技术领域:Technical field:
本发明涉及支付策略的优化方法,具体涉及一种付款结算池和时间序列的优化支付策略构建方法,属于电网收费管理技术领域。The invention relates to an optimization method for a payment strategy, in particular to a method for constructing an optimized payment strategy for a payment settlement pool and a time series, and belongs to the technical field of power grid charge management.
背景技术:Background technique:
在现代企业的管理中收入和支付的管理十分重要。合理的根据收入的情况进行支付一方面可以规避超支风险,另一方面可以尽可能的降低延迟支付所产生的费用。因此构建优化的支付策略十分重要。The management of income and payment is very important in the management of modern enterprises. Reasonable payment according to the income situation can avoid the risk of overspending on the one hand, and on the other hand, it can reduce the cost of delayed payment as much as possible. Therefore, it is very important to build an optimized payment strategy.
对于支付时间策略的选择,当前主要采用的方式是:(1)先到先得型,在不超支的情况下尽可能快的进行支付;这种方法可能的问题是当较大额度的支付先出现的时候,可能会直接导致结算资金不足,从而使得后续的多笔支出无法进行,使得整个业务处于等待状态,使得支付总体成本增加。(2)按照固定的方案支付,指定具体时间支付具体额度和内容的费用,容易造成业务的堆积并缺乏灵活性。本身一个企业的支付行为是多种来源产生的(如日常办公、业务往来、购买设备和材料)难以通过一个数学公式直接计算出最佳的支付时间;与此同时支付本身存在动态的关联特性,在资金充裕支付额度较少的情况之下项目之间关联较弱,当出现支付额度较大的情况下会出现较强的关联性,这种动态的关联特性也很难用一个遗传算法等群体中独立个体的过程描述,所以自动化的优化支付策略构建是一个较难的问题。For the choice of payment time strategy, the main methods currently used are: (1) First-come, first-served type, making payments as soon as possible without overspending; the possible problem of this method is that when larger payments are made first When it occurs, it may directly lead to insufficient settlement funds, so that subsequent multiple expenditures cannot be carried out, the entire business is in a waiting state, and the overall cost of payment is increased. (2) Paying according to a fixed plan, specifying a specific time to pay a specific amount and content of fees, is likely to cause business accumulation and lack of flexibility. The payment behavior of an enterprise itself is generated from various sources (such as daily office, business transactions, purchase of equipment and materials), and it is difficult to directly calculate the optimal payment time through a mathematical formula; at the same time, the payment itself has dynamic correlation characteristics, In the case of sufficient funds and a small amount of payment, the correlation between projects is weak, and when the payment amount is large, there will be a strong correlation. This dynamic correlation characteristic is also difficult to use a group such as a genetic algorithm. The process description of independent individuals in the system, so the construction of automated optimized payment strategy is a difficult problem.
因此需要建立一种方法,在资金允许的情况下尽可能优化的安排支付同时避免超支,达到快捷支付的目的减少相关费用的目的。Therefore, it is necessary to establish a method to arrange payment as optimally as possible when funds allow, while avoiding overspending, so as to achieve the purpose of quick payment and reduce related costs.
发明内容SUMMARY OF THE INVENTION
本发明提供一种付款结算池和时间序列的优化支付策略构建方法,通过引入付款结算池、基于付款结算池的收入支出评价算子、支付时间序列调整算子,实现优化支付策略获取。The invention provides a method for constructing a payment settlement pool and a time series optimized payment strategy. By introducing a payment settlement pool, an income and expenditure evaluation operator based on the payment settlement pool, and a payment time series adjustment operator, the optimized payment strategy can be obtained.
本发明所述的一种付款结算池和时间序列的优化支付策略构建方法,其特征在于包括以下步骤:The method for constructing a payment settlement pool and a time series optimized payment strategy according to the present invention is characterized by comprising the following steps:
S1,输入支付策略计算天数TDay,输入待支付项目列表TWithDrawList,输入收入列表TIncomeList;输入初始化付款结算池资金量TPool,结算池资金每日利息TInt;构建支付时间序列TStrategy;S1, enter the payment strategy calculation days TDay, enter the to-be-paid item list TWithDrawList, enter the income list TIncomeList; enter the initial payment settlement pool capital amount TPool, the settlement pool fund daily interest TInt; construct the payment time series TStrategy;
S101,输入支付策略计算天数TDay,TDay为一个整型数,默认值为15;S101, input the payment strategy calculation days TDay, TDay is an integer number, the default value is 15;
S102,输入待支付项目列表TWithDrawList,TWithDrawList包含多个表项,每个表项的包含以下字段:S102, input a list of items to be paid TWithDrawList, TWithDrawList includes multiple entries, and each entry includes the following fields:
TWID:支付项目的编号;TWID: the number of the payment item;
TWMoney:支付金额;TWMoney: payment amount;
TWInt:当延迟支付时每日需要额外支付的费用;TWInt: The additional fee to be paid per day in case of late payment;
S103,输入收入列表TIncomeList,TIncomeList包含TDay个表项,每个表项的包含以下字段:S103, input the income list TIncomeList, TIncomeList includes TDay entries, and each entry includes the following fields:
TIID:收入的编号,其值的范围为1到TDay;TIID: the ID of the income, whose value ranges from 1 to TDay;
TWMoney:收入的金额;TWMoney: the amount of income;
S104,输入初始化付款结算池资金量TPool,TPool为一个浮点型数;S104, input the initialized payment settlement pool capital amount TPool, where TPool is a floating-point number;
S105,构建支付时间序列TStrategy,TStrategy为一个TDay个表项的列表,每个表项的包含以下字段:S105, construct a payment time series TStrategy, where TStrategy is a list of TDay entries, and each entry includes the following fields:
TStrategyItem:对应天支付项目集合变量,该变量为一个集合,集合内存储TWID元素,表示在对应天支付对应的项目,在初始情况下TStrategyItem包含0个表项;TStrategyItem: The corresponding day payment item collection variable, this variable is a collection, and the TWID element is stored in the collection, indicating that the corresponding item is paid on the corresponding day. In the initial case, TStrategyItem contains 0 table items;
S2,构建基于付款结算池的收入支出评价算子OStac,该算子对TStrategy进行评价并输出评价结果OResult;S2, construct an income and expenditure evaluation operator OStac based on the payment settlement pool, which evaluates TStrategy and outputs the evaluation result OResult;
S201,构建基于付款结算池的收入支出评价算子OStac,设定暂存付款结算池变量OTempPool=TPool;S201, constructing an income and expenditure evaluation operator OStac based on the payment settlement pool, and setting the temporary payment settlement pool variable OTempPool=TPool;
S202,收入支出评价算子计数器OCounter=1;S202, the income and expenditure evaluation operator counter OCounter=1;
S203,OTempPool=OTempPool+TIncomeList[OCounter].TWMoney;S203, OTempPool=OTempPool+TIincomeList[OCounter].TWMoney;
S204,收入支出评价算子暂存列表OTempList=TStrategy[OCounter].TStrategyItem;S204, income and expenditure evaluation operator temporary storage list OTempList=TStrategy[OCounter].TStrategyItem;
S205,收入支出评价算子表项计数器OTLCounter=1;S205, the income and expenditure evaluation operator table entry counter OTLCounter=1;
S206,收入支出评价算子待计算表项变量OWDItem=取出TWithDrawList中TWID等于OTempList[OTLCounter]的表项;S206, the variable OWDItem of the table item to be calculated by the income and expenditure evaluation operator=takes out the table item whose TWID is equal to OTempList[OTLCounter] in TWithDrawList;
S207,OTempPool=OTempPool-OWDItem.TWMoney-OWDItem.TWInt×OCounter;S207, OTempPool=OTempPool-OWDItem.TWMoney-OWDItem.TWInt×OCounter;
S208,如果OTempPool<0则设定OResult=-1并退出算子计算,否则转到S209;S208, if OTempPool<0, set OResult=-1 and exit the operator calculation, otherwise go to S209;
S209,OTLCounter=OTLCounter+1,如果OTLCounter小于等于OTempList元素个数则转到S206,否则转到S210;S209, OTLCounter=OTLCounter+1, if OTLCounter is less than or equal to the number of OTempList elements, go to S206, otherwise go to S210;
S210,OTempPool=OTempPool+OTempPool×Tint;S210, OTempPool=OTempPool+OTempPool×Tint;
S211,OCounter=OCounter+1,如果OCounter小于等于TDay则转到S203,否则转到S212;S211, OCounter=OCounter+1, if OCounter is less than or equal to TDay, go to S203, otherwise go to S212;
S212,OResult=OTempPool;S212, OResult=OTempPool;
S3,构建优化选择算子RSelect,该算子输入为TStrategyItem,输出为优化选择结果RSelectResult;S3, construct the optimization selection operator RSelect, the input of the operator is TStrategyItem, and the output is the optimization selection result RSelectResult;
S301,构建优化选择算子RSelect,该算子输入为TStrategyItem,设定优化选择算子待优选个数变量RINum=TStrategyItem的元素个数;S301, construct an optimization selection operator RSelect, the operator input is TStrategyItem, and set the number of optimization selection operator to be selected variable RINum=the number of elements of TStrategyItem;
S302,建立RINum个元素的浮点型数组RArray,该数组在初始化时所有元素均为0;S302, establish a floating-point array RArray of RINum elements, and all elements of the array are 0 when initialized;
S303,优化选择算子计数器RICounter=1;S303, optimize the selection operator counter RICounter=1;
S304,优化选择算子暂存支付项目的编号变量RTWID=TStrategyItem[RICounter];S304, the optimization selection operator temporarily stores the number variable RTWID=TStrategyItem[RICounter] of the payment item;
S305,优化选择算子待计算表项变量RTemp=在TWithDrawList找到TWID=RTWID的表项;S305, the table entry variable RTemp to be calculated by the optimization selection operator=finds the table entry of TWID=RTWID in TWithDrawList;
S306,计算RValue的值,其计算采用如下公式:S306, calculate the value of RValue, and the calculation adopts the following formula:
S307,RArray[RICounter]=RValue;S307, RArray[RICounter]=RValue;
S308,RICounter=RICounter+1,如果RICounter>RINum则转到S309,否则转到S304;S308, RICounter=RICounter+1, if RICounter>RINum, go to S309, otherwise go to S304;
S309,RArrayPos=找到RArray中数值最大元素所在位置;S309, RArrayPos=find the position of the largest numerical element in RArray;
S310,RSelectResult=TStrategyItem[RArrayPos],算子运行过程结束;S310, RSelectResult=TStrategyItem[RArrayPos], the operation process of the operator ends;
S4,构建支付时间序列调整算子ZStrategyCreater,该算子会调整TStrategy中的一个表项中的内容从而改变支付策略;S4, construct a payment time series adjustment operator ZStrategyCreater, which will adjust the content of an entry in TStrategy to change the payment strategy;
S401,构建支付时间序列调整算子ZStrategyCreater;S401, construct a payment time series adjustment operator ZStrategyCreater;
S402,支付时间序列调整算子计数器ZCounter=2,支付时间序列调整算子中间过程列表变量ZTempList=空列表;S402, the payment time series adjustment operator counter ZCounter=2, the payment time series adjustment operator intermediate process list variable ZTempList=empty list;
S403,支付时间序列调整算子暂存表项变量:S403, the payment time series adjustment operator temporarily stores table entry variables:
TTempItem=TStrategy[ZCounter].TStrategyItem;TTempItem=TStrategy[ZCounter].TStrategyItem;
S404,如果TTempItem的表项数目大于0,则将ZCounter加入到ZTempList之中;S404, if the number of entries of TTempItem is greater than 0, add ZCounter to ZTempList;
S405,ZCounter=ZCounter+1,如果ZCounter小于等于TDay则转到S403,否则转到S406;S405, ZCounter=ZCounter+1, if ZCounter is less than or equal to TDay, go to S403, otherwise go to S406;
S406,如果ZTempList的元素个数为0,则ZStrategyCreater的运算过程结束,否则转到S407;S406, if the number of elements of ZTempList is 0, the operation process of ZStrategyCreater ends, otherwise, go to S407;
S407,随机选择表项内容变量ZTID=在ZTempList中随机选择一个表项内容;S407, randomly select the table item content variable ZTID=randomly select a table item content in ZTempList;
S408,支付时间序列调整算子优化目标变量ZTarget=将TStrategy[ZTID].TStrategyItem输入给优化选择算子RSelect,获得选择结果RSelectResult;S408, pay the time series adjustment operator optimization target variable ZTarget=input TStrategy[ZTID].TStrategyItem to the optimization selection operator RSelect, and obtain the selection result RSelectResult;
S409,在TStrategy[ZTID].TStrategyItem删除ZTarget;S409, delete ZTarget in TStrategy[ZTID].TStrategyItem;
S410,ZPos=在1至ZTID中随机选择一个数字;S410, ZPos= randomly select a number from 1 to ZTID;
S411,将ZTarget加入到TStrategy[ZPos].TStrategyItem之中;S411, add ZTarget to TStrategy[ZPos].TStrategyItem;
S412,ZStrategyCreater运算过程结束;S412, the operation process of ZStrategyCreater ends;
S5,利用基于付款结算池的收入支出评价算子OStac和支付时间序列调整算子ZStrategyCreater,优化支付时间序列TStrategy,获得优化的支付策略;S5, use the income and expenditure evaluation operator OStac based on the payment settlement pool and the payment time series adjustment operator ZStrategyCreater to optimize the payment time series TStrategy to obtain an optimized payment strategy;
S501,优化支付策略清空计数器ECounter=1;S501, the optimized payment strategy clears the counter ECounter=1;
S502,清空TStrategy[ECounter].TStrategyItem中的内容;S502, clear the content in TStrategy[ECounter].TStrategyItem;
S503,ECounter=ECounter+1,如果ECounter小于等于(TDay)则转到S502,否则转到S504;S503, ECounter=ECounter+1, if ECounter is less than or equal to (TDay), go to S502, otherwise go to S504;
S504,取出TWithDrawList中所有表项的TWID加入到TStrategy[TDay].TStrategyItem之中;S504, take out the TWIDs of all entries in TWithDrawList and add them to TStrategy[TDay].TStrategyItem;
S505,优化支付策略构建计数器MCounter=1;S505, optimize the payment strategy construction counter MCounter=1;
S506,暂存支付策略ETempStrategy=TStrategy;S506, temporarily store the payment strategy ETempStrategy=TStrategy;
S507,第一次评价结果变量Result1=运行OStac获得评价结果OResult;S507, the first evaluation result variable Result1=runs OStac to obtain the evaluation result OResult;
S508,运行ZStrategyCreater;S508, run ZStrategyCreater;
S509,第二次评价结果变量Result2=运行OStac获得评价结果OResultS509, the second evaluation result variable Result2=runs OStac to obtain the evaluation result OResult
S510,如果Result2<=Result1则TStrategy=ETempStrategy;S510, if Result2<=Result1, then TStrategy=ETempStrategy;
S511,MCounter=MCounter+1,如果MCounter<1000则转到S506,否则转到S512;S511, MCounter=MCounter+1, if MCounter<1000, go to S506, otherwise go to S512;
S512,输出TStrategy作为支付策略。S512, output TStrategy as the payment strategy.
本发明的积极效果在于:通过引入付款结算池、基于付款结算池的收入支出评价算子、支付时间序列调整算子,实现优化支付策略获取。利用本发明发明产生的策略是在最大程度保证不出现超支情况下,,逐步对初始策略进行调整和优化,在资金允许的情况下尽可能优化的安排支付,达到减少相关费用和等待时间的目的。The positive effects of the present invention are: by introducing a payment settlement pool, an income and expenditure evaluation operator based on the payment settlement pool, and a payment time series adjustment operator, the optimal payment strategy acquisition is realized. The strategy generated by the invention is to gradually adjust and optimize the initial strategy under the circumstance of ensuring that no overspending occurs to the greatest extent, and arrange payment as optimally as possible when funds allow, so as to achieve the purpose of reducing relevant expenses and waiting time. .
具体实施方式Detailed ways
通过以下实施例进一步举例描述本发明,并不以任何方式限制本发明,在不背离本发明的技术解决方案的前提下,对本发明所作的本领域普通技术人员容易实现的任何改动或改变都将落入本发明的权利要求范围之内。The present invention is further described by the following examples, and does not limit the present invention in any way. On the premise of not departing from the technical solutions of the present invention, any changes or changes that are easily realized by those of ordinary skill in the art made by the present invention will be fall within the scope of the claims of the present invention.
实施例1Example 1
以某企业的财务的1年财务的收入和支付真实数据作为测试数据集:Take the real data of one-year financial income and payment of a company's finance as the test data set:
S1,输入支付策略计算天数TDay=10,S1, enter the payment strategy calculation days TDay=10,
输入待支付项目列表TWithDrawList:Enter the list of items to be paid TWithDrawList:
输入收入列表TIncomeList:Enter the income list TIncomeList:
输入初始化付款结算池资金量TPool=150,Enter the initial payment settlement pool capital amount TPool=150,
结算池资金每日利息TInt=0.00003;Daily interest of settlement pool funds TInt=0.00003;
构建支付时间序列TStrategy:Construct the payment time series TStrategy:
TStrategy是包含10个表项的列表,列表中每一项的内容为空;TStrategy is a list containing 10 items, and the content of each item in the list is empty;
S2,构建基于付款结算池的收入支出评价算子OStac,该算子对TStrategy进行评价并输出评价结果OResult;S2, construct an income and expenditure evaluation operator OStac based on the payment settlement pool, which evaluates TStrategy and outputs the evaluation result OResult;
S201,构建基于付款结算池的收入支出评价算子OStac,设定暂存付款结算池变量OTempPool=TPool;S201, constructing an income and expenditure evaluation operator OStac based on the payment settlement pool, and setting the temporary payment settlement pool variable OTempPool=TPool;
S202,收入支出评价算子计数器OCounter=1;S202, the income and expenditure evaluation operator counter OCounter=1;
S203,OTempPool=OTempPool+TIncomeList[OCounter].TWMoney;S203, OTempPool=OTempPool+TIincomeList[OCounter].TWMoney;
S204,收入支出评价算子暂存列表OTempList=TStrategy[OCounter].TStrategyItem;S204, income and expenditure evaluation operator temporary storage list OTempList=TStrategy[OCounter].TStrategyItem;
S205,收入支出评价算子表项计数器OTLCounter=1;S205, the income and expenditure evaluation operator table entry counter OTLCounter=1;
S206,收入支出评价算子待计算表项变量OWDItem=取出TWithDrawList中TWID等于OTempList[OTLCounter]的表项;S206, the variable OWDItem of the table item to be calculated by the income and expenditure evaluation operator=takes out the table item whose TWID is equal to OTempList[OTLCounter] in TWithDrawList;
S207,OTempPool=OTempPool-OWDItem.TWMoney-OWDItem.TWInt×OCounter;S207, OTempPool=OTempPool-OWDItem.TWMoney-OWDItem.TWInt×OCounter;
S208,如果OTempPool<0则设定OResult=-1并退出算子计算,否则转到S209;S208, if OTempPool<0, set OResult=-1 and exit the operator calculation, otherwise go to S209;
S209,OTLCounter=OTLCounter+1,如果OTLCounter小于等于OTempList元素个数则转到S206,否则转到S210;S209, OTLCounter=OTLCounter+1, if OTLCounter is less than or equal to the number of OTempList elements, go to S206, otherwise go to S210;
S210,OTempPool=OTempPool+OTempPool×Tint;S210, OTempPool=OTempPool+OTempPool×Tint;
S211,OCounter=OCounter+1,如果OCounter小于等于TDay则转到S203,否则转到S212;S211, OCounter=OCounter+1, if OCounter is less than or equal to TDay, go to S203, otherwise go to S212;
S212,OResult=OTempPool;S212, OResult=OTempPool;
S3,构建优化选择算子RSelect,该算子输入为TStrategyItem,输出为优化选择结果RSelectResult;S3, construct the optimization selection operator RSelect, the input of the operator is TStrategyItem, and the output is the optimization selection result RSelectResult;
S301,构建优化选择算子RSelect,该算子输入为TStrategyItem,设定优化选择算子待优选个数变量RINum=TStrategyItem的元素个数;S301, construct an optimization selection operator RSelect, the operator input is TStrategyItem, and set the number of optimization selection operator to be selected variable RINum=the number of elements of TStrategyItem;
S302,建立RINum个元素的浮点型数组RArray,该数组在初始化时所有元素均为0;S303,优化选择算子计数器RICounter=1;S302, establishing a floating-point array RArray of RINum elements, all elements of the array are 0 when initialized; S303, optimizing the selection operator counter RICounter=1;
S304,优化选择算子暂存支付项目的编号变量RTWID=TStrategyItem[RICounter];S304, the optimization selection operator temporarily stores the number variable RTWID=TStrategyItem[RICounter] of the payment item;
S305,优化选择算子待计算表项变量RTemp=在TWithDrawList找到TWID=RTWID的表项;S305, the table entry variable RTemp to be calculated by the optimization selection operator=finds the table entry of TWID=RTWID in TWithDrawList;
S306,计算RValue的值,其计算采用如下公式:S306, calculate the value of RValue, and the calculation adopts the following formula:
S307,RArray[RICounter]=RValue;S307, RArray[RICounter]=RValue;
S308,RICounter=RICounter+1,如果RICounter>RINum则转到S309,否则转到S304;S308, RICounter=RICounter+1, if RICounter>RINum, go to S309, otherwise go to S304;
S309,RArrayPos=找到RArray中数值最大元素所在位置;S309, RArrayPos=find the position of the largest numerical element in RArray;
S310,RSelectResult=TStrategyItem[RArrayPos],算子运行过程结束;S310, RSelectResult=TStrategyItem[RArrayPos], the operation process of the operator ends;
S4,构建支付时间序列调整算子ZStrategyCreater,该算子会调整TStrategy中的一个表项中的内容从而改变支付策略;S4, construct a payment time series adjustment operator ZStrategyCreater, which will adjust the content of an entry in TStrategy to change the payment strategy;
S401,构建支付时间序列调整算子ZStrategyCreater;S401, construct a payment time series adjustment operator ZStrategyCreater;
S402,支付时间序列调整算子计数器ZCounter=2,支付时间序列调整算子中间过程列表变量ZTempList=空列表;S402, the payment time series adjustment operator counter ZCounter=2, the payment time series adjustment operator intermediate process list variable ZTempList=empty list;
S403,支付时间序列调整算子暂存表项变量:S403, the payment time series adjustment operator temporarily stores table entry variables:
TTempItem=TStrategy[ZCounter].TStrategyItem;TTempItem=TStrategy[ZCounter].TStrategyItem;
S404,如果TTempItem的表项数目大于0,则将ZCounter加入到ZTempList之中;S404, if the number of entries of TTempItem is greater than 0, add ZCounter to ZTempList;
S405,ZCounter=ZCounter+1,如果ZCounter小于等于TDay则转到S403,否则转到S406;S405, ZCounter=ZCounter+1, if ZCounter is less than or equal to TDay, go to S403, otherwise go to S406;
S406,如果ZTempList的元素个数为0,则ZStrategyCreater的运算过程结束,否则转到S407;S406, if the number of elements of ZTempList is 0, the operation process of ZStrategyCreater ends, otherwise, go to S407;
S407,随机选择表项内容变量ZTID=在ZTempList中随机选择一个表项内容;S407, randomly select the table item content variable ZTID=randomly select a table item content in ZTempList;
S408,支付时间序列调整算子优化目标变量ZTarget=将TStrategy[ZTID].TStrategyItem输入给优化选择算子RSelect,获得选择结果RSelectResult;S408, pay the time series adjustment operator optimization target variable ZTarget=input TStrategy[ZTID].TStrategyItem to the optimization selection operator RSelect, and obtain the selection result RSelectResult;
S409,在TStrategy[ZTID].TStrategyItem删除ZTarget;S409, delete ZTarget in TStrategy[ZTID].TStrategyItem;
S410,ZPos=在1至ZTID中随机选择一个数字;S410, ZPos= randomly select a number from 1 to ZTID;
S411,将ZTarget加入到TStrategy[ZPos].TStrategyItem之中;S411, add ZTarget to TStrategy[ZPos].TStrategyItem;
S412,ZStrategyCreater运算过程结束;S412, the operation process of ZStrategyCreater ends;
S5,利用基于付款结算池的收入支出评价算子OStac和支付时间序列调整算子ZStrategyCreater,优化支付时间序列TStrategy,获得优化的支付策略;S5, use the income and expenditure evaluation operator OStac based on the payment settlement pool and the payment time series adjustment operator ZStrategyCreater to optimize the payment time series TStrategy to obtain an optimized payment strategy;
S501,优化支付策略清空计数器ECounter=1;S501, the optimized payment strategy clears the counter ECounter=1;
S502,清空TStrategy[ECounter].TStrategyItem中的内容;S502, clear the content in TStrategy[ECounter].TStrategyItem;
S503,ECounter=ECounter+1,如果ECounter小于等于(TDay)则转到S502,否则转到S504;S503, ECounter=ECounter+1, if ECounter is less than or equal to (TDay), go to S502, otherwise go to S504;
S504,取出TWithDrawList中所有表项的TWID加入到TStrategy[TDay].TStrategyItem之中;S504, take out the TWIDs of all entries in TWithDrawList and add them to TStrategy[TDay].TStrategyItem;
此时TStrategy的内容如下:At this point the content of TStrategy is as follows:
S505,优化支付策略构建计数器MCounter=1;S505, optimize the payment strategy construction counter MCounter=1;
S506,暂存支付策略ETempStrategy=TStrategy;S506, temporarily store the payment strategy ETempStrategy=TStrategy;
S507,第一次评价结果变量Result1=运行OStac获得评价结果OResult;S507, the first evaluation result variable Result1=runs OStac to obtain the evaluation result OResult;
运行结果Result1为473.33;The running result Result1 is 473.33;
S508,运行ZStrategyCreater;S508, run ZStrategyCreater;
进行一次优化,将一个支付项目随机的提前一定位置,达到优化支付的目标:Carry out an optimization, and randomly advance a payment item to a certain position to achieve the goal of optimizing payment:
S509,第二次评价结果变量Result2=运行OStac获得评价结果OResult;S509, the second evaluation result variable Result2=runs OStac to obtain the evaluation result OResult;
运行结果Result2=474.21;Running result Result2=474.21;
S510,如果Result2<=Result1则TStrategy=ETempStrategy;S510, if Result2<=Result1, then TStrategy=ETempStrategy;
S511,MCounter=MCounter+1,如果MCounter<1000则转到S506,否则转到S512;S511, MCounter=MCounter+1, if MCounter<1000, go to S506, otherwise go to S512;
S512,输出TStrategy作为支付策略;S512, output TStrategy as the payment strategy;
最终TStrategy输出如下:The final TStrategy output is as follows:
实施例2Example 2
以某企业的财务的1年财务的收入和支付真实数据作为测试数据集。引入本发明方法、先到先得支付方法、固定时间点支付方法进行对比。对比的结果如下:The real data of one-year financial income and payment of a company's financial affairs is used as the test data set. The method of the present invention, the first-come-first-served payment method, and the fixed-time-point payment method are introduced for comparison. The results of the comparison are as follows:
通过上表可以看出,本发明对应的方法可以更加高效的支付,获得较好的支付方案。It can be seen from the above table that the corresponding method of the present invention can pay more efficiently and obtain a better payment scheme.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010384594.6ACN111582875B (en) | 2020-05-08 | 2020-05-08 | An optimized payment strategy construction method for payment settlement pool and time series |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010384594.6ACN111582875B (en) | 2020-05-08 | 2020-05-08 | An optimized payment strategy construction method for payment settlement pool and time series |
| Publication Number | Publication Date |
|---|---|
| CN111582875Atrue CN111582875A (en) | 2020-08-25 |
| CN111582875B CN111582875B (en) | 2023-12-19 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010384594.6AActiveCN111582875B (en) | 2020-05-08 | 2020-05-08 | An optimized payment strategy construction method for payment settlement pool and time series |
| Country | Link |
|---|---|
| CN (1) | CN111582875B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113191766A (en)* | 2021-05-08 | 2021-07-30 | 上海亿为科技有限公司 | Method, device and equipment for verifying payment behavior safety based on cloud computing |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2692707A1 (en)* | 2009-02-13 | 2010-08-13 | Bank Of America Corporation | Systems, methods and computer program products for optimizing routing of financial payments |
| US20170004501A1 (en)* | 2015-07-01 | 2017-01-05 | The Clearing House Payments Company, L.L.C. | Real-time payment system, method, apparatus, and computer program |
| US20170221066A1 (en)* | 2015-07-01 | 2017-08-03 | The Clearing House Payments Company, L.L.C. | Real-time payment system, method, apparatus, and computer program |
| CN107705110A (en)* | 2017-09-29 | 2018-02-16 | 杭州呯嘭智能技术有限公司 | Fund pool based on multiple target pays sequence optimisation method and device |
| CN107730382A (en)* | 2017-09-26 | 2018-02-23 | 杭州呯嘭智能技术有限公司 | Fund pool pays optimization method, system and computer-readable recording medium, equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2692707A1 (en)* | 2009-02-13 | 2010-08-13 | Bank Of America Corporation | Systems, methods and computer program products for optimizing routing of financial payments |
| US20170004501A1 (en)* | 2015-07-01 | 2017-01-05 | The Clearing House Payments Company, L.L.C. | Real-time payment system, method, apparatus, and computer program |
| US20170221066A1 (en)* | 2015-07-01 | 2017-08-03 | The Clearing House Payments Company, L.L.C. | Real-time payment system, method, apparatus, and computer program |
| CN107730382A (en)* | 2017-09-26 | 2018-02-23 | 杭州呯嘭智能技术有限公司 | Fund pool pays optimization method, system and computer-readable recording medium, equipment |
| CN107705110A (en)* | 2017-09-29 | 2018-02-16 | 杭州呯嘭智能技术有限公司 | Fund pool based on multiple target pays sequence optimisation method and device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113191766A (en)* | 2021-05-08 | 2021-07-30 | 上海亿为科技有限公司 | Method, device and equipment for verifying payment behavior safety based on cloud computing |
| Publication number | Publication date |
|---|---|
| CN111582875B (en) | 2023-12-19 |
| Publication | Publication Date | Title |
|---|---|---|
| Zhang et al. | The effect of investment tax incentives: evidence from China’s value-added tax reform | |
| Pavlov | Optimal mechanism for selling two goods | |
| CN111506876B (en) | Data predictive analysis method, system, equipment and readable storage medium | |
| CN112884590A (en) | Power grid enterprise financing decision method based on machine learning algorithm | |
| Liu et al. | Quantified moving average strategy of crude oil futures market based on fuzzy logic rules and genetic algorithms | |
| Naderi et al. | Asset and liability optimal management mathematical modeling for bank | |
| CN111582875B (en) | An optimized payment strategy construction method for payment settlement pool and time series | |
| Azizi et al. | Mathematic modelling and optimization of bank asset and liability by using fractional goal programing approach | |
| Wicaksono et al. | Analysis of factor affecting Islamic commercial bank financing for the agricultural sector in Indonesia | |
| CN111161063A (en) | Capital account identification method based on graph calculation and computer readable storage medium | |
| Lin et al. | Research on power market user credit evaluation based on K-means clustering and contour coefficient | |
| Aziz et al. | Analysis of Efficiency Between Islamic Commercial Bank and Islamic Business Unit in Indonesia | |
| CN116468541A (en) | Loan repayment prediction method, device, equipment and medium | |
| Ghodrati et al. | A Monte Carlo simulation technique to determine the optimal portfolio | |
| CN114943373A (en) | Optimal Algorithm Applied in Medium- and Long-Term Electricity Market Transactions | |
| Jia et al. | Portfolio decision using time series prediction and multi-objective optimization | |
| CN112488539A (en) | Salary index measuring and calculating method and device, electronic equipment and storage medium | |
| Vladisavljević et al. | Optimising Investment in the Energy Sector in Developing Countries in South East Europe | |
| CN111582751B (en) | Time-weighted electricity purchasing risk early warning method | |
| Yao et al. | A Novel Investment Strategy for Mixed Asset Allocation Based on Entropy-Based Time Series Prediction | |
| CN112258322B (en) | Information prediction method, device, electronic device and storage medium | |
| CN108961064A (en) | Fund tune storehouse method, system, computer equipment and storage medium | |
| Chen et al. | Microfinancing and Home-purchase Restrictions: Evidence from the Online “Peer-to-Peer” Lending in China | |
| Dai Hung | External Debts and Trade Balance: An International Evidence | |
| Мирзалиев et al. | Theoretical foundations of waste management |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |