACN 202010630019ACN 111755014 BCN111755014 BCN 111755014B
Authority
CN
China
Prior art keywords
replay
detection
module
shared
adaptive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010630019.XA
Other languages
Chinese (zh)
Other versions
CN111755014A (en
Inventor
伍强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Changhong Electric Co Ltd
Original Assignee
Sichuan Changhong Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Changhong Electric Co LtdfiledCriticalSichuan Changhong Electric Co Ltd
Priority to CN202010630019.XApriorityCriticalpatent/CN111755014B/en
Publication of CN111755014ApublicationCriticalpatent/CN111755014A/en
Application grantedgrantedCritical
Publication of CN111755014BpublicationCriticalpatent/CN111755014B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

The invention discloses a field self-adaptive detection method for replay attack of a sound recording, which comprises the following steps: extracting acoustic features from at least one recording region of the recording; extracting shared voiceprint feature vectors from the acoustic features; and detecting whether the sound recording is a replay sound recording by a domain adaptive method from the shared voiceprint feature vector. The invention can still ensure the robustness of the record replay attack detection system under the conditions of the equipment and environment of record replay and the field diversity of speakers.

Description

Domain-adaptive replay attack detection method and system
Technical Field
The invention relates to the technical field of voice signal processing, in particular to a field-adaptive replay attack detection method and system.
Background
In recent years, with the rapid development of artificial intelligence technology, more and more products with artificial intelligence technology appear in people's daily life, especially the smart sound box of recent years is different military prominence. The voiceprint recognition technology is almost the standard configuration of all intelligent sound boxes, and a user can finish account login, shopping payment and the like by using own voice. Replay attack detection is an extremely important link in a voiceprint recognition system, and judges whether a real person from which a voice comes or a recording is available. The diversity of domains leads to degraded performance of replay attack detection systems, as devices, environments, and speakers of the replay are diverse.
Disclosure of Invention
The invention provides a method and a system for detecting the replay attack of the recording with self-adaption in the field, aiming at solving the problem of field diversity of the replay attack of the recording. Designing a shared voiceprint feature extraction module, inputting the acoustic features of voice into the shared module, extracting the shared voiceprint features, and then respectively inputting the shared voiceprint features into four sub-classification modules, wherein the four sub-classification modules respectively comprise: a replay attack detection module, a replay device detection module, a replay environment detection module and a replay speaker detection module. The error gradients of the replay attack detection module are directly fed back to the shared voiceprint feature extraction module and the replay attack detection module, the error gradients of the replay device detection module, the replay environment detection module and the replay speaker detection module are fed back to the outside of the respective modules, and the error gradients are fed back to the shared voiceprint feature extraction module after being inverted. By the method and the system, the field adaptivity of the system can be enhanced, and the replay attack detection capability of the system is improved.
The invention realizes the purpose through the following technical scheme:
a method and a system for detecting the attack of playback of a voice record with self-adaptation field comprise the following steps:
calculating and extracting acoustic features from at least one recording region in the recording, wherein the acoustic features comprise Mel Frequency Cepstrum Coefficient (MFCC) or Power-normalized Cepstral Coefficients (PNCC);
extracting a shared voiceprint feature vector from the acoustic features;
and detecting whether the sound recording is a replay sound recording or not from the shared voiceprint feature vector by a domain adaptive method.
Further, in a detection phase, the shared voiceprint feature vectors are used to detect corresponding targets of at least one domain adaptive countermeasure task associated with the replay attack detection, the domain adaptive countermeasure task comprising: a playback device detection task, a playback environment detection task, and a playback speaker detection task.
Furthermore, the shared voiceprint feature vector is extracted through a shared voiceprint feature module, whether the record is replayed or not is detected through a replay attack detection module, the replay device detection task is achieved through a replay device detection module, the replay environment detection task is achieved through a replay environment detection module, and the replay speaker detection task is achieved through a replay speaker detection module.
Further, the shared voiceprint feature module, the replay attack detection module, the replay device detection module, the replay environment detection module, and the replay speaker detection module are all formed of a deep neural network including a combination of one or more of a Convolutional Neural Network (CNN), a recurrent neural network (RNN, LSTM, GRU), and a time-delayed neural network (TDNN).
Further, the method also comprises a training method of each module. Wherein the weight of the shared voiceprint feature module is WfThe replay attack detection module has a weight WaThe weight of the detection module of the playback device is WdThe replay speaker detection module has a weight WsThe playback environment detection module has a weight WeThe training steps of each module are as follows:
s0: inputting the acoustic features of the sound recording into a shared voiceprint feature module, and extracting shared voiceprint feature vectors;
s1: inputting the shared voiceprint feature vector in S0 into a replay attack detection module, and outputting a classification error La
S2: inputting the shared voiceprint feature vector in S0 into a detection module of a playback device, and outputting a classification error Ld
S3: inputting the shared voiceprint feature vector in S0 into the speaker detection module, and outputting a classification error Ls
S4: inputting the shared voiceprint feature vector in S0 into a playback environment detection module, and outputting a classification error Le
S5: the update method of each weight is as follows:
Figure BDA0002567058020000031
Figure BDA0002567058020000032
Figure BDA0002567058020000033
Figure BDA0002567058020000034
Figure BDA0002567058020000035
where ε is the learning rate, α1、α2、α3The weights of the playback device detection module, the playback speaker detection module, and the playback environment detection module, respectively.
S6: the steps of S0 to S5 are repeated until the blocks converge.
The embodiment of the invention provides another field self-adaptive record replay attack detection system, which comprises the following modules:
the acoustic feature extraction module is used for extracting acoustic features of at least one section of recording area in the recording;
the shared voiceprint feature extraction module is used for extracting a shared voiceprint feature vector from the acoustic features;
a detection module for detecting whether the shared voiceprint feature vector is a replay attack;
further, the detection module is also used to detect at least one domain-adaptive countermeasure task associated with the replay attack.
Further, the shared voiceprint feature extraction module and the detection module further comprise a deep neural network module.
And further, the system also comprises a training module which is used for training the deep neural network module in the shared voiceprint feature extraction module and the detection module.
The invention has the beneficial effects that:
the invention can solve the problem of performance degradation of the record replay attack detection system caused by the field diversity of the record replay equipment, environment and speakers; the robustness of the replay attack detection system can still be ensured under the conditions of the devices and environments of replay recording and the field diversity of speakers.
Drawings
In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the following briefly introduces the embodiments or the drawings needed to be practical in the prior art description, and obviously, the drawings in the following description are only some embodiments of the embodiments, and for those skilled in the art, other drawings can be obtained according to these drawings without creative efforts.
FIG. 1: a schematic diagram of a domain adaptive replay attack detection method;
FIG. 2: a schematic diagram of a training method in a field-adaptive replay attack detection method;
FIG. 3: the structure schematic diagram of a domain-adaptive replay attack detection system;
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the technical solutions of the present invention will be described in detail below. It is to be understood that the described embodiments are merely exemplary of the invention, and not restrictive of the full scope of the invention. All other embodiments, which can be derived by a person skilled in the art from the examples given herein without any inventive step, are within the scope of the present invention.
Example one
A domain-adaptive replay attack detection method proposed by the present invention is described with reference to fig. 1 and 2, where fig. 1 shows a flowchart of the replay attack detection method and fig. 2 shows a training flowchart of the domain-adaptive replay attack detection method.
In step S101, extracting acoustic features from at least one recording region in the recording, the acoustic features including Mel-Frequency Cepstrum Coefficients (MFCCs) or Power-normalized Cepstral Coefficients (PNCCs);
in step S102, a shared voiceprint feature vector is extracted from the multiple acoustic features extracted in step S101;
in step S103, it is detected whether the recording is a replay attack from the shared voiceprint feature vector extracted in step S102; while in a detection phase, the shared voiceprint feature vectors are used to detect corresponding targets of at least one domain adaptive countermeasure task associated with the replay attack detection, the domain adaptive countermeasure task including, but not limited to: the replay device detects the task, replays the environment detection task and replays the speaker detection task, and obtains detection results of all fields of adaptive confrontation tasks. The shared voiceprint feature vector is extracted through a shared voiceprint feature module, whether the record is replayed or not is detected through a replay attack detection module, the replay device detection task is achieved through a replay device detection module, the replay environment detection task is achieved through a replay environment detection module, and the replay speaker detection task is achieved through a replay speaker detection module. The shared voiceprint feature module, the replay attack detection module, the replay device detection module, the replay environment detection module and the replay speaker detection module are all composed of a deep neural network comprising one or a combination of Convolutional Neural Networks (CNN), recurrent neural networks (RNN, LSTM, GRU) and time-delay neural networks (TDNN).
In addition, the method of the present invention further comprises a training method of a shared voiceprint feature module, a replay attack detection module, a replay device detection module, a replay environment detection module and a replay speaker detection module, as shown in fig. 2.
In step S201, a sound recording sample in a training set, its real playback label, and a real label of a domain-adaptive countermeasure task are acquired;
in step S202, the weight of the shared voiceprint feature module is WfThe weight of the replay attack detection module is WaThe weight of the detection module of the playback device is WdThe replay speaker detection module has a weight of WsAnd the playback environment detection module has a weight of WeInputting the acoustic features of the sound recording into a shared voiceprint feature module, extracting shared voiceprint feature vectors, inputting the shared voiceprint feature vectors into a replay attack detection module, a replay device detection module, a replay speaker detection module and a replay environment detection module, and acquiring the detection result of replay sound recording and the detection result of a domain-adaptive confrontation task;
in step S203, the detection result of the playback audio recording is compared with its genuine tag of the playback audio recording, and a detection error L is obtaineda
In step S204, parameters of the replay attack detection module are updated in a back propagation manner, where the updating manner is: wd
Figure BDA0002567058020000051
Wherein ε is the learning rate;
in step S205, the detection result of the domain-adaptive countermeasure task and the true label of the domain-adaptive countermeasure task are compared, respectively, and the detection error L is obtainedd、Ls、Le
In step S206, parameters of the domain-adaptive confrontation task detection module are updated in a back-propagation manner, where the updating manner is:
Figure BDA0002567058020000061
wherein ε is the learning rate;
in step S207, the shared voiceprint feature module parameters are updated by performing back propagation on the detection error of the domain adaptive countermeasure task and the detection error of the playback sound recording at the same time, and the updating is performed as follows:
Figure BDA0002567058020000062
where ε is the learning rate, α1、α2、α3The weights of the replay device detection module, the replay speaker detection module and the replay environment detection module are respectively.
In step S208, it is determined whether the module converges or the training frequency reaches the set maximum iteration frequency or the module error reaches the set minimum error, if any one of the conditions is satisfied, the training is terminated, otherwise, the steps S201 to S208 are repeated.
The field-adaptive attack detection method for the record replay provided by the embodiment of the invention can still ensure the robustness of a record replay attack detection system under the conditions of the field diversity of the record replay equipment, environment and speakers.
Example two
A domain adaptive replay attack detection system proposed by the present invention is described with reference to fig. 3, and fig. 3 shows the constituent modules of the system. Referring to fig. 3, the system includes an acousticfeature extraction module 301, a shared voiceprintfeature extraction module 302, adetection module 303, and atraining module 304.
The acousticfeature extraction module 301 extracts acoustic features from at least one recording area or the whole recording in the recording data;
the shared voiceprintfeature extraction module 302 extracts a shared voiceprint feature vector from the acoustic features in the acousticfeature extraction module 301;
thedetection module 303 detects whether the recording is a playback recording from the shared voiceprint feature vectors in the shared voiceprintfeature extraction module 302. Meanwhile, thedetection module 303 may further detect at least one domain-adaptive countermeasure task associated with the replay attack from the shared voiceprint feature vector, where the countermeasure tasks include a replay device detection task, a replay environment detection task, and a replay speaker detection task and obtain detection results of all the domain-adaptive countermeasure tasks.
Thetraining module 304 is used to train the deep neural network modules in the shared voiceprintfeature extraction module 302 and thedetection module 303, and the system replay attack detection at least one domain-adaptive countermeasure task that can be associated with replay attack is simultaneously trained, and the training step refers to the first embodiment described above.
The second field-adaptive attack detection system provided by the embodiment of the invention can still ensure the robustness of the attack detection system under the conditions of the field diversity of the equipment, environment and speaker for record playback.
It will be understood by those skilled in the art that all or part of the processes of the methods of the above embodiments may be implemented by hardware instructions related to a program, and the program may be stored in a computer-readable storage medium, and when executed, may include the processes of the above embodiments of the methods. The storage medium may be a magnetic disk, an optical disk, a Read-only Memory (ROM), a Random Access Memory (RAM), or the like.
The above description is only for the specific embodiments of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of the changes or substitutions within the technical scope of the present invention, and shall cover the scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims. It should be noted that the various technical features described in the above embodiments can be combined in any suitable manner without contradiction, and the invention is not described in any way for the possible combinations in order to avoid unnecessary repetition. In addition, any combination of the various embodiments of the present invention is also possible, and the same should be considered as the disclosure of the present invention as long as it does not depart from the spirit of the present invention.

Claims (8)

1. A domain adaptive replay attack detection method is characterized by comprising the following steps:
extracting acoustic features from at least one recording region of the recording;
extracting a shared voiceprint feature vector from the acoustic features; and
detecting whether the recorded sound is replay attack or not in the extracted shared voiceprint feature vector; while in a detection phase, the shared voiceprint feature vectors are used to detect corresponding targets of at least one domain adaptive countermeasure task associated with the replay attack detection, the domain adaptive countermeasure task comprising: the replay device detects the task, replays the environment detection task and replays the speaker detection task, and obtains detection results of all fields of adaptive confrontation tasks.
2. The domain-adaptive replay attack detection method of claim 1, wherein the acoustic features include mel-frequency cepstral coefficients or energy-normalized cepstral coefficients.
3. The domain-adaptive replay attack detection method of sound recording according to claim 1, wherein the shared voiceprint feature vector is extracted by a shared voiceprint feature extraction module, whether the sound is replayed or not is detected by a replay attack detection module, a replay device detection task is realized by a replay device detection module, a replay environment detection task is realized by a replay environment detection module, and a replay speaker detection task is realized by a replay speaker detection module.
4. The domain-adaptive replay attack detection method of claim 3, wherein the shared voiceprint feature extraction module, replay attack detection module, replay device detection module, replay environment detection module, and replay speaker detection module are comprised of a deep neural network comprising a combination of one or more of a convolutional neural network, a recursive neural network, and a delayed neural network.
5. A domain adaptive replay attack detection method according to any one of claims 3 to 4 in which the training steps for each module are as follows:
step S201, acquiring a sound recording sample in a training set, a real replay label of the sound recording sample and a real label of a field self-adaptive confrontation task;
step S202, the weight of the shared voiceprint feature module is
Figure DEST_PATH_IMAGE002
The replay attack detection module has the weight of
Figure DEST_PATH_IMAGE004
The weight of the detection module of the playback device is
Figure DEST_PATH_IMAGE006
The replay speaker detection module has a weight of
Figure DEST_PATH_IMAGE008
And the playback environment detection module has a weight of
Figure DEST_PATH_IMAGE010
Inputting the acoustic features of the sound recording into a shared voiceprint feature module, extracting shared voiceprint feature vectors, inputting the shared voiceprint feature vectors into a replay attack detection module, a replay device detection module, a replay speaker detection module and a replay environment detection module, and acquiring the detection result of replay sound recording and the detection result of a domain-adaptive confrontation task;
step S203, comparing the detection result of the replay recording with the real label of the replay recording and obtaining the detection error
Figure DEST_PATH_IMAGE012
Step S204, updating the parameters of the replay attack detection module in a back propagation mode, wherein the updating mode is as follows:
Figure DEST_PATH_IMAGE014
wherein
Figure DEST_PATH_IMAGE016
Is the learning rate;
step S205, respectively comparing the detection result of the domain-adaptive countermeasure task with the real label of the domain-adaptive countermeasure task, and obtaining the detection error
Figure DEST_PATH_IMAGE018
Figure DEST_PATH_IMAGE020
Figure DEST_PATH_IMAGE022
;
Step S206, updating parameters of the domain self-adaptive confrontation task detection module in a back propagation mode, wherein the updating mode is as follows:
Figure DEST_PATH_IMAGE024
Figure DEST_PATH_IMAGE026
Figure DEST_PATH_IMAGE028
wherein
Figure 810635DEST_PATH_IMAGE016
Is the learning rate;
step S207, the parameters of the shared voiceprint characteristic module are updated in a mode of back propagation after the detection error of the domain self-adaptive countermeasure task is inverted and the detection error of the replay recording is carried out, and the updating mode is as follows:
Figure DEST_PATH_IMAGE030
wherein,
Figure 806404DEST_PATH_IMAGE016
is the learning rate of the learning rate,
Figure DEST_PATH_IMAGE032
Figure DEST_PATH_IMAGE034
Figure DEST_PATH_IMAGE036
the weights of the replay device detection module, the replay speaker detection module and the replay environment detection module are respectively set;
and S208, judging whether each module converges or the training frequency reaches the set maximum iteration frequency or the module error reaches the set minimum error, if any one of the conditions is met, terminating the training, and otherwise, repeating the steps from S201 to S208.
6. The system for detecting a domain adaptive replay attack detection method of any one of claims 1 to 5, comprising:
the acoustic feature extraction module is used for extracting acoustic features of at least one section of recording area in the recording;
the shared voiceprint feature extraction module is used for extracting a shared voiceprint feature vector from the acoustic features;
a detection module for detecting whether the shared voiceprint feature vector is a replay attack;
detecting whether the recorded sound is replay attack or not in the extracted shared voiceprint feature vector; while in a detection phase, the shared voiceprint feature vectors are used to detect corresponding targets of at least one domain adaptive countermeasure task associated with the replay attack detection, the domain adaptive countermeasure task comprising: the replay device detects the task, replays the environment detection task and replays the speaker detection task, and obtains detection results of all fields of adaptive confrontation tasks.
7. The system for domain adaptive replay attack detection according to claim 6, wherein the shared voiceprint feature extraction module and the detection module further comprise a deep neural network module.
8. The system for detecting a domain adaptive replay attack detection method of claims 6 to 7, further comprising a training module for training the shared voiceprint feature extraction module and the deep neural network module in the detection module.
CN202010630019.XA2020-07-022020-07-02Domain-adaptive replay attack detection method and systemActiveCN111755014B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202010630019.XACN111755014B (en)2020-07-022020-07-02Domain-adaptive replay attack detection method and system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202010630019.XACN111755014B (en)2020-07-022020-07-02Domain-adaptive replay attack detection method and system

Publications (2)

Publication NumberPublication Date
CN111755014A CN111755014A (en)2020-10-09
CN111755014Btrue CN111755014B (en)2022-06-03

Family

ID=72678889

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202010630019.XAActiveCN111755014B (en)2020-07-022020-07-02Domain-adaptive replay attack detection method and system

Country Status (1)

CountryLink
CN (1)CN111755014B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN113284486B (en)*2021-07-262021-11-16中国科学院自动化研究所 A Robust Speech Discrimination Method for Environmental Confrontation
CN114023331B (en)*2021-10-202025-07-15中国工商银行股份有限公司 Performance detection method, device, equipment and storage medium of voiceprint recognition system

Citations (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105139857A (en)*2015-09-022015-12-09广东顺德中山大学卡内基梅隆大学国际联合研究院Countercheck method for automatically identifying speaker aiming to voice deception
CN105702263A (en)*2016-01-062016-06-22清华大学Voice playback detection method and device
CN105869630A (en)*2016-06-272016-08-17上海交通大学 Speaker speech spoofing attack detection method and system based on deep learning
CN106531172A (en)*2016-11-232017-03-22湖北大学Speaker voice playback identification method and system based on environmental noise change detection
CN108039176A (en)*2018-01-112018-05-15广州势必可赢网络科技有限公司Voiceprint authentication method and device for preventing recording attack and access control system
CN108806698A (en)*2018-03-152018-11-13中山大学A kind of camouflage audio recognition method based on convolutional neural networks
CN109841219A (en)*2019-03-152019-06-04慧言科技(天津)有限公司Replay Attack method is cheated using speech amplitude information and a variety of phase-detection voices
CN110491391A (en)*2019-07-022019-11-22厦门大学A kind of deception speech detection method based on deep neural network
US10510352B2 (en)*2016-08-192019-12-17Amazon Technologies, Inc.Detecting replay attacks in voice-based authentication
CN110718229A (en)*2019-11-142020-01-21国微集团(深圳)有限公司Detection method for record playback attack and training method corresponding to detection model

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
GB201801664D0 (en)*2017-10-132018-03-21Cirrus Logic Int Semiconductor LtdDetection of liveness

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105139857A (en)*2015-09-022015-12-09广东顺德中山大学卡内基梅隆大学国际联合研究院Countercheck method for automatically identifying speaker aiming to voice deception
CN105702263A (en)*2016-01-062016-06-22清华大学Voice playback detection method and device
CN105869630A (en)*2016-06-272016-08-17上海交通大学 Speaker speech spoofing attack detection method and system based on deep learning
US10510352B2 (en)*2016-08-192019-12-17Amazon Technologies, Inc.Detecting replay attacks in voice-based authentication
CN106531172A (en)*2016-11-232017-03-22湖北大学Speaker voice playback identification method and system based on environmental noise change detection
CN108039176A (en)*2018-01-112018-05-15广州势必可赢网络科技有限公司Voiceprint authentication method and device for preventing recording attack and access control system
CN108806698A (en)*2018-03-152018-11-13中山大学A kind of camouflage audio recognition method based on convolutional neural networks
CN109841219A (en)*2019-03-152019-06-04慧言科技(天津)有限公司Replay Attack method is cheated using speech amplitude information and a variety of phase-detection voices
CN110491391A (en)*2019-07-022019-11-22厦门大学A kind of deception speech detection method based on deep neural network
CN110718229A (en)*2019-11-142020-01-21国微集团(深圳)有限公司Detection method for record playback attack and training method corresponding to detection model

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"An end-to-end spoofing countermeasure for automatic speaker verification using evolving recurrent neural networks";Valenti G;《 Odyssey 2018 The Speaker and Language Recognition Workshop》;20181231;全文*
"Recurrent Neural Networks for Automatic Replay Spoofing Attack Detection";Zhuxin Chen;《ICASSP》;20180413;全文*

Also Published As

Publication numberPublication date
CN111755014A (en)2020-10-09

Similar Documents

PublicationPublication DateTitle
EP3504703B1 (en)A speech recognition method and apparatus
Li et al.Online direction of arrival estimation based on deep learning
CN109712611B (en) Joint model training method and system
Ge et al.Deep learning approach in DOA estimation: A systematic literature review
Chen et al.Robust deep feature for spoofing detection-the SJTU system for ASVspoof 2015 challenge.
US9489965B2 (en)Method and apparatus for acoustic signal characterization
CN111161752A (en)Echo cancellation method and device
CN110503970A (en)A kind of audio data processing method, device and storage medium
CN108417224B (en) Method and system for training and recognition of bidirectional neural network model
CN109584896A (en)A kind of speech chip and electronic equipment
CN108122563A (en)Improve voice wake-up rate and the method for correcting DOA
CN116416997A (en) Intelligent Voice Forgery Attack Detection Method Based on Attention Mechanism
Lee et al.Ensemble of jointly trained deep neural network-based acoustic models for reverberant speech recognition
Basbug et al.Acoustic scene classification using spatial pyramid pooling with convolutional neural networks
CN111755014B (en)Domain-adaptive replay attack detection method and system
CN114708857A (en)Speech recognition model training method, speech recognition method and corresponding device
CN110211599A (en)Application awakening method and device, storage medium and electronic equipment
CN115208507B (en) Privacy protection method and device based on white-box speech adversarial samples
CN110660407A (en)Audio processing method and device
KR20210131067A (en)Method and appratus for training acoustic scene recognition model and method and appratus for reconition of acoustic scene using acoustic scene recognition model
Scardapane et al.On the use of deep recurrent neural networks for detecting audio spoofing attacks
Chang et al.Audio adversarial examples generation with recurrent neural networks
CN113077803B (en)Voice processing method and device, readable storage medium and electronic equipment
Zhu et al.A deep learning based sound event location and detection algorithm using convolutional recurrent neural network
CN115662394B (en)Voice extraction method and device, storage medium and electronic device

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp