Movatterモバイル変換


[0]ホーム

URL:


CN111587364A - Optical sensor module for spectral measurements - Google Patents

Optical sensor module for spectral measurements
Download PDF

Info

Publication number
CN111587364A
CN111587364ACN201880085890.7ACN201880085890ACN111587364ACN 111587364 ACN111587364 ACN 111587364ACN 201880085890 ACN201880085890 ACN 201880085890ACN 111587364 ACN111587364 ACN 111587364A
Authority
CN
China
Prior art keywords
sensor module
detector
base
beam source
module according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880085890.7A
Other languages
Chinese (zh)
Inventor
B·勒泽纳
M·贝德加
V·克劳斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbHfiledCriticalRobert Bosch GmbH
Publication of CN111587364ApublicationCriticalpatent/CN111587364A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

Translated fromChinese

公开一种用于分析流体或对象的光学传感器模块,所述光学传感器模块具有至少一个射束源,所述至少一个射束源用于产生一波长范围的电磁射束并且用于将所述电磁射束发射到待检查的流体或对象的方向;至少一个探测器,所述至少一个探测器用于接收在所述流体或所述对象上反射的射束,并且将所接收的射束转换成电测量信号;至少一个基座,所述至少一个基座用于在电路板上定位和定向所述至少一个射束源和所述至少一个探测器;至少一个信号处理单元,所述至少一个信号处理单元用于放大和处理所述至少一个探测器的所述电测量信号,其中,通过所述至少一个基座能够将所述至少一个射束源平行于或倾斜于所述至少一个探测器地定位在所述电路板上。

Figure 201880085890

Disclosed is an optical sensor module for analyzing a fluid or an object, the optical sensor module comprising at least one beam source for generating an electromagnetic beam in a wavelength range and for emitting the electromagnetic beam in the direction of a fluid or object to be examined; at least one detector for receiving the beam reflected by the fluid or the object and converting the received beam into an electrical measurement signal; at least one base for positioning and orienting the at least one beam source and the at least one detector on a circuit board; and at least one signal processing unit for amplifying and processing the electrical measurement signal of the at least one detector. The at least one base enables positioning the at least one beam source on the circuit board parallel to or obliquely relative to the at least one detector.

Figure 201880085890

Description

Translated fromChinese
用于光谱测量的光学传感器模块Optical sensor module for spectral measurements

技术领域technical field

本发明涉及一种根据权利要求1的前序部分所述的用于分析流体或对象的光学传感器模块。The invention relates to an optical sensor module for analyzing fluids or objects according to the preamble of claim 1 .

背景技术Background technique

光学传感器已经在多种应用中投入使用。例如NDIR(nicht-dispersiveInfrarot,非分散红外)探测器可以确定周围环境空气中的CO2含量,或者气体或其他材料中的湿气含量。这种传感器尤其可以用于探测介质(例如气态、固态或液态)的特定的材料特性和混合比例并且进行光谱分析处理。微型化光学传感器的可能应用之一是监测洗涤过程参数或干燥过程参数。Optical sensors are already in use in a variety of applications. For example, NDIR (nicht-dispersive Infrarot, non-dispersive infrared) detectors can determine the amount ofCO2 in the surrounding air, or the amount of moisture in gases or other materials. Such sensors can be used in particular for detecting specific material properties and mixing ratios of media (eg gaseous, solid or liquid) and for spectroscopic analysis. One of the possible applications of miniaturized optical sensors is to monitor washing process parameters or drying process parameters.

传感器例如可以执行反射测量。在这种测量方法中,探测器和发射器通常位于测量段的同一侧,并且由发射器产生的IR辐射被引导通过光学路径,该光学路径可以随着时间而变化,例如因为传感器至测量样本的间隔会发生变化。The sensor can perform reflection measurements, for example. In this measurement method, the detector and the emitter are typically located on the same side of the measurement segment, and the IR radiation generated by the emitter is directed through an optical path that can vary over time, for example from the sensor to the measurement sample interval will change.

光学传感器光谱分析处理的基础是均匀的光谱响应,均匀的光谱响应可以由多个波长组成。当在一个平面中(例如在电路板上)构建传感器时,为了获得均匀光谱响应,产生例如辐射的最佳聚束的挑战。The basis of optical sensor spectral analysis processing is a uniform spectral response, which can be composed of multiple wavelengths. When building a sensor in one plane (eg on a circuit board), challenges arise, eg, for optimal focusing of radiation, in order to obtain a uniform spectral response.

尤其在反射测量中还存在许多这种应用:在测量期间,对象和传感器模块之间的间隔会发生变化。发射器和探测器的布置中的很小的偏差,以及在发射器的发射特性中的很小的偏差已经能够对传感器的间隔相关性产生负面影响,使得在高精度的测量任务中可能严重地限制传感器的工作范围。There are many such applications especially in reflection measurements: During the measurement, the distance between the object and the sensor module changes. Small deviations in the arrangement of the transmitter and detector, as well as in the emission characteristics of the transmitter, can already have a negative effect on the spacing dependence of the sensors, making it possible for high-precision measurement tasks to seriously Limit the working range of the sensor.

发明内容SUMMARY OF THE INVENTION

本发明所基于的任务可以视为提出一种可以以技术上简单地制造的具有改善的光谱均匀性的光学传感器模块。The task on which the present invention is based can be seen as proposing an optical sensor module with improved spectral homogeneity that can be produced in a technically simple manner.

该任务借助独立权利要求的相应主题解决。本发明的有利的构型是各个从属权利要求的主题。This task is solved by means of the corresponding subject-matter of the independent claims. Advantageous configurations of the invention are the subject of the respective dependent claims.

根据本发明的一个方面,提供一种用于分析流体或对象的光学传感器模块。传感器模块具有至少一个射束源,所述至少一个射束源用于产生一个波长范围的电磁射束并且将所述电磁射束在待检查的流体或对象的方向上发射。此外,传感器模块具有至少一个探测器,所述至少一个探测器用于接收在流体或对象上反射的射束并且将所接收的射束转换成电测量信号。传感器模块具有至少一个基座(Sockel),所述至少一个基座用于在电路板上对至少一个射束源和至少一个探测器进行定位和定向。传感器模块的至少一个信号处理单元用于放大和处理至少一个探测器的电测量信号。根据本发明,通过至少一个基座能够将至少一个射束源平行于或倾斜于至少一个探测器地定位在电路板上。According to one aspect of the present invention, there is provided an optical sensor module for analyzing fluids or objects. The sensor module has at least one beam source for generating an electromagnetic beam in a wavelength range and emitting the electromagnetic beam in the direction of the fluid or object to be examined. Furthermore, the sensor module has at least one detector for receiving the beam reflected on the fluid or the object and converting the received beam into an electrical measurement signal. The sensor module has at least one base for positioning and orienting at least one beam source and at least one detector on the circuit board. At least one signal processing unit of the sensor module is used to amplify and process the electrical measurement signal of the at least one detector. According to the invention, the at least one beam source can be positioned on the circuit board by means of the at least one base, parallel or inclined to the at least one detector.

在此,至少一个射束源例如可以是至少一个红外LED或红外激光器。Here, the at least one beam source can be, for example, at least one infrared LED or infrared laser.

为了能够尽可能成本有效地实现光学传感器设计,有利的是将其微型化并且通过适当选择设计参数、材料参数和光学部件来简单地设计光学路径。通常使用SMD可装配部件(SMD Bestückbare)或所谓的通孔(through-hole)的部件用于通孔安装(Durchsteckmontage),以实现微型化。由此,必须尽可能地将所有必要的部件布置在一个平面中,例如布置在电路板上或在TO单元中。通过这种构造能够非常快速且低成本地执行部件的装配。In order to be able to realize the optical sensor design as cost-effectively as possible, it is advantageous to miniaturize it and simply design the optical path by appropriate selection of design parameters, material parameters and optical components. Usually SMD mountable components (SMD Bestückbare) or so-called through-hole components are used for through-hole mounting (Durchsteckmontage) in order to achieve miniaturization. Thus, as far as possible, all necessary components must be arranged in one plane, for example on a circuit board or in a TO cell. Assembly of the components can be carried out very quickly and at low cost by this configuration.

通过基座可以实现用于容纳至少一个探测器和至少一个射束源的机械结构,该机械结构能够布置在电路板上。因此,通过彼此合适地定位光学部件能够实现简单且成本有利的射束引导或射束聚束。除了传感器模块的光学部件的精确的定向,还可以在技术上简单地安装或制造传感器模块。此外,通过基座能够相对于射束源如此定位或定向至少一个探测器,使得减少或避免散射光。A mechanical structure for accommodating the at least one detector and the at least one beam source can be realized by the base, which can be arranged on a circuit board. Thus, simple and cost-effective beam guidance or beam focusing can be achieved by suitable positioning of the optical components relative to one another. In addition to the precise orientation of the optical components of the sensor module, the sensor module can also be assembled or produced in a technically simple manner. Furthermore, the at least one detector can be positioned or oriented relative to the beam source by means of the base in such a way that scattered light is reduced or avoided.

根据光学传感器模块的一种实施例,探测器可以在至少一个基座中居中地定位在至少两个射束源之间。通过具有相等波长范围的至少两个射束源的相对置的布置,能够优化传感器模块的光谱均匀性。尤其可以由此补偿射束源的波长范围的偏差。这导致所产生的辐射的光谱分量在样品或对象所定位的测量空间中的分布得到改善,并且可以实现更均匀的光谱分布。According to one embodiment of the optical sensor module, the detector can be positioned centrally between the at least two beam sources in the at least one base. The spectral homogeneity of the sensor module can be optimized by the opposed arrangement of at least two beam sources with equal wavelength ranges. In particular, deviations in the wavelength range of the beam source can thus be compensated for. This results in an improved distribution of the spectral components of the generated radiation in the measurement space in which the sample or object is located, and a more homogeneous spectral distribution can be achieved.

根据光学传感器模块的另一实施例,射束源可以在至少一个基座中居中地定位在至少两个探测器之间。作为在多个射束源之间布置探测器的替代方案,可以将宽带的射束源或发射器与多个探测器组合地使用,以便探测特定的光谱范围。由此,通过多个相同或不同探测器的较大的可探测的波长范围可以补偿射束源的发射特性的偏差。According to another embodiment of the optical sensor module, the beam source can be positioned centrally between the at least two detectors in the at least one base. As an alternative to arranging detectors between multiple beam sources, broadband beam sources or emitters can be used in combination with multiple detectors in order to detect specific spectral ranges. As a result, deviations in the emission characteristics of the beam source can be compensated for by the larger detectable wavelength range of a plurality of identical or different detectors.

根据光学传感器模块的另一实施例,至少一个基座旋转对称地成型,其中,至少一个基座具有用于容纳探测器的至少一个接收部(Fassung)和用于容纳射束源的至少一个接收部。通过引入底座中的容纳部(Aufnahmen)或接收部,在底座中可以形状锁合地使用光学部件。尤其在容纳部中使用的状态下,至少一个射束源和至少一个探测器能够光学最佳地定向。According to a further embodiment of the optical sensor module, the at least one base is rotationally symmetrical, wherein the at least one base has at least one receptacle for accommodating the detector and at least one receptacle for accommodating the beam source department. By means of receptacles or receptacles introduced into the base, the optical component can be used in a form-fitting manner in the base. Especially in the state of use in the receptacle, the at least one beam source and the at least one detector can be optically optimally oriented.

根据光学传感器模块的另一实施例,至少一个基座至少局部地屏蔽布置在接收部中的至少一个探测器免受电磁射束。由此可以减少或防止从射束源到至少一个探测器的不期望的串扰或壳体中的散射光。因此可以扩大传感器的可用动态范围。替代地或附加地,基座可以在至少一个探测器的容纳部的范围中促进相应的进行反射的表面上的多重反射,并且因此提高传感器模块的性能。According to a further embodiment of the optical sensor module, the at least one base at least partially shields the at least one detector arranged in the receptacle from electromagnetic radiation. As a result, undesired crosstalk from the beam source to the at least one detector or scattered light in the housing can be reduced or prevented. The usable dynamic range of the sensor can thus be expanded. Alternatively or additionally, the base can promote multiple reflections on the corresponding reflecting surface in the region of the receptacle of the at least one detector and thus increase the performance of the sensor module.

根据光学传感器模块的另一实施例,光学传感器模块具有至少一个间隔传感器,所述至少一个间隔传感器用于求取至少一个探测器至对象的间隔。According to a further embodiment of the optical sensor module, the optical sensor module has at least one distance sensor for determining the distance from the at least one detector to the object.

通过附加的传感器能够进行距离测量,该距离测量可以用于补偿传感器模块的现有的间隔相关性。因此可以扩大传感器模块的工作范围。Additional sensors enable distance measurements, which can be used to compensate for the existing spacing dependencies of the sensor modules. Therefore, the working range of the sensor module can be expanded.

根据光学传感器模块的另一实施例,至少一个信号处理单元具有电测量信号的偏移跟踪装置(Offsetnachführung)和/或电测量信号的可变放大装置。由此,至少一个信号处理单元可以具有信号调节装置和信号处理装置,由此可以使传感器模块匹配于应用特定的要求。According to a further embodiment of the optical sensor module, the at least one signal processing unit has an offset tracking device for the electrical measurement signal and/or a variable amplification device for the electrical measurement signal. As a result, the at least one signal processing unit can have a signal conditioning device and a signal processing device, whereby the sensor module can be adapted to application-specific requirements.

根据光学传感器模块的另一实施例,光学传感器模块具有用于执行温度补偿的温度传感器。由此,在通过至少一个信号处理单元分析处理至少一个探测器的测量信号时,可以考虑对发射器或至少一个探测器的发射特性的热影响以及考虑对待检查的材料的热影响。通过附加的温度信息尤其可以补偿在处理测量信号的范畴中的温度相关的影响。According to another embodiment of the optical sensor module, the optical sensor module has a temperature sensor for performing temperature compensation. In this way, the thermal influence on the emission characteristics of the transmitter or the at least one detector as well as the thermal influence of the material to be examined can be taken into account when evaluating the measurement signal of the at least one detector by the at least one signal processing unit. In particular, temperature-dependent influences in the area of processing the measurement signals can be compensated for by the additional temperature information.

根据光学传感器模块的另一实施例,将至少一个射束源、至少一个探测器、至少一个基座、至少一个信号处理单元和至少一个能量供给单元布置在可液密密封(fluiddichtverschlieβbar)的壳体中。优选地,通过盖能够密封壳体,并且通过密封装置(例如O形圈)能够封闭壳体免受环境影响。外壳可以由塑料组成或由防水浸渍的

Figure BDA0002574537550000041
或涂漆的金属组成。因此,传感器模块也可以在潮湿的环境中使用,其中,传感器模块的部件受保护地布置在壳体中。According to a further embodiment of the optical sensor module, at least one beam source, at least one detector, at least one base, at least one signal processing unit and at least one energy supply unit are arranged in a fluid-tightly sealable housing middle. Preferably, the housing can be sealed by a cover and can be closed from the environment by sealing means such as an O-ring. The housing can be composed of plastic or waterproof impregnated
Figure BDA0002574537550000041
or painted metal composition. Therefore, the sensor module can also be used in wet environments, wherein the components of the sensor module are arranged in the housing in a protected manner.

根据光学传感器模块的另一实施例,壳体具有至少一个窗口,所述至少一个窗口用于透射至少一个射束源的电磁射束。因此,由至少一个射束源产生的电磁射束可以从壳体中发射出来。在此,传感器模块的光学部件尤其可以受保护地布置在壳体中。According to a further embodiment of the optical sensor module, the housing has at least one window for transmitting the electromagnetic beam of the at least one beam source. Thus, the electromagnetic beam generated by the at least one beam source can be emitted from the housing. In particular, the optical components of the sensor module can be arranged in the housing in a protected manner.

根据光学传感器模块的另一实施例,通过布置在壳体中的至少一个基座能够将至少一个探测器直接定位在至少一个窗口上。通过至少一个基座能够将至少一个探测器如此定位在壳体中,使得探测器直接布置在壳体的窗口上。尤其可以正交于窗口的平面延展地定位探测器,由此可以减少反射。根据至少一个基座的构型,探测器的容纳部可以在周侧(umfangsseitig)相对于窗口屏蔽探测器,并且因此保护探测器免受来自壳体的散射光。According to another embodiment of the optical sensor module, the at least one detector can be positioned directly on the at least one window by means of at least one base arranged in the housing. The at least one detector can be positioned in the housing by means of the at least one base in such a way that the detector is arranged directly on the window of the housing. In particular, the detector can be positioned perpendicular to the plane of the window, whereby reflections can be reduced. Depending on the configuration of the at least one base, the receptacle of the detector can shield the detector circumferentially relative to the window and thus protect the detector from scattered light from the housing.

根据本发明的探测器特别适合用于洗衣机或洗碗机中。The detector according to the invention is particularly suitable for use in washing machines or dishwashers.

附图说明Description of drawings

以下根据高度简化的示意图更详细地阐述本发明的优选实施方式。在此示出:Preferred embodiments of the invention are explained in more detail below on the basis of highly simplified schematic diagrams. Shown here:

图1a示出根据本发明的第一实施方式的传感器模块的具有多个射束源和一个探测器的基座的立体分解图;FIG. 1 a shows an exploded perspective view of the base of a sensor module with a plurality of beam sources and a detector according to a first embodiment of the invention;

图1b示出根据本发明的第二实施方式的传感器模块的具有多个射束源和一个探测器的基座的立体分解图;FIG. 1 b shows an exploded perspective view of the base of a sensor module according to a second embodiment of the invention with a plurality of beam sources and a detector;

图2示出通过根据第二实施方式的传感器模块的照明的示意图;FIG. 2 shows a schematic diagram of the illumination by the sensor module according to the second embodiment;

图3a示出根据本发明的第一实施方式的传感器模块的立体分解图;Figure 3a shows an exploded perspective view of a sensor module according to a first embodiment of the present invention;

图3b示出根据本发明的第二实施方式的传感器模块的立体分解图;Figure 3b shows an exploded perspective view of a sensor module according to a second embodiment of the present invention;

图4示出根据本发明的一种实施方式的传感器模块的信号处理单元的电路图的示意图;FIG. 4 shows a schematic diagram of a circuit diagram of a signal processing unit of a sensor module according to an embodiment of the present invention;

图5示出根据本发明的第三实施方式的传感器模块的示意图。FIG. 5 shows a schematic diagram of a sensor module according to a third embodiment of the present invention.

在附图中,相同的结构元件分别具有相同的附图标记。In the figures, the same structural elements respectively have the same reference numerals.

具体实施方式Detailed ways

图1a示出根据本发明的第一实施方式的传感器模块6的具有多个射束源2和一个探测器4的基座1的立体分解图。FIG. 1 a shows an exploded perspective view of the base 1 of thesensor module 6 according to the first embodiment of the invention with a plurality ofbeam sources 2 and adetector 4 .

基座1旋转对称地成型并且具有六个用于容纳各一个射束源2的容纳部8。用于容纳射束源2的容纳部8布置成围绕用于容纳探测器4的容纳部10。此外,用于容纳探测器4的容纳部10与射束源2的容纳部8在射束源2的发射方向上错位地布置。The base 1 is rotationally symmetrical and has sixreceptacles 8 for accommodating abeam source 2 in each case. Thereceptacle 8 for accommodating thebeam source 2 is arranged to surround thereceptacle 10 for accommodating thedetector 4 . Furthermore, thereceptacle 10 for accommodating thedetector 4 and thereceptacle 8 of thebeam source 2 are arranged offset in the emission direction of thebeam source 2 .

根据传感器模块6的第一实施例,射束源2和探测器4可以彼此平行定向地定位在基座1中或基座1的容纳部8、10中。According to the first embodiment of thesensor module 6 , thebeam source 2 and thedetector 4 can be positioned in the base 1 or in thereceptacles 8 , 10 of the base 1 , oriented parallel to each other.

在此,射束源2例如是具有3mm或5mm直径的红外LED。射束源2可以发射在800nm至1000nm的波长范围内的电磁射束。Here, thebeam source 2 is, for example, an infrared LED with a diameter of 3 mm or 5 mm. Thebeam source 2 can emit electromagnetic beams in the wavelength range of 800 nm to 1000 nm.

基座1在与探测器4的容纳部10相对的端部上平坦地构型,使得基座1可以形状锁合地布置在平面的电路板上。基座1具有通孔,该通孔用于射束源2和探测器4的接通部,该通孔在与射束源2的射束方向相反的方向上被引导穿过基座1。因此,引导通过基座1的接通部可以相对彼此定向并且最佳地定位在电路板上。The base 1 is formed flat on the end opposite thereceptacle 10 of thedetector 4 , so that the base 1 can be arranged in a form-fitting manner on a flat circuit board. The base 1 has a through hole for the connection of thebeam source 2 and thedetector 4 , which is guided through the base 1 in a direction opposite to the beam direction of thebeam source 2 . Thus, the contacts guided through the base 1 can be oriented relative to each other and positioned optimally on the circuit board.

图1b示出根据本发明的第二实施方式的传感器模块6的具有多个射束源2和探测器4的基座1的立体分解图。与传感器模块6的第一实施例不同,在此射束源2相对于探测器4成一角度地布置。射束源2尤其朝向旋转对称的基座1的旋转轴线倾斜地或成角度地定向。这可以通过射束源2的相应的成角度构型的容纳部8来实现。由此,可以构成通过射束源2产生的电磁射束的重叠区域,这构成射束源2的均匀的发射区域,并可以补偿射束源2的制造公差。FIG. 1 b shows an exploded perspective view of the base 1 of thesensor module 6 with a plurality ofbeam sources 2 anddetectors 4 according to a second embodiment of the invention. In contrast to the first exemplary embodiment of thesensor module 6 , here thebeam source 2 is arranged at an angle with respect to thedetector 4 . In particular, thebeam source 2 is oriented obliquely or at an angle towards the axis of rotation of the rotationally symmetrical base 1 . This can be achieved by correspondinglyangled receptacles 8 of thebeam source 2 . In this way, an overlapping area of the electromagnetic beams generated by thebeam source 2 can be formed, which forms a uniform emission area of thebeam source 2 and can compensate for manufacturing tolerances of thebeam source 2 .

图2示出通过根据第二实施方式的传感器模块6的照明的示意图。尤其示出通过基座1的截面。在此示出射束源2相对于探测器4成角度的布置,以及射束源2与探测器4的接通部的走向。FIG. 2 shows a schematic illustration of the illumination by thesensor module 6 according to the second embodiment. In particular a section through the base 1 is shown. The angled arrangement of thebeam source 2 with respect to thedetector 4 is shown here, as well as the course of the connection between thebeam source 2 and thedetector 4 .

通过在基座1中探测器4相对于射束源2错位的布置,可以将探测器4直接定位在传感器模块6的窗口12上。在此,探测器4如此布置在基座1中,使得壁11可以保护和屏蔽探测器4免受散射光,该壁围绕探测器4的容纳部10。优选地,将基座1如此定位在传感器模块6的窗口12上,使得在壁11与窗口12之间不存在间隔或仅存在最小的间隔。Due to the offset arrangement of thedetector 4 relative to thebeam source 2 in the base 1 , thedetector 4 can be positioned directly on thewindow 12 of thesensor module 6 . Here, thedetector 4 is arranged in the base 1 in such a way that awall 11 , which surrounds thereceptacle 10 of thedetector 4 , can protect and shield thedetector 4 from scattered light. Preferably, the base 1 is positioned on thewindow 12 of thesensor module 6 in such a way that there is no space or only a minimal space between thewall 11 and thewindow 12 .

传感器模块6通过窗口12发射由射束源2产生的电磁射束。通过多个射束源2产生重叠区域A,该重叠区域构型成所有射束源2所产生的电磁射束的总和。由此能够补偿射束源2的制造公差。Thesensor module 6 emits the electromagnetic beam generated by thebeam source 2 through thewindow 12 . A plurality ofbeam sources 2 produces an overlapping area A which is configured as the sum of the electromagnetic beams generated by allbeam sources 2 . As a result, manufacturing tolerances of thebeam source 2 can be compensated.

可选地可以设置,将基座1构型成可运动的,使得基座可以定向到至少一个单个的射束源2和/或探测器4。为此,可以设有执行器,执行器被分配给射束源2或分配给探测器。此外,可选地可以设置,基座1构型成多部分的,其中,基座1的一部分能够相对于另一部分运动。通过这种多部分的构型,射束源2或探测器4可以分别定向到不同的元件。在一种特别的构型中,基座1的多部分构型的每个部分都配备有其自己的执行器,使得可以彼此独立地操控和定位每个部分。通过信号处理单元26可以例如根据探测器6的测量信号来操控一个或多个执行器。Optionally, it can be provided that the base 1 is configured to be movable, so that the base can be oriented to at least oneindividual beam source 2 and/ordetector 4 . For this purpose, actuators can be provided, which are assigned to thebeam source 2 or to the detector. Furthermore, it can optionally be provided that the base 1 is configured in multiple parts, wherein one part of the base 1 is movable relative to another part. With this multi-part configuration, thebeam source 2 or thedetector 4 can be directed to different elements, respectively. In a particular configuration, each part of the multi-part configuration of the base 1 is equipped with its own actuator, so that each part can be manipulated and positioned independently of each other. By means of thesignal processing unit 26 , one or more actuators can be actuated, for example, as a function of the measurement signals of thedetector 6 .

图3a和3b示出根据本发明的第一和第二实施方式的传感器模块6的立体分解图。传感器模块6具有壳体14,该壳体能够通过密封环16借助盖18液密地密封。为了使用窗口12,盖18具有外部绝缘装置

Figure BDA0002574537550000061
所产生的电磁射线可以通过窗口12从传感器模块6的壳体14中发射。在此,可以借助密封环16将窗口12定位在盖18上。例如,可以将窗口12粘合到盖18的凹部中。Figures 3a and 3b show an exploded perspective view of asensor module 6 according to the first and second embodiments of the invention. Thesensor module 6 has ahousing 14 which can be sealed liquid-tight by means of a sealingring 16 by means of acover 18 . To use thewindow 12, thecover 18 has external insulation
Figure BDA0002574537550000061
The generated electromagnetic radiation can be emitted from thehousing 14 of thesensor module 6 through thewindow 12 . Here, thewindow 12 can be positioned on thecover 18 by means of the sealingring 16 . For example, thewindow 12 may be glued into a recess in thecover 18 .

此外,传感器模块6具有第一电路板20。在第一电路板20上通过螺纹连接部22固定基座1。在此,可以将射束源2和探测器4与电路板20导电地夹紧或焊接。Furthermore, thesensor module 6 has afirst circuit board 20 . The base 1 is fixed on thefirst circuit board 20 through thescrew connection portion 22 . In this case, thebeam source 2 and thedetector 4 can be clamped or soldered to the printedcircuit board 20 in an electrically conductive manner.

此外,传感器模块6具有第二电路板24,该第二电路板与第一电路板20导电连接。在第二电路板20上例如布置有传感器模块6的电流供给装置和至少一个信号处理单元26,至少一个信号处理单元用于分析处理探测器4的电信号。例如可以通过电池或外部电流连接端来构型电流供给装置。Furthermore, thesensor module 6 has a second circuit board 24 which is electrically conductively connected to thefirst circuit board 20 . Arranged on thesecond circuit board 20 are, for example, the current supply of thesensor module 6 and at least onesignal processing unit 26 for evaluating the electrical signals of thedetector 4 . For example, the current supply can be configured by means of a battery or an external current connection.

通过螺纹连接部28,可以将相应的部件18、1、24力锁合地彼此固定和/或力锁合地固定在壳体14上。Therespective components 18 , 1 , 24 can be non-positively fastened to each other and/or to thehousing 14 by means of thescrew connection 28 .

图4示出根据本发明的一种实施方式的传感器模块6的信号处理单元26的电路图的示意图。在此尤其描绘由探测器4产生的电测量信号的信号路径的示例性电路。FIG. 4 shows a schematic diagram of a circuit diagram of thesignal processing unit 26 of thesensor module 6 according to an embodiment of the invention. In particular, an exemplary circuit of the signal path of the electrical measurement signal generated by thedetector 4 is depicted here.

示出探测器4,其具有连接在后面的跨阻放大器30。在此,跨阻放大器30例如可以布置在第一电路板20上,并且可以通过相应的未编号的数据线将探测器4的已放大的测量信号传输到第二电路板24。Thedetector 4 is shown with atransimpedance amplifier 30 connected behind. In this case, thetransimpedance amplifier 30 can be arranged, for example, on thefirst circuit board 20 and can transmit the amplified measurement signals of thedetector 4 to the second circuit board 24 via corresponding unnumbered data lines.

例如可以将差分放大器32施加在第二电路板24上。借助差分放大器32,通过信号处理单元26的数模转换器34可以对不同射束源2的不同测量信号执行偏移校正。由此可以将测量信号转化到后续电路元件的线性区域中。For example, thedifferential amplifier 32 can be applied to the second circuit board 24 . By means of thedifferential amplifier 32 , an offset correction can be performed for the different measurement signals of thedifferent beam sources 2 by means of the digital-to-analog converter 34 of thesignal processing unit 26 . As a result, the measurement signal can be converted into the linear region of the subsequent circuit element.

在此,在第二电路板24上布置有第二运算放大器36。第二运算放大器36能够对通过信号处理单元26处理的信号进行可变的放大。特别有利的是差分放大器32的偏移跟踪和在不同的探测区域中的可变放大的用途,例如在非常弱、且与湿度相关的信号的情况下。在探测区域内,借助数模转换器34可以更精确地跟踪测量信号,并且可以将放大切换到更高的级别。Here, a secondoperational amplifier 36 is arranged on the second circuit board 24 . The secondoperational amplifier 36 is capable of variable amplification of the signal processed by thesignal processing unit 26 . Particularly advantageous is the offset tracking of thedifferential amplifier 32 and the use of variable amplification in different detection regions, eg in the case of very weak, humidity-dependent signals. Within the detection range, the measurement signal can be tracked more precisely by means of the digital-to-analog converter 34 and the amplification can be switched to a higher level.

在图5中示出根据本发明的第三实施方式的传感器模块6的示意图。与本发明的先前描述的实施例不同,传感器模块6具有温度传感器38和间隔传感器40。在通过信号处理单元26进行的进一步的分析处理中,通过温度传感器38可以考虑对象42、射束源2、探测器4或待检查的流体的发射特性中的温度限定的偏差。A schematic diagram of asensor module 6 according to a third embodiment of the invention is shown in FIG. 5 . Unlike the previously described embodiment of the invention, thesensor module 6 has a temperature sensor 38 and a spacing sensor 40 . In a further evaluation process by thesignal processing unit 26 , temperature-defined deviations in the emission properties of theobject 42 , thebeam source 2 , thedetector 4 or the fluid to be examined can be taken into account by the temperature sensor 38 .

在此,间隔传感器40可以是光学的或基于超声波的传感器。通过间隔传感器40可以补偿由对象42反射的测量信号的间隔相关性。Here, the spacing sensor 40 may be an optical or ultrasonic based sensor. The interval dependence of the measurement signal reflected by theobject 42 can be compensated by the interval sensor 40 .

由系统上和部件平面上的公差决定,可能彼此出现光学元件的误调整(Fehljustierung)。这些误调整对于光谱学的应用非常重要,在光谱学应用中通常将测量通道的至少一个波长与参考通道的波长彼此进行比较。由于这些误调整会产生传感器特定的间隔相关性,通过使用间隔传感器40可以补偿该间隔相关性。Depending on the tolerances on the system and on the component plane, misalignment of the optical elements with respect to one another can occur. These misadjustments are very important for spectroscopy applications, where at least one wavelength of the measurement channel and the wavelength of the reference channel are usually compared with each other. Since these misadjustments can produce sensor-specific spacing dependencies, the use of spacing sensor 40 can compensate for this spacing dependence.

因为尤其在通过传感器模块6在反射模式下进行测量时传感器4、6至对象42的间隔可能会发生改变,所以通过将用于间隔测量的间隔传感器40集成到传感器模块6中实现以下可能性:补偿测量信号的间隔相关性。Since the spacing of thesensors 4 , 6 to theobject 42 may change, in particular when the measurement is carried out by thesensor module 6 in reflection mode, the following possibilities are achieved by integrating the spacing sensor 40 for the spacing measurement into the sensor module 6 : Compensates for the interval dependence of the measurement signal.

图5中还示出根据本发明的第三实施方式的传感器模块6的所有相关部件的概况。An overview of all relevant components of thesensor module 6 according to the third embodiment of the invention is also shown in FIG. 5 .

另一实施例涉及一种用于分析处理由探测器4接收的电测量信号的方法,例如可以在信号处理单元26中执行该方法。在此,如此处理测量信号,使得信号处理单元26根据从至少一个射束源2回射(zurückfallen)到探测器4上的辐射强度显示一个或多个信号。此外能够设想,信号处理单元26的信号根据温度传感器38和/或间隔传感器40的测量参量产生。Another embodiment relates to a method for evaluating the electrical measurement signals received by thedetector 4 , which method can be carried out, for example, in thesignal processing unit 26 . In this case, the measurement signals are processed in such a way that thesignal processing unit 26 displays one or more signals as a function of the radiation intensity reflected back from the at least onebeam source 2 onto thedetector 4 . Furthermore, it is conceivable that the signals of thesignal processing unit 26 are generated as a function of the measured variables of the temperature sensor 38 and/or the distance sensor 40 .

Claims (13)

Translated fromChinese
1.一种光学传感器模块(6),所述光学传感器模块用于分析流体或对象(42),所述光学传感器模块具有1. An optical sensor module (6) for analyzing a fluid or object (42), the optical sensor module having至少一个射束源(2),所述至少一个射束源用于产生一波长范围的电磁射束并且用于在待检查的流体或对象(42)的方向上发射所述电磁射束,at least one beam source (2) for generating an electromagnetic beam in a wavelength range and for emitting said electromagnetic beam in the direction of the fluid or object (42) to be examined,至少一个探测器(4),所述至少一个探测器用于接收在所述流体或所述对象(42)处反射的射束并且用于将所接收的射束转换成电测量信号,at least one detector (4) for receiving the beam reflected at the fluid or the object (42) and for converting the received beam into an electrical measurement signal,至少一个基座(1),所述至少一个基座用于所述至少一个射束源(2)和所述至少一个探测器(4)在电路板(20)上的定位和定向,at least one base (1) for the positioning and orientation of the at least one beam source (2) and the at least one detector (4) on the circuit board (20),至少一个信号处理单元(26),所述至少一个信号处理单元用于放大和处理所述至少一个探测器(4)的电测量信号,at least one signal processing unit (26) for amplifying and processing the electrical measurement signal of the at least one detector (4),其特征在于,所述至少一个射束源(2)能够通过所述至少一个基座(1)平行于或倾斜于所述至少一个探测器(4)地定位在所述电路板(20)上。Characterized in that the at least one beam source (2) can be positioned on the circuit board (20) by means of the at least one base (1) parallel or inclined to the at least one detector (4) .2.根据权利要求1所述的传感器模块,其中,所述探测器(4)能够在所述至少一个基座(1)中居中地定位在至少两个射束源(2)之间。2. The sensor module according to claim 1, wherein the detector (4) can be positioned centrally in the at least one base (1) between at least two beam sources (2).3.根据权利要求1所述的传感器模块,其中,所述射束源(2)能够在所述至少一个基座(1)中居中地定位在至少两个探测器(4)之间。3. The sensor module according to claim 1, wherein the beam source (2) can be positioned centrally in the at least one base (1) between at least two detectors (4).4.根据权利要求1至3中任一项所述的传感器模块,其中,所述至少一个基座(1)旋转对称地成型,其中,所述至少一个基座(1)具有用于容纳探测器(4)的至少一个接收部(10)和用于容纳射束源(2)的至少一个接收部(8)。4. The sensor module according to any one of claims 1 to 3, wherein the at least one base (1) is rotationally symmetrically shaped, wherein the at least one base (1) has a structure for accommodating a detection at least one receiver (10) of the receiver (4) and at least one receiver (8) for accommodating the beam source (2).5.根据权利要求1至4中任一项所述的传感器模块,其中,所述至少一个基座(1)至少局部地屏蔽布置在接收部(10)中的所述至少一个探测器(4)免受电磁射束。5. The sensor module according to any one of claims 1 to 4, wherein the at least one base (1) at least partially shields the at least one detector (4) arranged in the receptacle (10) ) from electromagnetic radiation.6.根据权利要求1至5中任一项所述的传感器模块,其中,所述光学传感器模块(6)具有至少一个间隔传感器(40),所述至少一个间隔传感器用于求取所述至少一个探测器(4)至所述对象(42)的间隔。6 . The sensor module according to claim 1 , wherein the optical sensor module ( 6 ) has at least one distance sensor ( 40 ) for determining the at least one distance. 7 . A detector (4) to the distance of the object (42).7.根据权利要求1至6中任一项所述的传感器模块,其中,所述至少一个信号处理单元(26)具有所述电测量信号的偏移跟踪装置(32)和/或所述电测量信号的可变放大装置(36)。7. The sensor module according to any one of claims 1 to 6, wherein the at least one signal processing unit (26) has an offset tracking device (32) of the electrical measurement signal and/or the electrical Variable amplification means (36) for the measurement signal.8.根据权利要求1至7中任一项所述的传感器模块,其中,所述光学传感器模块(6)具有用于执行温度补偿的温度传感器(38)。8. The sensor module according to any one of claims 1 to 7, wherein the optical sensor module (6) has a temperature sensor (38) for performing temperature compensation.9.根据权利要求1至8中任一项所述的传感器模块,其中,所述至少一个射束源(2)、所述至少一个探测器(4)、所述至少一个基座(1)、所述至少一个信号处理单元(26)和至少一个能量供给单元布置在能够液密地密封的壳体(14,18)中。9. The sensor module according to any one of claims 1 to 8, wherein the at least one beam source (2), the at least one detector (4), the at least one base (1) , the at least one signal processing unit (26) and the at least one energy supply unit are arranged in a liquid-tightly sealable housing (14, 18).10.根据权利要求1至9中任一项所述的传感器模块,其中,所述壳体(14,18)具有至少一个窗口(12),所述至少一个窗口用于透射所述至少一个射束源(2)的电磁射束。10. The sensor module according to any one of claims 1 to 9, wherein the housing (14, 18) has at least one window (12) for transmitting the at least one radiation The electromagnetic beam of the beam source (2).11.根据权利要求9所述的传感器模块,其中,所述至少一个探测器(4)能够通过布置在所述壳体(14,18)中的所述至少一个基座(1)直接定位在所述至少一个窗口(12)上。11. A sensor module according to claim 9, wherein the at least one detector (4) is directly positionable on the at least one base (1) arranged in the housing (14, 18) on the at least one window (12).12.一种用于分析处理根据权利要求1至11中任一项所述的传感器模块的传感器信号的方法,其中,根据由至少一个射束源(2)产生的且在待检查的流体或对象(42)的方向上发射的、反射回到所述探测器(4)的电磁射束对探测器(4)的探测器信号进行放大和处理。12. A method for evaluating sensor signals of a sensor module according to any one of claims 1 to 11, wherein according to the fluid or The detector signal of the detector (4) is amplified and processed by the electromagnetic beam emitted in the direction of the object (42) and reflected back to the detector (4).13.根据权利要求12所述的方法,其特征在于,根据温度传感器(38)的和/或间隔传感器(40)的测量参量来修改所述传感器信号。13. The method according to claim 12, characterized in that the sensor signal is modified as a function of measured variables of the temperature sensor (38) and/or of the spacer sensor (40).
CN201880085890.7A2018-01-082018-12-20 Optical sensor module for spectral measurementsPendingCN111587364A (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
DE102018200162.62018-01-08
DE102018200162.6ADE102018200162A1 (en)2018-01-082018-01-08 Optical sensor module for spectroscopic measurement
PCT/EP2018/086134WO2019134844A1 (en)2018-01-082018-12-20Optical sensor module for spectroscopic measurement

Publications (1)

Publication NumberPublication Date
CN111587364Atrue CN111587364A (en)2020-08-25

Family

ID=65023850

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201880085890.7APendingCN111587364A (en)2018-01-082018-12-20 Optical sensor module for spectral measurements

Country Status (4)

CountryLink
KR (1)KR20200103092A (en)
CN (1)CN111587364A (en)
DE (1)DE102018200162A1 (en)
WO (1)WO2019134844A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2022185311A1 (en)*2021-03-042022-09-09Maytronics Ltd.Systems and methods for monitoring fluid of a fluid facility having an inspection subsystem for inspection of light sources used in the monitoring system

Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5963333A (en)*1996-09-121999-10-05Color Savvy Systems LimitedColor sensor
JP2000000960A (en)*1998-04-152000-01-07Baldwin Japan Ltd Content reading sensor for printing paper etc. and printing paper inspection device
US20020191188A1 (en)*2001-05-222002-12-19Xerox CorporationAngular, azimuthal and displacement insensitive spectrophotometer for color printer color control systems
CN101228434A (en)*2005-07-222008-07-23第一伊沃尔维克斯私人有限公司 Detection of impurities in textile materials
CN102338660A (en)*2010-07-082012-02-01赫拉胡克公司Sensor arrangement for detecting ambient conditions
DE102012100747A1 (en)*2012-01-312013-08-01Leuze Electronic Gmbh & Co. Kg Optical sensor
DE102012110646A1 (en)*2012-11-072014-05-08Scanlab AgApparatus for providing light beam used for e.g. dermatology, has operating assembly to determine actual position of beam spot relative to optical sensor responsive to output signal of optical sensor
WO2014183268A1 (en)*2013-05-142014-11-20杭州慧缘泰医疗器械有限公司Quantitative detection method of crp using immune colloidal gold test plate and biochemical parameter photoelectric detector
WO2017033419A1 (en)*2015-08-242017-03-02パナソニックIpマネジメント株式会社Substance detecting device, substance detecting system, and substance detecting method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE4338307C1 (en)*1993-11-101995-05-18Mierswa Klaus Dipl Ing Methods for the optical detection of objects or object streams, the surfaces of which are capable of reflecting or scattering light, which have self-affine or self-similar or fractal patterns or structures
US5690417A (en)*1996-05-131997-11-25Optical Gaging Products, Inc.Surface illuminator with means for adjusting orientation and inclination of incident illumination
DE19857896C1 (en)*1998-12-152000-08-31Siemens Ag Method and device for evaluating spectroscopic measurements on solid materials with spatially and / or temporally varying surfaces
DE102004028023B4 (en)*2004-06-092006-07-06Perkinelmer Optoelectronics Gmbh & Co.Kg Sensor unit for detecting a fluid, in particular for detecting natural gas, hydrocarbons, carbon dioxide or the like. In ambient air

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5963333A (en)*1996-09-121999-10-05Color Savvy Systems LimitedColor sensor
JP2000000960A (en)*1998-04-152000-01-07Baldwin Japan Ltd Content reading sensor for printing paper etc. and printing paper inspection device
US20020191188A1 (en)*2001-05-222002-12-19Xerox CorporationAngular, azimuthal and displacement insensitive spectrophotometer for color printer color control systems
CN101228434A (en)*2005-07-222008-07-23第一伊沃尔维克斯私人有限公司 Detection of impurities in textile materials
CN102338660A (en)*2010-07-082012-02-01赫拉胡克公司Sensor arrangement for detecting ambient conditions
DE102012100747A1 (en)*2012-01-312013-08-01Leuze Electronic Gmbh & Co. Kg Optical sensor
DE102012110646A1 (en)*2012-11-072014-05-08Scanlab AgApparatus for providing light beam used for e.g. dermatology, has operating assembly to determine actual position of beam spot relative to optical sensor responsive to output signal of optical sensor
WO2014183268A1 (en)*2013-05-142014-11-20杭州慧缘泰医疗器械有限公司Quantitative detection method of crp using immune colloidal gold test plate and biochemical parameter photoelectric detector
WO2017033419A1 (en)*2015-08-242017-03-02パナソニックIpマネジメント株式会社Substance detecting device, substance detecting system, and substance detecting method

Also Published As

Publication numberPublication date
WO2019134844A1 (en)2019-07-11
KR20200103092A (en)2020-09-01
DE102018200162A1 (en)2019-07-11

Similar Documents

PublicationPublication DateTitle
KR101393943B1 (en)Fiber optic temperature sensor
KR101339076B1 (en) Dome gas sensor
US7796265B2 (en)Optical absorption gas analyser
US7977638B2 (en)Long-term stable optical sensor arrangement, especially a hydrogen sensor, and combined gas sensor arrangement
US20230251132A1 (en)Multi-dispersive spectrometer
US6989549B2 (en)Optical gas sensor
CN106033054B (en)A kind of laser humiture measurement mechanism and method
EP1566626A1 (en)Gas sensor arrangement in an integrated construction
JP2007147613A (en) Gas sensor array
CN111936049B (en)Measurement system for spectroscopic examination of biopsies
CN108061722A (en)The detection device and detection method of a kind of carbonomonoxide concentration
Scholz et al.MID-IR led-based, photoacoustic CO2 sensor
JP2007507723A (en) Reflector module for photometric gas sensor
US8097856B2 (en)Super-miniaturized NDIR gas sensor
US20030025086A1 (en)Device for the detecting of aflatoxins
CN111587364A (en) Optical sensor module for spectral measurements
CN117451654B (en)Infrared gas sensor for detecting coal mine gas and use method thereof
US10996201B2 (en)Photoacoustic measurement systems and methods using the photoacoustic effect to measure emission intensities, gas concentrations, and distances
CN216484611U (en)Gas detection device for frequency modulation laser absorption spectrum
US20020153490A1 (en)Concentration detection system
CN113514818A (en)Laser radar and control method thereof
KR102265564B1 (en)Scattered light type gas sensing system
US10732118B2 (en)Gas detector with hyperdoped SiC semiconductor material and related methods
CN119827411A (en)Gas detection device and gas detection sensor
CN120609773A (en)Optical concentration measuring device and signal processing unit

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination

[8]ページ先頭

©2009-2025 Movatter.jp