技术领域Technical Field
本发明涉及接触网限位止钉余量状态检测技术领域,具体为一种接触网限位止钉余量状态检测系统。The invention relates to the technical field of contact network limit stop nail surplus state detection, and in particular to a contact network limit stop nail surplus state detection system.
背景技术Background Art
接触网是高速铁路供电系统中的重要设备,具有结构复杂、露天设置等特性,一旦出现问题,极有可能影响整条铁路的供电系统与行驶列车的安全。其中接触网悬挂状态检测监测系统(4C)通过对铁路接触网部件进行高精度成像,以期能及时排除故障隐患,保证部件的良好运行。The overhead contact network is an important equipment in the power supply system of high-speed railways. It has the characteristics of complex structure and open-air setting. Once a problem occurs, it is very likely to affect the power supply system of the entire railway and the safety of the running trains. The overhead contact network suspension status detection and monitoring system (4C) can eliminate potential faults in time and ensure the good operation of the components by performing high-precision imaging of the railway overhead contact network components.
限位定位器限位止钉余量是接触网零部件中的一个重要参数,采用限位定位器时,定位器与止钉应具有适宜的余量。但由于长期的日晒雨淋、机械应力、强电磁场甚至涉及火车行驶产生的震动等原因,止钉极易出现螺丝松动的状况,导致余量产生变化,严重时甚至会影响列车的正常运营造成事故。The margin of the limit stopper of the limit locator is an important parameter in the contact network components. When the limit locator is used, the locator and the stopper should have an appropriate margin. However, due to long-term sun and rain, mechanical stress, strong electromagnetic fields and even vibrations caused by train running, the stopper is very likely to loosen the screws, resulting in changes in the margin, which may even affect the normal operation of the train and cause accidents in serious cases.
现有的对接触网限位定位器限位止钉余量状态进行分析的方法,主要采用人工定期巡检与技术人员查看4C接触网高精度图像相结合。前者劳动强度大,工作周期长,也不容易发现缺陷。而对于后者,虽然很大程度上减少了排查工作量,但技术人员仍要从巨量的接触网高精度图像数据中找到限位定位器,再对限位止钉的余量状态进行分析判断,耗时耗力,且极易因视觉疲劳而导致漏检的发生。因此,设计面向接触网高精度图像的,能自动化、智能化的检测监测各种故障的系统便成了需要面对的问题。设计一种智能化检测限位定位器止钉余量状态的系统对于保障接触网安全运行有着极为重要的现实意义。The existing method for analyzing the residual state of the limit stop pins of the contact network limit locator mainly adopts a combination of manual regular inspection and technical personnel checking the 4C contact network high-precision images. The former has high labor intensity, long working cycle, and it is not easy to find defects. As for the latter, although the workload of investigation is greatly reduced, the technicians still have to find the limit locator from the huge amount of high-precision image data of the contact network, and then analyze and judge the residual state of the limit stop pin, which is time-consuming and labor-intensive, and it is very easy to miss the detection due to visual fatigue. Therefore, designing a system for automatic and intelligent detection and monitoring of various faults for high-precision images of the contact network has become a problem that needs to be faced. Designing an intelligent system for detecting the residual state of the limit locator stop pin is of great practical significance for ensuring the safe operation of the contact network.
目前对于接触网高清图像中限位定位器止钉余量是否存在过多或不足两种缺陷状态的检测,并没有很好的方法,依旧停留在人工查看高清图片的阶段,国内外对于接触网限位定位器止钉余量状态智能化分析的研究都很少,利用高精度图像来检测限位定位器止钉余量状态的方法也近乎于无。At present, there is no good method to detect whether there are too many or insufficient limit locator stop nails in the high-definition images of the contact network. It is still at the stage of manually viewing high-definition images. There is little research on intelligent analysis of the limit locator stop nail remainder status of the contact network at home and abroad, and there is almost no method to use high-precision images to detect the limit locator stop nail remainder status.
发明内容Summary of the invention
(一)解决的技术问题1. Technical issues to be solved
针对现有技术的不足,本发明提供了一种接触网限位止钉余量状态检测系统,解决了目前对于接触网高清图像中限位定位器止钉余量是否存在过多或不足两种缺陷状态的检测,并没有很好的方法,依旧停留在人工查看高清图片的阶段,国内外对于接触网限位定位器止钉余量状态智能化分析的研究都很少,利用高精度图像来检测限位定位器止钉余量状态的方法也近乎于无的问题。In view of the deficiencies in the prior art, the present invention provides a contact network limit stop nail remainder status detection system, which solves the current problem that there is no good method for detecting whether there are two defect states of excessive or insufficient limit locator stop nail remainder in the contact network high-definition image, and the method still remains in the stage of manually viewing high-definition pictures. There is very little research on the intelligent analysis of the contact network limit locator stop nail remainder status at home and abroad, and there is almost no method for detecting the limit locator stop nail remainder status using high-precision images.
(二)技术方案(II) Technical solution
为实现以上目的,本发明通过以下技术方案予以实现:一种接触网限位止钉余量状态检测系统,包括图像采集模块、图像定位模块、止钉余量计算模块、止钉余量分析模块和分析结果输出模块,所述图像定位模块包括高像素定位器检测网络和低像素止钉检测网络,所述高像素定位器检测网络的输出端与低像素止钉检测网络的输入端连接。To achieve the above objectives, the present invention is implemented through the following technical solutions: a contact network limit stop nail margin status detection system, including an image acquisition module, an image positioning module, a stop nail margin calculation module, a stop nail margin analysis module and an analysis result output module, the image positioning module includes a high-pixel locator detection network and a low-pixel stop nail detection network, and the output end of the high-pixel locator detection network is connected to the input end of the low-pixel stop nail detection network.
优选的,所述止钉余量计算模块包括边缘图片、新检测框、新止钉坐标和止钉余量。Preferably, the nail stopping margin calculation module includes an edge image, a new detection frame, new nail stopping coordinates and a nail stopping margin.
优选的,所述边缘图片的输出端与新检测框的输入端连接,所述边缘图片的输出端与新止钉坐标的输入端连接。Preferably, the output end of the edge image is connected to the input end of the new detection frame, and the output end of the edge image is connected to the input end of the new stop pin coordinates.
优选的,所述新检测框的输出端与新止钉坐标的输入端连接,所述新止钉坐标的输出端与止钉余量的输入端连接。Preferably, the output end of the new detection frame is connected to the input end of the new nail-stopping coordinates, and the output end of the new nail-stopping coordinates is connected to the input end of the nail-stopping margin.
优选的,所述止钉余量分析模块包括检测结果与止钉余量、定位检测模块和判断结果输出。Preferably, the stop nail margin analysis module includes detection results and stop nail margin, positioning detection module and judgment result output.
优选的,所述检测结果与止钉余量的输出端与定位检测模块的输入端连接,所述定位检测模块的输出端与判断结果输出的输入端连接。Preferably, the output end of the detection result and the nail-stopping margin is connected to the input end of the positioning detection module, and the output end of the positioning detection module is connected to the input end of the judgment result output.
优选的,所述图像采集模块的输出端分别与图像定位模块、止钉余量计算模块和止钉余量分析模块的输入端连接。Preferably, the output end of the image acquisition module is connected to the input ends of the image positioning module, the nail stopping margin calculation module and the nail stopping margin analysis module respectively.
优选的,所述图像定位模块、止钉余量计算模块和止钉余量分析模块的输出端均与分析结果输出模块的输入端连接。Preferably, the output ends of the image positioning module, the nail stopping margin calculation module and the nail stopping margin analysis module are all connected to the input end of the analysis result output module.
(三)有益效果(III) Beneficial effects
本发明提供了一种接触网限位止钉余量状态检测系统。与现有技术相比,具备以下有益效果:The present invention provides a contact network limit stop nail surplus state detection system. Compared with the prior art, it has the following beneficial effects:
(1)、该接触网限位止钉余量状态检测系统,通过在包括图像采集模块、图像定位模块、止钉余量计算模块、止钉余量分析模块和分析结果输出模块,图像采集模块的输出端分别与图像定位模块、止钉余量计算模块和止钉余量分析模块的输入端连接,图像定位模块、止钉余量计算模块和止钉余量分析模块的输出端均与分析结果输出模块的输入端连接,通过对高速铁路接触网图像中止钉余量状态进行智能化分析,并在增加余量状态分析准确率的同时,提高分析的速度,并且相比现有采用人工排查止钉余量状态的方法而言,本发明利用接触网高清图像,自动化、智能化的分析接触网限位定位器限位止钉余量是否存在过多或过少的状态,极大的减小了人力成本,同时也避免了人工排查时可能出现的差错。(1) The contact network limit stop nail remainder state detection system comprises an image acquisition module, an image positioning module, a stop nail remainder calculation module, a stop nail remainder analysis module and an analysis result output module, wherein the output end of the image acquisition module is respectively connected to the input end of the image positioning module, the stop nail remainder calculation module and the stop nail remainder analysis module, and the output ends of the image positioning module, the stop nail remainder calculation module and the stop nail remainder analysis module are all connected to the input end of the analysis result output module. By intelligently analyzing the stop nail remainder state in the high-speed railway contact network image, while increasing the accuracy of the remainder state analysis, the speed of the analysis is improved. Compared with the existing method of manually checking the stop nail remainder state, the present invention uses high-definition contact network images to automatically and intelligently analyze whether the contact network limit stop nail remainder is too much or too little, thereby greatly reducing the labor cost and avoiding the errors that may occur during manual checking.
(2)、该接触网限位止钉余量状态检测系统,通过在图像定位模块包括高像素定位器检测网络和低像素止钉检测网络,高像素定位器检测网络的输出端与低像素止钉检测网络的输入端连接,止钉余量计算模块包括边缘图片、新检测框、新止钉坐标和止钉余量,边缘图片的输出端与新检测框的输入端连接,边缘图片的输出端与新止钉坐标的输入端连接,新检测框的输出端与新止钉坐标的输入端连接,新止钉坐标的输出端与止钉余量的输入端连接,通过采用针对高像素与低像素的两个深度学习检测模型,分别对定位器与止钉进行识别,可以准确的提取出所需要的检测框,通过图片边缘提取并协同检测框进行计算的方式,抽象的计算出止钉余量的像素值,间接绕过估测止钉余量真实长度的步骤。(2) The contact network limit stop nail remainder state detection system includes a high-pixel locator detection network and a low-pixel stop nail detection network in the image positioning module, the output end of the high-pixel locator detection network is connected to the input end of the low-pixel stop nail detection network, the stop nail remainder calculation module includes an edge image, a new detection frame, a new stop nail coordinate and a stop nail remainder, the output end of the edge image is connected to the input end of the new detection frame, the output end of the edge image is connected to the input end of the new stop nail coordinate, the output end of the new detection frame is connected to the input end of the new stop nail coordinate, and the output end of the new stop nail coordinate is connected to the input end of the stop nail remainder. By adopting two deep learning detection models for high pixels and low pixels, the locator and the stop nail are identified respectively, so that the required detection frame can be accurately extracted. By extracting the edge of the image and calculating in coordination with the detection frame, the pixel value of the stop nail remainder is abstractly calculated, thereby indirectly bypassing the step of estimating the actual length of the stop nail remainder.
(3)、该接触网限位止钉余量状态检测系统,通过在止钉余量分析模块包括检测结果与止钉余量、定位检测模块和判断结果输出,检测结果与止钉余量的输出端与定位检测模块的输入端连接,定位检测模块的输出端与判断结果输出的输入端连接,通过将止钉余量状态的充足与否,抽象的转换成了计算止钉余量像素值与止钉长度像素比例的方式,能很好的分析止钉余量的状态,从而绕过了因图片拍摄时摄像机距离远近而导致的定位器大小无法准确量化为具体值的问题。(3) The contact network limit stop nail remainder status detection system includes a stop nail remainder analysis module including a detection result and a stop nail remainder, a positioning detection module and a judgment result output, the output end of the detection result and the stop nail remainder is connected to the input end of the positioning detection module, and the output end of the positioning detection module is connected to the input end of the judgment result output. By abstractly converting the sufficiency of the stop nail remainder status into a method of calculating the ratio of the stop nail remainder pixel value to the stop nail length pixel, the stop nail remainder status can be well analyzed, thereby bypassing the problem that the locator size cannot be accurately quantified into a specific value due to the distance of the camera when the picture is taken.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例提供的系统结构;FIG1 is a system structure provided by an embodiment of the present invention;
图2为本发明实施例提供的图像定位方法流程图;FIG2 is a flow chart of an image positioning method provided by an embodiment of the present invention;
图3为本发明实施例提供的止钉余量计算方法流程图;FIG3 is a flow chart of a method for calculating a nail stop margin provided by an embodiment of the present invention;
图4为本发明实施例提供的止钉余量分析方法流程图。FIG. 4 is a flow chart of a method for analyzing a stop nail allowance provided in an embodiment of the present invention.
图中,101、图像采集模块;102、图像定位模块;201、高像素定位器检测网络;202、低像素止钉检测网络;103、止钉余量计算模块;301、边缘图片;302、新检测框;303、新止钉坐标;304、止钉余量;104、止钉余量分析模块;401、检测结果与止钉余量;402、定位检测模块;403、判断结果输出;105、分析结果输出模块。In the figure, 101, image acquisition module; 102, image positioning module; 201, high-pixel locator detection network; 202, low-pixel nail stopping detection network; 103, nail stopping margin calculation module; 301, edge image; 302, new detection frame; 303, new nail stopping coordinates; 304, nail stopping margin; 104, nail stopping margin analysis module; 401, detection result and nail stopping margin; 402, positioning detection module; 403, judgment result output; 105, analysis result output module.
具体实施方式DETAILED DESCRIPTION
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
请参阅图1,本发明实施例提供一种技术方案:一种接触网限位止钉余量状态检测系统,包括图像采集模块101、图像定位模块102、止钉余量计算模块103、止钉余量分析模块104和分析结果输出模块105。Please refer to Figure 1. An embodiment of the present invention provides a technical solution: a contact network limit stop nail remainder status detection system, including an image acquisition module 101, an image positioning module 102, a stop nail remainder calculation module 103, a stop nail remainder analysis module 104 and an analysis result output module 105.
图像采集模块101:图像采集模块,从接触网悬挂状态检测监测系统(4C)中,获取高精度的接触网图像;Image acquisition module 101: an image acquisition module, which acquires high-precision contact network images from the contact network suspension state detection and monitoring system (4C);
图像定位模块102:图像定位模块,首先将101模块输出的接触网图片输入进针对高像素的深度学习检测模型中,检测出限位定位器的检测框,并裁剪定位器图片,再将定位器图片输入进针对低像素的深度学习检测模型中,检测出止钉与止钉铛的检测框;Image positioning module 102: The image positioning module first inputs the contact network image output by module 101 into the deep learning detection model for high pixels, detects the detection frame of the limit locator, and crops the locator image, and then inputs the locator image into the deep learning detection model for low pixels to detect the detection frame of the stop nail and the stop nail ring;
止钉余量计算模块103:止钉余量计算模块,将102模块输出的定位器图片进行灰度化处理并利用双阈值Canny边缘检测算子计算出裁剪后的限位定位器图像边缘,再结合止钉与止钉铛检测框得到止钉余量;The nail stop margin calculation module 103: The nail stop margin calculation module grayscales the locator image output by the 102 module and uses the double-threshold Canny edge detection operator to calculate the edge of the cropped limit locator image, and then combines the nail stop and the nail stop ring detection frame to obtain the nail stop margin;
止钉余量分析模块104:止钉余量分析模块,将103模块输出的止钉余量与102模块输出的止钉检测框进行合并计算,依据止钉余量与止钉长度的比例分析止钉余量是否在预设的阈值内,得到分析结果;The nail stop margin analysis module 104: The nail stop margin analysis module combines and calculates the nail stop margin output by the 103 module and the nail stop detection frame output by the 102 module, and analyzes whether the nail stop margin is within a preset threshold according to the ratio of the nail stop margin to the nail stop length, thereby obtaining an analysis result;
分析结果输出模块105:分析结果输出模块,将止钉余量分析结果标注到接触网图片上,输出最终的分析结果,通过对高速铁路接触网图像中止钉余量状态进行智能化分析,并在增加余量状态分析准确率的同时,提高分析的速度,并且相比现有采用人工排查止钉余量状态的方法而言,本发明利用接触网高清图像,自动化、智能化的分析接触网限位定位器限位止钉余量是否存在过多或过少的状态,极大的减小了人力成本,同时也避免了人工排查时可能出现的问题。Analysis result output module 105: The analysis result output module marks the stop nail margin analysis result on the contact network image and outputs the final analysis result. It performs intelligent analysis on the stop nail margin status in the high-speed railway contact network image and increases the accuracy of margin status analysis while improving the speed of analysis. Compared with the existing method of manually checking the stop nail margin status, the present invention uses high-definition images of the contact network to automatically and intelligently analyze whether the stop nail margin of the contact network limit locator is too much or too little, which greatly reduces labor costs and avoids problems that may occur during manual inspection.
如图2所示是图像定位方法流程图,图像定位模块102包括高像素定位器检测网络201和低像素止钉检测网络202,高像素定位器检测网络201的输出端与低像素止钉检测网络202的输入端连接,具体的实现模块如下所述:As shown in FIG. 2 , it is a flow chart of the image positioning method. The image positioning module 102 includes a high-pixel locator detection network 201 and a low-pixel nail-stopping detection network 202. The output end of the high-pixel locator detection network 201 is connected to the input end of the low-pixel nail-stopping detection network 202. The specific implementation modules are as follows:
高像素定位器检测网络201:模块201首先将接触网图片送入输入为1024*1024的YOLOV3目标检测网络中,得到图片中的限位定位器检测框,再从原图中裁剪出限位定位器图片;High-pixel locator detection network 201: Module 201 first feeds the contact network image into the YOLOV3 target detection network with an input of 1024*1024, obtains the limit locator detection frame in the image, and then crops the limit locator image from the original image;
低像素止钉检测网络202:模块202将模块201中裁剪出的限位定位器图片送入输入为512*512的YOLOV3目标检测网络中,得到图片中的止钉与止钉铛检测框,同时输出裁剪的限位定位器图片、止钉检测框与止钉铛检测框,通过采用针对高像素与低像素的两个深度学习检测模型,分别对定位器与止钉进行识别,可以准确的提取出所需要的检测框。Low-pixel stop nail detection network 202: Module 202 sends the limit locator image cropped in module 201 to the YOLOV3 target detection network with an input of 512*512, obtains the stop nail and stop nail clang detection frames in the image, and simultaneously outputs the cropped limit locator image, stop nail detection frame and stop nail clang detection frame. By adopting two deep learning detection models for high pixels and low pixels, the locator and stop nail are identified respectively, and the required detection frame can be accurately extracted.
如图3所示是止钉余量计算方法流程图,止钉余量计算模块103包括边缘图片301、新检测框302、新止钉坐标303和止钉余量304,边缘图片301的输出端与新检测框302的输入端连接,边缘图片301的输出端与新止钉坐标303的输入端连接,新检测框302的输出端与新止钉坐标303的输入端连接,新止钉坐标303的输出端与止钉余量304的输入端连接,具体的实现模块如下所述:As shown in FIG3 , it is a flow chart of the method for calculating the stop nail margin. The stop nail margin calculation module 103 includes an edge image 301, a new detection frame 302, a new stop nail coordinate 303 and a stop nail margin 304. The output end of the edge image 301 is connected to the input end of the new detection frame 302, the output end of the edge image 301 is connected to the input end of the new stop nail coordinate 303, the output end of the new detection frame 302 is connected to the input end of the new stop nail coordinate 303, and the output end of the new stop nail coordinate 303 is connected to the input end of the stop nail margin 304. The specific implementation modules are as follows:
边缘图片301:模块301首先将得到的限位定位器图片进行处理,依次进行灰度化、二值化、Canny边缘检测算子边缘提取,得到限位定位器的边缘图片;Edge image 301: Module 301 first processes the obtained limit locator image, performs grayscale conversion, binarization, and edge extraction using the Canny edge detection operator in sequence, and obtains an edge image of the limit locator;
新检测框302:模块302首先将得到的止钉检测框与止钉铛检测框进行结合,取止钉与止钉铛检测框左上角x坐标的最小值与y坐标的最小值生成新坐标(xmin2,ymin2),右下角点x坐标的最大值与y坐标的最大值生成新坐标(xmax3,ymax3)。用两个新坐标点生成一个同时包含了止钉与止钉铛的新检测框;New detection frame 302: Module 302 first combines the obtained nail-stopping detection frame with the nail-stopping bell detection frame, taking the minimum x-coordinate and the minimum y-coordinate of the upper left corner of the nail-stopping bell detection frame to generate new coordinates (xmin2, ymin2), and the maximum x-coordinate and the maximum y-coordinate of the lower right corner to generate new coordinates (xmax3, ymax3). Use the two new coordinate points to generate a new detection frame that includes both the nail-stopping bell and the nail-stopping bell;
新止钉坐标303:模块303首先在处理好的限位定位器边缘图片上根据模块302得到的新检测框坐标,截取新检测框边缘图片,再通过止钉检测框与止钉铛检测框计算出在模块302生成的新检测框中止钉的新检测框与止钉铛的新检测框;New stop pin coordinates 303: Module 303 first intercepts the new detection frame edge image on the processed limit locator edge image according to the new detection frame coordinates obtained by module 302, and then calculates the new detection frame of the stop pin and ...
止钉余量304:模块304首先在模块303生成的新的边缘图片中从止钉位置出发,找到止钉新检测框附近离止钉铛新检测框最近处的像素值等于255的像素点,设置为起始点s1,再通过像素点s1,继续向止钉铛新检测框所在的方向遍历横坐标,找到第二个像素值等于255的像素点s2,s1与s2之间的横坐标距离就是止钉余量的像素距离,输出止钉余量,通过图片边缘提取并协同检测框进行计算的方式,抽象的计算出止钉余量的像素值,间接绕过估测止钉余量真实长度的步骤。Stop nail margin 304: Module 304 first starts from the stop nail position in the new edge image generated by module 303, finds the pixel point with a pixel value equal to 255 near the new stop nail detection frame and closest to the new stop nail detection frame, sets it as the starting point s1, and then passes through pixel point s1 to continue traversing the horizontal coordinate in the direction of the new stop nail detection frame, and finds the second pixel point s2 with a pixel value equal to 255. The horizontal coordinate distance between s1 and s2 is the pixel distance of the stop nail margin, and outputs the stop nail margin. By extracting the edge of the picture and calculating in coordination with the detection frame, the pixel value of the stop nail margin is abstractly calculated, indirectly bypassing the step of estimating the actual length of the stop nail margin.
如图4所示是止钉余量分析方法流程图,止钉余量分析模块104包括检测结果与止钉余量401、定位检测模块402和判断结果输出403,检测结果与止钉余量401的输出端与定位检测模块402的输入端连接,定位检测模块402的输出端与判断结果输出403的输入端连接,具体的实现模块如下所述:FIG4 is a flow chart of a method for analyzing the allowance of a nail stop. The allowance analysis module 104 includes a detection result and a nail stop allowance 401, a positioning detection module 402, and a judgment result output 403. The output end of the detection result and the nail stop allowance 401 is connected to the input end of the positioning detection module 402, and the output end of the positioning detection module 402 is connected to the input end of the judgment result output 403. The specific implementation modules are as follows:
检测结果与止钉余量401:模块401获取到定位器检测结果、止钉与止钉铛检测结果、止钉余量像素值;Detection results and nail stop margin 401: Module 401 obtains the locator detection results, nail stop and nail stop bell detection results, and nail stop margin pixel values;
定位检测模块402:模块402进行止钉余量是否充足的分析,当同时满足以下三个条件时,判定余量合适,(1)输入的定位器检测结果存在;(2)输入的止钉铛与止钉检测结果同时存在且各自具有唯一性;(3)计算出的止钉余量像素值与止钉宽度像素值的比例在预设的阈值范围内;Positioning detection module 402: Module 402 analyzes whether the nail stop margin is sufficient. When the following three conditions are met at the same time, the margin is determined to be appropriate: (1) the input locator detection result exists; (2) the input nail stop ring and the nail stop detection result exist at the same time and each is unique; (3) the ratio of the calculated nail stop margin pixel value to the nail stop width pixel value is within a preset threshold range;
判断结果输出403:模块403将模块402得到的分析结果进行输出,通过将止钉余量状态的充足与否,抽象的转换成了计算止钉余量像素值与止钉长度像素比例的方式,能很好的分析止钉余量的状态,从而绕过了因图片拍摄时摄像机距离远近而导致的定位器大小无法准确量化为具体值的问题。Judgment result output 403: Module 403 outputs the analysis result obtained by module 402. By abstractly converting the sufficiency of the stop nail margin state into a method of calculating the ratio of the pixel value of the stop nail margin to the pixel of the stop nail length, the state of the stop nail margin can be well analyzed, thereby bypassing the problem that the locator size cannot be accurately quantified into a specific value due to the distance of the camera when the picture is taken.
同时本说明书中未作详细描述的内容均属于本领域技术人员公知的现有技术。Meanwhile, the contents not described in detail in this specification belong to the prior art known to those skilled in the art.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。It should be noted that, in this article, relational terms such as first and second, etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations. Moreover, the terms "include", "comprise" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or device.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that various changes, modifications, substitutions and variations may be made to the embodiments without departing from the principles and spirit of the present invention, and that the scope of the present invention is defined by the appended claims and their equivalents.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010633369.1ACN111754508B (en) | 2020-07-06 | 2020-07-06 | A contact network limit stop nail surplus state detection system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010633369.1ACN111754508B (en) | 2020-07-06 | 2020-07-06 | A contact network limit stop nail surplus state detection system |
| Publication Number | Publication Date |
|---|---|
| CN111754508A CN111754508A (en) | 2020-10-09 |
| CN111754508Btrue CN111754508B (en) | 2024-11-08 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010633369.1AActiveCN111754508B (en) | 2020-07-06 | 2020-07-06 | A contact network limit stop nail surplus state detection system |
| Country | Link |
|---|---|
| CN (1) | CN111754508B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105719305A (en)* | 2016-01-25 | 2016-06-29 | 成都国铁电气设备有限公司 | Assembly falloff defect identification method and system of overhead contact system |
| CN106570857A (en)* | 2016-09-11 | 2017-04-19 | 西南交通大学 | High-speed railway overhead contact system lateral conductor fixation hook nut falling bad state detection method based on HOG features |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011209227A (en)* | 2010-03-30 | 2011-10-20 | Railway Technical Research Institute | Non-destructive inspection device for electric traction material |
| KR102359695B1 (en)* | 2011-02-15 | 2022-02-09 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Systems for detecting clamping or firing failure |
| JP6785863B2 (en)* | 2016-08-23 | 2020-11-18 | 株式会社Pfu | Binding member detection device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105719305A (en)* | 2016-01-25 | 2016-06-29 | 成都国铁电气设备有限公司 | Assembly falloff defect identification method and system of overhead contact system |
| CN106570857A (en)* | 2016-09-11 | 2017-04-19 | 西南交通大学 | High-speed railway overhead contact system lateral conductor fixation hook nut falling bad state detection method based on HOG features |
| Publication number | Publication date |
|---|---|
| CN111754508A (en) | 2020-10-09 |
| Publication | Publication Date | Title |
|---|---|---|
| CN107895362A (en) | A kind of machine vision method of miniature binding post quality testing | |
| CN107402221A (en) | A kind of defects of display panel recognition methods and system based on machine vision | |
| WO2014139273A1 (en) | Weld seam defect detection method | |
| CN102680478A (en) | Detection method and device of surface defect of mechanical part based on machine vision | |
| CN110186375A (en) | Intelligent high-speed rail white body assemble welding feature detection device and detection method | |
| CN103983426B (en) | The detection of a kind of defect of optical fiber based on machine vision and sorting technique | |
| CN112880837B (en) | Equipment fault analysis method | |
| CN104458748A (en) | Aluminum profile surface defect detecting method based on machine vision | |
| CN103837097B (en) | A kind of workpiece angle self-operated measuring unit based on image procossing and measuring method | |
| CN104197836A (en) | Vehicle lock assembly size detection method based on machine vision | |
| CN110473184A (en) | A kind of pcb board defect inspection method | |
| CN104899879B (en) | A kind of method of the online outward appearance detection of electric energy meter | |
| CN110991360B (en) | Robot inspection point position intelligent configuration method based on visual algorithm | |
| CN205229061U (en) | LCD light guide plate defect detecting system based on line sweep camera | |
| WO2016169316A1 (en) | Parallel image measurement method for measuring thickness of insulating layer facing radially symmetrical cable section | |
| CN110514664A (en) | A robot and method for positioning detection of package yarn rod | |
| CN116228651A (en) | A cloth defect detection method, system, equipment and medium | |
| CN108280838A (en) | A kind of intermediate plate tooth form defect inspection method based on edge detection | |
| CN110493574A (en) | Safety supervision visualization system based on Streaming Media and AI technology | |
| CN116908107A (en) | Paint surface flaw detection system based on machine vision | |
| CN112465784B (en) | Metro clamp appearance abnormality detection method | |
| CN205374331U (en) | Object surface blemish detection device | |
| CN205486309U (en) | Through whether correct device of test capacitor installation of shooing | |
| CN115423799A (en) | Method and device for identifying surface cracks of continuous casting billet | |
| CN111754508B (en) | A contact network limit stop nail surplus state detection system |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |