Movatterモバイル変換


[0]ホーム

URL:


CN111693995B - Inverse synthetic aperture laser radar imaging vibration phase error estimation device and method - Google Patents

Inverse synthetic aperture laser radar imaging vibration phase error estimation device and method
Download PDF

Info

Publication number
CN111693995B
CN111693995BCN202010555827.4ACN202010555827ACN111693995BCN 111693995 BCN111693995 BCN 111693995BCN 202010555827 ACN202010555827 ACN 202010555827ACN 111693995 BCN111693995 BCN 111693995B
Authority
CN
China
Prior art keywords
signal
phase error
vibration phase
data
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010555827.4A
Other languages
Chinese (zh)
Other versions
CN111693995A (en
Inventor
李建
魏凯
徐晨
付瀚初
晋凯
江长春
李敏
张雨东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CASfiledCriticalInstitute of Optics and Electronics of CAS
Priority to CN202010555827.4ApriorityCriticalpatent/CN111693995B/en
Publication of CN111693995ApublicationCriticalpatent/CN111693995A/en
Application grantedgrantedCritical
Publication of CN111693995BpublicationCriticalpatent/CN111693995B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种逆合成孔径激光雷达成像振动相位误差估计装置与方法,包括:激光器系统,多通道信号接收系统,多通道数据采集系统,数据处理系统,信号发射器,分束器和探测器,多通道信号接收系统构成了一种V型结构的基线,其振动相位误差估计方法是,在基线方向由两条基线上对应序号的天线互相干涉提取干涉相位,由几何关系和目标运动速度计算得到振动相位误差梯度,在时间上积分得到振动相位误差,最后在基线空间方向上进行平均计算得到估计振动相位误差,用估计得到的振动相位误差对原始数据进行补偿成像,提高逆合成孔径激光雷达成像质量,降低振动误差对成像质量的影响。

The invention discloses an inverse synthetic aperture laser radar imaging vibration phase error estimation device and method, which includes: a laser system, a multi-channel signal receiving system, a multi-channel data acquisition system, a data processing system, a signal transmitter, a beam splitter and a detection system. The multi-channel signal receiving system constitutes a V-shaped baseline. The vibration phase error estimation method is to extract the interference phase from the mutual interference of antennas with corresponding serial numbers on the two baselines in the direction of the baseline. The geometric relationship and target movement speed are used to extract the interference phase. Calculate the vibration phase error gradient, integrate it over time to obtain the vibration phase error, and finally perform an average calculation in the baseline spatial direction to obtain the estimated vibration phase error. Use the estimated vibration phase error to compensate for the original data imaging and improve the inverse synthetic aperture laser Radar imaging quality and reduce the impact of vibration error on imaging quality.

Description

Translated fromChinese
一种逆合成孔径激光雷达成像振动相位误差估计装置与方法An inverse synthetic aperture lidar imaging vibration phase error estimation device and method

技术领域Technical field

本发明属于逆合成孔径激光雷达(Invers Synthetic Aperture Ladar,ISAL)成像系统设计与数据处理领域,具体涉及一种优化基线结构的干涉逆合成孔径激光雷达(Interferometry Invers Synthetic Aperture Ladar,InISAL)的系统设计与成像数据处理方法。The invention belongs to the field of inverse synthetic aperture lidar (Invers Synthetic Aperture Ladar, ISAL) imaging system design and data processing, and specifically relates to the system design of an optimized baseline structure of interference inverse synthetic aperture lidar (Interferometry Invers Synthetic Aperture Ladar, InISAL). and imaging data processing methods.

背景技术Background technique

合成孔径雷达(Synthetic Aperture Radar,SAR)在应用于运动目标成像而雷达系统相对于目标静止的场景下又被称为逆合成孔径雷达(Invers Synthetic ApertureRadar,ISAR)。随着成像分辨率的需求不断提高和激光器技术的蓬勃发展,ISAR在光学波段的推广ISAL成像系统的应用脚步不断加快。在远距离目标成像中,为了获取系统的振动相位误差和目标三维特征信息,干涉成像的理念被引入到ISAL成像系统中。Synthetic Aperture Radar (SAR) is also called Invers Synthetic Aperture Radar (ISAR) when it is used to image moving targets and the radar system is stationary relative to the target. As the demand for imaging resolution continues to increase and laser technology flourishes, the promotion of ISAR in the optical band and the application of ISAL imaging systems continue to accelerate. In long-distance target imaging, in order to obtain the system's vibration phase error and target three-dimensional feature information, the concept of interference imaging is introduced into the ISAL imaging system.

目前国内外有多个单位开展了合成孔径激光雷达(Synthetic Aperture Ladar,SAL)的室内验证工作和室外机载实验工作。At present, many units at home and abroad have carried out indoor verification work and outdoor airborne experiments of Synthetic Aperture Ladar (SAL).

国外具有代表性的是:美国Firepond激光雷达系统(Alfred B.Gschwendtner,William E.Keicher.Development of Coherent Laser Radar at Lincoln Laboratory[J].lincoln laboratory journal,2000.);2006年美国Raytheon公司机载SAL成像实验(JRicklin,B Schumm,M Dierking,Synthetic Aperture Ladar for Tactical Imagingoverview[C].The 14th Coherent laser radar conference(CLRC),Snowmass,Colorado,USA,July,8-13,2007;2011年美国洛马公司1.6km机载SAL实验(Brian Krause,JosephBuck,Christopher Ryan,et al.Synthetic Aperture Ladar Flight Demonstration[C].Optical Society of America/Conference on Laser and Electro-optics(OSA/CLEO),2011)。The representative ones abroad are: the American Firepond lidar system (Alfred B.Gschwendtner, William E.Keicher. Development of Coherent Laser Radar at Lincoln Laboratory [J]. lincoln laboratory journal, 2000.); the 2006 American Raytheon Company airborne SAL imaging experiment (JRicklin, B Schumm, M Dierking, Synthetic Aperture Ladar for Tactical Imagingoverview[C]. The 14th Coherent laser radar conference (CLRC), Snowmass, Colorado, USA, July, 8-13, 2007; 2011 Los Angeles, USA Malaysian company’s 1.6km airborne SAL experiment (Brian Krause, Joseph Buck, Christopher Ryan, et al. Synthetic Aperture Ladar Flight Demonstration [C]. Optical Society of America/Conference on Laser and Electro-optics (OSA/CLEO), 2011).

国内目前中科院电子所、中科院上光所等单位也开展了大量有关SAL/ISAL的理论和实验研究工作,对InISAL的研究工作大部分还处于理论阶段,胡炬等人对InISAL成像系统的振动相位误差进行了仿真分析(Xuan H,Daojing L.Vibration phases estimationbased on multi-channel interferometry for ISAL[J].Applied Optics,2018,57(22):6481-6490.),提出了一种基于正交基线干涉处理的ISAL振动相位误差估计方法,通过M个接收通道使基线构成正交形式,并在相同视角和相同距离上进行M次观察。原理上,如果目标不存在振动,每次观测结果应该相同,若目标有振动,每两次观测所获得的目标回波的干涉相位就是振动相位误差的差分值,经过时间和空间的拼接对振动误差模型的系数进行估计得到完整成像观测时间内的的误差观测结果,并利用微波InISAR数据验证了其误差估计方法的有效性。At present, domestic institutions such as the Institute of Electronics of the Chinese Academy of Sciences and the Institute of Optoelectronics of the Chinese Academy of Sciences have also carried out a large number of theoretical and experimental research work on SAL/ISAL. Most of the research work on InISAL is still in the theoretical stage. Hu Ju and others have studied the vibration phase of the InISAL imaging system. The error was simulated and analyzed (Xuan H, Daojing L.Vibration phases estimation based on multi-channel interferometry for ISAL[J]. Applied Optics, 2018, 57(22): 6481-6490.), and a method based on orthogonal baselines was proposed The ISAL vibration phase error estimation method of interference processing makes the baseline form an orthogonal form through M receiving channels, and conducts M observations at the same viewing angle and the same distance. In principle, if the target does not vibrate, the results of each observation should be the same. If the target vibrates, the interference phase of the target echo obtained in each two observations is the difference value of the vibration phase error. After the splicing of time and space, the vibration The coefficients of the error model are estimated to obtain the error observation results within the complete imaging observation time, and the effectiveness of the error estimation method is verified using microwave InISAR data.

振动相位误差补偿是InISAL系统工程化应用不可缺少的部分,原因在于激光波长通常比微波波长短3个数量级,即使微小的系统振动误差也会对成像效果产生严重影响。一种基于正交基线干涉处理的ISAL振动相位误差估计方法的局限性在于,工程应用中严格的正交基线排布方式难以实现,振动相位误差估计的处理方法只能提取顺轨方向分量,且在目标运动方式更为复杂的情况下,该振动相位误差估计方法的有效性将受到一定的影响,为此需要一种对光学振动更为敏感的成像振动相位误差估计方法。Vibration phase error compensation is an indispensable part of the engineering application of the InISAL system. The reason is that the laser wavelength is usually 3 orders of magnitude shorter than the microwave wavelength, and even a small system vibration error will have a serious impact on the imaging effect. The limitation of an ISAL vibration phase error estimation method based on orthogonal baseline interference processing is that the strict orthogonal baseline arrangement in engineering applications is difficult to achieve. The vibration phase error estimation processing method can only extract the along-track direction component, and When the target movement pattern is more complex, the effectiveness of this vibration phase error estimation method will be affected to a certain extent. Therefore, an imaging vibration phase error estimation method that is more sensitive to optical vibration is needed.

发明内容Contents of the invention

为解决以上问题,本文提出一种逆合成孔径激光雷达成像振动相位误差估计装置与方法,提高InISAL系统工程应用的灵活性和振动相位误差估计的有效性。In order to solve the above problems, this paper proposes an inverse synthetic aperture lidar imaging vibration phase error estimation device and method to improve the flexibility of InISAL system engineering applications and the effectiveness of vibration phase error estimation.

本发明采用的技术方案为:一种逆合成孔径激光雷达成像振动相位误差估计装置,该装置包括激光器系统1,多通道信号接收系统6,多通道数据采集系统7,数据处理系统8,信号发射器5,分束器2和探测器9,多通道信号接收系统6为V型排布的多通道信号接收系统,V型排布的多通道信号接收系统内,信号接收器组成的两条基线非正交,各个接收器的间距通过优化设计得到,通过该排布方式接收的数据对振动相位误差估计的有效性更高,The technical solution adopted by the present invention is: an inverse synthetic aperture laser radar imaging vibration phase error estimation device. The device includes a laser system 1, a multi-channel signal receiving system 6, a multi-channel data acquisition system 7, a data processing system 8, and a signal transmitter. 5, beam splitter 2 and detector 9, multi-channel signal receiving system 6 is a V-shaped arranged multi-channel signal receiving system. In the V-shaped arranged multi-channel signal receiving system, two baselines composed of signal receivers Non-orthogonal, the spacing between each receiver is obtained through optimized design. The data received through this arrangement is more effective in estimating the vibration phase error.

激光器系统产生用于目标探测的线性调频信号,其中一部分作为本振信号和参考信号,另一部分用于目标探测,本振信号和回波信号混频得到包含目标信息的中频信号,参考信号用于发射信号非线性误差补偿,V型排布的多通道信号接收系统内共有2M+1个信号接收器,组成两条基线,两条基线所成角度不定,可以是锐角,直角或钝角,每条基线上安装有M个信号接收器,通过优化可以计算得到每两个信号接收器排布间隔的最佳值,数据处理系统根据多通道信号接收系统和多通道数据采集系统接收采集到的数据si(t)对振动相位误差进行估计并成像,其中i=0,1,2……M,M+1,……2M。其步骤具体为:The laser system generates a chirp signal for target detection, part of which is used as a local oscillator signal and a reference signal, and the other part is used for target detection. The local oscillator signal and the echo signal are mixed to obtain an intermediate frequency signal containing target information, and the reference signal is used for Non-linear error compensation of the transmitted signal. There are 2M+1 signal receivers in the V-shaped multi-channel signal receiving system, forming two baselines. The angles formed by the two baselines are variable and can be acute angles, right angles or obtuse angles. Each There are M signal receivers installed on the baseline. Through optimization, the optimal value of the arrangement interval of each two signal receivers can be calculated. The data processing system receives the collected data s according to the multi-channel signal receiving system and the multi-channel data acquisition system.i (t) estimates and images the vibration phase error, where i=0, 1, 2...M, M+1,...2M. The specific steps are:

步骤1:利用参考信号sref(tk,tm)对回波数据si(tk,tm)做非线性补偿得到siu(tk,tm);Step 1: Use the reference signal sref (tk , tm ) to perform nonlinear compensation on the echo datasi (tk , tm ) to obtainsiu (tk , tm );

步骤2:对siu(tk,tm)做平动补偿和转动补偿得到siuc(tk,tm);Step 2: Perform translational compensation and rotation compensation onsiu (tk , tm ) to obtainsiuc (tk , tm );

步骤3:对siuc(tk,tm)进行混频和距离向压缩处理得到siuc(fr,tm);Step 3: Perform mixing and range compression processing onsiuc (tk , tm ) to obtainsiuc (fr , tm );

步骤4:步骤3处理得到2M+1组数据,其中每一基线上同一序号天线与中心天线信号干涉,提取得到M个基线方向包含振动相位误差梯度的干涉相位Step 4: Step 3 is processed to obtain 2M+1 sets of data, in which the same serial number antenna on each baseline interferes with the central antenna signal, and the interference phase containing the vibration phase error gradient in M baseline directions is extracted.

步骤5:根据回波数据利用调频率定标方法估计目标运动速度Step 5: Use the frequency modulation calibration method to estimate the target movement speed based on the echo data.

步骤6:根据干涉相位由几何关系和估计得到的目标运动速度/>计算得到振动相位误差梯度/>Step 6: According to the interference phase Target movement speed obtained from geometric relations and estimation/> Calculate the vibration phase error gradient/>

步骤7:将相位误差梯度在时间方向积分,得到某两组信号之间的振动相位误差φ0,i(i);Step 7: Convert the phase error gradient to Integrate in the time direction to obtain the vibration phase error φ0,i (i) between a certain two sets of signals;

步骤8:将振动相位误差φ0,i(i)沿着基线方向在空间上进行平均,得到运动目标在慢时间内的估计振动相位误差Step 8: Spatially average the vibration phase error φ0, i (i) along the baseline direction to obtain the estimated vibration phase error of the moving target in slow time.

步骤9:根据估计得到的对si(tk,tm)做出补偿;Step 9: Based on estimates Make compensation for si (tk , tm );

步骤10:对补偿后的回波数据进行方位向压缩,得到目标图像。Step 10: Perform azimuth compression on the compensated echo data to obtain the target image.

进一步地,其V型结构基线的夹角为锐角,或是直角,即正交干涉形式。Furthermore, the angle between the base lines of the V-shaped structure is an acute angle or a right angle, which is an orthogonal interference form.

进一步地,所述激光器系统产生用于目标探测的线性调频信号,在分束器处按比例分为两路,其中一路作为探测信号用于目标探测,另一路作为本振信号和参考信号。Further, the laser system generates a chirp signal for target detection, which is proportionally divided into two channels at the beam splitter, one of which is used as a detection signal for target detection, and the other is used as a local oscillator signal and a reference signal.

进一步地,所述探测器为多通道探测器,具体探测路数为信号接收器个数加本振信号路数加参考信号路数。Further, the detector is a multi-channel detector, and the specific number of detection channels is the number of signal receivers plus the number of local oscillator signal channels plus the number of reference signal channels.

本发明还提供一种振动相位误差估计的成像方法,包括:The present invention also provides an imaging method for vibration phase error estimation, including:

步骤1:利用参考信号对回波数据做非线性补偿;Step 1: Use the reference signal to perform nonlinear compensation on the echo data;

步骤2:对非线性补偿后的数据做平动补偿和转动补偿;Step 2: Perform translational compensation and rotational compensation on the nonlinearly compensated data;

步骤3:对补偿后数据进行距离向压缩处理;Step 3: Perform distance compression on the compensated data;

步骤4:步骤3处理得到2M+1组数据,其中每一基线上同一序号天线与中心天线信号干涉,提取得到M个基线方向包含振动相位误差梯度的干涉相位;Step 4: Step 3 is processed to obtain 2M+1 sets of data, in which the same serial number antenna on each baseline interferes with the central antenna signal, and the interference phase containing the vibration phase error gradient in M baseline directions is extracted;

步骤5:根据回波数据利用调频率定标方法估计目标运动速度;Step 5: Use the frequency modulation calibration method to estimate the target movement speed based on the echo data;

步骤6:根据干涉相位,由几何关系和估计得到的目标运动速度计算得到振动相位误差梯度;Step 6: According to the interference phase, the vibration phase error gradient is calculated from the geometric relationship and the estimated target motion speed;

步骤7:将相位误差梯度在时间方向积分,得到某两组信号之间的振动相位误差;Step 7: Integrate the phase error gradient in the time direction to obtain the vibration phase error between a certain two sets of signals;

步骤8:将振动相位误差值基线方向在空间上进行平均,得到运动目标在慢时间内的估计振动相位误差;Step 8: Spatially average the baseline directions of the vibration phase error values to obtain the estimated vibration phase error of the moving target in slow time;

步骤9:根据估计得到的振动相位误差对接收原始数据做出补偿;Step 9: Compensate the received original data based on the estimated vibration phase error;

步骤10:对补偿后的回波数据进行方位向压缩,得到目标图像。Step 10: Perform azimuth compression on the compensated echo data to obtain the target image.

与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明设计的V型基线,在实际工程应用中对复杂多变的环境具有较强的适应性。The V-shaped baseline designed by the present invention has strong adaptability to complex and changeable environments in actual engineering applications.

本发明设计的多通道振动相位误差估计方法将空间基线方向上的振动相位误差进行平均,所得结果更接近真是误差值,对误差的描述更加准确。The multi-channel vibration phase error estimation method designed by the present invention averages the vibration phase errors in the direction of the spatial baseline, and the obtained results are closer to the true error value, and the error description is more accurate.

附图说明Description of the drawings

图1为本发明的一种逆合成孔径激光雷达成像振动相位误差估计装置组成及原理示意图;Figure 1 is a schematic diagram of the composition and principle of an inverse synthetic aperture lidar imaging vibration phase error estimation device of the present invention;

图2为本发明多通道信号接收系统几何模型示意图;Figure 2 is a schematic diagram of the geometric model of the multi-channel signal receiving system of the present invention;

图3为本发明成像数据处理的流程图。Figure 3 is a flow chart of imaging data processing according to the present invention.

图中附图标记含义为:1为激光器系统,2为分束器,3为耦合器,4为发射镜,5为信号发射器,6为多通道信号接收系统,7为多通道数据采集系统,8为数据处理系统,9为探测器。The meanings of the reference marks in the figure are: 1 is the laser system, 2 is the beam splitter, 3 is the coupler, 4 is the transmitting mirror, 5 is the signal transmitter, 6 is the multi-channel signal receiving system, and 7 is the multi-channel data acquisition system. , 8 is the data processing system, 9 is the detector.

具体实施方式Detailed ways

下面结合附图对本发明的具体实施方式进一步说明。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings.

本发明提供了一种逆合成孔径激光雷达成像振动相位误差估计装置。包括:激光器系统1,多通道信号接收系统6,多通道数据采集系统7,数据处理系统8,信号发射器5,分束器2和探测器9。The invention provides an inverse synthetic aperture laser radar imaging vibration phase error estimation device. It includes: laser system 1, multi-channel signal receiving system 6, multi-channel data acquisition system 7, data processing system 8, signal transmitter 5, beam splitter 2 and detector 9.

所述激光器系统1产生用于目标探测的线性调频信号:The laser system 1 generates a chirp signal for target detection:

式中,t=tk+tm,为全时间,tk为距离向时间,称为快时间,tm为方位向时间,称为慢时间。Tp为信号距离向的时间宽度,fc为信号中心频率,Kr(t)为时变调频率,即调制频率的变化率,由所述参考信号进行补偿,A为信号幅度。In the formula, t = tk + tm , which is the total time, tk is the distance time, which is called fast time, and tm is the azimuth time, which is called slow time. Tp is the time width of the signal in the distance direction, fc is the center frequency of the signal, Kr (t) is the time-varying modulation frequency, that is, the rate of change of the modulation frequency, which is compensated by the reference signal, and A is the signal amplitude.

所述信号发射器还包括耦合器3和发射镜4,将目标离散化为多个散射点组成,则回波信号可以表示为:The signal transmitter also includes a coupler 3 and a transmitting mirror 4, which discretizes the target into multiple scattering points. The echo signal can be expressed as:

式中,sip(tk,tm)为发射信号在时间延迟内的信号,为固定光程差引入的相位,所包含的相位误差项由所述振动相位误差估计方法得到。Rip(t)为第i个接收器接收到的第p个散射点回波信号的传播距离,c为光速。In the formula, sip (tk , tm ) is the signal of the transmitted signal within the time delay, For the phase introduced by the fixed optical path difference, the included phase error term is obtained by the vibration phase error estimation method. Rip (t) is the propagation distance of the p-th scattering point echo signal received by the i-th receiver, and c is the speed of light.

所述传播距离Rip(t)可以展开为:The propagation distance Rip (t) can be expanded as:

Rip(t)≈R0(t)+xip+yipωtmRip (t)≈R0 (t)+xip +yip ωtm

所述激光器系统1产生的线性调频信号,在分束器2处按比例分为两路,其中一路作为探测信号用于目标探测,另一路作为本振信号和参考信号。The chirp signal generated by the laser system 1 is proportionally divided into two channels at the beam splitter 2, one of which is used as a detection signal for target detection, and the other is used as a local oscillator signal and a reference signal.

所述参考信号可将信号调频率的非线性特征进行补偿,消除调频率的时变性,即调频率Kr(t)变为KrThe reference signal can compensate for the nonlinear characteristics of the signal modulation frequency and eliminate the time variability of the modulation frequency, that is, the modulation frequency Kr (t) becomes Kr .

所述本振信号与回波信号经过探测器9混频外差得到回波中频信号,再经过运动补偿和距离压缩得到:The local oscillator signal and the echo signal are mixed and heterodyne by the detector 9 to obtain the echo intermediate frequency signal, and then through motion compensation and distance compression, the following is obtained:

所述多通道信号接收系统6内,V型基线上排布有2M+1个接收器。即得到2M+1组回波数据,所述步骤4,每一基线上同一序号天线与中心天线信号干涉,提取得到M个基线方向包含振动相位误差梯度的干涉相位In the multi-channel signal receiving system 6, 2M+1 receivers are arranged on the V-shaped baseline. That is, 2M+1 sets of echo data are obtained. In step 4, the same serial number antenna on each baseline interferes with the central antenna signal, and the interference phase containing the vibration phase error gradient in M baseline directions is extracted.

由所述步骤5估计得到目标运动速度所述步骤6根据干涉相位/>由几何关系和估计得到的目标运动速度/>计算得到振动相位误差梯度/>The target movement speed is estimated from step 5 The step 6 is based on the interference phase/> Target movement speed obtained from geometric relations and estimation/> Calculate the vibration phase error gradient/>

式中L为基线长度,及对应编号信号接收器到中心接收器的距离。将振动相位误差梯度在时间方向积分得到振动相位误差,In the formula, L is the baseline length and the distance from the corresponding numbered signal receiver to the center receiver. Integrate the vibration phase error gradient in the time direction to obtain the vibration phase error,

所述步骤8将振动相位误差φ0,i(i)沿着基线方向在空间上进行平均,得到运动目标在慢时间内的估计振动相位误差The step 8 spatially averages the vibration phase error φ0, i (i) along the baseline direction to obtain the estimated vibration phase error of the moving target in slow time.

所述步骤9根据估计得到的对si(tk,tm)做出补偿即,The step 9 is based on the estimated To compensate si (tk , tm ), that is,

所述步骤10对补偿后的回波数据进行方位向压缩,得到目标图像。The step 10 performs azimuth compression on the compensated echo data to obtain a target image.

本发明并不局限于上述的具体实施方式,凡在本发明的精神和原则之内对本发明的一些修改和变更也应当落入本发明的权利要求保护范围内。The present invention is not limited to the above-mentioned specific embodiments. Any modifications and changes to the present invention within the spirit and principles of the present invention should also fall within the scope of the claims of the present invention.

Claims (5)

1. The device comprises a laser system (1), a multichannel signal receiving system (6), a multichannel data acquisition system (7), a data processing system (8), a signal transmitter (5), a beam splitter (2) and a detector (9), and is characterized in that: the multichannel signal receiving system (6) is a multichannel signal receiving system with V-shaped arrangement, in the multichannel signal receiving system with V-shaped arrangement, two baselines formed by signal receivers are non-orthogonal, the space between the receivers is obtained through optimal design, and the space between the receivers is formed through the rowThe effectiveness of the data received by the distribution mode on vibration phase error estimation is higher, a laser system generates linear frequency modulation signals for target detection, one part of the linear frequency modulation signals is used as local oscillation signals and reference signals, the other part of the linear frequency modulation signals is used for target detection, the local oscillation signals and echo signals are mixed to obtain intermediate frequency signals containing target information, the reference signals are used for nonlinear error compensation of transmitted signals, 2M+1 signal receivers are shared in a V-shaped distributed multichannel signal receiving system to form two baselines, the angles of the two baselines are variable, the two baselines can be acute angles, right angles or obtuse angles, M signal receivers are arranged on each baseline, the optimal value of the distribution interval of each two signal receivers can be calculated through optimization, and a data processing system receives collected data s according to a multichannel signal receiving system and a multichannel data collecting systemi (t) estimating and imaging the vibration phase error, wherein i = 0,1,2 … … M, m+1, … … M;
CN202010555827.4A2020-06-172020-06-17Inverse synthetic aperture laser radar imaging vibration phase error estimation device and methodActiveCN111693995B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202010555827.4ACN111693995B (en)2020-06-172020-06-17Inverse synthetic aperture laser radar imaging vibration phase error estimation device and method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202010555827.4ACN111693995B (en)2020-06-172020-06-17Inverse synthetic aperture laser radar imaging vibration phase error estimation device and method

Publications (2)

Publication NumberPublication Date
CN111693995A CN111693995A (en)2020-09-22
CN111693995Btrue CN111693995B (en)2023-10-03

Family

ID=72481554

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202010555827.4AActiveCN111693995B (en)2020-06-172020-06-17Inverse synthetic aperture laser radar imaging vibration phase error estimation device and method

Country Status (1)

CountryLink
CN (1)CN111693995B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN116400374B (en)*2023-05-042024-05-03深圳市华众自动化工程有限公司Measuring device and method based on high-precision laser signal acquisition
CN117148380B (en)*2023-10-312024-02-06西安电子科技大学 Vibration phase compensation satellite ISAL imaging method based on frequency reduction optimization

Citations (21)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101111852A (en)*2004-06-222008-01-23伍比克公司Rfid system utilizing parametric reflective technology
CN102193088A (en)*2010-02-092011-09-21中国科学院电子学研究所Closed loop calibration network for synthetic aperture radar calibration and method for calibrating and compensating error
CN102636776A (en)*2012-03-312012-08-15中国科学院上海技术物理研究所Data processing method for THz-grade large-bandwidth laser synthetic aperture radar imaging system
CN103176172A (en)*2013-02-062013-06-26中国科学院电子学研究所Phase measurement compensation method for airborne interferometric SAR (synthetic aperture radar) based on synchronous internal calibration signals
EP2648379A2 (en)*2012-08-172013-10-09Institute of Electronics, Chinese Academy of SciencesMethod and apparatus for estimating channel error
CN103439888A (en)*2013-08-152013-12-11北京航空航天大学Multi-channel space-borne SAR antenna control error compensation method
CN103576145A (en)*2012-07-302014-02-12中国科学院电子学研究所System and imaging method for airborne synthetic aperture laser radar
CN103728621A (en)*2014-01-242014-04-16中国科学院电子学研究所Onboard SAL imaging method adopting along-track interference to inhibit platform vibration
CN103901429A (en)*2014-04-092014-07-02西安电子科技大学Inverse synthetic aperture radar imaging method for maneuvering targets on basis of sparse aperture
CN105548972A (en)*2014-09-192016-05-04波音公司Phase calibration of a stepped-chirp signal for a synthetic aperture radar
CN106371102A (en)*2016-10-082017-02-01中国科学院光电技术研究所Inverse synthetic aperture laser radar signal receiving system based on adaptive optics
EP3144702A1 (en)*2015-09-172017-03-22Institute of Electronics, Chinese Academy of SciencesMethod and device for synthethic aperture radar imaging based on non-linear frequency modulation signal
CN108318892A (en)*2018-02-062018-07-24中国科学院电子学研究所The motive target imaging method and system of orthogonal baseline InISAL
CN108387900A (en)*2018-05-092018-08-10西安电子科技大学A kind of vibration error compensation method of the rotary synthetic aperture radar of Review for Helicopter
CN109031295A (en)*2018-07-172018-12-18中国人民解放军国防科技大学 An ISAR image registration method based on path difference compensation
CN109085589A (en)*2018-10-162018-12-25中国人民解放军国防科技大学 Phase self-focusing method for sparse aperture ISAR imaging based on image quality guidance
CN109633637A (en)*2018-11-082019-04-16上海无线电设备研究所A kind of Terahertz SAR high-frequency vibration error compensating method
CN110376607A (en)*2019-08-232019-10-25长沙天仪空间科技研究院有限公司Synthetic Aperture Laser Radar system
CN110554385A (en)*2019-07-022019-12-10中国航空工业集团公司雷华电子技术研究所Self-focusing imaging method and device for maneuvering trajectory synthetic aperture radar and radar system
CN110780272A (en)*2019-10-292020-02-11西安电子科技大学 A Nonparametric Paired Echo Suppression Method for Turbulence Platform SAR
CN110988864A (en)*2019-12-112020-04-10中国电子科技集团公司第二十研究所MTI radar speed measuring method with frequency agility

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9395437B2 (en)*2013-06-062016-07-19The United States Of America, As Represented By The Secretary Of The ArmyMoving multi-polarization multi-transmitter/receiver ground penetrating radar system and signal processing for buried target detection
US10564268B2 (en)*2017-02-172020-02-18Institut National D'optiquePhase-error correction in a synthetic aperture imaging system with local oscillator time delay adjustment

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101111852A (en)*2004-06-222008-01-23伍比克公司Rfid system utilizing parametric reflective technology
CN102193088A (en)*2010-02-092011-09-21中国科学院电子学研究所Closed loop calibration network for synthetic aperture radar calibration and method for calibrating and compensating error
CN102636776A (en)*2012-03-312012-08-15中国科学院上海技术物理研究所Data processing method for THz-grade large-bandwidth laser synthetic aperture radar imaging system
CN103576145A (en)*2012-07-302014-02-12中国科学院电子学研究所System and imaging method for airborne synthetic aperture laser radar
EP2648379A2 (en)*2012-08-172013-10-09Institute of Electronics, Chinese Academy of SciencesMethod and apparatus for estimating channel error
CN103176172A (en)*2013-02-062013-06-26中国科学院电子学研究所Phase measurement compensation method for airborne interferometric SAR (synthetic aperture radar) based on synchronous internal calibration signals
CN103439888A (en)*2013-08-152013-12-11北京航空航天大学Multi-channel space-borne SAR antenna control error compensation method
CN103728621A (en)*2014-01-242014-04-16中国科学院电子学研究所Onboard SAL imaging method adopting along-track interference to inhibit platform vibration
CN103901429A (en)*2014-04-092014-07-02西安电子科技大学Inverse synthetic aperture radar imaging method for maneuvering targets on basis of sparse aperture
CN105548972A (en)*2014-09-192016-05-04波音公司Phase calibration of a stepped-chirp signal for a synthetic aperture radar
EP3144702A1 (en)*2015-09-172017-03-22Institute of Electronics, Chinese Academy of SciencesMethod and device for synthethic aperture radar imaging based on non-linear frequency modulation signal
CN106371102A (en)*2016-10-082017-02-01中国科学院光电技术研究所Inverse synthetic aperture laser radar signal receiving system based on adaptive optics
CN108318892A (en)*2018-02-062018-07-24中国科学院电子学研究所The motive target imaging method and system of orthogonal baseline InISAL
CN108387900A (en)*2018-05-092018-08-10西安电子科技大学A kind of vibration error compensation method of the rotary synthetic aperture radar of Review for Helicopter
CN109031295A (en)*2018-07-172018-12-18中国人民解放军国防科技大学 An ISAR image registration method based on path difference compensation
CN109085589A (en)*2018-10-162018-12-25中国人民解放军国防科技大学 Phase self-focusing method for sparse aperture ISAR imaging based on image quality guidance
CN109633637A (en)*2018-11-082019-04-16上海无线电设备研究所A kind of Terahertz SAR high-frequency vibration error compensating method
CN110554385A (en)*2019-07-022019-12-10中国航空工业集团公司雷华电子技术研究所Self-focusing imaging method and device for maneuvering trajectory synthetic aperture radar and radar system
CN110376607A (en)*2019-08-232019-10-25长沙天仪空间科技研究院有限公司Synthetic Aperture Laser Radar system
CN110780272A (en)*2019-10-292020-02-11西安电子科技大学 A Nonparametric Paired Echo Suppression Method for Turbulence Platform SAR
CN110988864A (en)*2019-12-112020-04-10中国电子科技集团公司第二十研究所MTI radar speed measuring method with frequency agility

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
付瀚初.地球同步轨道空间目标地基逆合成孔径激光雷达系统分析.《光子学报》.2018,117-128.*
何劲.逆合成孔径成像激光雷达系统设计.《空军工程大学学报(自然科学版)》.2010,26-3.*
刘盛捷.基于Nelder-Mead单纯形法的逆合成孔径激光雷达成像技术.《中国优秀硕士学位论文全文数据库 信息科技辑》.2018,I136-485.*
胡烜.基于本振数字延时的合成孔径激光雷达信号相干性保持方法.《中国激光》.2018,230-238.*
胡烜.激光雷达信号相位误差对合成孔径成像的影响和校正.《红外与激光工程》.2018,75-86.*

Also Published As

Publication numberPublication date
CN111693995A (en)2020-09-22

Similar Documents

PublicationPublication DateTitle
Zhang et al.Multireceiver SAS imagery based on monostatic conversion
CN112987025B (en)Laser imaging device and method based on synthetic aperture
EP2930532B1 (en)Simultaneous forward and inverse synthetic aperture imaging ladar
CN111693995B (en)Inverse synthetic aperture laser radar imaging vibration phase error estimation device and method
Pu et al.A rise-dimensional modeling and estimation method for flight trajectory error in bistatic forward-looking SAR
Li et al.A novel 2-D autofocusing algorithm for real airborne stripmap terahertz synthetic aperture radar imaging
Liu et al.Bistatic forward-looking SAR KDCT-FSFT-based refocusing method for ground moving target with unknown curve motion
Ding et al.High frame-rate imaging using swarm of UAV-borne radars
JP6324108B2 (en) Synthetic aperture radar equipment
Garry et al.Passive ISAR part I: framework and considerations
CN110632616B (en)Micro-motion imaging method of airborne inverse synthetic aperture laser radar under sparse sampling
JP4266810B2 (en) Wind speed vector calculation device
Meng et al.FL-PFA: A Polar Format Algorithm for Wide-Beam Forward-Looking SAR Imaging Integrating Spatial-Variant Motion Compensation
Wang et al.Two-stage time-varying vibration compensation for coherent LiDAR based on the adaptive differential evolution method
Wang et al.A channel phase error compensation method for multi-channel synthetic aperture ladar
Gao et al.Imaging and detection method for low signal-to-noise ratio airborne synthetic aperture ladar signals
CN116699572A (en) Vibration Error Compensation Method for Coherent LiDAR Based on Quadratic Compensation
Liu et al.Isar imaging and cross-range scaling based on image rotation correlation
Guo et al.Multi-channel scan mode and imaging algorithm for synthetic aperture ladar
Tang et al.Ground slowly moving target detection and velocity estimation via high-speed platform dual-beam synthetic aperture radar
Lv et al.Coherence improving algorithm for airborne multichannel SAR-GMTI
Tang et al.Ground Moving Target Azimuth Velocity Estimation Based on Dual-Beam Along-Track Interferometric SAR
Huang et al.A new channel balancing algorithm in image domain for multichannel SAR-GMTI system
Xu et al.A joint spatial-temporal coherent integration detection method for space-borne distributed radar system
Yang et al.Joint multichannel motion compensation method for MIMO SAR 3D imaging

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp