技术领域technical field
本发明属于化工材料领域,具体涉及一种生物质纤维增强有机硅气凝胶复合材料及其制备方法。The invention belongs to the field of chemical materials, and in particular relates to a biomass fiber reinforced organic silicon airgel composite material and a preparation method thereof.
背景技术Background technique
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。The information disclosed in this background section is only intended to increase the understanding of the general background of the present invention, and is not necessarily taken as an acknowledgment or any form of suggestion that the information constitutes the prior art already known to those skilled in the art.
气凝胶是一种结构可控的非晶态纳米材料,其孔隙率可达80%-99.8%,孔尺寸约2-100nm,比表面积为200-2000m2/g,密度3-500kg/m3,常温常压下热导率小于0.013W/mK,是目前密度最小,热导率最低的固体材料。Airgel is a kind of amorphous nano material with controllable structure, its porosity can reach 80%-99.8%, the pore size is about 2-100nm, the specific surface area is 200-2000m2 /g, and the density is 3-500kg/m3. The thermal conductivity under normal temperature and pressure is less than 0.013W/mK, which is the solid material with the lowest density and lowest thermal conductivity.
但发明人发现:目前,气凝胶产品的主要的问题是:制备工艺复杂,制备周期长,溶剂消耗量大,同时制备的气凝胶产品脆性大,力学性能差,可加工性差。However, the inventors found that: at present, the main problems of airgel products are: complex preparation process, long preparation cycle, large solvent consumption, and at the same time, the prepared airgel products have high brittleness, poor mechanical properties, and poor processability.
生物质是世界上来源最丰富的可再生资源。含有20%以上的生物质才材料的纤维可以称为生物质纤维。生物质纤维主要分为:生物质原生纤维、生物质再生纤维、生物质合成纤维。随着材料科学的进步,生物质纤维对常规化学纤维已经存在替代的可能性。同时生物质纤维来源广泛,原料可再生,生产过程污染低,环境友好,符合绿色环保的时代潮流且生物质纤维的性能与常规纤维区别不大。Biomass is the most abundant renewable resource in the world. Fibers containing more than 20% biomass material can be called biomass fibers. Biomass fibers are mainly divided into: biomass primary fibers, biomass regenerated fibers, and biomass synthetic fibers. With the advancement of material science, biomass fibers have the possibility of replacing conventional chemical fibers. At the same time, biomass fiber has a wide range of sources, renewable raw materials, low pollution in the production process, and is environmentally friendly. It is in line with the trend of green environmental protection and the performance of biomass fiber is not much different from conventional fibers.
发明内容Contents of the invention
为了克服上述问题,本发明提供了一种生物质纤维复合有机硅气凝胶的制备工艺,以解决气凝胶产品易碎,力学性能差、可加工性差的问题。In order to overcome the above problems, the present invention provides a preparation process of biomass fiber composite organosilicon airgel to solve the problems of fragile airgel products, poor mechanical properties and poor processability.
为实现上述技术目的,本发明采用如下技术方案:In order to realize the above-mentioned technical purpose, the present invention adopts following technical scheme:
本发明的第一个方面,提供了一种生物质纤维增强有机硅气凝胶复合材料,所述复合材料为纳米多孔结构,包括:有机硅气凝胶,和掺杂在所述有机硅气凝胶中的生物质纤维。The first aspect of the present invention provides a biomass fiber reinforced organosilicon airgel composite material, the composite material is a nanoporous structure, including: organosilicon airgel, and doped in the organosilicon airgel Biomass fibers in gels.
本发明研究发现:生物质纤维毡复合有机硅气凝胶可以有效的解决其产品易碎,力学性能差、可加工性差的问题,对其工业化具有十分重要的意义。The research of the present invention finds that the organic silicon airgel compounded with the biomass fiber mat can effectively solve the problems of its fragile product, poor mechanical properties and poor processability, which is of great significance to its industrialization.
本发明的第二个方面,提供了一种生物质纤维增强有机硅气凝胶复合材料的制备方法,包括:A second aspect of the present invention provides a method for preparing a biomass fiber reinforced organosilicon airgel composite material, comprising:
将有机硅源前驱体、酸性催化剂、表面活性剂及溶剂混合均匀并水解,形成有机硅气凝胶的溶胶,在碱性催化剂存在的条件下缩聚;Mix the organosilicon source precursor, acidic catalyst, surfactant and solvent evenly and hydrolyze to form a sol of organosilicon airgel, and polycondense in the presence of an alkaline catalyst;
在模具中铺设生物质纤维,注入所述有机硅气凝胶的溶胶,静置,形成生物质纤维复合有机硅气凝胶的湿凝胶材料;Laying biomass fibers in the mould, injecting the sol of the organosilicon aerogel, and standing to form a wet gel material of the biomass fiber composite organosilicon aerogel;
将所述生物质纤维复合有机硅气凝胶的湿凝胶材料老化、置换、超临界干燥,得到生物质原生纤维复合有机硅气凝胶复合材料。Aging, replacement and supercritical drying of the wet gel material of the biomass fiber-combined organic silicon aerogel to obtain a biomass raw fiber-combined organic silicon airgel composite material.
本发明的上述方法制备简单、工艺可控,制备的有机硅气凝胶复合材料的比表面积达57.568-535.3m2/g,孔体积0.15-0.70cm3/g,密度0.10-0.46g/cm3。The above method of the present invention is simple to prepare and the process is controllable. The specific surface area of the prepared organosilicon airgel composite material is 57.568-535.3m2 /g, the pore volume is 0.15-0.70cm3 /g, and the density is 0.10-0.46g/cm3 .
本发明的第三个方面,提供了任一上述的生物质原生纤维复合有机硅气凝胶复合材料在制备绝热材料、热电池、航空航天材料、降音降噪材料中的应用。The third aspect of the present invention provides the application of any one of the above biomass raw fiber composite silicone airgel composite materials in the preparation of heat insulation materials, thermal batteries, aerospace materials, and sound and noise reduction materials.
本发明的有益效果在于:The beneficial effects of the present invention are:
(1)由于采用了上述技术方案,本发明与现有的技术相比,本发明的产品具有良好的可折叠性,具有可裁剪的加工性,克服现有气凝胶材料易碎,成形性差的缺点。本技术所制备的有机硅气凝胶复合材料可经对折-展开循环操作10次不发生折断与开裂;所制备的有机硅气凝胶复合材料可用普通剪刀裁剪加工成任意所需的形状。(1) Due to the adoption of the above-mentioned technical scheme, compared with the prior art, the product of the present invention has good foldability and tailorable processability, and overcomes the fragility and poor formability of existing airgel materials Shortcomings. The silicone airgel composite material prepared by this technology can be folded and unfolded 10 times without breaking and cracking; the prepared silicone airgel composite material can be cut and processed into any desired shape with ordinary scissors.
(2)生物质纤维用在有机硅气凝胶的增强体,制备出的有机硅气凝胶复合材料均有良好的成形性与可加工性。(2) Biomass fibers are used in the reinforcement of silicone airgel, and the prepared silicone airgel composites have good formability and processability.
(3)本发明的操作方法简单、成本低、具有普适性,易于规模化生产。(3) The operation method of the present invention is simple, low in cost, universal, and easy for large-scale production.
具体实施方式Detailed ways
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used here is only for describing specific embodiments, and is not intended to limit exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
一种生物质纤维增强有机硅气凝胶复合材料,以具有多孔结构的有机硅氧烷气凝胶为基体,以生物质纤维为增强体。A biomass fiber-reinforced organosilicon airgel composite material uses organosiloxane airgel with a porous structure as a matrix and biomass fibers as a reinforcement.
在一些实施例中,有机硅气凝胶的质量分数为20%-80%,生物质纤维的质量分数为80%-20%,获得了良好的成形性与可加工性。In some embodiments, the mass fraction of the organic silicon airgel is 20%-80%, and the mass fraction of the biomass fiber is 80%-20%, so that good formability and processability are obtained.
在一些实施例中,有机硅气凝胶复合材料的比表面积57.568-535.3m2/g,孔体积0.15-0.70cm3/g,密度0.10-0.46g/cm3,折叠性和加工性良好。In some embodiments, the specific surface area of the silicone airgel composite material is 57.568-535.3m2 /g, the pore volume is 0.15-0.70cm3 /g, the density is 0.10-0.46g/cm3 , and the foldability and processability are good.
本发明为一种生物质纤维增强有机硅气凝胶复合材料及其制备方法,该方法包括以下的步骤;The invention relates to a biomass fiber reinforced organic silicon airgel composite material and a preparation method thereof, the method comprising the following steps;
1)有机硅气凝胶溶胶的配置,所述的溶胶包括有机硅源前驱体、溶剂、酸性催化剂、表面活性剂;1) the configuration of organosilicon airgel sol, described sol comprises organosilicon source precursor, solvent, acidic catalyst, surfactant;
2)有机硅气凝胶溶剂的缩聚;所述的溶液包括有机硅气凝胶溶胶、碱性催化剂;2) Polycondensation of organosilicon airgel solvent; described solution includes organosilicon airgel sol, basic catalyst;
3)生物质纤维复合气凝胶的成型;3) Forming of biomass fiber composite airgel;
4)复合成型后生物质纤维毡合气凝胶的老化与溶剂置换;4) Aging and solvent replacement of biomass fiber felted airgel after composite molding;
5)老化后生物质纤维复合气凝胶的干燥及检测。5) Drying and detection of biomass fiber composite airgel after aging.
本申请中对有机硅源前驱体的种类并不作特殊的限定,在一些实施例中,所述的有机硅源前驱体包括甲基三甲氧基硅烷、乙烯基三甲氧基硅烷中的一种或两种的混合物,以制备出高性能的有机硅气凝胶。In this application, the type of organosilicon source precursor is not specifically limited. In some embodiments, the organosilicon source precursor includes one of methyltrimethoxysilane, vinyltrimethoxysilane or A mixture of the two to prepare high-performance silicone aerogels.
在一些实施例中,所述的溶剂包括甲醇、乙醇中的一种或两种的混合物,有效地溶解有机硅源前驱体、酸性催化剂、表面活性剂等,使反应顺利进行。In some embodiments, the solvent includes one or a mixture of methanol and ethanol, which can effectively dissolve the organosilicon source precursor, acidic catalyst, surfactant, etc., and make the reaction go smoothly.
在一些实施例中,所述酸性催化剂包括盐酸,醋酸、草酸中的一种,催化有机硅气凝胶的合成,提高孔隙率和结构稳定性。In some embodiments, the acidic catalyst includes one of hydrochloric acid, acetic acid, and oxalic acid, which catalyzes the synthesis of organosilicon airgel to improve porosity and structural stability.
在一些实施例中,所述的碱性催化剂包括氨水、四乙基氢氧化铵、1,2-环氧丙烷中的一种,使气凝胶固化,提高固化强度。In some embodiments, the basic catalyst includes one of ammonia water, tetraethylammonium hydroxide, and 1,2-propylene oxide, so as to solidify the airgel and increase the curing strength.
在一些实施例中,所述的表面活性剂包括:十二烷基三甲基溴化铵、十二烷基硫酸钠、F127(泊洛沙姆)中的一种,获得了较好的分散效果。In some embodiments, the surfactant includes: one of dodecyltrimethylammonium bromide, sodium lauryl sulfate, F127 (poloxamer), and better dispersion Effect.
本申请中对生物质原生纤维的种类不作特殊的限定,在一些实施例中,生物质原生纤维,如棉、麻、毛、丝,以及以上材料制成的质地均匀的膜或毡片,可根据实际要求进行选择。The type of biomass primary fibers is not particularly limited in this application. In some embodiments, biomass primary fibers, such as cotton, hemp, wool, silk, and a uniform film or mat made of the above materials, can be Choose according to actual requirements.
本申请中对生物质再生纤维的种类不作特殊的限定,在一些实施例中,生物质再生纤维,包括植物质纤维和动物质纤维,其中植物质纤维主要包括:再生纤维素纤维、纤维素酯纤维、再生植物蛋白质纤维等;动物质纤维主要包括:再生动物蛋白质纤维、甲壳素纤维。以及以上材料制成的质地均匀的膜或毡片,以扩大生物质纤维的使用范围,满足生产需要。The type of biomass regenerated fiber is not specifically limited in this application. In some embodiments, biomass regenerated fiber includes plant fiber and animal fiber, wherein plant fiber mainly includes: regenerated cellulose fiber, cellulose ester fiber, regenerated plant protein fiber, etc.; animal fiber mainly includes: regenerated animal protein fiber, chitin fiber. And a film or felt with uniform texture made of the above materials to expand the use range of biomass fibers and meet production needs.
在一些实施例中,生物质合成纤维,主要包括:聚乳酸纤维、聚丁二酸丁二醇酯纤维、聚羟基脂肪酸酯纤维。以及以上材料制成的质地均匀的膜或毡片。In some embodiments, the biomass synthetic fiber mainly includes: polylactic acid fiber, polybutylene succinate fiber, polyhydroxyalkanoate fiber. And a uniform film or felt made of the above materials.
在一些实施例中,有机硅气凝胶溶胶的配置包括如下摩尔比的组分:甲基三甲氧基硅烷:无水乙醇:酸性催化剂:表面活性剂=3.48*10-2:0.257:5*10-4:1.3*10-3,提高了反应效率和产品性能。In some embodiments, the configuration of the silicone airgel sol includes components in the following molar ratio: methyltrimethoxysilane: absolute ethanol: acidic catalyst: surfactant = 3.48*10−2 : 0.257: 5* 10-4 : 1.3*10-3 , improving reaction efficiency and product performance.
在一些实施例中,生物质纤维复合气凝胶的成型是先将有机硅气凝胶溶胶与碱性催化剂均匀混合,其中有机硅与碱性催化剂的摩尔比为3.48*10-2:2*10-2:然后将其注入铺有生物质纤维的模具中,使生物质纤维的孔隙结构中对溶胶的吸附达到饱和,静置20-40min,使得有机硅溶胶凝胶,形成生物质纤维复合有机硅气凝胶的湿凝胶材料。In some embodiments, the biomass fiber composite airgel is formed by uniformly mixing the organic silicon airgel sol and the basic catalyst, wherein the molar ratio of the organic silicon to the basic catalyst is 3.48*10-2 : 2*10-2 : Then inject it into the mold covered with biomass fiber, make the adsorption of sol in the pore structure of biomass fiber reach saturation, let stand for 20-40min, make organic silica sol gel, form biomass fiber composite Silicone airgel wet gel material.
在一些实施例中,所述老化是生物质纤维复合有机硅气凝胶材料的湿凝胶放入50-70摄氏度的乙醇或甲醇溶剂浸泡12-48小时,使其缩聚形成网络凝胶。In some embodiments, the aging is soaking the wet gel of the biomass fiber composite organosilicon airgel material in ethanol or methanol solvent at 50-70 degrees Celsius for 12-48 hours, so that it can be polycondensed to form a network gel.
在一些实施例中,所述的溶剂置换是指将老化过的生物质纤维复合有机硅气凝胶毡的湿凝胶再次用无水乙醇浸泡,并每12小时置换一次,持续三次,将凝胶中的水脱除干净。In some embodiments, the solvent replacement refers to soaking the wet gel of the aged biomass fiber composite organosilicon airgel felt with absolute ethanol again, and replacing once every 12 hours for three times, The water in the glue is removed cleanly.
在一些实施例中,干燥是将溶剂置换的生物质纤维复合有机硅气凝胶毡的湿凝胶放入二氧化碳超临界萃取釜,将二氧化碳流体注入萃取釜。调节釜内的温度和压力在二氧化碳流体的超临界状态下与材料接触,使得材料中的溶剂溶解于超临界流体之中,从分离釜排料口收集萃取出的溶剂。In some embodiments, the drying is to put the wet gel of the solvent-substituted biomass fiber composite organosilicon airgel mat into a carbon dioxide supercritical extraction tank, and inject the carbon dioxide fluid into the extraction tank. Adjust the temperature and pressure in the kettle to contact the material in the supercritical state of the carbon dioxide fluid, so that the solvent in the material is dissolved in the supercritical fluid, and the extracted solvent is collected from the discharge port of the separation kettle.
在一些实施例中,所述二氧化碳气体的超临界状态温度为40~60℃,压力为8~18MPa;萃取时间为4~12h,在维持骨架结构的前提下,形成气凝胶。In some embodiments, the supercritical temperature of the carbon dioxide gas is 40-60° C., the pressure is 8-18 MPa; the extraction time is 4-12 hours, and the aerogel is formed under the premise of maintaining the skeleton structure.
在一些实施例中,本发明的生物质纤维复合有机硅气凝胶的制备方法,该方法包括以下的步骤:In some embodiments, the preparation method of the biomass fiber composite organosilicon airgel of the present invention comprises the following steps:
1)有机硅气凝胶溶胶的配置,所述的有机硅源前驱体包括甲基三甲氧基硅烷、乙烯基三甲氧基硅烷中的一种或两种的混合物;所述的溶剂包括甲醇、乙醇中的一种或两种的混合物:所述酸性催化剂包括盐酸,醋酸、草酸中的一种;所述的碱性催化剂包括氨水、四乙基氢氧化铵、1,2-环氧丙烷中的一种;所述的表面活性剂包括:十二烷基三甲基溴化铵、十二烷基硫酸钠、F127中的一种;所述的有机硅气凝胶溶胶的配置包括如下摩尔比的组分:甲基三甲氧基硅烷:无水乙醇:去离子水:酸性催化剂:表面活性剂=3.48*10-2:0.257:0.55:5*10-4:1.3*10-3。1) The configuration of organosilicon airgel sol, described organosilicon source precursor comprises the mixture of one or two in methyltrimethoxysilane, vinyltrimethoxysilane; Described solvent comprises methanol, One or two mixtures of ethanol: the acidic catalyst includes hydrochloric acid, one of acetic acid and oxalic acid; the basic catalyst includes ammonia, tetraethylammonium hydroxide, 1,2-propylene oxide A kind of; Described surfactant comprises: one kind in dodecyltrimethylammonium bromide, sodium lauryl sulfate, F127; The configuration of described organosilicon airgel sol includes following mole Ratio of components: methyltrimethoxysilane: absolute ethanol: deionized water: acidic catalyst: surfactant = 3.48*10−2 : 0.257: 0.55: 5*10−4 : 1.3*10−3 .
2)生物质纤维毡毡复合气凝胶的成型;所述的生物质纤维复合有机硅气凝胶的制备方法,所述的生物质纤维包括:生物质原生纤维,如棉、麻、毛、丝。生物质再生纤维,包括植物质纤维和动物质纤维,其中植物质纤维主要包括:再生纤维素纤维、纤维素酯纤维、再生植物蛋白质纤维等;动物质纤维主要包括:再生动物蛋白质纤维、甲壳素纤维。生物质合成纤维,主要包括:聚乳酸纤维、聚丁二酸丁二醇酯纤维、聚羟基脂肪酸酯纤维。以及以上材料制成的质地均匀的膜或毡片。2) the molding of biomass fiber mat composite airgel; the preparation method of described biomass fiber composite organosilicon airgel, described biomass fiber comprises: biomass primary fiber, such as cotton, hemp, wool, Silk. Biomass regenerated fiber, including plant fiber and animal fiber, of which plant fiber mainly includes: regenerated cellulose fiber, cellulose ester fiber, regenerated plant protein fiber, etc.; animal fiber mainly includes: regenerated animal protein fiber, chitin fiber. Biomass synthetic fibers mainly include: polylactic acid fibers, polybutylene succinate fibers, and polyhydroxyalkanoate fibers. And a uniform film or felt made of the above materials.
所述的生物质纤维毡复合气凝胶的成型是先将有机硅气凝胶溶胶与碱性催化剂均匀混合,其中有机硅与碱性催化剂的摩尔比为3.48*10-2:2*10-2。然后将其注入铺有生物质纤维的模具中,使生物质纤维的孔隙结构中对溶胶的吸附达到饱和,静置20-40min,使得有机硅溶胶凝胶,形成生物质纤维复合有机硅气凝胶的湿凝胶材料。The forming of the biomass fiber felt composite airgel is to firstly mix the organosilicon airgel sol and the basic catalyst evenly, wherein the molar ratio of the organosilicon to the basic catalyst is 3.48*10-2 : 2*10- 2 . Then pour it into a mold covered with biomass fibers, so that the adsorption of the sol in the pore structure of the biomass fibers reaches saturation, and let it stand for 20-40 minutes to make the silicone sol gel and form biomass fiber composite silicone gas condensation Adhesive wet gel material.
3)复合成型后生物质纤维复合气凝胶的老化与溶剂置换;所述的老化是指将生物质纤维复合有机硅气凝胶材料的湿凝胶放入50-70摄氏度的乙醇或甲醇溶剂浸泡12-48小时,所述的溶剂置换是指将老化过的生物质纤维复合有机硅气凝胶毡的湿凝胶再次用无水乙醇浸泡,并每12小时置换一次,持续三次。3) Aging and solvent replacement of biomass fiber composite airgel after composite molding; said aging refers to soaking the wet gel of biomass fiber composite organic silicon airgel material in ethanol or methanol solvent at 50-70 degrees Celsius 12-48 hours, the solvent replacement refers to soaking the wet gel of the aged biomass fiber composite organosilicon airgel felt with absolute ethanol again, and replacing it every 12 hours for three times.
4)老化后生物质纤维复合气凝胶的干燥;所述的干燥是将溶剂置换的生物质纤维复合有机硅气凝胶毡的湿凝胶放入二氧化碳超临界萃取釜,将二氧化碳流体注入萃取釜。调节釜内的温度和压力在二氧化碳流体的超临界状态下与材料接触,使得材料中的溶剂溶解于超临界流体之中,从分离釜排料口收集萃取出的溶剂。所述二氧化碳气体的超临界状态温度为40~60℃,压力为10~18MPa;萃取时间为4~12h。4) Drying of the biomass fiber composite airgel after aging; the drying is to put the wet gel of the solvent-substituted biomass fiber composite organosilicon airgel felt into a carbon dioxide supercritical extraction kettle, and inject the carbon dioxide fluid into the extraction kettle . Adjust the temperature and pressure in the kettle to contact the material in the supercritical state of the carbon dioxide fluid, so that the solvent in the material is dissolved in the supercritical fluid, and the extracted solvent is collected from the discharge port of the separation kettle. The supercritical state temperature of the carbon dioxide gas is 40-60° C., the pressure is 10-18 MPa; the extraction time is 4-12 hours.
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。The present invention will be described in further detail below in conjunction with specific examples. It should be pointed out that the specific examples are to explain rather than limit the present invention.
实施例1Example 1
生物质纤维复合有机硅气凝胶毡的制备工艺包括如下的步骤:有机硅气凝胶溶胶的配置→生物质纤维复合有机硅气凝胶毡的成型→老化→溶剂置换→干燥→检测。配置如下摩尔比的甲基三甲氧基硅烷:无水乙醇:去离子水:酸性催化剂:表面活性剂:碱性催化剂=3.48*10-2:0.257:0.55:5*10-4:1.3*10-3:2*10-2。The preparation process of biomass fiber composite organosilicon airgel mat includes the following steps: configuration of organosilicon airgel sol→forming of biomass fiber composite organosilicon airgel mat→aging→solvent replacement→drying→detection. Configure methyltrimethoxysilane in the following molar ratio: absolute ethanol: deionized water: acidic catalyst: surfactant: basic catalyst = 3.48*10-2 : 0.257: 0.55: 5*10-4 : 1.3*10-3 : 2*10-2 .
酸性催化剂为1mol/L的盐酸,碱性催化剂为氨水溶液,表面活性剂为十二烷基三甲基溴化铵,反应时间30min反应温度50℃。将反应完成的有机硅气凝胶的溶胶注入铺设有棉(生物质原生纤维)的模具中,使得生物质纤维对溶胶的吸附达到饱和,无气泡,静置等待凝胶,形成生物质纤维复合有机硅气凝胶的湿凝胶材料。将生物质纤维复合有机硅气凝胶的湿凝胶材料在50℃的条件下用乙醇浸泡12h老化,将老化完成的湿凝胶材料每12h置换一次乙醇溶液,置换三次。将置换完成的湿凝胶材料放入二氧化碳超临界干燥釜中,注入二氧化碳气体,控制干燥釜的温度和压力在二氧化碳的超临界温度和压力之上,完成对湿凝胶材料中的乙醇的萃取其中,所述二氧化碳气体的超临界状态温度为45℃,压力为8MPa;萃取时间为6h。从而获得生物质原生纤维复合有机硅气凝胶复合材料,该有机硅气凝胶复合材料的比表面积354.4m2/g,孔体积0.45cm3/g,密度0.32g/cm3。所制备的有机硅气凝胶复合材料可经折叠展开循环操作10次不发生折断与开裂;所制备的复合材料可用普通剪刀裁剪加工成所需的任意形状。The acidic catalyst is 1mol/L hydrochloric acid, the basic catalyst is ammonia solution, the surfactant is dodecyltrimethylammonium bromide, the reaction time is 30min, and the reaction temperature is 50°C. Inject the sol of the silicone airgel that has been reacted into a mold that is laid with cotton (biomass primary fiber), so that the adsorption of the biomass fiber to the sol reaches saturation without air bubbles, and wait for the gel to form a biomass fiber composite Silicone airgel wet gel material. The wet gel material of the biomass fiber composite silicone airgel was soaked in ethanol for 12 hours at 50°C for aging, and the aged wet gel material was replaced with the ethanol solution every 12 hours for three times. Put the replaced wet gel material into a carbon dioxide supercritical drying kettle, inject carbon dioxide gas, control the temperature and pressure of the drying kettle above the supercritical temperature and pressure of carbon dioxide, and complete the extraction of ethanol in the wet gel material Wherein, the supercritical state temperature of the carbon dioxide gas is 45° C., the pressure is 8 MPa; the extraction time is 6 hours. Thus, a biomass primary fiber composite organosilicon airgel composite material is obtained. The organosilicon airgel composite material has a specific surface area of 354.4 m2 /g, a pore volume of 0.45 cm3 /g, and a density of 0.32 g/cm3 . The prepared organosilicon airgel composite material can be folded and unfolded 10 times without breaking and cracking; the prepared composite material can be cut and processed into any desired shape with ordinary scissors.
实施例2Example 2
生物质纤维复合有机硅气凝胶毡的制备工艺包括如下的步骤:有机硅气凝胶溶胶的配置→生物质纤维复合有机硅气凝胶毡的成型→老化→溶剂置换→干燥→检测。配置如下摩尔比的甲基三甲氧基硅烷:无水乙醇:去离子水:酸性催化剂:表面活性剂:碱性催化剂=3.48*10-2:0.257:0.55:5*10-4:1.3*10-3:2*10-2。The preparation process of biomass fiber composite organosilicon airgel mat includes the following steps: configuration of organosilicon airgel sol→forming of biomass fiber composite organosilicon airgel mat→aging→solvent replacement→drying→detection. Configure methyltrimethoxysilane in the following molar ratio: absolute ethanol: deionized water: acidic catalyst: surfactant: basic catalyst = 3.48*10-2 : 0.257: 0.55: 5*10-4 : 1.3*10-3 : 2*10-2 .
酸性催化剂为1mol/L的盐酸,碱性催化剂为氨水溶液,表面活性剂为十二烷基三甲基溴化铵,反应时间30min反应温度50℃。将反应完成的有机硅气凝胶的溶胶注入铺设有生物质再生纤维,再生纤维素纤维的模具中,使得生物质纤维对溶胶的吸附达到饱和,无气泡,静置等待凝胶,形成生物质纤维复合有机硅气凝胶的湿凝胶材料。将生物质纤维复合有机硅气凝胶的湿凝胶材料在50摄氏度的条件下用乙醇浸泡12小时老化,将老化完成的湿凝胶材料每12小时置换一次乙醇溶液,置换三次。将置换完成的湿凝胶材料放入二氧化碳超临界干燥釜中,注入二氧化碳气体,控制干燥釜的温度和压力在二氧化碳的超临界温度和压力之上,完成对湿凝胶材料中的乙醇的萃取。所述二氧化碳气体的超临界状态温度为45℃,压力为8MPa;萃取时间为6h。从而获得生物质再生纤维复合有机硅气凝胶复合材料。该有机硅气凝胶的比表面积357.4m2/g,孔体0.56cm3/g,密度0.35g/cm3。所制备的有机硅气凝胶复合材料可经折叠展开循环操作10次不发生折断与开裂;所制备的复合材料可用普通剪刀裁剪加工成所需的任意形状。The acidic catalyst is 1mol/L hydrochloric acid, the basic catalyst is ammonia solution, the surfactant is dodecyltrimethylammonium bromide, the reaction time is 30min, and the reaction temperature is 50°C. Inject the sol of the silicone airgel that has been reacted into the mold that is laid with biomass regenerated fiber and regenerated cellulose fiber, so that the adsorption of the biomass fiber to the sol reaches saturation without air bubbles, and wait for the gel to form biomass Wet-gel materials of fiber-composite silicone aerogels. The wet gel material of the biomass fiber composite silicone airgel was soaked in ethanol for 12 hours at 50 degrees Celsius and aged, and the aged wet gel material was replaced with the ethanol solution every 12 hours for three times. Put the replaced wet gel material into a carbon dioxide supercritical drying kettle, inject carbon dioxide gas, control the temperature and pressure of the drying kettle above the supercritical temperature and pressure of carbon dioxide, and complete the extraction of ethanol in the wet gel material . The supercritical state temperature of the carbon dioxide gas is 45° C., the pressure is 8 MPa; the extraction time is 6 hours. Thus, the biomass regenerated fiber composite organosilicon airgel composite material is obtained. The organosilicon airgel has a specific surface area of 357.4m2 /g, a pore body of 0.56cm3 /g, and a density of 0.35g/cm3 . The prepared organosilicon airgel composite material can be folded and unfolded 10 times without breaking and cracking; the prepared composite material can be cut and processed into any desired shape with ordinary scissors.
实施例3Example 3
生物质纤维复合有机硅气凝胶毡的制备工艺包括如下的步骤:有机硅气凝胶溶胶的配置→生物质纤维复合有机硅气凝胶毡的成型→老化→溶剂置换→干燥→检测。配置如下摩尔比的甲基三甲氧基硅烷:无水乙醇:去离子水:酸性催化剂:表面活性剂:碱性催化剂=3.48*10-2:0.257:0.55:5*10-4:1.3*10-3:2*10-2。The preparation process of biomass fiber composite organosilicon airgel mat includes the following steps: configuration of organosilicon airgel sol→forming of biomass fiber composite organosilicon airgel mat→aging→solvent replacement→drying→detection. Configure the following molar ratio of methyltrimethoxysilane: absolute ethanol: deionized water: acidic catalyst: surfactant: basic catalyst = 3.48*10-2: 0.257: 0.55: 5*10-4: 1.3*10 -3: 2*10-2 .
酸性催化剂为1mol/L的盐酸,碱性催化剂为氨水溶液,表面活性剂为十二烷基三甲基溴化铵,反应时间30min反应温度50℃。将反应完成的有机硅气凝胶的溶胶注入铺设有生物质合成纤维,聚乳酸纤维的模具中,使得生物质纤维对溶胶的吸附达到饱和,无气泡,静置等待凝胶,形成生物质纤维复合有机硅气凝胶的湿凝胶材料。将生物质纤维复合有机硅气凝胶的湿凝胶材料在50摄氏度的条件下用乙醇浸泡12小时老化,将老化完成的湿凝胶材料每12小时置换一次乙醇溶液,置换三次。将置换完成的湿凝胶材料放入二氧化碳超临界干燥釜中,注入二氧化碳气体,控制干燥釜的温度和压力在二氧化碳的超临界温度和压力之上,完成对湿凝胶材料中的乙醇的萃取。所述二氧化碳气体的超临界状态温度为45℃,压力为8MPa;萃取时间为6h。从而获得生物质合成纤维复合有机硅气凝胶复合材料。该有机硅气凝胶复合材料的比表面积535.3m2/g,孔体0.70cm3/g,密度0.46g/cm3。所制备的有机硅气凝胶复合材料可经折叠展开循环操作10次不发生折断与开裂;所制备的复合材料可用普通剪刀裁剪加工成所需的任意形状。The acidic catalyst is 1mol/L hydrochloric acid, the basic catalyst is ammonia solution, the surfactant is dodecyltrimethylammonium bromide, the reaction time is 30min, and the reaction temperature is 50°C. Inject the sol of the organic silicon airgel after the reaction into the mold with biomass synthetic fiber and polylactic acid fiber, so that the adsorption of the biomass fiber to the sol is saturated, without air bubbles, and wait for the gel to form a biomass fiber Composite silicone aerogel wet gel material. The wet gel material of the biomass fiber composite silicone airgel was soaked in ethanol for 12 hours at 50 degrees Celsius and aged, and the aged wet gel material was replaced with the ethanol solution every 12 hours for three times. Put the replaced wet gel material into a carbon dioxide supercritical drying kettle, inject carbon dioxide gas, control the temperature and pressure of the drying kettle above the supercritical temperature and pressure of carbon dioxide, and complete the extraction of ethanol in the wet gel material . The supercritical state temperature of the carbon dioxide gas is 45° C., the pressure is 8 MPa; the extraction time is 6 hours. Thereby obtaining biomass synthetic fiber composite organosilicon airgel composite material. The organic silicon airgel composite material has a specific surface area of 535.3m2 /g, a pore body of 0.70cm3 /g, and a density of 0.46g/cm3 . The prepared organosilicon airgel composite material can be folded and unfolded 10 times without breaking and cracking; the prepared composite material can be cut and processed into any desired shape with ordinary scissors.
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。上述虽然对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Finally, it should be noted that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Although the present invention has been described in detail with reference to the foregoing embodiments, for those skilled in the art, it is still The technical solutions described in the foregoing embodiments may be modified, or part of them may be equivalently replaced. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention. Although the specific implementation of the present invention has been described above, it is not a limitation to the protection scope of the present invention. Those skilled in the art should understand that on the basis of the technical solution of the present invention, those skilled in the art can do it without creative work. Various modifications or deformations are still within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010485593.0ACN111560172B (en) | 2020-06-01 | 2020-06-01 | A kind of biomass fiber reinforced organosilicon airgel composite material and its preparation method and application |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010485593.0ACN111560172B (en) | 2020-06-01 | 2020-06-01 | A kind of biomass fiber reinforced organosilicon airgel composite material and its preparation method and application |
| Publication Number | Publication Date |
|---|---|
| CN111560172A CN111560172A (en) | 2020-08-21 |
| CN111560172Btrue CN111560172B (en) | 2023-05-12 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010485593.0AActiveCN111560172B (en) | 2020-06-01 | 2020-06-01 | A kind of biomass fiber reinforced organosilicon airgel composite material and its preparation method and application |
| Country | Link |
|---|---|
| CN (1) | CN111560172B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11709155B2 (en) | 2017-09-18 | 2023-07-25 | Waters Technologies Corporation | Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes |
| US12181452B2 (en) | 2017-09-18 | 2024-12-31 | Waters Technologies Corporation | Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes |
| US11709156B2 (en) | 2017-09-18 | 2023-07-25 | Waters Technologies Corporation | Use of vapor deposition coated flow paths for improved analytical analysis |
| US12180581B2 (en) | 2017-09-18 | 2024-12-31 | Waters Technologies Corporation | Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes |
| US11918936B2 (en) | 2020-01-17 | 2024-03-05 | Waters Technologies Corporation | Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding |
| EP4217730B1 (en) | 2020-09-24 | 2025-08-20 | Waters Technologies Corporation | Chromatographic hardware improvements for the separation of reactive molecules |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104402395B (en)* | 2014-11-18 | 2017-05-10 | 四川睿光科技有限责任公司 | Fiber-reinforced flexible SiO2 aerogel heat-insulation material and preparation method thereof |
| FR3039539B1 (en)* | 2015-07-30 | 2020-10-09 | Enersens | MONOLITHIC AEROGEL REINFORCED BY DISPERSED FIBERS |
| CN107986745A (en)* | 2017-12-20 | 2018-05-04 | 长春工业大学 | The preparation process of polyester fiber toughness reinforcing aerosil |
| CN109516763B (en)* | 2019-01-07 | 2021-07-20 | 东华大学 | A kind of cellulose fiber/SiO2 composite aerogel material and its preparation and application |
| CN111499919A (en)* | 2020-05-11 | 2020-08-07 | 江西理工大学 | A kind of biomass fiber hybrid polyorganosiloxane aerogel glass and preparation method thereof |
| Publication number | Publication date |
|---|---|
| CN111560172A (en) | 2020-08-21 |
| Publication | Publication Date | Title |
|---|---|---|
| CN111560172B (en) | A kind of biomass fiber reinforced organosilicon airgel composite material and its preparation method and application | |
| CN104448397B (en) | A kind of in-situ preparation method of cellulose-silica composite airgel | |
| CN108658576B (en) | A kind of preparation method of composite silica aerogel felt | |
| CN106867019B (en) | Method for preparing SiO2-cellulose composite aerogel material by one-pot method | |
| CN101913835B (en) | Foamed ceramic reinforcing fiber aerogel insulating material and preparation method thereof | |
| CN115259828B (en) | A method for preparing carbon fiber and carbon nanotube composite silicon aerogel by freeze-drying | |
| CN101973752A (en) | Glass fiber reinforced silicon dioxide aerogel composite material and preparation method thereof | |
| CN103030924B (en) | Fiber material modified melamine formaldehyde foam and preparation method thereof | |
| CN108658574A (en) | A kind of anti-shedding aeroge complex heat-preservation felt | |
| CN108046740A (en) | A kind of silica nano fibrous enhancing silica aerogel material and preparation method thereof | |
| CN110256107B (en) | Polyurethane foam heat-insulation and decoration integrated plate and preparation method thereof | |
| CN103396086A (en) | Preparation method for glass fiber-reinforced water glass-based silica composite aerogel | |
| WO2013010371A1 (en) | Method for preparing fiber-reinforced sio2 aerogel with rice husk ash as raw material | |
| CN102633464A (en) | Method for preparing SiO2 aerogel heat insulating composite through adhesive slip casting | |
| CN102992333B (en) | Low-cost method for preparing aerosil | |
| CN104119060B (en) | Fiber is cross-linked the preparation method of aerogel composite | |
| CN112934128A (en) | Core-shell structure organic-inorganic hybrid nanofiber aerogel elastomer and preparation and application thereof | |
| CN109487537A (en) | A kind of high strength fibre element/SiO2Composite aerogel long fibre and preparation method thereof | |
| CN116426032B (en) | Bagasse cellulose aerogel and preparation method thereof | |
| CN104528741A (en) | Organic modified nanoporous silica aerogel and preparation method thereof | |
| CN107987311A (en) | A kind of preparation method of hydrophobicity melamine sponge enhancing polysilsesquioxane composite aerogel | |
| CN117683321B (en) | Low-temperature-cured water-based phenolic aerogel composite material and preparation method thereof | |
| CN117362743A (en) | Preparation method of heat-shock-resistant aramid aerogel and aramid aerogel | |
| CN112138612A (en) | A kind of preparation method of graphene-organosilicon composite aerogel | |
| CN118027504A (en) | Polymer nanofiber/silicon oxide composite aerogel and preparation method and application thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |