






技术领域technical field
本发明涉及一种根据权利要求1的前序部分所述的用于分析流体或对象的光学传感器模块。The invention relates to an optical sensor module for analyzing fluids or objects according to the preamble of claim 1 .
背景技术Background technique
光学传感器已经在多种应用中投入使用。例如NDIR(nicht-dispersiveInfrarot,非分散红外)探测器可以确定周围环境空气中的CO2含量,或者气体或其他材料中的湿气含量。这种传感器尤其可以用于探测介质(例如气态、固态或液态)的特定的材料特性和混合比例并且进行光谱分析处理。微型化光学传感器的可能应用之一是监测洗涤过程参数或干燥过程参数。Optical sensors are already in use in a variety of applications. For example, NDIR (nicht-dispersive Infrarot, non-dispersive infrared) detectors can determine the amount ofCO2 in the surrounding air, or the amount of moisture in gases or other materials. Such sensors can be used in particular for detecting specific material properties and mixing ratios of media (eg gaseous, solid or liquid) and for spectroscopic analysis. One of the possible applications of miniaturized optical sensors is to monitor washing process parameters or drying process parameters.
传感器例如可以执行反射测量。在这种测量方法中,探测器和发射器通常位于测量段的同一侧,并且由发射器产生的IR辐射被引导通过光学路径,该光学路径可以随着时间而变化,例如因为传感器至测量样本的间隔会发生变化。The sensor can perform reflection measurements, for example. In this measurement method, the detector and the emitter are typically located on the same side of the measurement segment, and the IR radiation generated by the emitter is directed through an optical path that can vary over time, for example from the sensor to the measurement sample interval will change.
光学传感器光谱分析处理的基础是均匀的光谱响应,均匀的光谱响应可以由多个波长组成。当在一个平面中(例如在电路板上)构建传感器时,为了获得均匀光谱响应,产生例如辐射的最佳聚束的挑战。The basis of optical sensor spectral analysis processing is a uniform spectral response, which can be composed of multiple wavelengths. When building a sensor in one plane (eg on a circuit board), challenges arise, eg, for optimal focusing of radiation, in order to obtain a uniform spectral response.
尤其在反射测量中还存在许多这种应用:在测量期间,对象和传感器模块之间的间隔会发生变化。发射器和探测器的布置中的很小的偏差,以及在发射器的发射特性中的很小的偏差已经能够对传感器的间隔相关性产生负面影响,使得在高精度的测量任务中可能严重地限制传感器的工作范围。There are many such applications especially in reflection measurements: During the measurement, the distance between the object and the sensor module changes. Small deviations in the arrangement of the transmitter and detector, as well as in the emission characteristics of the transmitter, can already have a negative effect on the spacing dependence of the sensors, making it possible for high-precision measurement tasks to seriously Limit the working range of the sensor.
发明内容SUMMARY OF THE INVENTION
本发明所基于的任务可以视为提出一种可以以技术上简单地制造的具有改善的光谱均匀性的光学传感器模块。The task on which the present invention is based can be seen as proposing an optical sensor module with improved spectral homogeneity that can be produced in a technically simple manner.
该任务借助独立权利要求的相应主题解决。本发明的有利的构型是各个从属权利要求的主题。This task is solved by means of the corresponding subject-matter of the independent claims. Advantageous configurations of the invention are the subject of the respective dependent claims.
根据本发明的一个方面,提供一种用于分析流体或对象的光学传感器模块。传感器模块具有至少一个射束源,所述至少一个射束源用于产生一个波长范围的电磁射束并且将所述电磁射束在待检查的流体或对象的方向上发射。此外,传感器模块具有至少一个探测器,所述至少一个探测器用于接收在流体或对象上反射的射束并且将所接收的射束转换成电测量信号。传感器模块具有至少一个基座(Sockel),所述至少一个基座用于在电路板上对至少一个射束源和至少一个探测器进行定位和定向。传感器模块的至少一个信号处理单元用于放大和处理至少一个探测器的电测量信号。根据本发明,通过至少一个基座能够将至少一个射束源平行于或倾斜于至少一个探测器地定位在电路板上。According to one aspect of the present invention, there is provided an optical sensor module for analyzing fluids or objects. The sensor module has at least one beam source for generating an electromagnetic beam in a wavelength range and emitting the electromagnetic beam in the direction of the fluid or object to be examined. Furthermore, the sensor module has at least one detector for receiving the beam reflected on the fluid or the object and converting the received beam into an electrical measurement signal. The sensor module has at least one base for positioning and orienting at least one beam source and at least one detector on the circuit board. At least one signal processing unit of the sensor module is used to amplify and process the electrical measurement signal of the at least one detector. According to the invention, the at least one beam source can be positioned on the circuit board by means of the at least one base, parallel or inclined to the at least one detector.
在此,至少一个射束源例如可以是至少一个红外LED或红外激光器。Here, the at least one beam source can be, for example, at least one infrared LED or infrared laser.
为了能够尽可能成本有效地实现光学传感器设计,有利的是将其微型化并且通过适当选择设计参数、材料参数和光学部件来简单地设计光学路径。通常使用SMD可装配部件(SMD Bestückbare)或所谓的通孔(through-hole)的部件用于通孔安装(Durchsteckmontage),以实现微型化。由此,必须尽可能地将所有必要的部件布置在一个平面中,例如布置在电路板上或在TO单元中。通过这种构造能够非常快速且低成本地执行部件的装配。In order to be able to realize the optical sensor design as cost-effectively as possible, it is advantageous to miniaturize it and simply design the optical path by appropriate selection of design parameters, material parameters and optical components. Usually SMD mountable components (SMD Bestückbare) or so-called through-hole components are used for through-hole mounting (Durchsteckmontage) in order to achieve miniaturization. Thus, as far as possible, all necessary components must be arranged in one plane, for example on a circuit board or in a TO cell. Assembly of the components can be carried out very quickly and at low cost by this configuration.
通过基座可以实现用于容纳至少一个探测器和至少一个射束源的机械结构,该机械结构能够布置在电路板上。因此,通过彼此合适地定位光学部件能够实现简单且成本有利的射束引导或射束聚束。除了传感器模块的光学部件的精确的定向,还可以在技术上简单地安装或制造传感器模块。此外,通过基座能够相对于射束源如此定位或定向至少一个探测器,使得减少或避免散射光。A mechanical structure for accommodating the at least one detector and the at least one beam source can be realized by the base, which can be arranged on a circuit board. Thus, simple and cost-effective beam guidance or beam focusing can be achieved by suitable positioning of the optical components relative to one another. In addition to the precise orientation of the optical components of the sensor module, the sensor module can also be assembled or produced in a technically simple manner. Furthermore, the at least one detector can be positioned or oriented relative to the beam source by means of the base in such a way that scattered light is reduced or avoided.
根据光学传感器模块的一种实施例,探测器可以在至少一个基座中居中地定位在至少两个射束源之间。通过具有相等波长范围的至少两个射束源的相对置的布置,能够优化传感器模块的光谱均匀性。尤其可以由此补偿射束源的波长范围的偏差。这导致所产生的辐射的光谱分量在样品或对象所定位的测量空间中的分布得到改善,并且可以实现更均匀的光谱分布。According to one embodiment of the optical sensor module, the detector can be positioned centrally between the at least two beam sources in the at least one base. The spectral homogeneity of the sensor module can be optimized by the opposed arrangement of at least two beam sources with equal wavelength ranges. In particular, deviations in the wavelength range of the beam source can thus be compensated for. This results in an improved distribution of the spectral components of the generated radiation in the measurement space in which the sample or object is located, and a more homogeneous spectral distribution can be achieved.
根据光学传感器模块的另一实施例,射束源可以在至少一个基座中居中地定位在至少两个探测器之间。作为在多个射束源之间布置探测器的替代方案,可以将宽带的射束源或发射器与多个探测器组合地使用,以便探测特定的光谱范围。由此,通过多个相同或不同探测器的较大的可探测的波长范围可以补偿射束源的发射特性的偏差。According to another embodiment of the optical sensor module, the beam source can be positioned centrally between the at least two detectors in the at least one base. As an alternative to arranging detectors between multiple beam sources, broadband beam sources or emitters can be used in combination with multiple detectors in order to detect specific spectral ranges. As a result, deviations in the emission characteristics of the beam source can be compensated for by the larger detectable wavelength range of a plurality of identical or different detectors.
根据光学传感器模块的另一实施例,至少一个基座旋转对称地成型,其中,至少一个基座具有用于容纳探测器的至少一个接收部(Fassung)和用于容纳射束源的至少一个接收部。通过引入底座中的容纳部(Aufnahmen)或接收部,在底座中可以形状锁合地使用光学部件。尤其在容纳部中使用的状态下,至少一个射束源和至少一个探测器能够光学最佳地定向。According to a further embodiment of the optical sensor module, the at least one base is rotationally symmetrical, wherein the at least one base has at least one receptacle for accommodating the detector and at least one receptacle for accommodating the beam source department. By means of receptacles or receptacles introduced into the base, the optical component can be used in a form-fitting manner in the base. Especially in the state of use in the receptacle, the at least one beam source and the at least one detector can be optically optimally oriented.
根据光学传感器模块的另一实施例,至少一个基座至少局部地屏蔽布置在接收部中的至少一个探测器免受电磁射束。由此可以减少或防止从射束源到至少一个探测器的不期望的串扰或壳体中的散射光。因此可以扩大传感器的可用动态范围。替代地或附加地,基座可以在至少一个探测器的容纳部的范围中促进相应的进行反射的表面上的多重反射,并且因此提高传感器模块的性能。According to a further embodiment of the optical sensor module, the at least one base at least partially shields the at least one detector arranged in the receptacle from electromagnetic radiation. As a result, undesired crosstalk from the beam source to the at least one detector or scattered light in the housing can be reduced or prevented. The usable dynamic range of the sensor can thus be expanded. Alternatively or additionally, the base can promote multiple reflections on the corresponding reflecting surface in the region of the receptacle of the at least one detector and thus increase the performance of the sensor module.
根据光学传感器模块的另一实施例,光学传感器模块具有至少一个间隔传感器,所述至少一个间隔传感器用于求取至少一个探测器至对象的间隔。According to a further embodiment of the optical sensor module, the optical sensor module has at least one distance sensor for determining the distance from the at least one detector to the object.
通过附加的传感器能够进行距离测量,该距离测量可以用于补偿传感器模块的现有的间隔相关性。因此可以扩大传感器模块的工作范围。Additional sensors enable distance measurements, which can be used to compensate for the existing spacing dependencies of the sensor modules. Therefore, the working range of the sensor module can be expanded.
根据光学传感器模块的另一实施例,至少一个信号处理单元具有电测量信号的偏移跟踪装置(Offsetnachführung)和/或电测量信号的可变放大装置。由此,至少一个信号处理单元可以具有信号调节装置和信号处理装置,由此可以使传感器模块匹配于应用特定的要求。According to a further embodiment of the optical sensor module, the at least one signal processing unit has an offset tracking device for the electrical measurement signal and/or a variable amplification device for the electrical measurement signal. As a result, the at least one signal processing unit can have a signal conditioning device and a signal processing device, whereby the sensor module can be adapted to application-specific requirements.
根据光学传感器模块的另一实施例,光学传感器模块具有用于执行温度补偿的温度传感器。由此,在通过至少一个信号处理单元分析处理至少一个探测器的测量信号时,可以考虑对发射器或至少一个探测器的发射特性的热影响以及考虑对待检查的材料的热影响。通过附加的温度信息尤其可以补偿在处理测量信号的范畴中的温度相关的影响。According to another embodiment of the optical sensor module, the optical sensor module has a temperature sensor for performing temperature compensation. In this way, the thermal influence on the emission characteristics of the transmitter or the at least one detector as well as the thermal influence of the material to be examined can be taken into account when evaluating the measurement signal of the at least one detector by the at least one signal processing unit. In particular, temperature-dependent influences in the area of processing the measurement signals can be compensated for by the additional temperature information.
根据光学传感器模块的另一实施例,将至少一个射束源、至少一个探测器、至少一个基座、至少一个信号处理单元和至少一个能量供给单元布置在可液密密封(fluiddichtverschlieβbar)的壳体中。优选地,通过盖能够密封壳体,并且通过密封装置(例如O形圈)能够封闭壳体免受环境影响。外壳可以由塑料组成或由防水浸渍的或涂漆的金属组成。因此,传感器模块也可以在潮湿的环境中使用,其中,传感器模块的部件受保护地布置在壳体中。According to a further embodiment of the optical sensor module, at least one beam source, at least one detector, at least one base, at least one signal processing unit and at least one energy supply unit are arranged in a fluid-tightly sealable housing middle. Preferably, the housing can be sealed by a cover and can be closed from the environment by sealing means such as an O-ring. The housing can be composed of plastic or waterproof impregnated or painted metal composition. Therefore, the sensor module can also be used in wet environments, wherein the components of the sensor module are arranged in the housing in a protected manner.
根据光学传感器模块的另一实施例,壳体具有至少一个窗口,所述至少一个窗口用于透射至少一个射束源的电磁射束。因此,由至少一个射束源产生的电磁射束可以从壳体中发射出来。在此,传感器模块的光学部件尤其可以受保护地布置在壳体中。According to a further embodiment of the optical sensor module, the housing has at least one window for transmitting the electromagnetic beam of the at least one beam source. Thus, the electromagnetic beam generated by the at least one beam source can be emitted from the housing. In particular, the optical components of the sensor module can be arranged in the housing in a protected manner.
根据光学传感器模块的另一实施例,通过布置在壳体中的至少一个基座能够将至少一个探测器直接定位在至少一个窗口上。通过至少一个基座能够将至少一个探测器如此定位在壳体中,使得探测器直接布置在壳体的窗口上。尤其可以正交于窗口的平面延展地定位探测器,由此可以减少反射。根据至少一个基座的构型,探测器的容纳部可以在周侧(umfangsseitig)相对于窗口屏蔽探测器,并且因此保护探测器免受来自壳体的散射光。According to another embodiment of the optical sensor module, the at least one detector can be positioned directly on the at least one window by means of at least one base arranged in the housing. The at least one detector can be positioned in the housing by means of the at least one base in such a way that the detector is arranged directly on the window of the housing. In particular, the detector can be positioned perpendicular to the plane of the window, whereby reflections can be reduced. Depending on the configuration of the at least one base, the receptacle of the detector can shield the detector circumferentially relative to the window and thus protect the detector from scattered light from the housing.
根据本发明的探测器特别适合用于洗衣机或洗碗机中。The detector according to the invention is particularly suitable for use in washing machines or dishwashers.
附图说明Description of drawings
以下根据高度简化的示意图更详细地阐述本发明的优选实施方式。在此示出:Preferred embodiments of the invention are explained in more detail below on the basis of highly simplified schematic diagrams. Shown here:
图1a示出根据本发明的第一实施方式的传感器模块的具有多个射束源和一个探测器的基座的立体分解图;FIG. 1 a shows an exploded perspective view of the base of a sensor module with a plurality of beam sources and a detector according to a first embodiment of the invention;
图1b示出根据本发明的第二实施方式的传感器模块的具有多个射束源和一个探测器的基座的立体分解图;FIG. 1 b shows an exploded perspective view of the base of a sensor module according to a second embodiment of the invention with a plurality of beam sources and a detector;
图2示出通过根据第二实施方式的传感器模块的照明的示意图;FIG. 2 shows a schematic diagram of the illumination by the sensor module according to the second embodiment;
图3a示出根据本发明的第一实施方式的传感器模块的立体分解图;Figure 3a shows an exploded perspective view of a sensor module according to a first embodiment of the present invention;
图3b示出根据本发明的第二实施方式的传感器模块的立体分解图;Figure 3b shows an exploded perspective view of a sensor module according to a second embodiment of the present invention;
图4示出根据本发明的一种实施方式的传感器模块的信号处理单元的电路图的示意图;FIG. 4 shows a schematic diagram of a circuit diagram of a signal processing unit of a sensor module according to an embodiment of the present invention;
图5示出根据本发明的第三实施方式的传感器模块的示意图。FIG. 5 shows a schematic diagram of a sensor module according to a third embodiment of the present invention.
在附图中,相同的结构元件分别具有相同的附图标记。In the figures, the same structural elements respectively have the same reference numerals.
具体实施方式Detailed ways
图1a示出根据本发明的第一实施方式的传感器模块6的具有多个射束源2和一个探测器4的基座1的立体分解图。FIG. 1 a shows an exploded perspective view of the base 1 of the
基座1旋转对称地成型并且具有六个用于容纳各一个射束源2的容纳部8。用于容纳射束源2的容纳部8布置成围绕用于容纳探测器4的容纳部10。此外,用于容纳探测器4的容纳部10与射束源2的容纳部8在射束源2的发射方向上错位地布置。The base 1 is rotationally symmetrical and has six
根据传感器模块6的第一实施例,射束源2和探测器4可以彼此平行定向地定位在基座1中或基座1的容纳部8、10中。According to the first embodiment of the
在此,射束源2例如是具有3mm或5mm直径的红外LED。射束源2可以发射在800nm至1000nm的波长范围内的电磁射束。Here, the
基座1在与探测器4的容纳部10相对的端部上平坦地构型,使得基座1可以形状锁合地布置在平面的电路板上。基座1具有通孔,该通孔用于射束源2和探测器4的接通部,该通孔在与射束源2的射束方向相反的方向上被引导穿过基座1。因此,引导通过基座1的接通部可以相对彼此定向并且最佳地定位在电路板上。The base 1 is formed flat on the end opposite the
图1b示出根据本发明的第二实施方式的传感器模块6的具有多个射束源2和探测器4的基座1的立体分解图。与传感器模块6的第一实施例不同,在此射束源2相对于探测器4成一角度地布置。射束源2尤其朝向旋转对称的基座1的旋转轴线倾斜地或成角度地定向。这可以通过射束源2的相应的成角度构型的容纳部8来实现。由此,可以构成通过射束源2产生的电磁射束的重叠区域,这构成射束源2的均匀的发射区域,并可以补偿射束源2的制造公差。FIG. 1 b shows an exploded perspective view of the base 1 of the
图2示出通过根据第二实施方式的传感器模块6的照明的示意图。尤其示出通过基座1的截面。在此示出射束源2相对于探测器4成角度的布置,以及射束源2与探测器4的接通部的走向。FIG. 2 shows a schematic illustration of the illumination by the
通过在基座1中探测器4相对于射束源2错位的布置,可以将探测器4直接定位在传感器模块6的窗口12上。在此,探测器4如此布置在基座1中,使得壁11可以保护和屏蔽探测器4免受散射光,该壁围绕探测器4的容纳部10。优选地,将基座1如此定位在传感器模块6的窗口12上,使得在壁11与窗口12之间不存在间隔或仅存在最小的间隔。Due to the offset arrangement of the
传感器模块6通过窗口12发射由射束源2产生的电磁射束。通过多个射束源2产生重叠区域A,该重叠区域构型成所有射束源2所产生的电磁射束的总和。由此能够补偿射束源2的制造公差。The
可选地可以设置,将基座1构型成可运动的,使得基座可以定向到至少一个单个的射束源2和/或探测器4。为此,可以设有执行器,执行器被分配给射束源2或分配给探测器。此外,可选地可以设置,基座1构型成多部分的,其中,基座1的一部分能够相对于另一部分运动。通过这种多部分的构型,射束源2或探测器4可以分别定向到不同的元件。在一种特别的构型中,基座1的多部分构型的每个部分都配备有其自己的执行器,使得可以彼此独立地操控和定位每个部分。通过信号处理单元26可以例如根据探测器6的测量信号来操控一个或多个执行器。Optionally, it can be provided that the base 1 is configured to be movable, so that the base can be oriented to at least one
图3a和3b示出根据本发明的第一和第二实施方式的传感器模块6的立体分解图。传感器模块6具有壳体14,该壳体能够通过密封环16借助盖18液密地密封。为了使用窗口12,盖18具有外部绝缘装置所产生的电磁射线可以通过窗口12从传感器模块6的壳体14中发射。在此,可以借助密封环16将窗口12定位在盖18上。例如,可以将窗口12粘合到盖18的凹部中。Figures 3a and 3b show an exploded perspective view of a
此外,传感器模块6具有第一电路板20。在第一电路板20上通过螺纹连接部22固定基座1。在此,可以将射束源2和探测器4与电路板20导电地夹紧或焊接。Furthermore, the
此外,传感器模块6具有第二电路板24,该第二电路板与第一电路板20导电连接。在第二电路板20上例如布置有传感器模块6的电流供给装置和至少一个信号处理单元26,至少一个信号处理单元用于分析处理探测器4的电信号。例如可以通过电池或外部电流连接端来构型电流供给装置。Furthermore, the
通过螺纹连接部28,可以将相应的部件18、1、24力锁合地彼此固定和/或力锁合地固定在壳体14上。The
图4示出根据本发明的一种实施方式的传感器模块6的信号处理单元26的电路图的示意图。在此尤其描绘由探测器4产生的电测量信号的信号路径的示例性电路。FIG. 4 shows a schematic diagram of a circuit diagram of the
示出探测器4,其具有连接在后面的跨阻放大器30。在此,跨阻放大器30例如可以布置在第一电路板20上,并且可以通过相应的未编号的数据线将探测器4的已放大的测量信号传输到第二电路板24。The
例如可以将差分放大器32施加在第二电路板24上。借助差分放大器32,通过信号处理单元26的数模转换器34可以对不同射束源2的不同测量信号执行偏移校正。由此可以将测量信号转化到后续电路元件的线性区域中。For example, the
在此,在第二电路板24上布置有第二运算放大器36。第二运算放大器36能够对通过信号处理单元26处理的信号进行可变的放大。特别有利的是差分放大器32的偏移跟踪和在不同的探测区域中的可变放大的用途,例如在非常弱、且与湿度相关的信号的情况下。在探测区域内,借助数模转换器34可以更精确地跟踪测量信号,并且可以将放大切换到更高的级别。Here, a second
在图5中示出根据本发明的第三实施方式的传感器模块6的示意图。与本发明的先前描述的实施例不同,传感器模块6具有温度传感器38和间隔传感器40。在通过信号处理单元26进行的进一步的分析处理中,通过温度传感器38可以考虑对象42、射束源2、探测器4或待检查的流体的发射特性中的温度限定的偏差。A schematic diagram of a
在此,间隔传感器40可以是光学的或基于超声波的传感器。通过间隔传感器40可以补偿由对象42反射的测量信号的间隔相关性。Here, the spacing sensor 40 may be an optical or ultrasonic based sensor. The interval dependence of the measurement signal reflected by the
由系统上和部件平面上的公差决定,可能彼此出现光学元件的误调整(Fehljustierung)。这些误调整对于光谱学的应用非常重要,在光谱学应用中通常将测量通道的至少一个波长与参考通道的波长彼此进行比较。由于这些误调整会产生传感器特定的间隔相关性,通过使用间隔传感器40可以补偿该间隔相关性。Depending on the tolerances on the system and on the component plane, misalignment of the optical elements with respect to one another can occur. These misadjustments are very important for spectroscopy applications, where at least one wavelength of the measurement channel and the wavelength of the reference channel are usually compared with each other. Since these misadjustments can produce sensor-specific spacing dependencies, the use of spacing sensor 40 can compensate for this spacing dependence.
因为尤其在通过传感器模块6在反射模式下进行测量时传感器4、6至对象42的间隔可能会发生改变,所以通过将用于间隔测量的间隔传感器40集成到传感器模块6中实现以下可能性:补偿测量信号的间隔相关性。Since the spacing of the
图5中还示出根据本发明的第三实施方式的传感器模块6的所有相关部件的概况。An overview of all relevant components of the
另一实施例涉及一种用于分析处理由探测器4接收的电测量信号的方法,例如可以在信号处理单元26中执行该方法。在此,如此处理测量信号,使得信号处理单元26根据从至少一个射束源2回射(zurückfallen)到探测器4上的辐射强度显示一个或多个信号。此外能够设想,信号处理单元26的信号根据温度传感器38和/或间隔传感器40的测量参量产生。Another embodiment relates to a method for evaluating the electrical measurement signals received by the
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102018200162.6 | 2018-01-08 | ||
| DE102018200162.6ADE102018200162A1 (en) | 2018-01-08 | 2018-01-08 | Optical sensor module for spectroscopic measurement |
| PCT/EP2018/086134WO2019134844A1 (en) | 2018-01-08 | 2018-12-20 | Optical sensor module for spectroscopic measurement |
| Publication Number | Publication Date |
|---|---|
| CN111587364Atrue CN111587364A (en) | 2020-08-25 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201880085890.7APendingCN111587364A (en) | 2018-01-08 | 2018-12-20 | Optical sensor module for spectral measurements |
| Country | Link |
|---|---|
| KR (1) | KR20200103092A (en) |
| CN (1) | CN111587364A (en) |
| DE (1) | DE102018200162A1 (en) |
| WO (1) | WO2019134844A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022185311A1 (en)* | 2021-03-04 | 2022-09-09 | Maytronics Ltd. | Systems and methods for monitoring fluid of a fluid facility having an inspection subsystem for inspection of light sources used in the monitoring system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5963333A (en)* | 1996-09-12 | 1999-10-05 | Color Savvy Systems Limited | Color sensor |
| JP2000000960A (en)* | 1998-04-15 | 2000-01-07 | Baldwin Japan Ltd | Content reading sensor for printing paper etc. and printing paper inspection device |
| US20020191188A1 (en)* | 2001-05-22 | 2002-12-19 | Xerox Corporation | Angular, azimuthal and displacement insensitive spectrophotometer for color printer color control systems |
| CN101228434A (en)* | 2005-07-22 | 2008-07-23 | 第一伊沃尔维克斯私人有限公司 | Detection of impurities in textile materials |
| CN102338660A (en)* | 2010-07-08 | 2012-02-01 | 赫拉胡克公司 | Sensor arrangement for detecting ambient conditions |
| DE102012100747A1 (en)* | 2012-01-31 | 2013-08-01 | Leuze Electronic Gmbh & Co. Kg | Optical sensor |
| DE102012110646A1 (en)* | 2012-11-07 | 2014-05-08 | Scanlab Ag | Apparatus for providing light beam used for e.g. dermatology, has operating assembly to determine actual position of beam spot relative to optical sensor responsive to output signal of optical sensor |
| WO2014183268A1 (en)* | 2013-05-14 | 2014-11-20 | 杭州慧缘泰医疗器械有限公司 | Quantitative detection method of crp using immune colloidal gold test plate and biochemical parameter photoelectric detector |
| WO2017033419A1 (en)* | 2015-08-24 | 2017-03-02 | パナソニックIpマネジメント株式会社 | Substance detecting device, substance detecting system, and substance detecting method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4338307C1 (en)* | 1993-11-10 | 1995-05-18 | Mierswa Klaus Dipl Ing | Methods for the optical detection of objects or object streams, the surfaces of which are capable of reflecting or scattering light, which have self-affine or self-similar or fractal patterns or structures |
| US5690417A (en)* | 1996-05-13 | 1997-11-25 | Optical Gaging Products, Inc. | Surface illuminator with means for adjusting orientation and inclination of incident illumination |
| DE19857896C1 (en)* | 1998-12-15 | 2000-08-31 | Siemens Ag | Method and device for evaluating spectroscopic measurements on solid materials with spatially and / or temporally varying surfaces |
| DE102004028023B4 (en)* | 2004-06-09 | 2006-07-06 | Perkinelmer Optoelectronics Gmbh & Co.Kg | Sensor unit for detecting a fluid, in particular for detecting natural gas, hydrocarbons, carbon dioxide or the like. In ambient air |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5963333A (en)* | 1996-09-12 | 1999-10-05 | Color Savvy Systems Limited | Color sensor |
| JP2000000960A (en)* | 1998-04-15 | 2000-01-07 | Baldwin Japan Ltd | Content reading sensor for printing paper etc. and printing paper inspection device |
| US20020191188A1 (en)* | 2001-05-22 | 2002-12-19 | Xerox Corporation | Angular, azimuthal and displacement insensitive spectrophotometer for color printer color control systems |
| CN101228434A (en)* | 2005-07-22 | 2008-07-23 | 第一伊沃尔维克斯私人有限公司 | Detection of impurities in textile materials |
| CN102338660A (en)* | 2010-07-08 | 2012-02-01 | 赫拉胡克公司 | Sensor arrangement for detecting ambient conditions |
| DE102012100747A1 (en)* | 2012-01-31 | 2013-08-01 | Leuze Electronic Gmbh & Co. Kg | Optical sensor |
| DE102012110646A1 (en)* | 2012-11-07 | 2014-05-08 | Scanlab Ag | Apparatus for providing light beam used for e.g. dermatology, has operating assembly to determine actual position of beam spot relative to optical sensor responsive to output signal of optical sensor |
| WO2014183268A1 (en)* | 2013-05-14 | 2014-11-20 | 杭州慧缘泰医疗器械有限公司 | Quantitative detection method of crp using immune colloidal gold test plate and biochemical parameter photoelectric detector |
| WO2017033419A1 (en)* | 2015-08-24 | 2017-03-02 | パナソニックIpマネジメント株式会社 | Substance detecting device, substance detecting system, and substance detecting method |
| Publication number | Publication date |
|---|---|
| WO2019134844A1 (en) | 2019-07-11 |
| KR20200103092A (en) | 2020-09-01 |
| DE102018200162A1 (en) | 2019-07-11 |
| Publication | Publication Date | Title |
|---|---|---|
| KR101393943B1 (en) | Fiber optic temperature sensor | |
| KR101339076B1 (en) | Dome gas sensor | |
| US7796265B2 (en) | Optical absorption gas analyser | |
| US7977638B2 (en) | Long-term stable optical sensor arrangement, especially a hydrogen sensor, and combined gas sensor arrangement | |
| US20230251132A1 (en) | Multi-dispersive spectrometer | |
| US6989549B2 (en) | Optical gas sensor | |
| CN106033054B (en) | A kind of laser humiture measurement mechanism and method | |
| EP1566626A1 (en) | Gas sensor arrangement in an integrated construction | |
| JP2007147613A (en) | Gas sensor array | |
| CN111936049B (en) | Measurement system for spectroscopic examination of biopsies | |
| CN108061722A (en) | The detection device and detection method of a kind of carbonomonoxide concentration | |
| Scholz et al. | MID-IR led-based, photoacoustic CO2 sensor | |
| JP2007507723A (en) | Reflector module for photometric gas sensor | |
| US8097856B2 (en) | Super-miniaturized NDIR gas sensor | |
| US20030025086A1 (en) | Device for the detecting of aflatoxins | |
| CN111587364A (en) | Optical sensor module for spectral measurements | |
| CN117451654B (en) | Infrared gas sensor for detecting coal mine gas and use method thereof | |
| US10996201B2 (en) | Photoacoustic measurement systems and methods using the photoacoustic effect to measure emission intensities, gas concentrations, and distances | |
| CN216484611U (en) | Gas detection device for frequency modulation laser absorption spectrum | |
| US20020153490A1 (en) | Concentration detection system | |
| CN113514818A (en) | Laser radar and control method thereof | |
| KR102265564B1 (en) | Scattered light type gas sensing system | |
| US10732118B2 (en) | Gas detector with hyperdoped SiC semiconductor material and related methods | |
| CN119827411A (en) | Gas detection device and gas detection sensor | |
| CN120609773A (en) | Optical concentration measuring device and signal processing unit |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |