



技术领域technical field
本文所公开的实施方式总体涉及具有部分阳极化的气体分配喷头的设备。Embodiments disclosed herein generally relate to apparatus having partially anodized gas distribution showerheads.
背景技术Background technique
等离子体增强化学气相沉积(PECVD)一般用于在基板(诸如半导体基板,太阳能面板基板、平板显示器(FPD)基板、有机发光显示器(OLED)基板等)上沉积薄膜。PECVD一般通过将处理气体从气体分配喷头引入真空腔室中而实现,该真空腔室具有设置在基座上的基板。通过从耦接到腔室的一个或多个RF源向腔室中的电极施加RF电流,处理气体被激发成等离子体。等离子体进行反应以在定位在基座上的基板的表面上形成材料层。气体分配喷头的设计、以及RF电流的施加对等离子体的性质有很大影响。Plasma-enhanced chemical vapor deposition (PECVD) is generally used to deposit thin films on substrates such as semiconductor substrates, solar panel substrates, flat panel display (FPD) substrates, organic light emitting display (OLED) substrates, and the like. PECVD is generally accomplished by introducing process gases from a gas distribution showerhead into a vacuum chamber having a substrate disposed on a susceptor. The process gas is excited into a plasma by applying RF current to electrodes in the chamber from one or more RF sources coupled to the chamber. The plasma reacts to form a layer of material on the surface of the substrate positioned on the susceptor. The design of the gas distribution showerhead, as well as the application of RF current, has a large effect on the properties of the plasma.
在工业中利用的基板中的一些是平坦介质,诸如典型地用于制造平板显示器、太阳能器件、OLED器件以及其他应用的玻璃、塑料或其他材料的矩形、柔性片材。在平坦介质上形成电子器件、膜以及其他结构的材料通过众多工艺(包括PECVD)沉积到平坦介质上。然而,等离子体密度,特别是在平坦介质的周边处的等离子体密度,一般与平坦介质的周边的内侧的等离子体密度不同。等离子体密度的这种不均匀性造成跨越平坦介质的区域的膜厚度的不均匀性。已经对气体分配喷头和/或PECVD工艺参数进行了众多修改,但是还未消除膜均匀性的变化量。Some of the substrates utilized in the industry are flat media, such as rectangular, flexible sheets of glass, plastic or other materials typically used in the manufacture of flat panel displays, solar devices, OLED devices, and other applications. Materials that form electronic devices, films, and other structures on flat dielectrics are deposited onto flat dielectrics by a number of processes, including PECVD. However, the plasma density, especially at the perimeter of the flat medium, is generally different from the plasma density inside the perimeter of the flat medium. This non-uniformity in plasma density creates non-uniformity in film thickness across regions of the flat medium. Numerous modifications have been made to the gas distribution showerhead and/or PECVD process parameters, but the amount of variation in film uniformity has not been eliminated.
因此,本领域中需要具有减轻或最小化上述不均匀性的气体分配喷头的设备。Accordingly, there is a need in the art for an apparatus having a gas distribution showerhead that mitigates or minimizes the aforementioned non-uniformities.
发明内容SUMMARY OF THE INVENTION
本文所公开的实施方式总体涉及具有部分阳极化的气体分配喷头的设备。在一个实施方式中,提供了一种气体分配喷头,所述气体分配喷头包括主体,所述主体具有从上游侧穿过所述主体延伸到下游侧的多个气体通道,所述主体具有中心区域和周边区域,所述周边区域具有设置在所述上游侧和所述下游侧上的阳极化层。Embodiments disclosed herein generally relate to apparatus having partially anodized gas distribution showerheads. In one embodiment, a gas distribution showerhead is provided that includes a body having a plurality of gas passages extending through the body from an upstream side to a downstream side, the body having a central region and a peripheral region having an anodized layer disposed on the upstream side and the downstream side.
在另一个实施方式中,公开了一种等离子体处理设备。所述设备包括:处理腔室主体,所述处理腔室主体具有壁和底板;基座,所述基座设置在所述处理腔室主体中,并在第一位置与第二位置之间是可移动的;以及一个或多个条带,所述一个或多个条带耦接到所述基座,并耦接到所述底板或所述壁中的一个或多个。所述设备包括喷头,所述喷头设置在所述处理腔室主体中并与所述基座相对,并且具有延伸穿过所述喷头的一个或多个气体通道。所述喷头包括主体,所述主体具有从上游侧穿过所述主体延伸到下游侧的多个气体通道,所述主体具有中心区域和周边区域,所述周边区域具有设置在所述上游侧和所述下游侧上的阳极化层。In another embodiment, a plasma processing apparatus is disclosed. The apparatus includes: a processing chamber body having a wall and a floor; a pedestal disposed in the processing chamber body between a first position and a second position removable; and one or more straps coupled to the base and to one or more of the floor or the wall. The apparatus includes a showerhead disposed in the processing chamber body opposite the susceptor and having one or more gas passages extending through the showerhead. The showerhead includes a main body having a plurality of gas passages extending through the main body from an upstream side to a downstream side, the main body having a central region and a peripheral region having disposed on the upstream side and a peripheral region. the anodized layer on the downstream side.
在另一个实施方式中,公开了一种等离子体增强化学气相沉积设备。所述设备包括:腔室主体,所述腔室主体具有多个壁和腔室底板;以及基座,所述基座设置在所述腔室主体中并在第一位置和第二位置之间是可移动的,所述第一位置与所述腔室底板间隔开第一距离,所述第二位置与所述腔室底板间隔开大于所述第一距离的第二距离。所述设备还包括多个条带,所述多个条带耦接到所述基座,并耦接到腔室底板和多个壁中的一个或多个。所述多个条带沿所述基座不均匀地分布。所述设备还包括气体分配喷头,所述气体分配喷头设置在所述腔室主体中并与所述基座相对,所述喷头具有延伸穿过所述喷头的多个气体通道并具有中心部分和边缘部分。所述气体分配喷头包括主体,所述主体具有从上游侧穿过所述主体延伸到下游侧的多个气体通道,所述主体具有中心区域和周边区域,所述周边区域具有设置在所述上游侧和所述下游侧上的阳极化层。In another embodiment, a plasma enhanced chemical vapor deposition apparatus is disclosed. The apparatus includes: a chamber body having a plurality of walls and a chamber floor; and a base disposed in the chamber body between a first position and a second position is movable, the first position is spaced a first distance from the chamber floor, and the second position is spaced a second distance greater than the first distance from the chamber floor. The apparatus also includes a plurality of straps coupled to the base and to one or more of a chamber floor and a plurality of walls. The plurality of strips are unevenly distributed along the base. The apparatus also includes a gas distribution showerhead disposed in the chamber body opposite the base, the showerhead having a plurality of gas passages extending through the showerhead and having a central portion and edge part. The gas distribution showerhead includes a main body having a plurality of gas passages extending through the main body from an upstream side to a downstream side, the main body having a central region and a peripheral region having a peripheral region disposed on the upstream side anodized layer on the side and the downstream side.
附图说明Description of drawings
为了能够详细地理解本公开内容的上述特征的方式,可参考实施方式来获得上文简要地概述的本公开内容的更特定的描述,其中一些实施方式在附图中例示。然而,应注意,附图仅例示了本公开内容的典型实施方式,并因此不应视为对本公开内容的范围的限制,因为本公开内容可允许其他等效实施方式。In order that the manner in which the above-described features of the present disclosure can be understood in detail, a more specific description of the present disclosure, briefly summarized above, may be obtained by reference to the embodiments, some of which are illustrated in the accompanying drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equivalent embodiments.
图1是根据一个实施方式的设备的示意性截面图。Figure 1 is a schematic cross-sectional view of an apparatus according to one embodiment.
图2是喷头的一个实施方式的平面图。Figure 2 is a plan view of one embodiment of a showerhead.
图3是根据另一个实施方式的喷头的示意性截面图。3 is a schematic cross-sectional view of a showerhead according to another embodiment.
图4是根据一个实施方式的气体分配喷头相对于处理腔室壁的示意性截面图。4 is a schematic cross-sectional view of a gas distribution showerhead relative to a processing chamber wall, according to one embodiment.
为了便于理解,已经尽可能地使用相同的附图标记标示各附图共有的相同元件。设想的是,一个实施方式中公开的要素可有益地用于其他实施方式,而无需赘述。To facilitate understanding, where possible, the same reference numerals have been used to designate the same elements common to the various figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized in other embodiments without elaboration.
具体实施方式Detailed ways
本文所公开的实施方式总体涉及具有部分阳极化的气体分配喷头的设备。气体分配喷头由铝制成,并且一些部分保持为裸铝(bare aluminum),而其他部分则如本文所公开那样被阳极化。在气体分配喷头的周边区域处提供阳极化,而在周边区域内的部分保持为裸铝。气体分配喷头会影响等离子体的性质,从而减少跨越基板的膜厚度的不均匀性。Embodiments disclosed herein generally relate to apparatus having partially anodized gas distribution showerheads. The gas distribution showerhead is made of aluminum, and some portions remain bare aluminum, while other portions are anodized as disclosed herein. Anodization is provided at the peripheral area of the gas distribution showerhead, while the portion within the peripheral area remains bare aluminum. The gas distribution showerhead affects the properties of the plasma, thereby reducing non-uniformity in film thickness across the substrate.
本文所讨论的实施方式将参考由作为美国加利福尼亚州圣克拉拉市应用材料公司的子公司AKT公司(AKT America,a subsidiary of Applied Materials,Inc.,SantaClara,CA)制造和销售的大面积PECVD腔室。应理解,本文所讨论的实施方式也可在其他腔室中实践,包括由其他制造商出售的腔室。大面积处理腔室的尺寸被设定为处理平坦介质,诸如具有大于约一万五千平方厘米的面积的平坦、柔性基板。在一个实施方式中,基板可具有大于约五万平方厘米的面积。在另一个实施方式中,基板可具有大于约五万五千平方厘米的面积。在另一个实施方式中,基板可具有大于约六万平方厘米的面积。在另一个实施方式中,基板可具有大于约九万平方厘米的面积。Embodiments discussed herein will refer to large area PECVD chambers manufactured and sold by AKT America, a subsidiary of Applied Materials, Inc., Santa Clara, CA, USA room. It should be understood that the embodiments discussed herein may also be practiced in other chambers, including chambers sold by other manufacturers. Large area processing chambers are sized to process flat media, such as flat, flexible substrates having an area greater than about fifteen thousand square centimeters. In one embodiment, the substrate may have an area greater than about fifty thousand square centimeters. In another embodiment, the substrate may have an area greater than about fifty-five thousand square centimeters. In another embodiment, the substrate may have an area greater than about sixty thousand square centimeters. In another embodiment, the substrate may have an area greater than about ninety thousand square centimeters.
图1是根据一个实施方式的设备100的示意性截面图。在所示出的实施方式中,设备100是PECVD设备。设备100包括腔室主体102,来自气源104的处理气体被馈送到该腔室主体102中。当设备100用于沉积时,处理气体从气源被馈送通过远程等离子体源106并通过管108。在远程等离子体源106中,处理气体未点燃成等离子体。在清洁期间,清洁气体从气源104发送到远程等离子体源106,并在来自等离子体的自由基进入腔室之前,清洁气体在远程等离子体源106被点燃成等离子体。管108是导电管108。Figure 1 is a schematic cross-sectional view of an
用于在腔室内将处理气体点燃成等离子体的RF电流从RF源110耦接到管108。由于RF电流的“趋肤效应(skin effect)”,RF电流沿管108的外部行进。RF电流将仅穿透特定、可预定的深度进入导电材料。因此,RF电流沿管108的外部行进,而处理气体在管108的内部行进。当处理气体在管108中行进时,处理气体永远不会“遇到”RF电流,因为RF电流没有足够深入地穿透到管108中,以使处理气体在管108内暴露于RF电流。The RF current used to ignite the process gas into a plasma within the chamber is coupled from
处理气体通过背板114被馈送到腔室。然后,处理气体膨胀到在背板114与喷头116之间的容积118中。然后,处理气体行进通过多个气体通道156并进入处理容积148中。气体通道156形成为从喷头116的上游侧或背面159至喷头116的下游侧或前面160。Process gases are fed to the chamber through the
另一方面,RF电流不进入背板114与喷头116之间的容积118。而是,RF电流沿管108的外部行进到背板114。然后,RF电流沿背板114的大气侧158行进。背板114包括导电材料。在一个实施方式中,背板114包括铝。在另一个实施方式中,背板114可包括不锈钢。然后,RF电流从背板沿包括导电材料的支架120行进。在一个实施方式中,支架120包括铝。在另一个实施方式中,支架120包括不锈钢。然后,RF电流沿喷头116的前面160行进,在此处,RF电流在喷头116与基板124之间的处理容积148中将穿过气体通道156的处理气体点燃成等离子体。RF电流行进到达喷头116的前面160的路径由箭头“A”示出。O形环122将壁146与背板114电隔离。On the other hand, RF current does not enter the
在一个实施方式中,喷头116可包括导电材料。在另一个实施方式中,喷头116包括金属。在另一个实施方式中,喷头116包括铝。在另一个实施方式中,喷头116包括不锈钢。In one embodiment, the
由于等离子体,材料(诸如氮化硅(SiN))被沉积到基板124上。在图1所示出的实施方式中,基板124设置在基座126上,该基座能够在第一位置与第二位置之间移动,该第一位置与喷头116间隔开第一距离,该第二位置与喷头116间隔开第二距离,其中第二距离比第一距离小。在图1所示出的实施方式中,基座126设置在杆136上并能够通过致动器140移动。Due to the plasma, material, such as silicon nitride (SiN), is deposited onto the
基板124是大面积基板,并且因此,当在升降杆130、132上升高时,该基板可弯曲。因此,升降杆130、132可具有不同长度。当基板124通过狭缝阀开口144插入腔室中时,基座126可处于降低位置。当基座126处于降低位置时,升降杆130、132在基座126上方延伸。因此,基板124首先被放置在升降杆上。升降杆130、132具有不同长度。外升降杆130比内升降杆132长,使得基板124被放置在升降杆130、132上时在中心凹陷。升高基座126以与基板124相遇。基板124以从中心接触基座进展到边缘接触基座的方式与基座126接触,从而排出存在于基座126与基板124之间的任何气体。然后,升降杆130、132与基座124一起被基座126升高。The
当基座126升高到狭缝阀开口144上方时,基座126遇到阴影框架128。阴影框架128在不使用时搁置在狭缝阀开口144上方的突出部142上。由于尺寸的原因,阴影框架128可能无法正确地对准。因此,在阴影框架128或基座126上可存在辊,以允许阴影框架128在基座126上滚动以便适当地对准。阴影框架128用于双重目的。阴影框架128使基座126的未被基板124覆盖的区域免受沉积的影响。另外,当阴影框架128包括电绝缘材料时,将沿基座126行进的RF电流与沿壁146行进的RF电流电屏蔽。在一个实施方式中,阴影框架128包括绝缘材料。在另一个实施方式中,阴影框架128包括陶瓷材料。在另一个实施方式中,阴影框架128包括Al2O3。在另一个实施方式中,阴影框架包括在其上具有阳极化层的金属。在一个实施方式中,金属包括铝。在另一个实施方式中,阳极化层包括Al2O3。When the
RF电流需要返回到驱动RF电流的电源110。RF电流通过等离子体耦接到基座126。在一个实施方式中,基座126包括诸如铝的导电材料。在另一个实施方式中,基座126包括诸如不锈钢的导电材料。RF电流通过由箭头“B”所示出的路径行进而回到电源110。RF电流在到达电源110之前沿壁146和盖112返回。The RF current needs to be returned to the
为了缩短RF电流返回路径,在一个实施方式中,一个或多个条带134耦接到基座126。通过利用条带134,RF电流将沿条带134向下行进到腔室的底部138并然后返回到腔室的内壁146。在没有条带134的情况下,RF电流将沿基座126的底部行进,顺着杆136向下行进,然后沿腔室的底部138和内壁146返回。沿基座126的底部行进的RF电流与腔室的杆136或底部138上的RF电流之间可能存在高电势差。由于电势不同,在基座下方的容积150中可能发生电弧放电。条带134减小了在容积150中发生电弧放电的可能性。To shorten the RF current return path, in one embodiment, one or
在另一个实施方式中,在喷头116的一部分上提供阳极化层170。在一些实施方式中,基座126不仅具有耦接到基座126的条带134,而且具有通过耦接到基座126的底部的延伸部174而实现的RF返回元件172。RF返回元件172耦接到当基座126处于降低位置时支撑阴影框架128的突出部142。图1所示出的RF返回元件172是在基座126与突出部142之间提供电连接的棒。RF返回元件172提供的返回路径比条带134短,并且因此,大部分RF电流将通过RF返回元件172而不是通过条带134返回到RF电源。其他RF返回元件也可与阳极化层170和条带134结合使用,这将在下文讨论。在一个实施方式中,RF返回元件172可设置在突出部142上并在其下方延伸,直到来自基座126的延伸部174移动到与RF返回元件172接触。In another embodiment, the
阳极化层170可用于调谐处理容积148内的等离子体。如下文更详细地描述的,喷头116包括中心区域和围绕中心区域的边缘或周边区域,并且在周边区域上提供阳极化层170,而中心区域保持为裸铝。短语“裸铝”被定义为无涂层的表面,而铝表面上常见的天然或原生氧化物层除外。阳极化层170可被定义为与天然存在的层(诸如原生氧化物层)相反的故意设置在表面上的层或涂层。阳极化层170可以是比天然存在的氧化物层厚的氧化物层。可基于以下两个相互竞争的关注点的平衡来确定喷头116的被阳极化层170覆盖的表面区域:颗粒产生(影响产量)和等离子体均匀性(影响膜均匀性)。
图2是喷头200的一个实施方式的平面图。喷头200可在设备100中用作喷头116。喷头200包括由铝(诸如铝合金)制成的主体205。主体205包括形成在背面159(如图1所示)与前面160之间的多个气体通道156。FIG. 2 is a plan view of one embodiment of a
喷头200的主体205由虚线分开以指示喷头200的边缘或周边区域210和中心区域215。中心区域215被周边区域210包围。中心区域215是裸铝,而周边区域210被阳极化(例如,包括图1所示出的阳极化层170)。中心区域215和周边区域210对施加到其上的RF能量有不同反应。通过提供阳极化层170,基座126(如图1所示)与喷头200之间的等离子体密度在对应于中心区域215和周边区域210的位置处不同。The
分别与次要侧边230和主要侧边235相距的距离220和距离225可不同或相同。距离220和距离225可基于基座126(在图1中示出)与喷头200之间的期望的等离子体特性。距离220和距离225可描述为第一表面区域240和第二表面区域245,第一表面区域240被阳极化而第二表面区域245是裸铝。第一表面区域240和第二表面区域245可以由表面区域百分比或比率(例如,裸铝与阳极化涂层的百分比或比率)表示。在一些实施方式中,第一表面区域240(涂覆区域)相对于第二表面区域245(未涂覆区域)的百分比为约20%至约25%。The
可基于在基座126(如图1所示)与喷头200之间提供的期望的等离子体密度来选择第一表面区域240(阳极化区域)相对于第二表面区域245(裸铝区域)的大小。例如,第一表面区域240的尺寸可选择为减小在基座126与喷头200之间的区域处的等离子体密度(作为电容效应)。通过提供阳极化周边区域210来减小喷头200的周边区域210处的等离子体密度可导致在基板的周边区域处的膜厚度减小。然而,相对于裸铝,阳极化涂层的多孔性更高。虽然孔隙率增加了颗粒保留,但是存在一些颗粒可能脱落并污染形成在基板上的膜的可能性。另外,阳极化涂层具有与裸铝不同的性质。这些性质包括硬度、热膨胀系数等。性质上的差异可能导致阳极化涂层的微小开裂和/或剥离并产生颗粒污染。因此,本领域的技术人员可在竞争的膜均匀性和颗粒问题之间取得平衡,以达到相对于裸铝的最佳阳极化面积。如本文所述的喷头200能够最小化作为气流效应的颗粒污染的风险。喷头200还通过控制沉积膜纯度来优化装置设计规则。具有阳极化周边区域210和裸露中心区域215的喷头200提供期望的等离子体密度以及管理膜沉积均匀性。The ratio of the first surface area 240 (anodized area) relative to the second surface area 245 (bare aluminum area) may be selected based on the desired plasma density provided between the susceptor 126 (shown in FIG. 1 ) and the
图3是根据另一实施方式的喷头300的示意性截面图。喷头300可在设备100中用作喷头116。如图2所示,喷头300包括第一表面区域240(周边区域210)和第二表面区域245(中心区域215)。FIG. 3 is a schematic cross-sectional view of a
喷头300具有多个气体通道156,这些气体通道156在面对背板114(图1所示)的上游侧305(背面159)与下游侧310(前面160)之间穿过。下游侧310被示出为面向基板凹入。应理解,在一些实施方式中,下游侧310可为平坦的并基本上平行于上游侧305。在一个实施方式中,喷头300的上游侧305也可为凹形的。气体通道156具有气室315、孔口320和中空阴极空腔325。孔口320在喷头305的上游侧305上产生背压。由于背压,气体可在穿过气体通道156之前均匀地分布在喷头300的上游侧305上。中空阴极空腔325允许在中空阴极空腔325中使得等离子体在气体通道156内产生。与不存在中空阴极空腔的情况相反,中空阴极空腔325允许更大程度地控制处理腔室内的等离子体分布。下游侧310处的中空阴极空腔325具有比孔口320大的直径或宽度。孔口320的宽度或直径小于等离子体暗空间,因此,预期等离子体不会在中空阴极空腔325上方发光。
喷头300还具有凸缘330,该凸缘300朝着腔室壁(图1所示出的壁146)延伸。在图3所示出的实施方式中,阳极化层170沿喷头300的外表面和内表面形成。在图3所示出的实施方式中,阳极化层170设置在凸缘330上方至凸缘330内侧的位置。阳极化层170还可防止喷头300与腔室壁之间发生电弧放电。在图3所示出的实施方式中,阳极化层170至少部分地覆盖上游侧305和下游侧310。在图3所示出的实施方式中,阳极化层170设置在周边区域210处的气体通道156的表面上。The
图4是根据一个实施方式的气体分配喷头400相对于处理腔室壁405的示意性截面图。如图4所示,喷头400的凸缘330靠近壁405延伸。喷头400通过吊架410悬挂在背板114(图1所示)上。沉积在凸缘330上的阳极化层170充当绝缘体,以增加阻抗并减慢沿喷头400行进的RF电流。阳极化层170可防止电子从喷头400的高RF电势跳到壁405的低RF电势。阳极化层170可足够薄以允许RF电流沿喷头400继续行进。然而,阳极化层170的存在将足够厚以防止或减少喷头400与壁405之间的电弧放电。4 is a schematic cross-sectional view of a
在一个实施方式中,如箭头“D”所示,阳极化层170的厚度可在约1微米(μm)至约2μm之间。在另一个实施方式中,阳极化层170可具有大于约2μm的厚度。相反,如本文所述,喷头的中心区域215的原生氧化物层的厚度为约50埃或更小。In one embodiment, as indicated by arrow "D", the thickness of the anodized
为了在喷头300的表面上形成阳极化层170,可首先通过在其中钻出气体通道156来形成喷头300。可在钻孔之前或之后使下游侧310凹入。无论如何,在形成喷头300之后,喷头300很脏并需要清洁。在一些实施方式中,喷头300可被清洁。在清洁之后,喷头300的周边区域210可被阳极化。To form
在一个实施方式中,为了在清洁之后获得阳极化层170,可将周边区域210放置在电解浴中。喷头300的每一侧可在指定电压或电流下进行涂覆,然后旋转90度以涂覆另一侧。每一侧浸没的深度对应于距离220和距离225(在图2中描述)。无需掩模或其他工具即可在周边区域210上形成阳极化层170。In one embodiment, in order to obtain the
在另一个实施方式中,阳极化层170可包括聚四氟乙烯。在另一个实施方式中,阳极化层170可包括有机材料。In another embodiment, the
进行了如本文所述的在其上具有阳极化层170的喷头的测试,并且结果显示,与常规喷头相比,基板上的膜厚度不均匀性最小并且颗粒产生最少。通过在喷头的一部分上而不在喷头的其余部分上具有阳极化层170,可调整等离子体密度,这最小化跨越基板的膜厚度不均匀性。通过利用喷头的第一表面区域240上的阳极化层170,并使第二表面区域245裸露,可实现沉积厚度的均匀性以及跨越基板的膜性质。Tests of the showerhead with the
尽管前述内容针对的是本公开内容的实施方式,但是在不脱离本公开内容的基本范围的情况下,可设想其他和进一步实施方式,并且被公开内容的范围由随附权利要求书确定。While the foregoing has been directed to embodiments of the present disclosure, other and further embodiments may be contemplated without departing from the essential scope of the present disclosure, and the scope of the disclosed content is to be determined by the appended claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2017/114443WO2019109207A1 (en) | 2017-12-04 | 2017-12-04 | Partially anodized showerhead |
| Publication Number | Publication Date |
|---|---|
| CN111557040Atrue CN111557040A (en) | 2020-08-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201780098113.1APendingCN111557040A (en) | 2017-12-04 | 2017-12-04 | Partially anodized printhead |
| Country | Link |
|---|---|
| KR (1) | KR20200094781A (en) |
| CN (1) | CN111557040A (en) |
| WO (1) | WO2019109207A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116917540A (en)* | 2020-09-16 | 2023-10-20 | 应用材料公司 | Differential anodization spray nozzle |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7159074B2 (en)* | 2019-02-08 | 2022-10-24 | キオクシア株式会社 | GAS SUPPLY MEMBER, PLASMA PROCESSING APPARATUS, AND COATING FILM FORMATION METHOD |
| KR20210150978A (en)* | 2020-06-03 | 2021-12-13 | 에이에스엠 아이피 홀딩 비.브이. | Shower plate, substrate treatment device, and substrate treatment method |
| CN118119733A (en)* | 2021-10-19 | 2024-05-31 | 应用材料公司 | Dummy holes and mesh patches for diffusers |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20110115547A (en)* | 2010-04-15 | 2011-10-21 | 후지필름 가부시키가이샤 | Manufacturing method of gas supply electrode |
| CN102460649A (en)* | 2009-05-13 | 2012-05-16 | 应用材料公司 | Anodized showerhead |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008506273A (en)* | 2004-07-12 | 2008-02-28 | アプライド マテリアルズ インコーポレイテッド | Control of plasma uniformity by gas diffuser curvature |
| US9157730B2 (en)* | 2012-10-26 | 2015-10-13 | Applied Materials, Inc. | PECVD process |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102460649A (en)* | 2009-05-13 | 2012-05-16 | 应用材料公司 | Anodized showerhead |
| KR20110115547A (en)* | 2010-04-15 | 2011-10-21 | 후지필름 가부시키가이샤 | Manufacturing method of gas supply electrode |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116917540A (en)* | 2020-09-16 | 2023-10-20 | 应用材料公司 | Differential anodization spray nozzle |
| Publication number | Publication date |
|---|---|
| WO2019109207A1 (en) | 2019-06-13 |
| KR20200094781A (en) | 2020-08-07 |
| Publication | Publication Date | Title |
|---|---|---|
| US10312055B2 (en) | Method of depositing film by PEALD using negative bias | |
| JP5506379B2 (en) | Method and apparatus for improving uniformity of large area substrates | |
| US9758869B2 (en) | Anodized showerhead | |
| KR100931910B1 (en) | Uniform Plasma Control by Gas Diffusion Hole Structure | |
| CN116970926B (en) | Film stress control for plasma enhanced chemical vapor deposition | |
| US9911622B2 (en) | Method of processing target object | |
| US10633737B2 (en) | Device for atomic layer deposition | |
| US20140116338A1 (en) | Coating for performance enhancement of semiconductor apparatus | |
| KR20210044906A (en) | Semiconductor substrate supports with built-in RF shields | |
| CN111557040A (en) | Partially anodized printhead | |
| US20060228496A1 (en) | Plasma uniformity control by gas diffuser curvature | |
| US20080194169A1 (en) | Susceptor with insulative inserts | |
| JP2010013676A (en) | Plasma cvd apparatus, dlc film, and method for producing thin film | |
| WO2009154889A2 (en) | Gas distribution showerhead skirt | |
| US20070227666A1 (en) | Plasma processing apparatus | |
| US12215422B2 (en) | Shower head structure and plasma processing apparatus using the same | |
| KR20070098587A (en) | Plasma processing apparatus and plasma processing method | |
| JP2006037229A (en) | Improved deposition repeatability of PECVD films | |
| TW201907474A (en) | Substrate processing device | |
| US20070227664A1 (en) | Plasma processing apparatus and plasma processing method | |
| US20110146577A1 (en) | Showerhead with insulated corner regions | |
| TWI797766B (en) | Low current high ion energy plasma control system | |
| TWI695902B (en) | Substrate support assembly, processing chamber having the same, and method of processing a substrate | |
| CN112400223B (en) | Chamber liner | |
| WO2022060351A1 (en) | Differentially anodized showerhead |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |