




技术领域technical field
本发明涉及电推进技术领域,具体是一种单级复合双脉冲增强电离型感应式脉冲等离子体推力器。The invention relates to the technical field of electric propulsion, in particular to a single-stage composite double-pulse enhanced ionization type induction pulse plasma thruster.
背景技术Background technique
空间推进是指航天器获得环绕地球飞行的速度以后,用于轨道维持、轨道转移或者星际飞行的推进,可分为化学推进及电推进两类。相较于传统的化学推进,电推进通过电能加速推进剂以获得推力,其推进能量来自于推进剂之外,可获得更高的喷射速度,因而具有大比冲的优势。采用电推力器可有效减少推进剂消耗,从而增加有效载荷、缩短任务时间、延长工作寿命。目前,电推进技术在航天器上已经得到了广泛应用,高轨通信卫星上已有半数以上装备了电推进系统,并成为了卫星平台是否具有先进性的标志之一。Space propulsion refers to the propulsion used for orbit maintenance, orbit transfer or interplanetary flight after the spacecraft obtains the speed of orbiting the earth. It can be divided into chemical propulsion and electric propulsion. Compared with traditional chemical propulsion, electric propulsion accelerates the propellant through electrical energy to obtain thrust. The use of electric thrusters can effectively reduce propellant consumption, thereby increasing payload, shortening mission time, and extending working life. At present, electric propulsion technology has been widely used in spacecraft, and more than half of high-orbit communication satellites have been equipped with electric propulsion systems, which has become one of the symbols of whether the satellite platform is advanced.
感应式脉冲等离子体推力器(Inductive Pulsed Plasma Thruster,IPPT)是一种无电极、脉冲式的电磁式电推力器,在保持电推力器高比冲特点的基础上又同时具备了更长寿命、更高功率、更大推力的新优势,适用于以载人/无人火星任务为代表的行星际深空探测任务。其基于感应涡流斥力原理产生推力:在特殊设计的平面螺旋形感应线圈中通过脉冲电流,从而激发出具备周向电场分量及径向磁场分量的强脉冲电磁场,其中的周向电场分量建立起环形的等离子体涡旋电流,径向磁场分量又与涡旋电流相互作用,产生轴向的洛伦兹力将等离子体压缩为片状并加速喷射,从而产生推进作用。Inductive Pulsed Plasma Thruster (IPPT) is an electrodeless, pulsed electromagnetic electric thruster. The new advantages of higher power and greater thrust are suitable for interplanetary deep space exploration missions represented by manned/unmanned Mars missions. It generates thrust based on the principle of induced eddy current repulsion: a pulse current is passed through a specially designed planar helical induction coil to excite a strong pulsed electromagnetic field with a circumferential electric field component and a radial magnetic field component. The radial magnetic field component interacts with the eddy current to generate an axial Lorentz force to compress the plasma into a sheet shape and accelerate the ejection, thereby producing a propulsion effect.
从工作原理上看,IPPT的推进性能主要取决于等离子体的初始电离及后续加速两个过程:(1)首先,为增强等离子体电流片与感应线圈的电磁耦合强度,要求气体工质在脉冲放电开始前或开始瞬间就达到较高电离度;(2)同时,由于等离子体电流片与感应线圈之间的电磁作用强度会伴随二者间隔距离的增大而迅速减小,为提高等离子体的全局加速效率,要求脉冲电流波形与等离子体加速过程的时间尺度满足特定动态匹配关系。在满足以上两点要求的基础上,结合太空应用环境的特殊性,还要求IPPT具体具备以下特点:(1)良好的绝缘防护性能;(2)结构简单、重量轻、体积小;(3)性能稳定且寿命长,以满足行星际深空探测要求。根据初始等离子体产生方式的不同,IPPT目前主要存在单级单脉冲直接电离、射频放电预先电离、直流辉光放电预先电离等三类技术方案。In terms of working principle, the propulsion performance of IPPT mainly depends on the initial ionization and subsequent acceleration of the plasma: (1) First, in order to enhance the electromagnetic coupling strength between the plasma current sheet and the induction coil, the gas working medium is required to be in the pulsed state. (2) At the same time, since the intensity of the electromagnetic interaction between the plasma current sheet and the induction coil will decrease rapidly with the increase of the distance between the two, in order to improve the plasma The global acceleration efficiency requires that the pulse current waveform and the time scale of the plasma acceleration process satisfy a specific dynamic matching relationship. On the basis of meeting the above two requirements, combined with the particularity of the space application environment, IPPT is also required to have the following characteristics: (1) good insulation and protection performance; (2) simple structure, light weight and small size; (3) It has stable performance and long life to meet the requirements of interplanetary deep space exploration. According to the different initial plasma generation methods, IPPT currently mainly has three types of technical solutions: single-stage single-pulse direct ionization, radio frequency discharge pre-ionization, and DC glow discharge pre-ionization.
单级单脉冲直接电离是IPPT类推力器最早采用也是目前应用较广的技术方案。该方案通过脉冲放电初期的周向感应电场击穿气体工质从而产生初始等离子体,仅依靠单级脉冲驱动电路所产生的单个电流脉冲既完成工质电离、涡电流建立、等离子体加速等全部过程,具备系统结构简单的优势。为了实现气体的快速、充分电离,该方案需要提高感应线圈表面的电场强度,相应地需要提高放电初始时刻脉冲电流陡度,因此,其工作电压相对较高,一般在数十千伏以上。在空间环境中应用高电压,对绝缘防护提出了极高要求;同时,高压电容的体积和重量都相对较大。该方案虽然结构较为简单,但在体积、重量及可靠性等方面都不具备优势。Single-stage single-pulse direct ionization is the earliest and widely used technical solution for IPPT thrusters. In this scheme, the initial plasma is generated by penetrating the gas working medium by the circumferential induced electric field in the early stage of the pulse discharge, and only relying on a single current pulse generated by the single-stage pulse driving circuit to complete the working medium ionization, eddy current establishment, plasma acceleration, etc. process, has the advantage of simple system structure. In order to achieve rapid and sufficient ionization of the gas, this solution needs to increase the electric field strength on the surface of the induction coil, and correspondingly needs to increase the steepness of the pulse current at the initial moment of discharge. Therefore, its operating voltage is relatively high, generally above tens of kilovolts. The application of high voltage in the space environment places extremely high requirements on insulation protection; at the same time, the volume and weight of high-voltage capacitors are relatively large. Although this scheme is relatively simple in structure, it has no advantages in terms of volume, weight and reliability.
为了降低IPPT的工作电压,近年来出现了以射频辅助放电法拉第推力器(RF-FARAD)为代表的多级IPPT方案。该方案通过射频(螺旋波)天线电离中性气体,再通过外部磁场将等离子体引导至感应线圈表面,最后通过脉冲感应放电进一步电离并加速等离子体。该方案有效降低了对放电初始时刻脉冲电流陡度的要求,便于针对后续加速过程优化脉冲电流波形,对绝缘防护的要求也有所降低。但是该方案需要增加额外的射频天线、射频电源及附加磁场线圈,导致系统复杂程度和体积、重量均大幅增加;射频放电本身存在电离稳定过程,难以与主放电的脉冲工作特性相互匹配,可能会对推力器性能造成负面影响。In order to reduce the working voltage of IPPT, the multi-stage IPPT scheme represented by the radio frequency assisted discharge Faraday thruster (RF-FARAD) has appeared in recent years. The scheme ionizes the neutral gas through a radio frequency (spiral wave) antenna, then guides the plasma to the surface of the induction coil through an external magnetic field, and finally further ionizes and accelerates the plasma through a pulsed induction discharge. This scheme effectively reduces the requirements for the steepness of the pulse current at the initial moment of discharge, facilitates the optimization of the pulse current waveform for the subsequent acceleration process, and reduces the requirements for insulation protection. However, this solution needs to add additional RF antennas, RF power supplies and additional magnetic field coils, resulting in a substantial increase in the complexity, volume and weight of the system; RF discharge itself has an ionization stabilization process, which is difficult to match with the pulse working characteristics of the main discharge. Negatively affects thruster performance.
直流辉光放电预电离方案在气体喷注器唇口和感应线圈外沿布置金属电极,电极两端施加高压直流电,并通过限流电阻抑制电流大小,从而在感应线圈上方建立起弱电离的辉光放电区域,实现对气体工质的预先电离,预电离工质再通过感应线圈的脉冲放电被进一步电离和加速。该方案同样能够降低IPPT的工作电压水平,且无需施加外部磁场,辉光放电电极及直流高压电源所带来的结构与质量增量也相对较小。IPPT的一大优点在于其无电极工作特性,由于不存在电极烧蚀问题,IPPT能够负荷数百千瓦甚至兆瓦级大功率,其工作寿命也相对较长;同时,由于不存在推进剂与电极的相容性问题,IPPT能够使用诸如水、二氧化碳甚至火星大气在内的多种工质,未来甚至有望实现推进剂地外补给。采用直流辉光放电预电离方案的IPPT在放电通道内增加了金属电极结构,不再具备以上优势。The DC glow discharge pre-ionization scheme arranges metal electrodes on the lip of the gas injector and the outer edge of the induction coil. High voltage DC is applied to both ends of the electrodes, and the current is suppressed by a current limiting resistor, so as to establish a weakly ionized glow above the induction coil. In the photodischarge area, the pre-ionization of the gas working medium is realized, and the pre-ionized working medium is further ionized and accelerated by the pulse discharge of the induction coil. This solution can also reduce the working voltage level of the IPPT without applying an external magnetic field, and the structure and mass increase brought by the glow discharge electrode and the DC high voltage power supply are relatively small. One of the advantages of IPPT is its electrodeless working characteristics. Because there is no electrode ablation problem, IPPT can load hundreds of kilowatts or even megawatts of high power, and its working life is relatively long; at the same time, because there is no propellant and electrode Due to the compatibility problem, IPPT can use a variety of working fluids such as water, carbon dioxide and even the Martian atmosphere, and it is even expected to achieve extraterrestrial resupply of propellants in the future. The IPPT using the DC glow discharge pre-ionization scheme adds a metal electrode structure in the discharge channel, and no longer has the above advantages.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术中的一项或多项不足,本发明提供一种单级复合双脉冲增强电离型感应式脉冲等离子体推力器。In view of one or more deficiencies in the above-mentioned prior art, the present invention provides a single-stage composite double-pulse enhanced ionization type inductive pulse plasma thruster.
为实现上述目的,本发明提供一种单级复合双脉冲增强电离型感应式脉冲等离子体推力器,包括感应线圈模组、脉冲放电模组、调波模组与脉冲气团激发模组;In order to achieve the above object, the present invention provides a single-stage composite double-pulse enhanced ionization type induction pulse plasma thruster, which includes an induction coil module, a pulse discharge module, a wave modulation module and a pulsed air mass excitation module;
所述感应线圈模组与脉冲放电模组电联形成主放电回路,以使得脉冲放电模组放电过程中在感应线圈模组内产生脉冲强电流,进一步在感应线圈模组周围激发具备周向电场分量及径向磁场分量的强脉冲电磁场;The induction coil module and the pulse discharge module are electrically connected to form a main discharge circuit, so that a pulsed strong current is generated in the induction coil module during the discharge process of the pulse discharge module, and a circumferential electric field is further excited around the induction coil module. Strong pulsed electromagnetic field of component and radial magnetic field component;
所述强脉冲电磁场位于脉冲气团激发模组所激发脉冲气团的流通气路上,以使得脉冲气团在强脉冲电磁场的作用下被迅速击穿、电离并建立起平整、致密的等离子体电流片,等离子体电流片在洛伦兹力的作用下被进一步压缩、加速和喷射,从而产生推进作用;The strong pulsed electromagnetic field is located on the air flow path of the pulsed air mass excited by the pulsed air mass excitation module, so that the pulsed air mass is rapidly broken down and ionized under the action of the strong pulsed electromagnetic field, and a flat and dense plasma current sheet is established. The body current sheet is further compressed, accelerated and ejected under the action of the Lorentz force, resulting in propulsion;
所述调波模组并联在主放电回路上,以使得调波模组在脉冲放电模组的放电过程中激发一段高频低幅脉冲,进而提高感应线圈模组中脉冲强电流的电流陡度,从而增大强脉冲电磁场的强度水平,增强放电初始时刻的感应击穿与电离过程。The wave modulation module is connected in parallel with the main discharge circuit, so that the wave modulation module excites a high-frequency low-amplitude pulse during the discharge process of the pulse discharge module, thereby increasing the current steepness of the pulsed strong current in the induction coil module , thereby increasing the intensity level of the strong pulsed electromagnetic field and enhancing the induction breakdown and ionization process at the initial moment of discharge.
作为上述技术方案的进一步改进,所述脉冲放电模组包括脉冲开关与高压电容,所述脉冲开关、高压电容与感应线圈模组串联形成主放电回路,所述调波模组并联在高压电容或感应线圈模组两端。As a further improvement of the above technical solution, the pulse discharge module includes a pulse switch and a high-voltage capacitor, the pulse switch, the high-voltage capacitor and the induction coil module are connected in series to form a main discharge circuit, and the wave modulation module is connected in parallel with the high-voltage capacitor or the induction coil module. Both ends of the induction coil module.
作为上述技术方案的进一步改进,所述调波模组由调波电阻、调波电容、调波电感串联而成;As a further improvement of the above technical solution, the wave modulation module is formed by a wave modulation resistor, a wave modulation capacitor, and a wave modulation inductor in series;
所述调波电容的电容值为高压电容总容值的5‰~15‰;The capacitance value of the wave-modulating capacitor is 5‰ to 15‰ of the total capacitance value of the high-voltage capacitor;
所述调波电感的电感值为感应线圈模组电感值的5‰~15‰。The inductance value of the wave modulating inductor is 5‰ to 15‰ of the inductance value of the induction coil module.
作为上述技术方案的进一步改进,所述脉冲放电模组包括一个脉冲开关与多个高压电容,所述感应线圈模组由多支螺旋线型的感应线圈对称交叠而成,所述高压电容、感应线圈与调波模组一一对应;As a further improvement of the above technical solution, the pulse discharge module includes a pulse switch and a plurality of high-voltage capacitors, the induction coil module is formed by symmetrically overlapping multiple helical induction coils, and the high-voltage capacitors, One-to-one correspondence between the induction coil and the modulating module;
任一高压电容与对应感应线圈以及脉冲开关组成一个主放电回路,所述调波模组并联在对应高压电容或对应感应线圈两端。Any high-voltage capacitor, the corresponding induction coil and the pulse switch form a main discharge circuit, and the wave modulation module is connected in parallel with both ends of the corresponding high-voltage capacitor or the corresponding induction coil.
作为上述技术方案的进一步改进,各感应线圈的螺旋线型部分均封装于线圈面板中以实现各感应线圈的定位,同时避免各感应线圈与等离子体直接接触。As a further improvement of the above technical solution, the helical part of each induction coil is encapsulated in the coil panel to realize the positioning of each induction coil, and at the same time avoid direct contact between each induction coil and plasma.
作为上述技术方案的进一步改进,所述脉冲气团激发模组设在线圈面板上,以使得脉冲气团激发模组所激发的脉冲气团经过强脉冲电磁场的作用在线圈面板表面均匀散开并压缩形成离子体电流片。As a further improvement of the above technical solution, the pulsed air mass excitation module is arranged on the coil panel, so that the pulsed air mass excited by the pulsed air mass excitation module is evenly dispersed on the surface of the coil panel by the action of a strong pulsed electromagnetic field and compressed to form ions Body current sheet.
作为上述技术方案的进一步改进,所述线圈面板对应脉冲气团激发模组的一面上设有环形结构的气体围坝,以用于约束脉冲气团在线圈面板上径向的逸散。As a further improvement of the above technical solution, a gas dam of annular structure is provided on one side of the coil panel corresponding to the pulsed air mass excitation module, so as to restrict the radial escape of the pulsed air mass on the coil panel.
本发明提供一种单级复合双脉冲增强电离型感应式脉冲等离子体推力器,在主放电回路中并联调波模组,可在不显著改变脉冲电流波形既电磁力大小的同时,显著提高电流陡度,从而增大感应电场强度水平,增强放电初始时刻的感应击穿与电离过程,最终有效降低IPPT工作电压水平、提升其推进性能;本方案可将IPPT的工作电压水平降低50%以上,从而减小空间应用环境中的绝缘防护要求;仅需在主放电回路中并联调波模组,无需提供额外电源或外部磁场,调波模组由主放电被动驱动,结构简单、重量较轻、工作可靠。The present invention provides a single-stage composite double-pulse enhanced ionization type induction pulse plasma thruster. A wave modulation module is connected in parallel in the main discharge circuit, which can significantly increase the current without significantly changing the pulse current waveform and the magnitude of the electromagnetic force. steepness, thereby increasing the level of the induced electric field strength, enhancing the induction breakdown and ionization process at the initial moment of discharge, and finally effectively reducing the working voltage level of the IPPT and improving its propulsion performance; this scheme can reduce the working voltage level of the IPPT by more than 50%, Therefore, the insulation protection requirements in the space application environment are reduced; only the wave modulating module needs to be connected in parallel in the main discharge circuit, and no additional power supply or external magnetic field is required. The wave modulating module is passively driven by the main discharge, and has a simple structure, light weight, Works reliably.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained according to the structures shown in these drawings without creative efforts.
图1为本发明实施例一中单级复合双脉冲增强电离型感应式脉冲等离子体推力器的电路原理图;1 is a schematic circuit diagram of a single-stage composite double-pulse enhanced ionization induction pulse plasma thruster in Embodiment 1 of the present invention;
图2为本发明实施例一中增加调波模组前后电流波形对比示意图;2 is a schematic diagram illustrating the comparison of current waveforms before and after adding a wave modulation module in Embodiment 1 of the present invention;
图3为本发明实施例一中增加调波模组前后电流陡度波形对示意图;3 is a schematic diagram of a pair of current steepness waveforms before and after adding a wave modulation module in Embodiment 1 of the present invention;
图4为本发明实施例二中单级复合双脉冲增强电离型感应式脉冲等离子体推力器的正向轴侧图;4 is a positive isometric view of a single-stage composite double-pulse enhanced ionization induction pulse plasma thruster in
图5为本本发明实施例二中单级复合双脉冲增强电离型感应式脉冲等离子体推力器的背向轴侧图。FIG. 5 is a back axial view of a single-stage compound double-pulse enhanced ionization induction pulse plasma thruster in a second embodiment of the present invention.
附图标号说明:Description of reference numbers:
实施例一:感应线圈模组101、脉冲放电模组102、调波模组103与脉冲气团激发模组104;Embodiment 1:
实施例二:线圈面板1、气体围坝2、喷注塔3、喷注器4、感应线圈5、共地板6、高压电容7、调波模块8、调波电阻9、调波电容10、调波电感11、脉冲开关12。Embodiment 2: coil panel 1,
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional characteristics and advantages of the present invention will be further described with reference to the accompanying drawings in conjunction with the embodiments.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。It should be noted that all directional indications (such as up, down, left, right, front, back, etc.) in the embodiments of the present invention are only used to explain the relationship between various components under a certain posture (as shown in the accompanying drawings). The relative positional relationship, the movement situation, etc., if the specific posture changes, the directional indication also changes accordingly.
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, descriptions such as "first", "second", etc. in the present invention are only for descriptive purposes, and should not be construed as indicating or implying their relative importance or implicitly indicating the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是物理连接或无线通信连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, the terms "connected", "fixed" and the like should be understood in a broad sense, for example, "fixed" may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection, an electrical connection, a physical connection or a wireless communication connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction between the two elements. unless otherwise expressly qualified. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。In addition, the technical solutions between the various embodiments of the present invention can be combined with each other, but must be based on the realization by those of ordinary skill in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that the combination of technical solutions does not exist and is not within the scope of protection claimed by the present invention.
本实施例公开了一种单级复合双脉冲增强电离型感应式脉冲等离子体推力器,该推力器采用与单级单脉冲IPPT相同的主放电回路与脉冲气体喷注器构型,不同之处在于在主放电回路中并联了调波模组。调波模组能够实现在主放电的脉冲电流波形中叠加一段高频低幅脉冲,从而在不改变脉冲电流既电磁力总体趋势的基础上倍增放电初期电流陡度大小,进而显著提高感应线圈表面的感应电场强度水平,从而增强气体的感应击穿与电离过程,最终有效降低IPPT工作电压水平、提升其推进性能。同时该推力器仅需在主放电回路中并联调波模组,无需提供额外电源或外部磁场,调波模组由主放电被动驱动,结构简单、重量较轻、工作可靠。This embodiment discloses a single-stage composite double-pulse enhanced ionization type induction pulse plasma thruster, which adopts the same main discharge circuit and pulsed gas injector configuration as the single-stage single-pulse IPPT, but the difference is The reason is that the wave modulating module is connected in parallel in the main discharge circuit. The wave modulating module can superimpose a high-frequency low-amplitude pulse on the pulse current waveform of the main discharge, so as to multiply the current steepness at the initial stage of the discharge without changing the general trend of the pulse current and the electromagnetic force, thereby significantly improving the surface of the induction coil. Therefore, the induced breakdown and ionization process of the gas can be enhanced, and the working voltage level of the IPPT can be effectively reduced and its propulsion performance can be improved. At the same time, the thruster only needs to connect the wave modulation module in parallel in the main discharge circuit, without providing additional power supply or external magnetic field. The wave modulation module is passively driven by the main discharge, with simple structure, light weight and reliable operation.
实施例一Example 1
本实施例一种单级复合双脉冲增强电离型感应式脉冲等离子体推力器包括感应线圈模组101、脉冲放电模组102、调波模组103与脉冲气团激发模组104,其中,感应线圈模组101用于激发电磁场,脉冲放电模组102用于产生脉冲电流,脉冲气团激发模组104用于产生脉冲气团。具体的:A single-stage composite double-pulse enhanced ionization type induction pulse plasma thruster in this embodiment includes an
感应线圈模组101与脉冲放电模组102电联形成主放电回路,以使得脉冲放电模组102放电过程中在感应线圈模组101内产生脉冲强电流,进一步在感应线圈模组101周围激发具备周向电场分量及径向磁场分量的强脉冲电磁场;强脉冲电磁场位于脉冲气团激发模组104所激发脉冲气团的流通气路上,以使得脉冲气团在强脉冲电磁场的作用下被迅速击穿、电离并建立起平整、致密的等离子体电流片,等离子体电流片在洛伦兹力的作用下被进一步压缩、加速和喷射,从而产生推进作用;调波模组103并联在主放电回路上,以使得调波模组103在脉冲放电模组102的放电过程中激发一段高频低幅脉冲,进而提高感应线圈模组101中脉冲强电流的电流陡度,从而增大强脉冲电磁场的强度水平,增强放电初始时刻的感应击穿与电离过程。The
本实施例中,脉冲放电模组102包括脉冲开关与高压电容,脉冲开关、高压电容与感应线圈模组101串联形成主放电回路,调波模组103并联在高压电容或感应线圈模组101两端。其中,调波模组103由调波电阻、调波电容、调波电感串联而成;调波电容的电容值为高压电容总容值的5‰~15‰;调波电感的电感值为感应线圈模组101电感值的5‰~15‰。In this embodiment, the
参考图1为本实施例中单级复合双脉冲增强电离型感应式脉冲等离子体推力器的电路原理图,其中,感应线圈模组101与高压电容、脉冲开关组成主放电回路,调波电容、调波电感与调波电阻组成LRC调波模组103,调波模组103并联在高压电容或感应线圈两端。工作时,首先利用电源为高压电容充电;随后脉冲气团激发模组104喷注一团气体至感应线圈模组101表面;脉冲开关接通使得高压电容放电,与此同时,调波模组103在高压电容放电的驱动下产生一段高频低幅脉冲,该高频低幅脉冲信号叠加至感应线圈模组101内的脉冲强电流,导致脉冲强电流波形出现微弱的振荡“毛刺”,但其基本趋势不会发生显著变化,如图2所示;与此同时,高频低幅脉冲大幅提高了脉冲强电流的电流陡度,即图3所示,从而提高了感应线圈模组101表面的感应电场强度,增强了放电初期的感应击穿与气体电离过程,迅速在感应线圈附件建立起磁不渗透的高质量等离子体电流片;高频低幅脉冲在自身调波电阻的阻尼作用下先于主脉冲衰减,所形成的等离子体电流片又在主脉冲作用下被高效加速喷射,完成一个工作脉冲。Referring to FIG. 1, the circuit schematic diagram of the single-stage compound double-pulse enhanced ionization induction pulse plasma thruster in this embodiment, wherein the
实施例二
如图4-5,为本实施例公开的一种单级复合双脉冲增强电离型感应式脉冲等离子体推力器包括感应线圈模组、脉冲放电模组、调波模组与脉冲气团激发模组,其中,感应线圈模组用于激发电磁场,脉冲放电模组用于产生脉冲电流,脉冲气团激发模组用于产生脉冲气团。具体的:4-5, a single-stage composite double-pulse enhanced ionization type induction pulse plasma thruster disclosed in this embodiment includes an induction coil module, a pulse discharge module, a wave modulation module and a pulsed air mass excitation module , wherein, the induction coil module is used to excite the electromagnetic field, the pulse discharge module is used to generate the pulse current, and the pulse air mass excitation module is used to generate the pulse air mass. specific:
感应线圈模组与脉冲放电模组电联形成主放电回路,以使得脉冲放电模组放电过程中在感应线圈模组内产生脉冲强电流,进一步在感应线圈模组周围激发具备周向电场分量及径向磁场分量的强脉冲电磁场;强脉冲电磁场位于脉冲气团激发模组所激发脉冲气团的流通气路上,以使得脉冲气团在强脉冲电磁场的作用下被迅速击穿、电离并建立起平整、致密的等离子体电流片,等离子体电流片在洛伦兹力的作用下被进一步压缩、加速和喷射,从而产生推进作用;调波模组并联在主放电回路上,以使得调波模组在脉冲放电模组的放电过程中激发一段高频低幅脉冲,进而提高感应线圈模组中脉冲强电流的电流陡度,从而增大强脉冲电磁场的强度水平,增强放电初始时刻的感应击穿与电离过程。The induction coil module and the pulse discharge module are electrically connected to form a main discharge circuit, so that a pulsed strong current is generated in the induction coil module during the discharge process of the pulse discharge module, which further stimulates a circumferential electric field component and a peripheral electric field around the induction coil module. The strong pulsed electromagnetic field of the radial magnetic field component; the strong pulsed electromagnetic field is located on the air flow path of the pulsed air mass excited by the pulsed air mass excitation module, so that the pulsed air mass is rapidly broken down and ionized under the action of the strong pulsed electromagnetic field, and a flat and dense structure is established. The plasma current sheet is further compressed, accelerated and ejected under the action of the Lorentz force, thereby producing a propulsion effect; the wave modulation module is connected in parallel with the main discharge circuit, so that the wave modulation module is in the pulse During the discharge process of the discharge module, a high-frequency low-amplitude pulse is excited, thereby increasing the current steepness of the strong pulse current in the induction coil module, thereby increasing the intensity level of the strong pulse electromagnetic field, and enhancing the induction breakdown and ionization at the initial moment of discharge. process.
本实施例中,脉冲放电模组包括一个脉冲开关与多个高压电容,感应线圈模组采用六支螺旋线型的感应线圈按轴对称方式并联排布而成,高压电容、感应线圈与调波模组一一对应。感应线圈通过环氧树脂封装于线圈面板1中以实现定位,同时避免其与等离子体直接接触。每支感应线圈的一端与一支对应的高压电容7串联,以确保感应线圈1所产生的磁场具有较好的径向均匀性;每支感应线圈的另一端及高压电容则并联于同一脉冲开关两端,以确保电容放电的同步性。每组感应线圈两端同时并联一组LRC调波模组8,调波模组8由调波电阻9、调波电容10、调波电感11串联而成,其中,调波电容10及调波电感11的电容值及电感值均分别取高压电容组总容值及感应线圈电感值的百分之一大小。脉冲气团激发模组采用喷注塔3,喷注塔3固定于线圈面板1中心位置,采用具备较好绝缘及耐高温性能的聚醚醚酮(PEEK)材料;喷注塔3的顶端安装喷注器4,工质气体以脉冲方式从喷注塔3顶部向线圈面板1表面喷射,形成脉冲气团,并在线圈面板1表面获得压缩;线圈面板1外围设置气体围坝2约束气体在半径方向的逸散。需要注意的是,单级复合双脉冲增强电离型感应式脉冲等离子体推力器上还设置又共地板6,每个高压电容7的一端均与共地板6电联,以用于接地。In this embodiment, the pulse discharge module includes a pulse switch and a plurality of high-voltage capacitors. The induction coil module is formed of six helical induction coils arranged in parallel in an axisymmetric manner. The high-voltage capacitor, the induction coil and the wave modulation Modules correspond one by one. The induction coil is encapsulated in the coil panel 1 by epoxy resin to achieve positioning while avoiding direct contact with the plasma. One end of each induction coil is connected in series with a corresponding
工作时,喷注器4首先释放特定质量的脉冲气团至线圈面板1表面;当气团在线圈面板1表面均匀散开并获得较大程度压缩时,脉冲开关12受控接通,高压电容7在感应线圈5中迅速建立起几十到上百千安的脉冲电流;LCR调波模组受主放电电流驱动,产生高频低幅值的脉冲电流叠加于主放电电流,大幅提高放电初期的感应电场强度水平;气体工质在感应电场的作用下被迅速击穿、电离并建立起平整、致密的等离子体电流片;等离子体电流片在洛伦兹力的作用下被进一步压缩、加速和喷射,从而产生推进作用,完成一个工作脉冲;推力器以脉冲方式工作,通过不断重复上述过程,提供持续的推力作用。When working, the
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。The above descriptions are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Under the inventive concept of the present invention, the equivalent structural transformations made by the contents of the description and drawings of the present invention, or the direct/indirect application Other related technical fields are included in the scope of patent protection of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010608074.9ACN111577564A (en) | 2020-06-30 | 2020-06-30 | Single-stage compound double-pulse enhanced ionization type induction pulse plasma thruster |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010608074.9ACN111577564A (en) | 2020-06-30 | 2020-06-30 | Single-stage compound double-pulse enhanced ionization type induction pulse plasma thruster |
| Publication Number | Publication Date |
|---|---|
| CN111577564Atrue CN111577564A (en) | 2020-08-25 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010608074.9APendingCN111577564A (en) | 2020-06-30 | 2020-06-30 | Single-stage compound double-pulse enhanced ionization type induction pulse plasma thruster |
| Country | Link |
|---|---|
| CN (1) | CN111577564A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112613245A (en)* | 2020-12-18 | 2021-04-06 | 中国人民解放军91550部队 | Design method of laser preionization induction plasma thruster |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5207760A (en)* | 1991-07-23 | 1993-05-04 | Trw Inc. | Multi-megawatt pulsed inductive thruster |
| US5605039A (en)* | 1993-07-15 | 1997-02-25 | Olin Corporation | Parallel arcjet starter system |
| CN101260873A (en)* | 2008-01-10 | 2008-09-10 | 上海交通大学 | Pulsed plasma thruster with ceramic nozzle electrode |
| US20090058303A1 (en)* | 2007-08-02 | 2009-03-05 | Astrium Gmbh | High Frequency Generator for Ion and Electron Sources |
| CN103278694A (en)* | 2013-04-16 | 2013-09-04 | 广东电网公司佛山供电局 | Impulse current generating device |
| CN103596348A (en)* | 2013-11-22 | 2014-02-19 | 哈尔滨工业大学 | Low-frequency oscillation suppression outer loop of plasma Hall effect thruster |
| CN103675375A (en)* | 2013-12-31 | 2014-03-26 | 上海交通大学 | Inductive discharge high-gradient impact current generator |
| JP2015145650A (en)* | 2014-02-04 | 2015-08-13 | 公立大学法人首都大学東京 | Electric propulsion system |
| CN106014899A (en)* | 2016-05-10 | 2016-10-12 | 中国人民解放军国防科学技术大学 | Helicon plasma induction thruster |
| CN205645478U (en)* | 2016-05-03 | 2016-10-12 | 武汉智瑞捷电气技术有限公司 | Pulse inductance structure |
| CN106033059A (en)* | 2015-03-11 | 2016-10-19 | 中国科学院苏州纳米技术与纳米仿生研究所 | electric field enhancement structure |
| CN106050593A (en)* | 2016-08-02 | 2016-10-26 | 中国科学院电工研究所 | Plasma synthesis jet flow serial connection discharge device based on Marx generator |
| CN107143475A (en)* | 2017-07-11 | 2017-09-08 | 中国人民解放军国防科学技术大学 | The multistage discharge circuit for the magnetic plasma propeller supported for laser |
| CN110391798A (en)* | 2019-08-19 | 2019-10-29 | 武汉智瑞捷电气技术有限公司 | Method for Improving Electromagnetic Compatibility of High Voltage Charging Device and Pulse Shaping Network System |
| CN110671287A (en)* | 2019-09-25 | 2020-01-10 | 中国人民解放军国防科技大学 | A kind of induction plasma acceleration device and method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5207760A (en)* | 1991-07-23 | 1993-05-04 | Trw Inc. | Multi-megawatt pulsed inductive thruster |
| US5605039A (en)* | 1993-07-15 | 1997-02-25 | Olin Corporation | Parallel arcjet starter system |
| US20090058303A1 (en)* | 2007-08-02 | 2009-03-05 | Astrium Gmbh | High Frequency Generator for Ion and Electron Sources |
| CN101260873A (en)* | 2008-01-10 | 2008-09-10 | 上海交通大学 | Pulsed plasma thruster with ceramic nozzle electrode |
| CN103278694A (en)* | 2013-04-16 | 2013-09-04 | 广东电网公司佛山供电局 | Impulse current generating device |
| CN103596348A (en)* | 2013-11-22 | 2014-02-19 | 哈尔滨工业大学 | Low-frequency oscillation suppression outer loop of plasma Hall effect thruster |
| CN103675375A (en)* | 2013-12-31 | 2014-03-26 | 上海交通大学 | Inductive discharge high-gradient impact current generator |
| JP2015145650A (en)* | 2014-02-04 | 2015-08-13 | 公立大学法人首都大学東京 | Electric propulsion system |
| CN106033059A (en)* | 2015-03-11 | 2016-10-19 | 中国科学院苏州纳米技术与纳米仿生研究所 | electric field enhancement structure |
| CN205645478U (en)* | 2016-05-03 | 2016-10-12 | 武汉智瑞捷电气技术有限公司 | Pulse inductance structure |
| CN106014899A (en)* | 2016-05-10 | 2016-10-12 | 中国人民解放军国防科学技术大学 | Helicon plasma induction thruster |
| CN106050593A (en)* | 2016-08-02 | 2016-10-26 | 中国科学院电工研究所 | Plasma synthesis jet flow serial connection discharge device based on Marx generator |
| CN107143475A (en)* | 2017-07-11 | 2017-09-08 | 中国人民解放军国防科学技术大学 | The multistage discharge circuit for the magnetic plasma propeller supported for laser |
| CN110391798A (en)* | 2019-08-19 | 2019-10-29 | 武汉智瑞捷电气技术有限公司 | Method for Improving Electromagnetic Compatibility of High Voltage Charging Device and Pulse Shaping Network System |
| CN110671287A (en)* | 2019-09-25 | 2020-01-10 | 中国人民解放军国防科技大学 | A kind of induction plasma acceleration device and method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112613245A (en)* | 2020-12-18 | 2021-04-06 | 中国人民解放军91550部队 | Design method of laser preionization induction plasma thruster |
| CN112613245B (en)* | 2020-12-18 | 2024-03-12 | 中国人民解放军91550部队 | Design method of laser pre-ionization induction plasma thruster |
| Publication | Publication Date | Title |
|---|---|---|
| US6492784B1 (en) | Propulsion device and method employing electric fields for producing thrust | |
| US10760552B2 (en) | Apparatus, systems and methods for establishing plasma and using plasma in a rotating magnetic field | |
| JP4630439B2 (en) | High frequency ion source and method of operating a high frequency ion source | |
| US6334302B1 (en) | Variable specific impulse magnetoplasma rocket engine | |
| JP5561901B2 (en) | Thruster, its system, and thrust generation method | |
| CN106014899B (en) | Helicon wave plasma induction thruster | |
| KR20110086084A (en) | Spacecraft Ion Drive | |
| US20150022031A1 (en) | Electromagnetic Propulsion System | |
| CN111348224B (en) | A micro-cathode arc propulsion system | |
| CN109538432A (en) | A kind of Helicon wave plasma propulsion device of no averager | |
| CN110513260A (en) | A radio frequency plasma thruster | |
| CN110469474A (en) | A kind of radio frequency plasma source for microsatellite | |
| CN206487598U (en) | Plasma engines | |
| US7808353B1 (en) | Coil system for plasmoid thruster | |
| US9394889B2 (en) | Chemical-electromagnetic hybrid propeller with variable specific impulse | |
| CN105329465B (en) | A kind of method for alleviating the black barrier of spacecraft communication | |
| WO2020023654A1 (en) | Thruster device | |
| Morishita et al. | Application of a microwave cathode to a 200-W Hall thruster with comparison to a hollow cathode | |
| CN111577564A (en) | Single-stage compound double-pulse enhanced ionization type induction pulse plasma thruster | |
| McDaniel et al. | The ZR refurbishment project | |
| RU2741401C1 (en) | Module with multichannel plasma propulsion system for small spacecraft | |
| CN110131120B (en) | Solid ablation type magnetic plasma thruster | |
| Kirtley et al. | Steady operation of an FRC thruster on Martian atmosphere and liquid water propellants | |
| CN110486244B (en) | An electromagnetic induction plasma accelerator | |
| CN114135457B (en) | Ion propeller |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20200825 |