




















技术领域technical field
本申请涉及无线通信系统中的传输方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的通信方法和装置。The present application relates to a transmission method and device in a wireless communication system, in particular to a communication method and device supporting data transmission on an unlicensed spectrum (Unlicensed Spectrum).
背景技术Background technique
传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统中,数据传输只能发生在授权频谱上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。Release 13及Release 14中非授权频谱上的通信被蜂窝系统引入,并用于下行和上行数据的传输。为保证和其它非授权频谱上的接入技术兼容,LBT(Listen Before Talk,会话前侦听)技术被LTE的LAA(Licensed Assisted Access,授权频谱辅助接入)采纳以避免因多个发射机同时占用相同的频率资源而带来的干扰。In the traditional 3GPP (3rd Generation Partner Project, third-generation partnership project) LTE (Long-term Evolution, long-term evolution) system, data transmission can only occur on the licensed spectrum. However, with the rapid increase in traffic volume, especially In some urban areas, licensed spectrum may be difficult to meet traffic demands. The communication on the unlicensed spectrum in Release 13 and Release 14 is introduced by the cellular system and used for downlink and uplink data transmission. In order to ensure compatibility with other access technologies on unlicensed spectrum, LBT (Listen Before Talk) technology is adopted by LAA (Licensed Assisted Access) of LTE to avoid multiple transmitters at the same time Interference caused by occupying the same frequency resource.
在LTE的Cat 4 LBT(第四类型的LBT,参见3GPP TR36.889)过程中,发射机(基站或者用户设备)在一定的延时时段(Defer Duration)之后还要进行回退(backoff),回退的时间以CCA(Clear Channel Assessment,空闲信道评估)时隙时段为单位进行计数,回退的时隙时段数量是发射机在CWS(Contention Window Size,冲突窗口大小)内进行随机选择得到的。对于下行传输,CWS是根据在该非授权频谱上的之前传输的一个参考子帧(referencesub-frame)中的数据所对应的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈进行调整的。对于上行传输,CWS是根据在该非授权频谱上之前的一个参考子帧中的数据中是否包括新数据来进行调整的。在LTE中,LBT的带宽和所对应的载波的带宽相同。In the Cat 4 LBT (fourth type of LBT, see 3GPP TR36.889) process of LTE, the transmitter (base station or user equipment) needs to back off after a certain delay period (Defer Duration), The back-off time is counted in units of CCA (Clear Channel Assessment, Idle Channel Assessment) time slots, and the number of back-off time slots is randomly selected by the transmitter within the CWS (Contention Window Size, conflict window size) . For downlink transmission, the CWS is adjusted according to the HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) feedback corresponding to the data in a previously transmitted reference sub-frame (reference sub-frame) on the unlicensed spectrum. For uplink transmission, the CWS is adjusted according to whether the data in the previous reference subframe on the unlicensed frequency spectrum includes new data. In LTE, the bandwidth of the LBT is the same as the bandwidth of the corresponding carrier.
5G NR(New Radio Access Technology,新无线接入技术)Phase 1(阶段1)系统中,为了实现一个系统带宽下支持多个子载波间隔,以及考虑到终端接收带宽受限等原因,引入了BWP(Bandwidth Part,频带部分)的概念,即当一个小区拥有一个带宽较大的CC(Component Carrier)时,基站可以将所述较大的CC拆分成多个BWP以适应不同接收带宽和发送带宽能力的UE(User Equipment,用户设备),BWP的带宽大小可以灵活配置。当带宽能力较小的UE与小区通信时,所述UE只能在带宽较小的BWP上进行下行接收或上行发送。当带宽能力较大的UE与小区通信时,所述UE可以在带宽较大的BWP上进行下行接收或上行发送。目前,5G NR关于子带LBT的讨论正在进行中,当考虑到NR的系统带宽变化范围相比LTE更大时,传统的LAA技术需要被重新考虑,比如LBT方案。In the 5G NR (New Radio Access Technology, New Radio Access Technology) Phase 1 (Phase 1) system, in order to support multiple subcarrier intervals under one system bandwidth, and considering the limited receiving bandwidth of the terminal, BWP ( The concept of Bandwidth Part, that is, when a cell has a CC (Component Carrier) with a larger bandwidth, the base station can split the larger CC into multiple BWPs to adapt to different receiving bandwidth and sending bandwidth capabilities UE (User Equipment, user equipment), the bandwidth size of BWP can be flexibly configured. When a UE with a smaller bandwidth capability communicates with a cell, the UE can only perform downlink reception or uplink transmission on the BWP with a smaller bandwidth. When a UE with a larger bandwidth capability communicates with a cell, the UE may perform downlink reception or uplink transmission on the BWP with a larger bandwidth. At present, discussions on subband LBT for 5G NR are underway. When considering that the system bandwidth of NR has a larger variation range than LTE, traditional LAA technology needs to be reconsidered, such as the LBT scheme.
发明内容Contents of the invention
发明人通过研究发现,在NR系统的非授权频谱上,如何提高信道接入机会,更有效实现多个发送节点对非授权频谱资源的共享是需要解决的一个关键问题。The inventors have found through research that, on the unlicensed spectrum of the NR system, how to improve channel access opportunities and more effectively realize the sharing of unlicensed spectrum resources by multiple sending nodes is a key problem that needs to be solved.
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Aiming at the above problems, the present application discloses a solution. It should be noted that, in the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
本申请公开了一种用于无线通信的第一节点中的方法,其特征在于,包括:The present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
接收T个第一类无线信号,所述T是大于1的正整数;在T个子频带上分别进行T个接入检测,在T个时频资源块中分别发送T个第二类无线信号;receiving T first-type wireless signals, where T is a positive integer greater than 1; respectively performing T access detections on T sub-frequency bands, and respectively sending T second-type wireless signals in T time-frequency resource blocks;
在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值,所述Q是正整数;performing Q times of energy detection respectively in Q time subpools on the first sub-frequency band to obtain Q detection values, where Q is a positive integer;
其中,所述T个子频带都包括至少一个相同的频点,或者所述T个子频带都属于同一个载波;所述T个子频带中至少一个子频带和所述第一子频带不同;所述T个第一类无线信号分别被关联到所述T个第二类无线信号;参考第一类无线信号是所述T个第一类无线信号中的一个第一类无线信号,所述Q与所述T个第一类无线信号中的仅所述参考第一类无线信号有关;所述T个接入检测分别被用于确定所述T个第二类无线信号的发送;参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带,参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块;所述参考时频资源块的选择与所述第一子频带和所述参考子频带中的至少之一有关;所述第一节点是基站,或者所述第一节点是用户设备。Wherein, the T sub-frequency bands all include at least one same frequency point, or the T sub-frequency bands all belong to the same carrier; at least one of the T sub-frequency bands is different from the first sub-frequency band; the T The first-type wireless signals are respectively associated with the T second-type wireless signals; the reference first-type wireless signal is a first-type wireless signal among the T first-type wireless signals, and the Q and the T are Among the T first-type wireless signals, only the reference first-type wireless signal is related; the T access detections are respectively used to determine the transmission of the T second-type wireless signals; the reference sub-band is the A sub-band corresponding to the reference first-type wireless signal among the T sub-frequency bands, and a reference time-frequency resource block is a time-frequency resource block corresponding to the reference first-type wireless signal among the T time-frequency resource blocks; The selection of the reference time-frequency resource block is related to at least one of the first sub-frequency band and the reference sub-frequency band; the first node is a base station, or the first node is a user equipment.
作为一个实施例,本申请要解决的问题是:当CC或BWP的带宽较大时,如果LBT的带宽与CC或BWP的带宽相同,较大的LBT带宽会导致较低的信道接入机会。为了提高信道接入机会,更有效实现多个发送节点对非授权频谱资源的共享,在满足不小于法规要求带宽(比如5GHz载频时20MHz,60GHz载频时1GHz)情况下,选择窄带LBT(即带宽小于CC或BWP,或者说LBT带宽小于无线信号的传输带宽)可以提高信道接入机会,窄带LBT情况下的无线传输是一个需要被解决的关键问题。As an embodiment, the problem to be solved in this application is: when the bandwidth of the CC or BWP is large, if the bandwidth of the LBT is the same as that of the CC or BWP, the larger bandwidth of the LBT will result in lower channel access opportunities. In order to improve channel access opportunities and more effectively realize the sharing of unlicensed spectrum resources by multiple sending nodes, select narrowband LBT ( That is, the bandwidth is smaller than the CC or BWP, or the LBT bandwidth is smaller than the transmission bandwidth of the wireless signal) can improve the channel access opportunity, and the wireless transmission in the case of narrowband LBT is a key problem that needs to be solved.
作为一个实施例,本申请要解决的问题是:采用窄带LBT技术,发送节点在不同时刻LBT的带宽可能不相同,计算当前LBT的CWS时需要确定参考子帧,而参考子帧的确定要能够反应当前LBT带宽的干扰状况,这对于CWS的调整方法提出了新的要求。上述方案在确定参考子帧时考虑到当前LBT带宽和/或之前的LBT带宽,解决了这个问题,从而减少了多个发射机同时占用相同的频率资源的几率,因而减少了由此带来的同频干扰。As an embodiment, the problem to be solved in this application is: using narrowband LBT technology, the bandwidth of the LBT of the sending node may be different at different times, and the reference subframe needs to be determined when calculating the CWS of the current LBT, and the determination of the reference subframe must be able to Reflecting the interference situation of the current LBT bandwidth, this puts forward new requirements for the adjustment method of CWS. The above scheme solves this problem by considering the current LBT bandwidth and/or the previous LBT bandwidth when determining the reference subframe, thereby reducing the probability that multiple transmitters occupy the same frequency resource at the same time, thereby reducing the resulting co-channel interference.
作为一个实施例,上述方法的实质在于,所述T个接入检测分别是T个LBT,所述T个子频带分别是这T个LBT的带宽,所述第一子频带是当前LBT的带宽,所述参考时频资源块是参考子帧,所述Q与CWS有关,参考子帧的选择与当前LBT的带宽和/或T个LBT的带宽有关。采用上述方法的好处在于,使CWS能更准确的反应当前LBT带宽的干扰状况,从而为所述Q次能量检测配置一个最优的回退(backoff)冲突窗口(Contention Window)。As an embodiment, the essence of the above method is that the T access detections are T LBTs respectively, the T sub-bands are the bandwidths of the T LBTs respectively, and the first sub-band is the bandwidth of the current LBT, The reference time-frequency resource block is a reference subframe, the Q is related to the CWS, and the selection of the reference subframe is related to the bandwidth of the current LBT and/or the bandwidth of T LBTs. The advantage of adopting the above method is that the CWS can more accurately reflect the interference situation of the current LBT bandwidth, so as to configure an optimal backoff conflict window (Contention Window) for the Q times of energy detection.
根据本申请的一个方面,上述方法的特征在于,所述参考子频带的带宽等于所述参考子频带所属的载波的带宽。According to one aspect of the present application, the above method is characterized in that the bandwidth of the reference sub-frequency band is equal to the bandwidth of the carrier to which the reference sub-frequency band belongs.
作为一个实施例,上述方法的实质在于,参考子频带是宽带,参考子频带对应的LBT是宽带LBT,当前LBT的频带不会超出参考子频带的范围。采用上述方法的好处在于,无论当前LBT的带宽的大小如何,选择该宽带LBT对应的上行/下行突发中的时频资源作为参考子帧可以反应出当前LBT的干扰状况,从而为所述Q次能量检测配置一个最优的回退冲突窗口。As an embodiment, the essence of the above method is that the reference sub-band is broadband, the LBT corresponding to the reference sub-band is wide-band LBT, and the frequency band of the current LBT will not exceed the range of the reference sub-band. The advantage of adopting the above method is that, regardless of the size of the bandwidth of the current LBT, selecting the time-frequency resource in the uplink/downlink burst corresponding to the wideband LBT as a reference subframe can reflect the interference situation of the current LBT, thereby providing the Q Secondary energy detection configures an optimal fallback conflict window.
根据本申请的一个方面,上述方法的特征在于,所述T个时频资源块中的t个时频资源块在频域上都包括所述第一子频带,所述t是不大于所述T的正整数;所述参考时频资源块是所述t个时频资源块中的一个时频资源块。According to one aspect of the present application, the above method is characterized in that t time-frequency resource blocks in the T time-frequency resource blocks all include the first sub-frequency band in the frequency domain, and the t is not greater than the T is a positive integer; the reference time-frequency resource block is one of the t time-frequency resource blocks.
作为一个实施例,上述方法的实质在于,所述t个时频资源块分别对应的t个LBT的频带都包括当前LBT的频带,参考子帧对应所述t个时频资源块中的一个时频资源块,比如在时间上距离当前LBT最近的一个时频资源块。采用上述方法的好处在于,参考子帧可以反应出当前LBT的干扰状况,从而为所述Q次能量检测配置一个最优的回退冲突窗口。As an embodiment, the essence of the above method is that the t LBT frequency bands respectively corresponding to the t time-frequency resource blocks include the current LBT frequency band, and the reference subframe corresponds to one of the t time-frequency resource blocks. frequency resource block, such as a time-frequency resource block that is closest to the current LBT in time. The advantage of adopting the above method is that the reference subframe can reflect the current LBT interference situation, so as to configure an optimal fallback conflict window for the Q times of energy detection.
根据本申请的一个方面,上述方法的特征在于,所述T个时频资源块中的t个时频资源块在频域上都包括所述第一子频带,所述t是不大于所述T的正整数;所述t个时频资源块中的t1个时频资源块分别包括的频域资源都和所述第一子频带包括的频域资源相同,所述t1是不大于所述t的正整数,所述参考时频资源块是所述t1个时频资源块中的一个时频资源块;或者,所述t个时频资源块中任一时频资源块包括的频域资源都和所述第一子频带包括的频域资源不完全相同,所述参考时频资源块是所述t个时频资源块中的一个时频资源块。According to one aspect of the present application, the above method is characterized in that t time-frequency resource blocks in the T time-frequency resource blocks all include the first sub-frequency band in the frequency domain, and the t is not greater than the A positive integer of T; the frequency domain resources included in the t1 time-frequency resource blocks in the t time-frequency resource blocks are the same as the frequency domain resources included in the first sub-frequency band, and the t1 is not greater than the A positive integer of t, the reference time-frequency resource block is a time-frequency resource block in the t1 time-frequency resource blocks; or, a frequency domain resource included in any time-frequency resource block in the t time-frequency resource blocks are not exactly the same as the frequency domain resources included in the first sub-frequency band, and the reference time-frequency resource block is one of the t time-frequency resource blocks.
作为一个实施例,上述方法的实质在于,如果所述t个时频资源块中存在所述t1个时频资源块分别对应的t1个LBT的频带都和当前LBT的频带相同,参考子帧对应所述t1个时频资源块中的一个时频资源块,比如在时间上距离当前LBT最近的一个时频资源块;否则,如果所述t个时频资源块分别对应的t个LBT的频带范围都大于当前LBT的频带范围,参考子帧对应所述t个时频资源块中的一个时频资源块,比如在时间上距离当前LBT最近的一个时频资源块。采用上述方法的好处在于,优先选择参考子帧对应与当前LBT频带相同的LBT对应的时频资源,可以更好的反应出当前LBT的干扰状况,从而为所述Q次能量检测配置一个最优的回退冲突窗口。As an embodiment, the essence of the above method is that, if the frequency bands of t1 LBTs corresponding to the t1 time-frequency resource blocks in the t time-frequency resource blocks are all the same as the frequency band of the current LBT, the reference subframe corresponds to A time-frequency resource block in the t1 time-frequency resource blocks, such as a time-frequency resource block closest to the current LBT in time; otherwise, if the frequency bands of t LBTs corresponding to the t time-frequency resource blocks are The ranges are all larger than the frequency band range of the current LBT, and the reference subframe corresponds to one time-frequency resource block among the t time-frequency resource blocks, for example, a time-frequency resource block closest to the current LBT in time. The advantage of using the above method is that the time-frequency resources corresponding to the LBT corresponding to the same LBT frequency band as the reference subframe are preferentially selected, which can better reflect the interference situation of the current LBT, thereby configuring an optimal The fallback conflict window.
根据本申请的一个方面,上述方法的特征在于,所述第一节点是基站,所述T个第一类无线信号分别指示所述T个第二类无线信号是否被正确接收;参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考第二类无线信号包括W个子信号,所述W是正整数;所述W个子信号是否被正确接收被用于确定所述Q。According to one aspect of the present application, the above method is characterized in that the first node is a base station, and the T first-type wireless signals respectively indicate whether the T second-type wireless signals are received correctly; refer to the second type The wireless signal is one of the T second-type wireless signals to which the reference first-type wireless signal is associated, the reference second-type wireless signal includes W sub-signals, and W is a positive Integer; whether the W sub-signals are received correctly is used to determine the Q.
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备,所述T个第一类无线信号分别包括所述T个第二类无线信号的调度信息;参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考第二类无线信号包括V个子信号,所述V是正整数;所述参考第一类无线信号分别被用于确定所述V个子信号是否包括新数据;所述V个子信号是否包括新数据被用于确定所述Q。According to one aspect of the present application, the above method is characterized in that the first node is a user equipment, and the T first-type wireless signals respectively include scheduling information of the T second-type wireless signals; refer to the second-type The wireless signal is a second-type wireless signal among the T second-type wireless signals to which the reference first-type wireless signal is associated, the reference second-type wireless signal includes V sub-signals, and V is positive Integer; the reference first type wireless signal is used to determine whether the V sub-signals include new data; whether the V sub-signals include new data is used to determine the Q.
根据本申请的一个方面,上述方法的特征在于,所述参考第一类无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值均低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。According to one aspect of the present application, the above method is characterized in that the reference first type wireless signal is used to determine K candidate integers, Q1 is a candidate integer among the K candidate integers; the Q Q1 detection values among the detection values are all lower than the first threshold, the K is a positive integer, and the Q1 is a positive integer not greater than the Q.
根据本申请的一个方面,上述方法的特征在于,包括:According to one aspect of the present application, the above method is characterized in that it includes:
在所述第一子频带中发送第三类无线信号;sending a third type of wireless signal in the first sub-band;
其中,所述第三类无线信号所占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。Wherein, the start time of the time domain resource occupied by the third type of wireless signal is not earlier than the end time of the Q time subpools.
根据本申请的一个方面,上述方法的特征在于,包括:According to one aspect of the present application, the above method is characterized in that it includes:
操作第一信息;operate the first information;
其中,所述第一信息包括所述第三类无线信号的调度信息;所述操作是接收,所述第一节点是用户设备;或者所述操作是发送,所述第一节点是基站。Wherein, the first information includes scheduling information of the third type of wireless signal; the operation is reception, and the first node is a user equipment; or the operation is transmission, and the first node is a base station.
本申请公开了一种用于无线通信的第一节点中的设备,其特征在于,包括:The present application discloses a device in a first node for wireless communication, which is characterized in that it includes:
第一收发机模块,接收T个第一类无线信号,所述T是大于1的正整数;在T个子频带上分别进行T个接入检测,在T个时频资源块中分别发送T个第二类无线信号;The first transceiver module receives T wireless signals of the first type, where T is a positive integer greater than 1; performs T access detections on T sub-frequency bands, and sends T time-frequency resource blocks respectively. Class II wireless signals;
第一接收机模块,在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值,所述Q是正整数;The first receiver module performs Q times of energy detection respectively in the Q time subpools on the first sub-frequency band to obtain Q detection values, and the Q is a positive integer;
其中,所述T个子频带都包括至少一个相同的频点,或者所述T个子频带都属于同一个载波;所述T个子频带中至少一个子频带和所述第一子频带不同;所述T个第一类无线信号分别被关联到所述T个第二类无线信号;参考第一类无线信号是所述T个第一类无线信号中的一个第一类无线信号,所述Q与所述T个第一类无线信号中的仅所述参考第一类无线信号有关;所述T个接入检测分别被用于确定所述T个第二类无线信号的发送;参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带,参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块;所述参考时频资源块的选择与所述第一子频带和所述参考子频带中的至少之一有关;所述第一节点是基站,或者所述第一节点是用户设备。Wherein, the T sub-frequency bands all include at least one same frequency point, or the T sub-frequency bands all belong to the same carrier; at least one of the T sub-frequency bands is different from the first sub-frequency band; the T The first-type wireless signals are respectively associated with the T second-type wireless signals; the reference first-type wireless signal is a first-type wireless signal among the T first-type wireless signals, and the Q and the T are Among the T first-type wireless signals, only the reference first-type wireless signal is related; the T access detections are respectively used to determine the transmission of the T second-type wireless signals; the reference sub-band is the A sub-band corresponding to the reference first-type wireless signal among the T sub-frequency bands, and a reference time-frequency resource block is a time-frequency resource block corresponding to the reference first-type wireless signal among the T time-frequency resource blocks; The selection of the reference time-frequency resource block is related to at least one of the first sub-frequency band and the reference sub-frequency band; the first node is a base station, or the first node is a user equipment.
作为一个实施例,上述第一节点中的设备的特征在于,所述参考子频带的带宽等于所述参考子频带所属的载波的带宽。As an embodiment, the device in the first node is characterized in that the bandwidth of the reference sub-frequency band is equal to the bandwidth of the carrier to which the reference sub-frequency band belongs.
作为一个实施例,上述第一节点中的设备的特征在于,所述T个时频资源块中的t个时频资源块在频域上都包括所述第一子频带,所述t是不大于所述T的正整数;所述参考时频资源块是所述t个时频资源块中的一个时频资源块。As an embodiment, the device in the above-mentioned first node is characterized in that t time-frequency resource blocks in the T time-frequency resource blocks all include the first sub-frequency band in the frequency domain, and the t is not A positive integer greater than the T; the reference time-frequency resource block is one of the t time-frequency resource blocks.
作为一个实施例,上述第一节点中的设备的特征在于,所述T个时频资源块中的t个时频资源块在频域上都包括所述第一子频带,所述t是不大于所述T的正整数;所述t个时频资源块中的t1个时频资源块分别包括的频域资源都和所述第一子频带包括的频域资源相同,所述t1是不大于所述t的正整数,所述参考时频资源块是所述t1个时频资源块中的一个时频资源块;或者,所述t个时频资源块中任一时频资源块包括的频域资源都和所述第一子频带包括的频域资源不完全相同,所述参考时频资源块是所述t个时频资源块中的一个时频资源块。As an embodiment, the device in the above-mentioned first node is characterized in that t time-frequency resource blocks in the T time-frequency resource blocks all include the first sub-frequency band in the frequency domain, and the t is not A positive integer greater than the T; the frequency domain resources included in the t1 time-frequency resource blocks in the t time-frequency resource blocks are the same as the frequency domain resources included in the first sub-frequency band, and the t1 is not A positive integer greater than the t, the reference time-frequency resource block is a time-frequency resource block in the t1 time-frequency resource blocks; or, any time-frequency resource block in the t time-frequency resource blocks includes The frequency domain resources are not completely the same as the frequency domain resources included in the first sub-frequency band, and the reference time-frequency resource block is one of the t time-frequency resource blocks.
作为一个实施例,上述第一节点中的设备的特征在于,所述第一节点是基站,所述T个第一类无线信号分别指示所述T个第二类无线信号是否被正确接收;参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考第二类无线信号包括W个子信号,所述W是正整数;所述W个子信号是否被正确接收被用于确定所述Q。As an embodiment, the device in the above-mentioned first node is characterized in that the first node is a base station, and the T first-type wireless signals respectively indicate whether the T second-type wireless signals are received correctly; refer to The second-type wireless signal is one of the T second-type wireless signals to which the reference first-type wireless signal is associated, and the reference second-type wireless signal includes W sub-signals, so The W is a positive integer; whether the W sub-signals are received correctly is used to determine the Q.
作为一个实施例,上述第一节点中的设备的特征在于,所述第一节点是用户设备,所述T个第一类无线信号分别包括所述T个第二类无线信号的调度信息;参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考第二类无线信号包括V个子信号,所述V是正整数;所述参考第一类无线信号分别被用于确定所述V个子信号是否包括新数据;所述V个子信号是否包括新数据被用于确定所述Q。As an embodiment, the device in the above-mentioned first node is characterized in that the first node is a user equipment, and the T first-type wireless signals respectively include scheduling information of the T second-type wireless signals; refer to The second-type wireless signal is one of the T second-type wireless signals to which the reference first-type wireless signal is associated, and the reference second-type wireless signal includes V sub-signals, so The V is a positive integer; the reference first type wireless signal is used to determine whether the V sub-signals include new data; whether the V sub-signals include new data is used to determine the Q.
作为一个实施例,上述第一节点中的设备的特征在于,所述参考第一类无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值均低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。As an embodiment, the device in the above-mentioned first node is characterized in that the reference first-type wireless signal is used to determine K candidate integers, and Q1 is a candidate integer among the K candidate integers; Q1 detection values among the Q detection values are all lower than the first threshold, the K is a positive integer, and the Q1 is a positive integer not greater than the Q.
作为一个实施例,上述第一节点中的设备的特征在于,包括:As an embodiment, the device in the above-mentioned first node is characterized by including:
第一发射机模块,在所述第一子频带中发送第三类无线信号;a first transmitter module, sending a third type of wireless signal in the first sub-band;
其中,所述第三类无线信号所占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。Wherein, the start time of the time domain resource occupied by the third type of wireless signal is not earlier than the end time of the Q time subpools.
作为一个实施例,上述第一节点中的设备的特征在于,所述第一收发机模块还操作第一信息;其中,所述第一信息包括所述第三类无线信号的调度信息;所述操作是接收,所述第一节点是用户设备;或者所述操作是发送,所述第一节点是基站。As an embodiment, the device in the above-mentioned first node is characterized in that the first transceiver module also operates first information; wherein the first information includes scheduling information of the third type of wireless signal; the The operation is reception, and the first node is a user equipment; or the operation is transmission, and the first node is a base station.
作为一个实施例,和传统方案相比,本申请具备如下优势:As an example, compared with traditional solutions, this application has the following advantages:
-.当CC或BWP的带宽较大时,如果LBT的带宽与CC或BWP的带宽相同,较大的LBT带宽会导致较低的信道接入机会。为了提高信道接入机会,更有效实现多个发送节点对非授权频谱资源的共享,在满足不小于法规要求带宽(比如5GHz载频时20MHz,60GHz载频时1GHz)情况下,允许窄带LBT(即带宽小于CC或BWP,或者说LBT带宽小于无线信号的传输带宽)可以提高信道接入机会。-. When the bandwidth of the CC or BWP is larger, if the bandwidth of the LBT is the same as that of the CC or BWP, the larger bandwidth of the LBT will result in lower channel access opportunities. In order to improve channel access opportunities and more effectively realize the sharing of unlicensed spectrum resources by multiple sending nodes, narrowband LBT ( That is, the bandwidth is smaller than the CC or BWP, or the LBT bandwidth is smaller than the transmission bandwidth of the wireless signal), which can improve the channel access opportunity.
-.采用窄带LBT技术,发送节点在不同时刻LBT的带宽可能不相同,计算当前LBT的CWS时需要确定参考子帧,提出在确定参考子帧时考虑到当前LBT带宽和/或之前的LBT带宽,使得参考子帧的确定能够反应当前LBT带宽的干扰状况,配置了最优的回退冲突窗口,从而减少了多个发射机同时占用相同的频率资源的几率,因而减少了由此带来的同频干扰。-. Using narrowband LBT technology, the bandwidth of the sending node at different times may be different. When calculating the CWS of the current LBT, it is necessary to determine the reference subframe. It is proposed to consider the current LBT bandwidth and/or the previous LBT bandwidth when determining the reference subframe , so that the determination of the reference subframe can reflect the interference situation of the current LBT bandwidth, and the optimal fallback conflict window is configured, thereby reducing the probability that multiple transmitters occupy the same frequency resource at the same time, thereby reducing the resulting co-channel interference.
附图说明Description of drawings
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:Other characteristics, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1示出了根据本申请的一个实施例的T个第一类无线信号、T个接入检测、T个第二类无线信号和Q次能量检测的流程图;FIG. 1 shows a flowchart of T first-type wireless signals, T access detections, T second-type wireless signals, and Q energy detections according to an embodiment of the present application;
图2示出了根据本申请的一个实施例的网络架构的示意图;FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;FIG. 4 shows a schematic diagram of an NR (New Radio, new wireless) node and UE according to an embodiment of the present application;
图5示出了根据本申请的一个实施例的无线传输的流程图;FIG. 5 shows a flowchart of wireless transmission according to an embodiment of the present application;
图6示出了根据本申请的另一个实施例的无线传输的流程图;FIG. 6 shows a flowchart of wireless transmission according to another embodiment of the present application;
图7示出了根据本申请的一个实施例的参考时频资源块的选择的示意图;FIG. 7 shows a schematic diagram of selection of reference time-frequency resource blocks according to an embodiment of the present application;
图8示出了根据本申请的一个实施例的参考时频资源块的选择的示意图;FIG. 8 shows a schematic diagram of selection of reference time-frequency resource blocks according to an embodiment of the present application;
图9示出了根据本申请的一个实施例的参考时频资源块的选择的示意图;FIG. 9 shows a schematic diagram of selection of reference time-frequency resource blocks according to an embodiment of the present application;
图10A-10B分别示出了根据本申请的一个实施例的J个给定第一无线信号、J个给定第二无线信号和Q的关系的示意图;10A-10B respectively show a schematic diagram of the relationship between J given first wireless signals, J given second wireless signals and Q according to an embodiment of the present application;
图11A-11D分别示出了根据本申请的另一个实施例的J个给定第一无线信号、J个给定第二无线信号和Q的关系的示意图;Figures 11A-11D respectively show a schematic diagram of the relationship between J given first wireless signals, J given second wireless signals and Q according to another embodiment of the present application;
图12示出了根据本申请的一个实施例的参考第一类无线信号被用于确定Q的示意图;FIG. 12 shows a schematic diagram of using the first type of wireless signal to determine Q according to an embodiment of the present application;
图13示出了根据本申请的一个实施例的J个给定第五无线信号被用于确定K个备选整数的示意图;FIG. 13 shows a schematic diagram of J given fifth wireless signals being used to determine K candidate integers according to an embodiment of the present application;
图14示出了根据本申请的另一个实施例的J个给定第六无线信号被用于确定K个备选整数的示意图;FIG. 14 shows a schematic diagram of J given sixth wireless signals being used to determine K candidate integers according to another embodiment of the present application;
图15示出了根据本申请的一个实施例的给定接入检测被用于确定是否在给定子频带中的给定时域资源内进行无线发送的示意图;FIG. 15 shows a schematic diagram of a given access detection being used to determine whether to perform wireless transmission within a given time domain resource in a given sub-band according to an embodiment of the present application;
图16示出了根据本申请的另一个实施例的给定接入检测被用于确定是否在给定子频带中的给定时域资源内进行无线发送的示意图;FIG. 16 shows a schematic diagram of a given access detection being used to determine whether to perform wireless transmission within a given time domain resource in a given sub-band according to another embodiment of the present application;
图17示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图。Fig. 17 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application.
具体实施方式Detailed ways
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。The technical solution of the present application will be described in further detail below in conjunction with the accompanying drawings. It should be noted that, in the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined arbitrarily.
实施例1Example 1
实施例1示例了一个T个第一类无线信号、T个接入检测、T个第二类无线信号和Q次能量检测的流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点接收T个第一类无线信号,所述T是大于1的正整数;在T个子频带上分别进行T个接入检测,在T个时频资源块中分别发送T个第二类无线信号;在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值,所述Q是正整数;其中,所述T个子频带都包括至少一个相同的频点,或者所述T个子频带都属于同一个载波;所述T个子频带中至少一个子频带和所述第一子频带不同;所述T个第一类无线信号分别被关联到所述T个第二类无线信号;参考第一类无线信号是所述T个第一类无线信号中的一个第一类无线信号,所述Q与所述T个第一类无线信号中的仅所述参考第一类无线信号有关;所述T个接入检测分别被用于确定所述T个第二类无线信号的发送;参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带,参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块;所述参考时频资源块的选择与所述第一子频带和所述参考子频带中的至少之一有关;所述第一节点是基站,或者所述第一节点是用户设备。In Embodiment 1, the first node in this application receives T wireless signals of the first type, where T is a positive integer greater than 1; T access detections are respectively performed on T sub-bands, and T T wireless signals of the second type are respectively sent in the time-frequency resource block; Q times of energy detection are respectively performed in the Q time subpools on the first sub-frequency band to obtain Q detection values, and the Q is a positive integer; wherein, the The T sub-frequency bands all include at least one same frequency point, or the T sub-frequency bands all belong to the same carrier; at least one of the T sub-frequency bands is different from the first sub-frequency band; the T first sub-bands Class wireless signals are respectively associated with the T second class wireless signals; the reference first class radio signal is a first class radio signal in the T first class radio signals, the Q and the T Only the reference first-type wireless signals in the first-type wireless signals are related; the T access detections are respectively used to determine the transmission of the T second-type wireless signals; the reference sub-band is the T sub-band A sub-band corresponding to the reference first-type wireless signal in the frequency band, and a reference time-frequency resource block is a time-frequency resource block corresponding to the reference first-type wireless signal among the T time-frequency resource blocks; the reference The selection of the time-frequency resource block is related to at least one of the first sub-band and the reference sub-band; the first node is a base station, or the first node is a user equipment.
作为一个实施例,所述T个第一类无线信号中的任一第一类无线信号都包括控制信息。As an embodiment, any first-type wireless signal among the T first-type wireless signals includes control information.
作为一个实施例,所述T个第一类无线信号分别在所述T个子频带中传输。As an embodiment, the T first-type wireless signals are respectively transmitted in the T sub-frequency bands.
作为一个实施例,所述T个第一类无线信号中任一第一类无线信号在所述T个子频带中的一个子频带中传输。As an embodiment, any first-type wireless signal among the T first-type wireless signals is transmitted in one sub-frequency band among the T sub-frequency bands.
作为一个实施例,所述T个第一类无线信号中至少一个第一类无线信号在所述T个子频带中的一个子频带中传输。As an embodiment, at least one first-type wireless signal among the T first-type wireless signals is transmitted in one sub-frequency band among the T sub-frequency bands.
作为一个实施例,所述T个第一类无线信号中至少一个第一类无线信号在所述T个子频带以外的频带中传输。As an embodiment, at least one first-type wireless signal among the T first-type wireless signals is transmitted in a frequency band other than the T sub-frequency bands.
作为一个实施例,所述T个第一类无线信号在所述T个子频带以外的频带中传输。As an embodiment, the T first-type wireless signals are transmitted in frequency bands other than the T sub-frequency bands.
作为一个实施例,所述T个第一类无线信号在所述T个子频带所属的载波(Carrier)中传输。As an embodiment, the T first-type wireless signals are transmitted in carriers (Carriers) to which the T sub-frequency bands belong.
作为一个实施例,所述T个第一类无线信号在不同于所述T个子频带所属的载波的一个载波中传输。As an embodiment, the T first-type wireless signals are transmitted on a carrier different from the carrier to which the T sub-frequency bands belong.
作为一个实施例,所述T个第一类无线信号都在部署于授权频谱的频带上传输。As an embodiment, the T wireless signals of the first type are all transmitted on frequency bands deployed in licensed spectrum.
作为一个实施例,所述T个第一类无线信号都在部署于非授权频谱的频带上传输。As an embodiment, the T wireless signals of the first type are all transmitted on a frequency band deployed in an unlicensed spectrum.
作为一个实施例,所述T个第二类无线信号中的任一第二类无线信号包括数据。As an embodiment, any wireless signal of the second type in the T wireless signals of the second type includes data.
作为一个实施例,所述T个第二类无线信号中的任一第二类无线信号包括参考信号。As an embodiment, any second-type wireless signal among the T second-type wireless signals includes a reference signal.
作为一个实施例,所述T个第二类无线信号中的任一第二类无线信号包括数据和参考信号中之一。As an embodiment, any second-type wireless signal among the T second-type wireless signals includes one of data and a reference signal.
作为一个实施例,所述T个第二类无线信号由数据和参考信号组成。As an embodiment, the T second-type wireless signals are composed of data and reference signals.
作为一个实施例,所述T个第二类无线信号分别在所述T个子频带中传输。As an embodiment, the T second-type wireless signals are respectively transmitted in the T sub-frequency bands.
作为一个实施例,所述T个第二类无线信号都在部署于非授权频谱的频带上传输。As an embodiment, the T wireless signals of the second type are all transmitted on a frequency band deployed in an unlicensed spectrum.
作为一个实施例,所述T个第二类无线信号分别所占用的时域资源相互正交(不重叠)。As an embodiment, the time-domain resources occupied by the T second-type wireless signals are mutually orthogonal (non-overlapping).
作为一个实施例,所述T个第二类无线信号中至少两个第二类无线信号分别所占用的时域资源相互正交(不重叠)。As an embodiment, time-domain resources occupied by at least two second-type wireless signals among the T second-type wireless signals are mutually orthogonal (non-overlapping).
作为一个实施例,不存在一个多载波符号属于所述T个第二类无线信号中的任意两个第二类无线信号。As an embodiment, there is no multi-carrier symbol belonging to any two second-type wireless signals among the T second-type wireless signals.
作为一个实施例,不存在一个多载波符号属于所述T个第二类无线信号中的至少两个第二类无线信号。As an embodiment, there is no multi-carrier symbol belonging to at least two second-type wireless signals among the T second-type wireless signals.
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency DivisionMultiplexing,正交频分复用)符号。As an embodiment, the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-FrequencyDivision Multiple Access,单载波频分多址接入)符号。As an embodiment, the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbol.
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier TransformSpread OFDM,离散傅里叶变化正交频分复用)符号。As an embodiment, the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。As an embodiment, the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。As an embodiment, the multi-carrier symbol includes a CP (Cyclic Prefix, cyclic prefix).
作为一个实施例,所述T个子频带都部署于非授权频谱。As an embodiment, the T sub-frequency bands are all deployed in unlicensed spectrum.
作为一个实施例,所述T个子频带分别是T个BWP(Bandwidth Part,带宽区间)。As an embodiment, the T sub-frequency bands are T BWPs (Bandwidth Part, bandwidth interval) respectively.
作为一个实施例,所述T个子频带中的每个子频带在频域上都包括正整数个PRB(Physical Resource Block,物理资源块)。As an embodiment, each sub-band in the T sub-bands includes a positive integer number of PRBs (Physical Resource Block, physical resource block) in the frequency domain.
作为一个实施例,所述T个子频带中的每个子频带在频域上包括正整数个连续的PRB。As an embodiment, each of the T sub-frequency bands includes a positive integer number of continuous PRBs in the frequency domain.
作为一个实施例,所述T个子频带中的每个子频带在频域上都包括正整数个RB(Resource Block,资源块)。As an embodiment, each of the T sub-frequency bands includes a positive integer number of RBs (Resource Block, resource blocks) in the frequency domain.
作为一个实施例,所述T个子频带中的每个子频带在频域上包括正整数个连续的RB。As an embodiment, each sub-band in the T sub-bands includes a positive integer number of consecutive RBs in the frequency domain.
作为一个实施例,所述T个子频带中的每个子频带在频域上包括正整数个连续的子载波。As an embodiment, each of the T sub-frequency bands includes a positive integer number of continuous sub-carriers in the frequency domain.
作为一个实施例,所述T个子频带都包括至少一个相同的频点。As an embodiment, the T sub-frequency bands all include at least one same frequency point.
作为上述实施例的一个子实施例,所述T个子频带都包括至少一个相同的子载波。As a sub-embodiment of the foregoing embodiment, the T sub-frequency bands all include at least one same sub-carrier.
作为上述实施例的一个子实施例,所述T个子频带中任意两个子频带不正交(重叠)。As a sub-embodiment of the foregoing embodiment, any two sub-bands in the T sub-bands are not orthogonal (overlapping).
作为上述实施例的一个子实施例,所述T个子频带都包括至少一个相同的频域资源。As a sub-embodiment of the foregoing embodiment, the T sub-frequency bands all include at least one same frequency domain resource.
作为一个实施例,所述T个子频带都属于同一个载波。As an embodiment, the T sub-frequency bands all belong to the same carrier.
作为上述实施例的一个子实施例,所述T个子频带中至少两个子频带正交(不重叠)。As a sub-embodiment of the foregoing embodiment, at least two sub-bands among the T sub-bands are orthogonal (non-overlapping).
作为上述实施例的一个子实施例,所述T个子频带中至少两个子频带不正交(重叠)。As a sub-embodiment of the foregoing embodiment, at least two sub-bands in the T sub-bands are non-orthogonal (overlapped).
作为上述实施例的一个子实施例,所述T个子频带中任意两个子频带正交(不重叠)。As a sub-embodiment of the foregoing embodiment, any two sub-bands in the T sub-bands are orthogonal (non-overlapping).
作为上述实施例的一个子实施例,所述T个子频带中任意两个子频带不正交(重叠)。As a sub-embodiment of the foregoing embodiment, any two sub-bands in the T sub-bands are not orthogonal (overlapping).
作为上述实施例的一个子实施例,所述T个子频带中任一子频带的带宽等于或小于所述T个子频带所属的载波的带宽。As a sub-embodiment of the foregoing embodiment, a bandwidth of any sub-band in the T sub-frequency bands is equal to or smaller than a bandwidth of a carrier to which the T sub-frequency bands belong.
作为一个实施例,所述T个子频带中任一子频带的带宽是20的整数倍MHz。As an embodiment, the bandwidth of any sub-band in the T sub-bands is an integer multiple of 20 MHz.
作为一个实施例,所述T个子频带中任一子频带的带宽是20MHz。As an embodiment, the bandwidth of any sub-band in the T sub-bands is 20 MHz.
作为一个实施例,所述T个子频带中任一子频带的带宽是1GHz。As an embodiment, the bandwidth of any sub-band in the T sub-bands is 1 GHz.
作为一个实施例,所述T个子频带中任一子频带的带宽是x1MHz,所述x1是正整数。As an embodiment, the bandwidth of any sub-band in the T sub-bands is x1 MHz, and the x1 is a positive integer.
作为一个实施例,所述T个子频带中任一子频带的带宽是x2GHz,所述x2是正整数。As an embodiment, the bandwidth of any sub-band in the T sub-bands is x2 GHz, and x2 is a positive integer.
作为一个实施例,所述T个接入检测分别被用于确定所述T个子频带是否闲置(Idle)。As an embodiment, the T access detections are respectively used to determine whether the T sub-frequency bands are idle (Idle).
作为一个实施例,所述T个接入检测分别被用于确定所述T个子频带是否能被所述第一节点用于传输无线信号。As an embodiment, the T access detections are respectively used to determine whether the T sub-frequency bands can be used by the first node to transmit wireless signals.
作为一个实施例,所述T个接入检测的结束时刻分别不晚于所述T个第二类无线信号的起始发送时刻。As an embodiment, the ending times of the T access detections are respectively not later than the starting sending times of the T second-type wireless signals.
作为一个实施例,给定接入检测是所述T个接入检测中任一接入检测,给定子频带是所述T个子频带中对应所述给定接入检测的一个子频带,所述给定接入检测包括:在所述给定子频带上的正整数个时间子池中分别执行正整数次能量检测,得到正整数个检测值。As an embodiment, the given access detection is any one of the T access detections, the given sub-frequency band is a sub-frequency band corresponding to the given access detection among the T sub-frequency bands, and the The given access detection includes: respectively performing positive integer number of energy detections in the positive integer number of time subpools on the given sub-frequency band to obtain a positive integer number of detection values.
作为一个实施例,给定接入检测是所述T个接入检测中任一接入检测,给定子频带是所述T个子频带中对应所述给定接入检测的一个子频带,所述给定接入检测包括:在所述给定子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值。As an embodiment, the given access detection is any one of the T access detections, the given sub-frequency band is a sub-frequency band corresponding to the given access detection among the T sub-frequency bands, and the The given access detection includes: respectively performing P energy detections in the P time subpools on the given sub-frequency band to obtain P detection values.
作为一个实施例,所述T个接入检测中任意两个接入检测分别包括的时间子池的数目可以相同或者不相同。As an embodiment, the number of time subpools respectively included in any two access detections among the T access detections may be the same or different.
作为一个实施例,所述T个第二类无线信号分别所占用的时频资源分别属于所述T个时频资源块。As an embodiment, the time-frequency resources occupied by the T second-type wireless signals respectively belong to the T time-frequency resource blocks.
作为一个实施例,所述T个时频资源块中的任一时频资源块在时域上包括至少一个子帧(sub-frame)。As an embodiment, any time-frequency resource block in the T time-frequency resource blocks includes at least one sub-frame (sub-frame) in the time domain.
作为一个实施例,所述T个时频资源块中的任一时频资源块在时域上包括一个子帧。As an embodiment, any time-frequency resource block in the T time-frequency resource blocks includes one subframe in the time domain.
作为一个实施例,所述T个时频资源块中的任一时频资源块在时域上包括至少一个时隙(slot)。As an embodiment, any time-frequency resource block in the T time-frequency resource blocks includes at least one time slot (slot) in the time domain.
作为一个实施例,所述T个时频资源块中的任一时频资源块在时域上包括一个时隙。As an embodiment, any time-frequency resource block in the T time-frequency resource blocks includes one time slot in the time domain.
作为一个实施例,所述T个时频资源块中的任一时频资源块在时域上包括正整数个多载波符号。As an embodiment, any time-frequency resource block in the T time-frequency resource blocks includes a positive integer number of multi-carrier symbols in the time domain.
作为一个实施例,所述T个时频资源块中的任一时频资源块在时域上包括正整数个连续的多载波符号。As an embodiment, any one of the T time-frequency resource blocks includes a positive integer number of consecutive multi-carrier symbols in the time domain.
作为一个实施例,所述T个时频资源块中的任一时频资源块在时域上是一个连续的时间段。As an embodiment, any time-frequency resource block in the T time-frequency resource blocks is a continuous time period in the time domain.
作为一个实施例,所述T个时频资源块中的任一时频资源块在时域上早于所述Q个时间子池。As an embodiment, any time-frequency resource block in the T time-frequency resource blocks is earlier than the Q time subpools in the time domain.
作为一个实施例,所述T个时频资源块中的任一时频资源块所属的突发(burst)在时域上早于所述Q个时间子池。As an embodiment, the burst to which any one of the T time-frequency resource blocks belongs is earlier than the Q time subpools in the time domain.
作为一个实施例,所述T个时频资源块在时域上两两相互正交(不重叠)。As an embodiment, the T time-frequency resource blocks are orthogonal to each other (non-overlapping) in the time domain.
作为一个实施例,所述T个时频资源块在时域上都属于第一时间窗。As an embodiment, the T time-frequency resource blocks all belong to the first time window in the time domain.
作为上述实施例的一个子实施例,所述第一时间窗包括正整数个子帧。As a sub-embodiment of the foregoing embodiment, the first time window includes a positive integer number of subframes.
作为上述实施例的一个子实施例,所述第一时间窗包括正整数个时隙。As a sub-embodiment of the foregoing embodiment, the first time window includes a positive integer number of time slots.
作为上述实施例的一个子实施例,所述第一时间窗包括正整数个连续的多载波符号。As a sub-embodiment of the foregoing embodiment, the first time window includes a positive integer number of consecutive multi-carrier symbols.
作为上述实施例的一个子实施例,所述第一时间窗是一个连续的时间段。As a sub-embodiment of the foregoing embodiment, the first time window is a continuous time period.
作为上述实施例的一个子实施例,所述第一时间窗的持续时间是预定义的。As a sub-embodiment of the foregoing embodiment, the duration of the first time window is predefined.
作为上述实施例的一个子实施例,所述第一时间窗的持续时间是可配置的。As a sub-embodiment of the foregoing embodiment, the duration of the first time window is configurable.
作为上述实施例的一个子实施例,所述第一时间窗的持续时间是由更高层信令配置的。As a sub-embodiment of the foregoing embodiment, the duration of the first time window is configured by higher layer signaling.
作为上述实施例的一个子实施例,所述第一时间窗的持续时间是由物理层信令配置的。As a sub-embodiment of the foregoing embodiment, the duration of the first time window is configured by physical layer signaling.
作为一个实施例,所述T个子频带分别和所述T个时频资源块一一对应。As an embodiment, the T sub-frequency bands are in one-to-one correspondence with the T time-frequency resource blocks respectively.
作为上述实施例的一个子实施例,给定子频带是所述T个子频带中任一子频带,给定时频资源块是所述T个时频资源块中与所述给定子频带对应的一个时频资源块,所述给定子频带包括的频域资源和所述给定时频资源块包括的频域资源相同。As a sub-embodiment of the above embodiment, the given sub-frequency band is any one of the T sub-frequency bands, and the given time-frequency resource block is one of the T time-frequency resource blocks corresponding to the given sub-frequency band. In a frequency resource block, the frequency domain resources included in the given sub-frequency band are the same as the frequency domain resources included in the given time-frequency resource block.
作为一个实施例,所述参考子频带包括的频域资源和所述参考时频资源块包括的频域资源相同。As an embodiment, the frequency domain resources included in the reference sub-frequency band are the same as the frequency domain resources included in the reference time-frequency resource block.
作为一个实施例,所述参考子频带包括所述第一子频带。As an embodiment, the reference sub-frequency band includes the first sub-frequency band.
作为上述实施例的一个子实施例,所述参考子频带包括的频域资源和所述第一子频带包括的频域资源相同。As a sub-embodiment of the foregoing embodiment, frequency domain resources included in the reference sub-frequency band are the same as frequency domain resources included in the first sub-frequency band.
作为上述实施例的一个子实施例,所述第一子频带包括的频域资源属于所述参考子频带,且所述参考子频带包括不属于所述第一子频带的频域资源。As a sub-embodiment of the foregoing embodiment, the frequency-domain resources included in the first sub-frequency band belong to the reference sub-frequency band, and the reference sub-frequency band includes frequency-domain resources that do not belong to the first sub-frequency band.
作为一个实施例,所述第一子频带部署于非授权频谱。As an embodiment, the first sub-frequency band is deployed in an unlicensed frequency spectrum.
作为一个实施例,所述第一子频带是一个BWP。As an embodiment, the first sub-frequency band is a BWP.
作为一个实施例,所述T个子频带中至少一个子频带和所述第一子频带都包括至少一个相同的频点。As an embodiment, at least one sub-band among the T sub-bands and the first sub-band include at least one same frequency point.
作为上述实施例的一个子实施例,所述T个子频带中至少一个子频带和所述第一子频带都包括至少一个相同的子载波。As a sub-embodiment of the foregoing embodiment, at least one sub-band among the T sub-bands and the first sub-band include at least one same sub-carrier.
作为上述实施例的一个子实施例,所述T个子频带中至少一个子频带和所述第一子频带不正交(部分或全部重叠)。As a sub-embodiment of the foregoing embodiment, at least one sub-band among the T sub-bands is not orthogonal to the first sub-band (partially or fully overlapped).
作为上述实施例的一个子实施例,所述T个子频带中至少一个子频带和所述第一子频带都包括至少一个相同的频域资源。As a sub-embodiment of the foregoing embodiment, at least one sub-band among the T sub-bands and the first sub-band include at least one same frequency domain resource.
作为一个实施例,所述T个子频带和所述第一子频带都属于同一个载波。As an embodiment, the T sub-frequency bands and the first sub-frequency band all belong to the same carrier.
作为一个实施例,所述T个子频带中至少一个子频带和所述第一子频带不正交(部分重叠)。As an embodiment, at least one frequency subband among the T frequency subbands is not orthogonal to (partially overlaps with) the first frequency subband.
作为一个实施例,所述T个子频带中至少一个子频带和所述第一子频带不正交(部分或全部重叠)。As an embodiment, at least one sub-band in the T sub-bands is not orthogonal to the first sub-band (partially or completely overlapped).
作为一个实施例,所述T个子频带中至少一个子频带包括所述第一子频带。As an embodiment, at least one sub-band among the T sub-frequency bands includes the first sub-frequency band.
作为一个实施例,所述第一子频带的带宽小于所述第一子频带所属的载波的带宽。As an embodiment, the bandwidth of the first sub-frequency band is smaller than the bandwidth of the carrier to which the first sub-frequency band belongs.
作为一个实施例,所述第一子频带的带宽等于所述第一子频带所属的载波的带宽。As an embodiment, the bandwidth of the first sub-frequency band is equal to the bandwidth of the carrier to which the first sub-frequency band belongs.
作为一个实施例,所述第一子频带的带宽是20的整数倍MHz。As an embodiment, the bandwidth of the first sub-frequency band is an integer multiple of 20 MHz.
作为一个实施例,所述第一子频带的带宽是20MHz。As an embodiment, the bandwidth of the first sub-frequency band is 20 MHz.
作为一个实施例,所述第一子频带的带宽是1GHz。As an embodiment, the bandwidth of the first sub-frequency band is 1 GHz.
作为一个实施例,所述第一子频带的带宽是x3MHz,所述x3是正整数。As an embodiment, the bandwidth of the first sub-frequency band is x3MHz, and x3 is a positive integer.
作为一个实施例,所述第一子频带的带宽是x4GHz,所述x4是正整数。As an embodiment, the bandwidth of the first sub-frequency band is x4 GHz, and the x4 is a positive integer.
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带是否闲置(Idle)。As an embodiment, the Q times of energy detection is used to determine whether the first sub-frequency band is idle (Idle).
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带是否能被所述第一节点用于传输无线信号。As an embodiment, the Q times of energy detection is used to determine whether the first sub-frequency band can be used by the first node to transmit wireless signals.
作为一个实施例,所述参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带是指:参考接入检测是所述T个接入检测中在所述参考子频带上进行的一个接入检测,参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考接入检测被用于确定所述参考第二类无线信号的发送。As an embodiment, the reference sub-band is a sub-band corresponding to the reference first-type wireless signal among the T sub-bands means: the reference access detection is the T access detection in the reference An access detection performed on a sub-band, the reference second type wireless signal is a second type wireless signal among the T second type wireless signals to which the reference first type wireless signal is associated, and the reference Access detection is used to determine transmission of said reference second type of radio signal.
作为一个实施例,所述T个子频带分别和所述T个第一类无线信号一一对应。As an embodiment, the T sub-frequency bands are in one-to-one correspondence with the T first-type wireless signals respectively.
作为上述实施例的一个子实施例,给定子频带是所述T个子频带中的一个子频带,给定第一类无线信号是所述T个第一类无线信号中与所述给定子频带对应的一个第一类无线信号,所述给定子频带和所述给定第一类无线信号对应是指:给定接入检测是所述T个接入检测中在所述给定子频带上进行的一个接入检测,给定第二类无线信号是所述给定第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述给定接入检测被用于确定所述给定第二类无线信号的发送。As a sub-embodiment of the above embodiment, the given frequency sub-band is one of the T sub-frequency bands, and the given first-type wireless signal is one of the T first-type wireless signals corresponding to the given sub-frequency band A wireless signal of the first type, and the given sub-frequency band corresponds to the given first-type wireless signal means: the given access detection is performed on the given sub-frequency band among the T access detections An access detection, the given second-type wireless signal is a second-type wireless signal among the T second-type wireless signals to which the given first-type wireless signal is associated, and the given access Detection is used to determine the transmission of said given second type of wireless signal.
作为一个实施例,所述参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块是指:参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考时频资源块是所述T个时频资源块中被用于发送所述参考第二类无线信号的一个时频资源块。As an embodiment, the reference time-frequency resource block is a time-frequency resource block corresponding to the reference first-type wireless signal among the T time-frequency resource blocks means: the reference second-type wireless signal is the reference One of the T second-type wireless signals to which the first-type wireless signal is associated, the reference time-frequency resource block is one of the T time-frequency resource blocks used to transmit the Reference is made to a time-frequency resource block of the second type of wireless signal.
作为一个实施例,所述T个时频资源块分别和所述T个第一类无线信号一一对应。As an embodiment, the T time-frequency resource blocks are respectively in one-to-one correspondence with the T first-type wireless signals.
作为上述实施例的一个子实施例,给定时频资源块是所述T个时频资源块中的一个时频资源块,给定第一类无线信号是所述T个第一类无线信号中与所述给定时频资源块对应的一个第一类无线信号,所述给定时频资源块和所述给定第一类无线信号对应是指:给定第二类无线信号是所述给定第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述给定时频资源块是所述T个时频资源块中被用于发送所述给定第二类无线信号的一个时频资源块。As a sub-embodiment of the above embodiment, the given time-frequency resource block is a time-frequency resource block in the T time-frequency resource blocks, and the given first-type wireless signal is one of the T first-type wireless signals A first-type wireless signal corresponding to the given time-frequency resource block, the given time-frequency resource block corresponding to the given first-type wireless signal means: the given second-type wireless signal is the given One of the T second-type wireless signals to which the first-type wireless signal is associated, the given time-frequency resource block is one of the T time-frequency resource blocks used to transmit the A time-frequency resource block of the second type of wireless signal is given.
作为一个实施例,上述方法还包括:As an embodiment, the above method also includes:
接收S个第四类无线信号,在参考时频资源块中还发送S个第五类无线信号;receiving S wireless signals of the fourth type, and sending S wireless signals of the fifth type in the reference time-frequency resource block;
其中,所述S个第四类无线信号分别被关联到所述S个第五类无线信号,所述S是正整数;所述Q与所述S个第四类无线信号和所述T个第一类无线信号中的仅所述参考第一类无线信号有关。Wherein, the S fourth-type wireless signals are respectively associated with the S fifth-type wireless signals, and the S is a positive integer; the Q is related to the S fourth-type wireless signals and the T-th wireless signals Only the reference first type of wireless signals in one type of wireless signals are relevant.
作为一个实施例,参考接入检测是所述T个接入检测中在所述参考子频带上进行的一个接入检测,参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考接入检测被用于确定所述参考第二类无线信号和所述S个第五类无线信号的发送。As an embodiment, the reference access detection is an access detection performed on the reference sub-frequency band among the T access detections, and the reference second type wireless signal is that the reference first type wireless signal is associated with One second-type wireless signal among the T second-type wireless signals, the reference access detection is used to determine the transmission of the reference second-type wireless signal and the S fifth-type wireless signals.
作为上述实施例的一个子实施例,所述参考接入检测的结束时刻不晚于所述参考第二类无线信号和所述S个第五类无线信号的起始发送时刻。As a sub-embodiment of the foregoing embodiment, the end time of the reference access detection is no later than the start sending time of the reference second type wireless signal and the S fifth type wireless signals.
作为一个实施例,所述S个第五类无线信号分别所占用的时频资源都属于所述参考时频资源块。As an embodiment, the time-frequency resources respectively occupied by the S fifth-type wireless signals belong to the reference time-frequency resource block.
作为一个实施例,所述S个第四类无线信号中的任一第四类无线信号都包括控制信息。As an embodiment, any fourth-type wireless signal among the S fourth-type wireless signals includes control information.
作为一个实施例,所述S个第四类无线信号都在所述参考子频带中传输。As an embodiment, the S fourth type wireless signals are all transmitted in the reference sub-frequency band.
作为一个实施例,所述S个第四类无线信号中至少一个第四类无线信号在所述参考子频带中传输。As an embodiment, at least one fourth-type wireless signal among the S fourth-type wireless signals is transmitted in the reference sub-frequency band.
作为一个实施例,所述S个第四类无线信号中至少一个第四类无线信号在所述参考子频带以外的频带中传输。As an embodiment, at least one fourth-type wireless signal among the S fourth-type wireless signals is transmitted in a frequency band other than the reference sub-frequency band.
作为一个实施例,所述S个第四类无线信号在所述参考子频带以外的频带中传输。As an embodiment, the S fourth type wireless signals are transmitted in a frequency band other than the reference sub-frequency band.
作为一个实施例,所述S个第四类无线信号在所述参考子频带所属的载波(Carrier)中传输。As an embodiment, the S fourth type wireless signals are transmitted in a carrier (Carrier) to which the reference sub-frequency band belongs.
作为一个实施例,所述S个第四类无线信号在不同于所述参考子频带所属的载波的一个载波中传输。As an embodiment, the S fourth type wireless signals are transmitted on a carrier different from the carrier to which the reference sub-frequency band belongs.
作为一个实施例,所述S个第四类无线信号都在部署于授权频谱的频带上传输。As an embodiment, the S fourth type wireless signals are all transmitted on frequency bands deployed on licensed spectrum.
作为一个实施例,所述S个第四类无线信号都在部署于非授权频谱的频带上传输。As an embodiment, the S fourth type wireless signals are all transmitted on a frequency band deployed in an unlicensed spectrum.
作为一个实施例,所述S个第五类无线信号中的任一第五类无线信号包括数据。As an embodiment, any fifth type wireless signal among the S fifth type wireless signals includes data.
作为一个实施例,所述S个第五类无线信号中的任一第五类无线信号包括参考信号。As an embodiment, any fifth type wireless signal among the S fifth type wireless signals includes a reference signal.
作为一个实施例,所述S个第五类无线信号中的任一第五类无线信号包括数据和参考信号中之一。As an embodiment, any fifth type wireless signal among the S fifth type wireless signals includes one of data and reference signals.
作为一个实施例,所述S个第五类无线信号由数据和参考信号组成。As an embodiment, the S fifth type wireless signals are composed of data and reference signals.
作为一个实施例,所述S个第五类无线信号都在所述参考子频带中传输。As an embodiment, the S fifth type wireless signals are all transmitted in the reference sub-frequency band.
作为一个实施例,所述S个第五类无线信号都在部署于非授权频谱的频带上传输。As an embodiment, the S fifth type wireless signals are all transmitted on a frequency band deployed in an unlicensed spectrum.
实施例2Example 2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(EvolvedPacket System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved PacketCore,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home SubscriberServer,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF211、其它MME(MobilityManagement Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IPMultimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述第一节点是用户设备。As an embodiment, the UE201 corresponds to the first node in this application, and the first node is a user equipment.
作为一个实施例,所述gNB203对应本申请中的所述第一节点,所述第一节点是基站。As an embodiment, the gNB203 corresponds to the first node in this application, and the first node is a base station.
作为一个子实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。As a sub-embodiment, the
作为一个子实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。As a sub-embodiment, the gNB203 supports wireless communication for data transmission on an unlicensed frequency spectrum.
实施例3Example 3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio LinkControl,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。Accompanying drawing 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and Fig. 3 shows the radio protocol architecture for a user equipment (UE) and a base station device (gNB or eNB) with three layers:
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。As an embodiment, the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。As an embodiment, the first information in this application is generated in the
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。As an embodiment, the first information in this application is generated in the
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。As an embodiment, the first information in this application is generated by the PHY301.
作为一个实施例,本申请中的所述T个接入检测生成于所述PHY301。As an embodiment, the T access detections in this application are generated by the PHY301.
作为一个实施例,本申请中的所述T个第一类无线信号生成于所述PHY301。As an embodiment, the T first-type wireless signals in this application are generated by the PHY301.
作为一个实施例,本申请中的所述T个第二类无线信号生成于所述PHY301。As an embodiment, the T second type wireless signals in this application are generated by the PHY301.
作为一个实施例,本申请中的所述第三类无线信号生成于所述PHY301。As an embodiment, the third type of wireless signal in this application is generated by the PHY301.
作为一个实施例,本申请中的所述S个第四类无线信号生成于所述PHY301。As an embodiment, the S fourth type wireless signals in this application are generated by the PHY301.
作为一个实施例,本申请中的所述S个第五类无线信号生成于所述PHY301。As an embodiment, the S fifth type wireless signals in this application are generated by the PHY301.
作为一个实施例,本申请中的所述Q次能量检测生成于所述PHY301。As an example, the Q energy detections in this application are generated by the PHY301.
实施例4Example 4
实施例4示出了根据本申请的一个基站设备和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。Embodiment 4 shows a schematic diagram of a base station device and user equipment according to the present application, as shown in Fig. 4 . Figure 4 is a block diagram of a
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,波束处理器471,发射处理器415,发射器/接收器416和天线420。Base station equipment ( 410 ) includes controller/
用户设备(450)包括控制器/处理器490,存储器480,数据源467,波束处理器441,发射处理器455,接收处理器452,发射器/接收器456和天线460。User equipment ( 450 ) includes controller/
在下行传输中,与基站设备(410)有关的处理包括:In downlink transmission, the processing related to the base station equipment (410) includes:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink SharedChannel,下行共享信道);- Controller/
-控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;- a controller/
-控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;- a controller/
-波束处理器471,在T个子频带上分别进行T个接入检测、确定在T个时频资源块中分别发送T个第二类无线信号以及在第一子频带上的Q个时间子池中分别执行Q次能量检测;-
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;- Transmit
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括多天线发送、扩频、码分复用、预编码等;- Transmit
-发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。- A
在下行传输中,与用户设备(450)有关的处理可以包括:In downlink transmission, the processing related to the user equipment (450) may include:
-接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;-
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;- receiving
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收、解扩、码分复用、预编码等;- Receive
-波束处理器441,确定T个第一类无线信号;- a
-控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;- A controller/
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。- A controller/
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:In UL (Uplink, uplink), the processing related to the base station equipment (410) includes:
-接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;- the
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;- receiving
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收,解扩频(Despreading),码分复用,预编码等;- The
-控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;- a controller/
-控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;- Controller/
波束处理器471,确定T个第一类无线信号;A
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:In UL (Uplink, uplink), the processing related to the user equipment (450) includes:
-数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;-
-发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;- a
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括编码、交织、加扰、调制和物理层信令生成等;- Transmit
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线发送,扩频(Spreading),码分复用,预编码等;- The transmit
-控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;- Controller/
-控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;- The controller/
-波束处理器441,在T个子频带上分别进行T个接入检测、确定在T个时频资源块中分别发送T个第二类无线信号以及在第一子频带上的Q个时间子池中分别执行Q次能量检测;-
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收T个第一类无线信号,所述T是大于1的正整数;在T个子频带上分别进行T个接入检测,在T个时频资源块中分别发送T个第二类无线信号;在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值,所述Q是正整数;其中,所述T个子频带都包括至少一个相同的频点,或者所述T个子频带都属于同一个载波;所述T个子频带中至少一个子频带和所述第一子频带不同;所述T个第一类无线信号分别被关联到所述T个第二类无线信号;参考第一类无线信号是所述T个第一类无线信号中的一个第一类无线信号,所述Q与所述T个第一类无线信号中的仅所述参考第一类无线信号有关;所述T个接入检测分别被用于确定所述T个第二类无线信号的发送;参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带,参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块;所述参考时频资源块的选择与所述第一子频带和所述参考子频带中的至少之一有关;所述第一节点是用户设备。As an embodiment, the UE450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the at least one processor device, the UE450 device at least: receives T first-type wireless signals, where T is a positive integer greater than 1; performs T access detections on T sub-frequency bands respectively, and in T time-frequency resource blocks Sending T wireless signals of the second type respectively; performing Q times of energy detection respectively in Q time subpools on the first sub-frequency band to obtain Q detection values, and the Q is a positive integer; wherein, the T sub-frequency bands are all Including at least one same frequency point, or the T sub-frequency bands all belong to the same carrier; at least one sub-frequency band in the T sub-frequency bands is different from the first sub-frequency band; the T first-type wireless signals are respectively Associated with the T second-type wireless signals; the reference first-type wireless signal is a first-type wireless signal among the T first-type wireless signals, and the Q and the T first-type wireless signals Only the reference first-type wireless signals are related; the T access detections are respectively used to determine the transmission of the T second-type wireless signals; the reference sub-band is the T sub-band corresponding to the Referring to a sub-band of the first type of wireless signal, the reference time-frequency resource block is a time-frequency resource block corresponding to the reference first type of wireless signal among the T time-frequency resource blocks; the reference time-frequency resource block The selection is related to at least one of the first sub-band and the reference sub-band; the first node is a user equipment.
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收T个第一类无线信号,所述T是大于1的正整数;在T个子频带上分别进行T个接入检测,在T个时频资源块中分别发送T个第二类无线信号;在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值,所述Q是正整数;其中,所述T个子频带都包括至少一个相同的频点,或者所述T个子频带都属于同一个载波;所述T个子频带中至少一个子频带和所述第一子频带不同;所述T个第一类无线信号分别被关联到所述T个第二类无线信号;参考第一类无线信号是所述T个第一类无线信号中的一个第一类无线信号,所述Q与所述T个第一类无线信号中的仅所述参考第一类无线信号有关;所述T个接入检测分别被用于确定所述T个第二类无线信号的发送;参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带,参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块;所述参考时频资源块的选择与所述第一子频带和所述参考子频带中的至少之一有关;所述第一节点是用户设备。As an embodiment, the UE450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving T first-type For wireless signals, T is a positive integer greater than 1; T access detections are respectively performed on T sub-frequency bands, and T second-type wireless signals are respectively sent in T time-frequency resource blocks; on the first sub-frequency band Q times of energy detection are performed in the Q time sub-pools respectively, and Q detection values are obtained, and the Q is a positive integer; wherein, the T sub-frequency bands all include at least one same frequency point, or the T sub-frequency bands all belong to The same carrier; at least one sub-band in the T sub-bands is different from the first sub-band; the T first-type wireless signals are respectively associated with the T second-type wireless signals; refer to the first type The wireless signal is a first-type wireless signal among the T first-type wireless signals, and the Q is related to only the reference first-type wireless signal among the T first-type wireless signals; the T Access detections are respectively used to determine the transmission of the T second-type wireless signals; the reference sub-frequency band is a sub-frequency band corresponding to the reference first-type wireless signal among the T sub-frequency bands, and the reference time-frequency resource block is a time-frequency resource block corresponding to the reference first-type wireless signal among the T time-frequency resource blocks; the selection of the reference time-frequency resource block is related to At least one of them is related; the first node is a user equipment.
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:在T个子频带上分别进行T个接入检测,在T个时频资源块中分别发送T个第二类无线信号;接收T个第一类无线信号,所述T是大于1的正整数;在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值,所述Q是正整数;其中,所述T个子频带都包括至少一个相同的频点,或者所述T个子频带都属于同一个载波;所述T个子频带中至少一个子频带和所述第一子频带不同;所述T个第一类无线信号分别被关联到所述T个第二类无线信号;参考第一类无线信号是所述T个第一类无线信号中的一个第一类无线信号,所述Q与所述T个第一类无线信号中的仅所述参考第一类无线信号有关;所述T个接入检测分别被用于确定所述T个第二类无线信号的发送;参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带,参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块;所述参考时频资源块的选择与所述第一子频带和所述参考子频带中的至少之一有关;所述第一节点是基站。As an embodiment, the gNB410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the at least one processor device used together. The gNB410 device at least: performs T access detections on T sub-frequency bands respectively, and sends T second-type wireless signals in T time-frequency resource blocks respectively; receives T first-type wireless signals, and the T is A positive integer greater than 1; Q times of energy detection are respectively performed in the Q time subpools on the first sub-band to obtain Q detection values, and the Q is a positive integer; wherein, the T sub-bands all include at least one of the same frequency points, or the T sub-frequency bands all belong to the same carrier; at least one of the T sub-frequency bands is different from the first sub-frequency band; the T first-type wireless signals are respectively associated with the T wireless signals of the second type; the reference wireless signal of the first type is a wireless signal of the first type in the T wireless signals of the first type, and only all of the Q and the T wireless signals of the first type The reference first-type wireless signals are related; the T access detections are respectively used to determine the transmission of the T second-type wireless signals; the reference sub-band is the T sub-band corresponding to the reference first-type For a sub-band of a wireless signal, the reference time-frequency resource block is a time-frequency resource block corresponding to the reference first-type wireless signal among the T time-frequency resource blocks; the selection of the reference time-frequency resource block is related to the A first sub-band is associated with at least one of said reference sub-bands; said first node is a base station.
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在T个子频带上分别进行T个接入检测,在T个时频资源块中分别发送T个第二类无线信号;接收T个第一类无线信号,所述T是大于1的正整数;在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值,所述Q是正整数;其中,所述T个子频带都包括至少一个相同的频点,或者所述T个子频带都属于同一个载波;所述T个子频带中至少一个子频带和所述第一子频带不同;所述T个第一类无线信号分别被关联到所述T个第二类无线信号;参考第一类无线信号是所述T个第一类无线信号中的一个第一类无线信号,所述Q与所述T个第一类无线信号中的仅所述参考第一类无线信号有关;所述T个接入检测分别被用于确定所述T个第二类无线信号的发送;参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带,参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块;所述参考时频资源块的选择与所述第一子频带和所述参考子频带中的至少之一有关;所述第一节点是基站。As an embodiment, the gNB410 includes: a memory storing computer-readable instruction programs, and the computer-readable instruction programs generate actions when executed by at least one processor, and the actions include: Perform T access detections, respectively send T second-type wireless signals in T time-frequency resource blocks; receive T first-type wireless signals, where T is a positive integer greater than 1; on the first sub-frequency band Q times of energy detection are performed in the Q time sub-pools respectively, and Q detection values are obtained, and the Q is a positive integer; wherein, the T sub-frequency bands all include at least one same frequency point, or the T sub-frequency bands all belong to The same carrier; at least one sub-band in the T sub-bands is different from the first sub-band; the T first-type wireless signals are respectively associated with the T second-type wireless signals; refer to the first type The wireless signal is a first-type wireless signal among the T first-type wireless signals, and the Q is related to only the reference first-type wireless signal among the T first-type wireless signals; the T Access detections are respectively used to determine the transmission of the T second-type wireless signals; the reference sub-frequency band is a sub-frequency band corresponding to the reference first-type wireless signal among the T sub-frequency bands, and the reference time-frequency resource block is a time-frequency resource block corresponding to the reference first-type wireless signal among the T time-frequency resource blocks; the selection of the reference time-frequency resource block is related to At least one of them is related; the first node is a base station.
作为一个实施例,UE450对应本申请中的所述第一节点,所述第一节点是用户设备。As an embodiment, UE450 corresponds to the first node in this application, and the first node is a user equipment.
作为一个实施例,gNB410对应本申请中的所述第一节点,所述第一节点是基站。As an embodiment, gNB410 corresponds to the first node in this application, and the first node is a base station.
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信息;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信息;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者被用于接收本申请中的所述第一信息;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器/接收器416、接收处理器412、发射处理器415和控制器/处理器440中的至少前三者被用于发送本申请中的所述第一信息;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述T个第一类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述T个第一类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者被用于接收本申请中的所述T个第一类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器/接收器416、接收处理器412、发射处理器415和控制器/处理器440中的至少前三者被用于发送本申请中的所述T个第一类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述S个第四类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述S个第四类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者被用于接收本申请中的所述S个第四类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器/接收器416、接收处理器412、发射处理器415和控制器/处理器440中的至少前三者被用于发送本申请中的所述S个第四类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述T个子频带上分别进行本申请中的所述T个接入检测;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者被用于在本申请中的所述T个子频带上分别进行本申请中的所述T个接入检测;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述第一子频带上的所述Q个时间子池中分别执行本申请中的所述Q次能量检测;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述T个时频资源块中分别发送本申请中的所述T个第二类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述T个时频资源块中分别接收本申请中的所述T个第二类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、接收处理器452、发射处理器455和控制器/处理器490中的至少前三者被用于在本申请中的所述T个时频资源块中分别发送本申请中的所述T个第二类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器/接收器416、发射处理器415、接收处理器412和控制器/处理器440中的至少前三者被用于在本申请中的所述T个时频资源块中分别接收本申请中的所述T个第二类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述参考时频资源块中发送本申请中的所述S个第五类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述参考时频资源块中接收本申请中的所述S个第五类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、接收处理器452、发射处理器455和控制器/处理器490中的至少前三者被用于在本申请中的所述参考时频资源块中发送本申请中的所述S个第五类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器/接收器416、发射处理器415、接收处理器412和控制器/处理器440中的至少前三者被用于在本申请中的所述参考时频资源块中接收本申请中的所述S个第五类无线信号;本申请中的所述第一节点是用户设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第一子频带中发送本申请中的所述第三类无线信号;本申请中的所述第一节点是用户设备。As an example, at least the first two of the
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第一子频带中接收本申请中的所述第三类无线信号;本申请中的所述第一节点是用户设备。As an example, at least the first two of
作为一个实施例,发射器/接收器456、接收处理器452、发射处理器455和控制器/处理器490中的至少前三者被用于在本申请中的所述第一子频带中发送本申请中的所述第三类无线信号;本申请中的所述第一节点是用户设备。As an example, at least the first three of transmitter/
作为一个实施例,发射器/接收器416、发射处理器415、接收处理器412和控制器/处理器440中的至少前三者被用于在本申请中的所述第一子频带中接收本申请中的所述第三类无线信号;本申请中的所述第一节点是用户设备。As an example, at least the first three of transmitter/
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信息;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信息;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者被用于接收本申请中的所述第一信息;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器/接收器416、接收处理器412、发射处理器415和控制器/处理器440中的至少前三者被用于发送本申请中的所述第一信息;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述T个第一类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述T个第一类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者被用于发送本申请中的所述T个第一类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器/接收器416、接收处理器412、发射处理器415和控制器/处理器440中的至少前三者被用于接收本申请中的所述T个第一类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述S个第四类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述S个第四类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者被用于发送本申请中的所述S个第四类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器/接收器416、接收处理器412、发射处理器415和控制器/处理器440中的至少前三者被用于接收本申请中的所述S个第四类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述T个子频带上分别进行本申请中的所述T个接入检测;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器416、接收处理器412、发射处理器415和控制器/处理器440中的至少前三者被用于在本申请中的所述T个子频带上分别进行本申请中的所述T个接入检测;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第一子频带上的所述Q个时间子池中分别执行本申请中的所述Q次能量检测;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述T个时频资源块中分别接收本申请中的所述T个第二类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于在本申请中的所述T个时频资源块中分别发送本申请中的所述T个第二类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者被用于在本申请中的所述T个时频资源块中分别接收本申请中的所述T个第二类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器/接收器416、接收处理器412、发射处理器415和控制器/处理器440中的至少前三者被用于在本申请中的所述T个时频资源块中分别发送本申请中的所述T个第二类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述参考时频资源块中接收本申请中的所述S个第五类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于在本申请中的所述参考时频资源块中发送本申请中的所述S个第五类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first two of the
作为一个实施例,发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者被用于在本申请中的所述参考时频资源块中接收本申请中的所述S个第五类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,发射器/接收器416、接收处理器412、发射处理器415和控制器/处理器440中的至少前三者被用于在本申请中的所述参考时频资源块中发送本申请中的所述S个第五类无线信号;本申请中的所述第一节点是基站设备。As an embodiment, at least the first three of the transmitter/
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述第一子频带中接收本申请中的所述第三类无线信号;本申请中的所述第一节点是基站设备。As an example, at least the first two of
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于在本申请中的所述第一子频带中发送本申请中的所述第三类无线信号;本申请中的所述第一节点是基站设备。As an example, at least the first two of the
作为一个实施例,发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者被用于在本申请中的所述第一子频带中接收本申请中的所述第三类无线信号;本申请中的所述第一节点是基站设备。As an example, at least the first three of transmitter/
作为一个实施例,发射器/接收器416、接收处理器412、发射处理器415和控制器/处理器440中的至少前三者被用于在本申请中的所述第一子频带中发送本申请中的所述第三类无线信号;本申请中的所述第一节点是基站设备。As an example, at least the first three of transmitter/
实施例5Example 5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站N01是用户设备U02的服务小区维持基站。附图5中,方框F1是可选的。Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG. 5 . In FIG. 5, the base station N01 is the serving cell maintenance base station of the user equipment U02. In Figure 5, block F1 is optional.
对于N01,在步骤S11中在T个子频带上分别进行T个接入检测;在步骤S12中在T个时频资源块中分别发送T个第二类无线信号;在步骤S13中接收T个第一类无线信号;在步骤S14中在参考时频资源块中还发送S个第五类无线信号;在步骤S15中接收S个第四类无线信号;在步骤S16中发送第一信息;在步骤S17中在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;在步骤S18中在第一子频带中发送第三类无线信号。For N01, in step S11, T access detections are respectively performed on T sub-frequency bands; in step S12, T second-type wireless signals are respectively sent in T time-frequency resource blocks; in step S13, T second wireless signals are received One type of wireless signal; in step S14, S wireless signals of the fifth type are also sent in the reference time-frequency resource block; in step S15, S wireless signals of the fourth type are received; in step S16, the first information is sent; In S17, Q times of energy detection are respectively performed in the Q time subpools on the first sub-frequency band to obtain Q detection values; in step S18, the third type of wireless signal is sent in the first sub-frequency band.
对于U02,在步骤S21中在T个时频资源块中分别接收T个第二类无线信号;在步骤S22中发送T个第一类无线信号;在步骤S23中在参考时频资源块中还接收S个第五类无线信号;在步骤S24中发送S个第四类无线信号;在步骤S25中接收第一信息;在步骤S26中在第一子频带中接收第三类无线信号。For U02, in step S21, in T time-frequency resource blocks, respectively receive T second-type wireless signals; in step S22, send T first-type wireless signals; Receive S fifth-type wireless signals; send S fourth-type wireless signals in step S24; receive first information in step S25; receive third-type wireless signals in the first sub-band in step S26.
在实施例5中,所述T是大于1的正整数,所述Q是正整数;所述T个子频带都包括至少一个相同的频点,或者所述T个子频带都属于同一个载波;所述T个子频带中至少一个子频带和所述第一子频带不同;所述T个第一类无线信号分别被关联到所述T个第二类无线信号;参考第一类无线信号是所述T个第一类无线信号中的一个第一类无线信号,所述Q与所述T个第一类无线信号中的仅所述参考第一类无线信号有关;所述T个接入检测分别被所述N01用于确定所述T个第二类无线信号的发送;参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带,参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块;所述参考时频资源块的选择与所述第一子频带和所述参考子频带中的至少之一有关;所述第一节点是基站,所述T个第一类无线信号分别指示所述T个第二类无线信号是否被正确接收;参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考第二类无线信号包括W个子信号,所述W是正整数;所述W个子信号是否被正确接收被所述N01用于确定所述Q。所述第三类无线信号所占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。所述第一信息包括所述第三类无线信号的调度信息。In Embodiment 5, the T is a positive integer greater than 1, and the Q is a positive integer; the T sub-bands all include at least one same frequency point, or the T sub-bands all belong to the same carrier; the At least one sub-band in the T sub-bands is different from the first sub-band; the T first-type wireless signals are respectively associated with the T second-type wireless signals; the reference first-type wireless signal is the T One of the first-type wireless signals of the first-type wireless signals, the Q is related to only the reference first-type wireless signal among the T first-type wireless signals; the T access detections are respectively detected The N01 is used to determine the transmission of the T second-type wireless signals; the reference sub-frequency band is a sub-frequency band corresponding to the reference first-type wireless signal among the T sub-frequency bands, and the reference time-frequency resource block is the One of the T time-frequency resource blocks corresponds to one time-frequency resource block of the reference first type wireless signal; the selection of the reference time-frequency resource block is related to at least one of the first sub-frequency band and the reference sub-frequency band Relevant; the first node is a base station, and the T first-type wireless signals respectively indicate whether the T second-type wireless signals are received correctly; the reference second-type wireless signal is the reference first-type wireless signal A second-type wireless signal among the T second-type wireless signals to be associated, the reference second-type wireless signal includes W sub-signals, and W is a positive integer; whether the W sub-signals are correctly received is used by the N01 to determine the Q. The start time of the time domain resource occupied by the third type of wireless signal is not earlier than the end time of the Q time subpools. The first information includes scheduling information of the third type of wireless signal.
作为一个实施例,所述W个子信号中没有被正确接收的子信号的数量和所述W的比值被用于确定所述Q。As an embodiment, the ratio of the number of sub-signals that are not correctly received among the W sub-signals to the W is used to determine the Q.
作为一个实施例,所述第一节点是基站,所述S个第四类无线信号分别指示所述S个第五类无线信号是否被正确接收;所述参考第一类无线信号和所述S个第四类无线信号共同被用于确定所述Q。As an embodiment, the first node is a base station, and the S fourth-type wireless signals respectively indicate whether the S fifth-type wireless signals are received correctly; the reference first-type wireless signal and the S A fourth type of wireless signal is collectively used to determine the Q.
作为上述实施例的一个子实施例,所述S个第五类无线信号包括W1个子信号,所述W1是正整数;所述W个子信号和所述W1个子信号是否被正确接收被所述N01用于确定所述Q。As a sub-embodiment of the above-mentioned embodiment, the S fifth-type wireless signals include W1 sub-signals, and W1 is a positive integer; whether the W sub-signals and the W1 sub-signals are received correctly is determined by the N01 to determine the Q.
作为上述实施例的一个子实施例,所述W个子信号和所述W1个子信号中没有被正确接收的子信号的数量与所述W和所述W1之和的比值被所述N01用于确定所述Q。As a sub-embodiment of the above-mentioned embodiment, the ratio of the number of sub-signals that have not been correctly received among the W sub-signals and the W1 sub-signals to the sum of W and W1 is used by the N01 to determine The Q.
作为一个实施例,所述Q次能量检测分别是下行接入检测中的能量检测。As an embodiment, the Q times of energy detection are respectively energy detections in downlink access detection.
作为一个实施例,所述T个第一类无线信号中任一第一类无线信号的起始发送时刻都晚于所关联到的所述T个第二类无线信号中的一个第二类无线信号的终止发送时刻。As an embodiment, the starting time of any first-type wireless signal among the T first-type wireless signals is later than one of the associated second-type wireless signals among the T second-type wireless signals. The end sending time of the signal.
作为一个实施例,所述T个第一类无线信号中的每一个第一类无线信号包括HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)。As an embodiment, each of the T first-type wireless signals includes a HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement, hybrid automatic repeat request acknowledgment).
作为一个实施例,所述T个第一类无线信号中的任一第一类无线信号包括UCI(Uplink control information,上行控制信息),所述第一节点是基站。As an embodiment, any first-type wireless signal among the T first-type wireless signals includes UCI (Uplink control information, uplink control information), and the first node is a base station.
作为一个实施例,所述T个第一类无线信号分别在T个上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。As an embodiment, the T first-type wireless signals are respectively transmitted on T uplink physical layer control channels (that is, uplink channels that can only be used to bear physical layer signaling).
作为上述实施例的一个子实施例,所述T个上行物理层控制信道分别是PUCCH(Physical Uplink Control CHannel,物理上行控制信道)。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer control channels are respectively PUCCH (Physical Uplink Control CHannel, physical uplink control channel).
作为上述实施例的一个子实施例,所述T个上行物理层控制信道分别是sPUCCH(short PUCCH,短PUCCH)。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer control channels are respectively sPUCCH (short PUCCH, short PUCCH).
作为上述实施例的一个子实施例,所述T个上行物理层控制信道分别是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer control channels are respectively NR-PUCCH (New Radio PUCCH, new radio PUCCH).
作为上述实施例的一个子实施例,所述T个上行物理层控制信道分别是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer control channels are respectively NB-PUCCH (Narrow Band PUCCH, narrowband PUCCH).
作为一个实施例,所述T个第一类无线信号分别在T个上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。As an embodiment, the T first-type wireless signals are respectively transmitted on T uplink physical layer data channels (that is, uplink channels that can be used to carry physical layer data).
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer data channels are respectively PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是sPUSCH(short PUSCH,短PUSCH)。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer data channels are respectively sPUSCH (short PUSCH, short PUSCH).
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer data channels are respectively NR-PUSCH (New Radio PUSCH, New Radio PUSCH).
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是NB-PUSCH(Narrow Band PUSCH,窄带PUSCH)。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer data channels are respectively NB-PUSCH (Narrow Band PUSCH, narrowband PUSCH).
作为一个实施例,所述T个第二类无线信号中的任一第二类无线信号包括数据。As an embodiment, any wireless signal of the second type in the T wireless signals of the second type includes data.
作为一个实施例,所述T个第二类无线信号分别在T个下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。As an embodiment, the T second-type wireless signals are respectively transmitted on T downlink physical layer data channels (that is, downlink channels that can be used to bear physical layer data).
作为上述实施例的一个子实施例,所述T个下行物理层数据信道分别是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。As a sub-embodiment of the foregoing embodiment, the T downlink physical layer data channels are respectively PDSCH (Physical Downlink Shared CHannel, physical downlink shared channel).
作为上述实施例的一个子实施例,所述T个下行物理层数据信道分别是sPDSCH(short PDSCH,短PDSCH)。As a sub-embodiment of the foregoing embodiment, the T downlink physical layer data channels are respectively sPDSCH (short PDSCH, short PDSCH).
作为上述实施例的一个子实施例,所述T个下行物理层数据信道分别是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。As a sub-embodiment of the foregoing embodiment, the T downlink physical layer data channels are respectively NR-PDSCH (New Radio PDSCH, New Radio PDSCH).
作为上述实施例的一个子实施例,所述T个下行物理层数据信道分别是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。As a sub-embodiment of the foregoing embodiment, the T downlink physical layer data channels are respectively NB-PDSCH (Narrow Band PDSCH, narrowband PDSCH).
作为一个实施例,所述T个第二类无线信号对应传输信道分别是DL-SCH(DownLinkShared Channel,下行共享信道)。As an embodiment, the transmission channels corresponding to the T second-type wireless signals are respectively DL-SCH (DownLink Shared Channel, downlink shared channel).
作为一个实施例,所述S个第四类无线信号中任一第四类无线信号的起始发送时刻都晚于所关联到的所述S个第五类无线信号中的一个第五类无线信号的终止发送时刻。As an embodiment, the starting time of any fourth-type wireless signal among the S fourth-type wireless signals is later than one fifth-type wireless signal among the S fifth-type wireless signals to which it is associated. The end sending time of the signal.
作为一个实施例,所述S个第四类无线信号中的每一个第四类无线信号包括HARQ-ACK。As an embodiment, each of the S fourth type wireless signals includes HARQ-ACK.
作为一个实施例,所述S个第四类无线信号中的任一第四类无线信号包括UCI,所述第一节点是基站。As an embodiment, any fourth-type wireless signal among the S fourth-type wireless signals includes UCI, and the first node is a base station.
作为一个实施例,所述S个第四类无线信号分别在S个上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。As an embodiment, the S fourth type wireless signals are respectively transmitted on S uplink physical layer control channels (that is, uplink channels that can only be used to bear physical layer signaling).
作为上述实施例的一个子实施例,所述S个上行物理层控制信道分别是PUCCH。As a sub-embodiment of the foregoing embodiment, the S uplink physical layer control channels are PUCCHs respectively.
作为上述实施例的一个子实施例,所述S个上行物理层控制信道分别是sPUCCH。As a sub-embodiment of the foregoing embodiment, the S uplink physical layer control channels are sPUCCHs respectively.
作为上述实施例的一个子实施例,所述S个上行物理层控制信道分别是NR-PUCCH。As a sub-embodiment of the above-mentioned embodiment, the S uplink physical layer control channels are respectively NR-PUCCH.
作为上述实施例的一个子实施例,所述S个上行物理层控制信道分别是NB-PUCCH。As a sub-embodiment of the above-mentioned embodiment, the S uplink physical layer control channels are respectively NB-PUCCH.
作为一个实施例,所述S个第四类无线信号分别在S个上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。As an embodiment, the S fourth type wireless signals are respectively transmitted on S uplink physical layer data channels (that is, uplink channels that can be used to bear physical layer data).
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是PUSCH。As a sub-embodiment of the foregoing embodiment, the S uplink physical layer data channels are PUSCHs respectively.
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是sPUSCH。As a sub-embodiment of the foregoing embodiment, the S uplink physical layer data channels are respectively sPUSCH.
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是NR-PUSCH。As a sub-embodiment of the foregoing embodiment, the S uplink physical layer data channels are respectively NR-PUSCH.
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是NB-PUSCH。As a sub-embodiment of the foregoing embodiment, the S uplink physical layer data channels are respectively NB-PUSCH.
作为一个实施例,所述S个第五类无线信号中的任一第五类无线信号包括数据。As an embodiment, any fifth type wireless signal among the S fifth type wireless signals includes data.
作为一个实施例,所述S个第五类无线信号分别在S个下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。As an embodiment, the S fifth type wireless signals are respectively transmitted on S downlink physical layer data channels (that is, downlink channels that can be used to bear physical layer data).
作为上述实施例的一个子实施例,所述S个下行物理层数据信道分别是PDSCH。As a sub-embodiment of the foregoing embodiment, the S downlink physical layer data channels are respectively PDSCHs.
作为上述实施例的一个子实施例,所述S个下行物理层数据信道分别是sPDSCH。As a sub-embodiment of the above-mentioned embodiment, the S downlink physical layer data channels are respectively sPDSCH.
作为上述实施例的一个子实施例,所述S个下行物理层数据信道分别是NR-PDSCH。As a sub-embodiment of the foregoing embodiment, the S downlink physical layer data channels are respectively NR-PDSCH.
作为上述实施例的一个子实施例,所述S个下行物理层数据信道分别是NB-PDSCH。As a sub-embodiment of the foregoing embodiment, the S downlink physical layer data channels are respectively NB-PDSCH.
作为一个实施例,所述S个第五类无线信号对应传输信道分别是DL-SCH。As an embodiment, the transmission channels corresponding to the S fifth type wireless signals are DL-SCH respectively.
作为一个实施例,所述第三类无线信号所占用的频域资源属于所述第一子频带。As an embodiment, the frequency domain resource occupied by the third type of wireless signal belongs to the first sub-frequency band.
作为一个实施例,所述第三类无线信号包括数据,控制信息和参考信号中的至少之一。As an embodiment, the third type of wireless signal includes at least one of data, control information and reference signal.
作为一个实施例,所述第三类无线信号包括数据。As an embodiment, the third type of wireless signal includes data.
作为一个实施例,所述第三类无线信号包括控制信息。As an embodiment, the third type of wireless signal includes control information.
作为一个实施例,所述第三类无线信号包括参考信号。As an embodiment, the third type of wireless signal includes a reference signal.
作为一个实施例,所述第三类无线信号包括数据,控制信息和参考信号。As an embodiment, the third type of wireless signal includes data, control information and reference signals.
作为一个实施例,所述第三类无线信号包括数据和控制信息。As an embodiment, the third type of wireless signal includes data and control information.
作为一个实施例,所述第三类无线信号包括控制信息和参考信号。As an embodiment, the third type of wireless signal includes control information and reference signals.
作为一个实施例,所述第三类无线信号包括数据和参考信号。As an embodiment, the third type of wireless signal includes data and reference signals.
作为上述实施例的一个子实施例,所述数据是下行数据,所述控制信息是DCI(Downlink Control Information,下行控制信息),所述参考信号包括DMRS(DeModulationReference Signals,解调参考信号)、CSI-RS(Channel State Information-ReferenceSignal,信道状态信息参考信号)、TRS(fine time/frequency Tracking ReferenceSignals,精细时域/频域跟踪参考信号)和PRTS(Phase error Tracking ReferenceSignals,相位误差跟踪参考信号)}中的一种或多种。As a sub-embodiment of the above-mentioned embodiment, the data is downlink data, the control information is DCI (Downlink Control Information, downlink control information), and the reference signal includes DMRS (DeModulationReference Signals, demodulation reference signal), CSI -RS (Channel State Information-Reference Signal, channel state information reference signal), TRS (fine time/frequency Tracking Reference Signals, fine time domain/frequency domain tracking reference signal) and PRTS (Phase error Tracking Reference Signals, phase error tracking reference signal)} one or more of.
作为一个实施例,所述第三类无线信号的调度信息包括MCS(Modulation andCoding Scheme,调制编码方式)、DMRS的配置信息、HARQ进程号、RV(Redundancy Version,冗余版本)、NDI(New Data Indicator,新数据指示)、所占用的时频资源、所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。As an embodiment, the scheduling information of the third type of wireless signal includes MCS (Modulation and Coding Scheme, modulation and coding scheme), DMRS configuration information, HARQ process number, RV (Redundancy Version, redundancy version), NDI (New Data Indicator, new data indication), occupied time-frequency resources, at least one of corresponding multi-antenna related sending and corresponding multi-antenna related receiving.
作为上述实施例的一个子实施例,所述第三类无线信号包括数据。As a sub-embodiment of the foregoing embodiment, the third type of wireless signal includes data.
作为上述实施例的一个子实施例,所述DMRS的配置信息包括所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量(cyclic shift)和OCC中的一种或多种。As a sub-embodiment of the above-mentioned embodiment, the configuration information of the DMRS includes one of occupied time-domain resources, occupied frequency-domain resources, occupied code-domain resources, cyclic shift (cyclic shift) and OCC one or more species.
作为一个实施例,所述第三类无线信号的调度信息包括所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量(cyclic shift)、OCC(Orthogonal CoverCode,正交掩码)、所占用的天线端口、所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。As an embodiment, the scheduling information of the third type of wireless signal includes occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift (cyclic shift), OCC (Orthogonal CoverCode, Orthogonal mask), occupied antenna ports, corresponding multi-antenna related sending and corresponding multi-antenna related receiving.
作为上述实施例的一个子实施例,所述第三类无线信号包括参考信号。As a sub-embodiment of the foregoing embodiment, the third type of wireless signal includes a reference signal.
作为一个实施例,所述第三类无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。As an embodiment, the third type of wireless signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to bear physical layer data).
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。As a sub-embodiment of the foregoing embodiment, the downlink physical layer data channel is a PDSCH.
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。As a sub-embodiment of the foregoing embodiment, the downlink physical layer data channel is sPDSCH.
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。As a sub-embodiment of the foregoing embodiment, the downlink physical layer data channel is NR-PDSCH.
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。As a sub-embodiment of the foregoing embodiment, the downlink physical layer data channel is NB-PDSCH.
作为一个实施例,所述第三类无线信号对应传输信道是DL-SCH。As an embodiment, the transmission channel corresponding to the third type of wireless signal is DL-SCH.
作为一个实施例,所述第一信息是动态配置的。As an embodiment, the first information is dynamically configured.
作为一个实施例,所述第一信息由物理层信令承载。As an embodiment, the first information is carried by physical layer signaling.
作为一个实施例,所述第一信息属于DCI(下行控制信息,Downlink ControlInformation)。As an embodiment, the first information belongs to DCI (Downlink Control Information).
作为一个实施例,所述第一信息属于下行授予(DownLink Grant)的DCI。As an embodiment, the first information belongs to DCI of a downlink grant (DownLink Grant).
作为一个实施例,所述第一信息是一个DCI中的一个域(Field),所述域包括正整数个比特。As an embodiment, the first information is a field (Field) in a DCI, and the field includes a positive integer number of bits.
作为一个实施例,所述第一信息由一个DCI中的多个域(Field)组成,所述域包括正整数个比特。As an embodiment, the first information is composed of multiple fields (Fields) in one DCI, and the fields include a positive integer number of bits.
作为一个实施例,所述第一信息是半静态配置的。As an embodiment, the first information is configured semi-statically.
作为一个实施例,所述第一信息由更高层信令承载。As an embodiment, the first information is carried by higher layer signaling.
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信令承载。As an embodiment, the first information is carried by RRC (Radio Resource Control, radio resource control) signaling.
作为一个实施例,所述第一信息是一个RRC信令中的一个IE(InformationElement,信息单元)的全部或一部分。As an embodiment, the first information is all or part of an IE (InformationElement, information element) in an RRC signaling.
作为一个实施例,所述第一信息由MAC(Medium Acess Control,媒体接入控制)CE(Control Element,控制单元)信令承载。As an embodiment, the first information is carried by MAC (Medium Access Control, Media Access Control) CE (Control Element, control unit) signaling.
作为一个实施例,所述第一信息在SIB(System Information Block,系统信息块)中传输。As an embodiment, the first information is transmitted in a SIB (System Information Block, system information block).
作为一个实施例,所述第一信息在所述第一子频带上传输。As an embodiment, the first information is transmitted on the first sub-frequency band.
作为一个实施例,所述第一信息在所述第一子频带以外的频带上传输。As an embodiment, the first information is transmitted on a frequency band other than the first sub-frequency band.
作为一个实施例,所述第一信息在所述第一子频带以外的部署于授权频谱频带上传输。As an embodiment, the first information is transmitted on a licensed spectrum frequency band deployed outside the first sub-frequency band.
作为一个实施例,所述第一信息在所述第一子频带以外的部署于非授权频谱频带上传输。As an embodiment, the first information is transmitted on an unlicensed spectrum frequency band deployed outside the first sub-frequency band.
作为一个实施例,所述第一信息在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。As an embodiment, the first information is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to bear physical layer signaling).
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(PhysicalDownlink Control CHannel,物理下行控制信道)。As a sub-embodiment of the foregoing embodiment, the physical downlink control channel is a PDCCH (PhysicalDownlink Control CHannel, physical downlink control channel).
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(shortPDCCH,短PDCCH)。As a sub-embodiment of the foregoing embodiment, the downlink physical layer control channel is sPDCCH (shortPDCCH, short PDCCH).
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(NewRadio PDCCH,新无线PDCCH)。As a sub-embodiment of the foregoing embodiment, the downlink physical layer control channel is NR-PDCCH (NewRadio PDCCH, new radio PDCCH).
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(NarrowBand PDCCH,窄带PDCCH)。As a sub-embodiment of the foregoing embodiment, the downlink physical layer control channel is NB-PDCCH (NarrowBand PDCCH, narrowband PDCCH).
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。As an embodiment, the first information is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to bear physical layer data).
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。As a sub-embodiment of the foregoing embodiment, the downlink physical layer data channel is a PDSCH.
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。As a sub-embodiment of the foregoing embodiment, the downlink physical layer data channel is sPDSCH.
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。As a sub-embodiment of the foregoing embodiment, the downlink physical layer data channel is NR-PDSCH.
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。As a sub-embodiment of the foregoing embodiment, the downlink physical layer data channel is NB-PDSCH.
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rxparameters)。As an embodiment, the multi-antenna related reception is spatial reception parameters (Spatial Rxparameters).
作为一个实施例,所述多天线相关的接收是接收波束。As an embodiment, the multi-antenna related reception is a reception beam.
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。As an embodiment, the multi-antenna related reception is a reception beamforming matrix.
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。As an embodiment, the multi-antenna correlation receiving is receiving an analog beamforming matrix.
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型向量。As an embodiment, the multi-antenna related receiving is receiving an analog beamforming vector.
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。As an embodiment, the multi-antenna related reception is a reception beamforming vector.
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。As an embodiment, the multi-antenna correlation receiving is receiving spatial filtering (spatial filtering).
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Txparameters)。As an embodiment, the multi-antenna related transmission is spatial transmission parameters (Spatial Txparameters).
作为一个实施例,所述多天线相关的发送是发送波束。As an embodiment, the multi-antenna related transmission is a transmission beam.
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。As an embodiment, the multi-antenna related transmission is a transmission beamforming matrix.
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。As an embodiment, the multi-antenna related sending is sending an analog beamforming matrix.
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型向量。As an embodiment, the multi-antenna related sending is sending an analog beamforming vector.
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。As an embodiment, the multi-antenna related sending is sending a beamforming vector.
作为一个实施例,所述多天线相关的发送是发送空间滤波。As an embodiment, the multi-antenna related sending is sending spatial filtering.
作为一个实施例,所述空间发送参数(Spatial Tx parameters)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向量和发送空间滤波(spatial filtering)中的一种或多种。As an embodiment, the spatial transmission parameters (Spatial Tx parameters) include transmitting antenna ports, transmitting antenna port groups, transmitting beams, transmitting analog beamforming matrices, transmitting analog beamforming vectors, transmitting beamforming matrices, transmitting beamforming One or more of shaping vectors and sending spatial filtering.
作为一个实施例,所述空间接收参数(Spatial Rx parameters)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量和接收空间滤波(spatial filtering)中的一种或多种。As an embodiment, the spatial receiving parameters (Spatial Rx parameters) include receiving beam, receiving analog beamforming matrix, receiving analog beamforming vector, receiving beamforming matrix, receiving beamforming vector and receiving spatial filter (spatial One or more of filtering).
实施例6Example 6
实施例6示例了另一个无线传输的流程图,如附图6所示。在附图6中,基站N03是用户设备U04的服务小区维持基站。附图6中,方框F2是可选的。Embodiment 6 illustrates another flow chart of wireless transmission, as shown in FIG. 6 . In FIG. 6, the base station N03 is the serving cell maintenance base station of the user equipment U04. In Figure 6, block F2 is optional.
对于N03,在步骤S31中发送T个第一类无线信号;在步骤S32中在T个时频资源块中分别接收T个第二类无线信号;在步骤S33中发送S个第四类无线信号;在步骤S34中在参考时频资源块中还接收S个第五类无线信号;在步骤S35中发送第一信息;在步骤S36中在第一子频带中接收第三类无线信号。For N03, send T first-type wireless signals in step S31; receive T second-type wireless signals in T time-frequency resource blocks in step S32; send S fourth-type wireless signals in step S33 ; In step S34, in the reference time-frequency resource block, S fifth-type wireless signals are also received; in step S35, the first information is sent; in step S36, the third-type wireless signals are received in the first sub-band.
对于U04,在步骤S41中接收T个第一类无线信号;在步骤S42中在T个子频带上分别进行T个接入检测;在步骤S43中在T个时频资源块中分别发送T个第二类无线信号;在步骤S44中接收S个第四类无线信号;在步骤S45中在参考时频资源块中还发送S个第五类无线信号;在步骤S46中接收第一信息;在步骤S47中在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;在步骤S48中在第一子频带中发送第三类无线信号。For U04, in step S41, T first-type wireless signals are received; in step S42, T access detections are respectively performed on T sub-frequency bands; Two types of wireless signals; receive S fourth type wireless signals in step S44; also send S fifth type wireless signals in the reference time-frequency resource block in step S45; receive the first information in step S46; In S47, Q times of energy detection are respectively performed in the Q time subpools on the first sub-frequency band to obtain Q detection values; in step S48, the third type of wireless signal is sent in the first sub-frequency band.
在实施例6中,所述T是大于1的正整数,所述Q是正整数;所述T个子频带都包括至少一个相同的频点,或者所述T个子频带都属于同一个载波;所述T个子频带中至少一个子频带和所述第一子频带不同;所述T个第一类无线信号分别被关联到所述T个第二类无线信号;参考第一类无线信号是所述T个第一类无线信号中的一个第一类无线信号,所述Q与所述T个第一类无线信号中的仅所述参考第一类无线信号有关;所述T个接入检测分别被所述U04用于确定所述T个第二类无线信号的发送;参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带,参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块;所述参考时频资源块的选择与所述第一子频带和所述参考子频带中的至少之一有关;所述第一节点是用户设备,所述T个第一类无线信号分别包括所述T个第二类无线信号的调度信息;参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考第二类无线信号包括V个子信号,所述V是正整数;所述参考第一类无线信号分别被所述U04用于确定所述V个子信号是否包括新数据;所述V个子信号是否包括新数据被所述U04用于确定所述Q。所述第三类无线信号所占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。所述第一信息包括所述第三类无线信号的调度信息。In embodiment 6, the T is a positive integer greater than 1, and the Q is a positive integer; the T sub-bands all include at least one same frequency point, or the T sub-bands all belong to the same carrier; the At least one sub-band in the T sub-bands is different from the first sub-band; the T first-type wireless signals are respectively associated with the T second-type wireless signals; the reference first-type wireless signal is the T One of the first-type wireless signals of the first-type wireless signals, the Q is related to only the reference first-type wireless signal among the T first-type wireless signals; the T access detections are respectively detected The U04 is used to determine the transmission of the T second-type wireless signals; the reference sub-frequency band is a sub-frequency band corresponding to the reference first-type wireless signal among the T sub-frequency bands, and the reference time-frequency resource block is the One of the T time-frequency resource blocks corresponds to one time-frequency resource block of the reference first type wireless signal; the selection of the reference time-frequency resource block is related to at least one of the first sub-frequency band and the reference sub-frequency band Relevant; the first node is a user equipment, and the T first-type wireless signals respectively include scheduling information of the T second-type wireless signals; the reference second-type wireless signal is the reference first-type wireless signal one of the T second-type wireless signals to be associated with, the reference second-type wireless signal includes V sub-signals, and V is a positive integer; the reference first-type wireless signals are respectively is used by the U04 to determine whether the V sub-signals include new data; whether the V sub-signals include new data is used by the U04 to determine the Q. The start time of the time domain resource occupied by the third type of wireless signal is not earlier than the end time of the Q time subpools. The first information includes scheduling information of the third type of wireless signal.
作为一个实施例,所述V个子信号中包括新数据的子信号的数量被所述U04用于确定所述Q。As an embodiment, the number of sub-signals including new data among the V sub-signals is used by the U04 to determine the Q.
作为一个实施例,所述第一节点是用户设备,所述S个第四类无线信号分别包括所述S个第五类无线信号的调度信息;所述参考第一类无线信号和所述S个第四类无线信号共同被所述U04用于确定所述Q。As an embodiment, the first node is a user equipment, and the S fourth type wireless signals respectively include scheduling information of the S fifth type wireless signals; the reference first type wireless signal and the S The wireless signals of the fourth type are jointly used by the U04 to determine the Q.
作为一个实施例,所述S个第五类无线信号包括V1个子信号,所述V个子信号和所述V1个子信号是否包括新数据被所述U04用于确定所述Q。As an embodiment, the S fifth-type wireless signals include V1 sub-signals, and whether the V sub-signals and the V1 sub-signals include new data is used by the U04 to determine the Q.
作为上述实施例的一个子实施例,所述V个子信号和所述V1个子信号中包括新数据的子信号的数量被所述U04用于确定所述Q。As a sub-embodiment of the foregoing embodiment, the number of sub-signals including new data among the V sub-signals and the V1 sub-signals is used by the U04 to determine the Q.
作为一个实施例,所述Q次能量检测分别是上行接入检测中的能量检测。As an embodiment, the Q times of energy detection are respectively energy detections in uplink access detection.
作为一个实施例,所述T个第一类无线信号中任一第一类无线信号的终止发送时刻都早于所关联到的所述T个第二类无线信号中的一个第二类无线信号的起始发送时刻。As an embodiment, the transmission termination time of any first-type wireless signal among the T first-type wireless signals is earlier than one of the associated second-type wireless signals among the T second-type wireless signals The start sending time of .
作为一个实施例,所述T个第一类无线信号中的任一第一类无线信号包括DCI,所述第一节点是用户设备。As an embodiment, any first-type wireless signal among the T first-type wireless signals includes DCI, and the first node is a user equipment.
作为一个实施例,所述T个第一类无线信号分别在T个下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。As an embodiment, the T first-type wireless signals are respectively transmitted on T downlink physical layer control channels (that is, downlink channels that can only be used to bear physical layer signaling).
作为上述实施例的一个子实施例,所述T个下行物理层控制信道分别是PDCCH。As a sub-embodiment of the foregoing embodiment, the T downlink physical layer control channels are PDCCHs respectively.
作为上述实施例的一个子实施例,所述T个下行物理层控制信道分别是sPDCCH。As a sub-embodiment of the foregoing embodiment, the T downlink physical layer control channels are respectively sPDCCHs.
作为上述实施例的一个子实施例,所述T个下行物理层控制信道分别是NR-PDCCH。As a sub-embodiment of the foregoing embodiment, the T downlink physical layer control channels are respectively NR-PDCCH.
作为上述实施例的一个子实施例,所述T个下行物理层控制信道分别是NB-PDCCH。As a sub-embodiment of the foregoing embodiment, the T downlink physical layer control channels are respectively NB-PDCCH.
作为一个实施例,所述T个第二类无线信号分别在T个上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。As an embodiment, the T second-type wireless signals are respectively transmitted on T uplink physical layer data channels (that is, uplink channels that can be used to carry physical layer data).
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是PUSCH。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer data channels are PUSCHs respectively.
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是sPUSCH。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer data channels are sPUSCHs respectively.
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是NR-PUSCH。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer data channels are respectively NR-PUSCH.
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是NB-PUSCH。As a sub-embodiment of the foregoing embodiment, the T uplink physical layer data channels are respectively NB-PUSCH.
作为一个实施例,所述T个第二类无线信号对应传输信道分别是UL-SCH(UplinkShared Channel,上行共享信道)。As an embodiment, the transmission channels corresponding to the T second-type wireless signals are respectively UL-SCH (Uplink Shared Channel, uplink shared channel).
作为一个实施例,所述T个第二类无线信号中的任一第二类无线信号的调度信息包括{MCS,DMRS的配置信息,HARQ进程号,RV,NDI,所占用的时频资源,所对应的多天线相关的发送,所对应的多天线相关的接收}中的至少之一。As an embodiment, the scheduling information of any second-type wireless signal among the T second-type wireless signals includes {MCS, DMRS configuration information, HARQ process number, RV, NDI, occupied time-frequency resources, At least one of the corresponding multi-antenna correlation sending and the corresponding multi-antenna correlation reception}.
作为上述实施例的一个子实施例,所述DMRS的配置信息包括所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量(cyclic shift)和OCC中的一种或多种。As a sub-embodiment of the above-mentioned embodiment, the configuration information of the DMRS includes one of occupied time-domain resources, occupied frequency-domain resources, occupied code-domain resources, cyclic shift (cyclic shift) and OCC one or more species.
作为一个实施例,所述S个第四类无线信号中任一第四类无线信号的终止发送时刻都早于所关联到的所述S个第五类无线信号中的一个第五类无线信号的起始发送时刻。As an embodiment, the transmission termination time of any fourth-type wireless signal among the S fourth-type wireless signals is earlier than one fifth-type wireless signal among the S fifth-type wireless signals to which it is associated. The start sending time of .
作为一个实施例,所述S个第四类无线信号中的任一第四类无线信号包括DCI,所述第一节点是用户设备。As an embodiment, any fourth-type wireless signal among the S fourth-type wireless signals includes DCI, and the first node is a user equipment.
作为一个实施例,所述S个第四类无线信号分别在S个下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。As an embodiment, the S fourth type wireless signals are respectively transmitted on S downlink physical layer control channels (that is, downlink channels that can only be used to bear physical layer signaling).
作为上述实施例的一个子实施例,所述S个下行物理层控制信道分别是PDCCH。As a sub-embodiment of the foregoing embodiment, the S downlink physical layer control channels are PDCCHs respectively.
作为上述实施例的一个子实施例,所述S个下行物理层控制信道分别是sPDCCH。As a sub-embodiment of the foregoing embodiment, the S downlink physical layer control channels are respectively sPDCCHs.
作为上述实施例的一个子实施例,所述S个下行物理层控制信道分别是NR-PDCCH。As a sub-embodiment of the foregoing embodiment, the S downlink physical layer control channels are respectively NR-PDCCH.
作为上述实施例的一个子实施例,所述S个下行物理层控制信道分别是NB-PDCCH。As a sub-embodiment of the above-mentioned embodiment, the S downlink physical layer control channels are respectively NB-PDCCH.
作为一个实施例,所述S个第五类无线信号分别在S个上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。As an embodiment, the S fifth type wireless signals are respectively transmitted on S uplink physical layer data channels (that is, uplink channels that can be used to carry physical layer data).
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是PUSCH。As a sub-embodiment of the foregoing embodiment, the S uplink physical layer data channels are PUSCHs respectively.
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是sPUSCH。As a sub-embodiment of the foregoing embodiment, the S uplink physical layer data channels are respectively sPUSCH.
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是NR-PUSCH。As a sub-embodiment of the foregoing embodiment, the S uplink physical layer data channels are respectively NR-PUSCH.
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是NB-PUSCH。As a sub-embodiment of the foregoing embodiment, the S uplink physical layer data channels are respectively NB-PUSCH.
作为一个实施例,所述S个第五类无线信号对应传输信道分别是UL-SCH(UplinkShared Channel,上行共享信道)。As an embodiment, the transmission channels corresponding to the S fifth types of wireless signals are respectively UL-SCH (Uplink Shared Channel, uplink shared channel).
作为一个实施例,所述S个第五类无线信号中的任一第五类无线信号的调度信息包括{MCS,DMRS的配置信息,HARQ进程号,RV,NDI,所占用的时频资源,所对应的多天线相关的发送,所对应的多天线相关的接收}中的至少之一。As an embodiment, the scheduling information of any fifth-type wireless signal among the S fifth-type wireless signals includes {MCS, DMRS configuration information, HARQ process number, RV, NDI, occupied time-frequency resources, At least one of the corresponding multi-antenna correlation sending and the corresponding multi-antenna correlation reception}.
作为上述实施例的一个子实施例,所述DMRS的配置信息包括所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量(cyclic shift)和OCC中的一种或多种。As a sub-embodiment of the above-mentioned embodiment, the configuration information of the DMRS includes one of occupied time-domain resources, occupied frequency-domain resources, occupied code-domain resources, cyclic shift (cyclic shift) and OCC one or more species.
作为一个实施例,所述第一信息属于上行授予(UpLink Grant)的DCI。As an embodiment, the first information belongs to DCI of an uplink grant (UpLink Grant).
作为一个实施例,所述第三类无线信号所占用的频域资源属于所述第一子频带。As an embodiment, the frequency domain resource occupied by the third type of wireless signal belongs to the first sub-frequency band.
作为一个实施例,所述第三类无线信号包括数据、控制信息和参考信号中的至少之一。As an embodiment, the third type of wireless signal includes at least one of data, control information, and reference signal.
作为一个实施例,所述第三类无线信号包括数据。As an embodiment, the third type of wireless signal includes data.
作为一个实施例,所述第三类无线信号包括控制信息。As an embodiment, the third type of wireless signal includes control information.
作为一个实施例,所述第三类无线信号包括参考信号。As an embodiment, the third type of wireless signal includes a reference signal.
作为一个实施例,所述第三类无线信号包括数据,控制信息和参考信号。As an embodiment, the third type of wireless signal includes data, control information and reference signals.
作为一个实施例,所述第三类无线信号包括数据和控制信息。As an embodiment, the third type of wireless signal includes data and control information.
作为一个实施例,所述第三类无线信号包括控制信息和参考信号。As an embodiment, the third type of wireless signal includes control information and reference signals.
作为一个实施例,所述第三类无线信号包括数据和参考信号。As an embodiment, the third type of wireless signal includes data and reference signals.
作为上述实施例的一个子实施例,所述数据是上行数据,所述控制信息是UCI,所述参考信号包括DMRS、SRS(Sounding Reference Signal,探测参考信号)和PTRS中的一种或多种。As a sub-embodiment of the above-mentioned embodiment, the data is uplink data, the control information is UCI, and the reference signal includes one or more of DMRS, SRS (Sounding Reference Signal, sounding reference signal) and PTRS .
作为一个实施例,所述第三类无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。As an embodiment, the third type of wireless signal is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH。As a sub-embodiment of the foregoing embodiment, the uplink physical layer data channel is PUSCH.
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH。As a sub-embodiment of the foregoing embodiment, the uplink physical layer data channel is sPUSCH.
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH。As a sub-embodiment of the foregoing embodiment, the uplink physical layer data channel is NR-PUSCH.
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH。As a sub-embodiment of the foregoing embodiment, the uplink physical layer data channel is NB-PUSCH.
作为一个实施例,所述第三类无线信号对应传输信道是UL-SCH。As an embodiment, the transmission channel corresponding to the third type of wireless signal is UL-SCH.
实施例7Example 7
实施例7示例了一个参考时频资源块的选择的示意图,如附图7所示。Embodiment 7 illustrates a schematic diagram of selection of a reference time-frequency resource block, as shown in FIG. 7 .
在实施例7中,所述参考时频资源块的选择与本申请中的所述第一子频带和所述参考子频带中的至少之一有关;所述参考子频带的带宽等于所述参考子频带所属的载波的带宽。In Embodiment 7, the selection of the reference time-frequency resource block is related to at least one of the first sub-frequency band and the reference sub-frequency band in this application; the bandwidth of the reference sub-frequency band is equal to the reference The bandwidth of the carrier to which the subband belongs.
作为一个实施例,所述参考子频带的带宽等于所述第一子频带所属的载波的带宽。As an embodiment, the bandwidth of the reference sub-frequency band is equal to the bandwidth of the carrier to which the first sub-frequency band belongs.
作为一个实施例,所述参考子频带包括的频域资源和所述参考子频带所属的载波包括的频域资源相同。As an embodiment, the frequency domain resources included in the reference sub-frequency band are the same as the frequency domain resources included in the carrier to which the reference sub-frequency band belongs.
作为一个实施例,所述参考时频资源块的选择与所述参考子频带有关。As an embodiment, the selection of the reference time-frequency resource block is related to the reference sub-frequency band.
作为一个实施例,本申请中的所述T个子频带中的t1个子频带的带宽都等于所述参考子频带所属的载波的带宽,所述t1是不大于所述T的正整数。As an embodiment, the bandwidths of the t1 sub-bands in the T sub-bands in this application are all equal to the bandwidth of the carrier to which the reference sub-band belongs, and the t1 is a positive integer not greater than the T.
作为上述实施例的一个子实施例,所述t1大于1,所述参考时频资源块是所述t1个子频带分别对应的所述T个时频资源块中的t1个时频资源块中与所述Q个时间子池的起始时刻在时域上最接近的一个时频资源块。As a sub-embodiment of the above-mentioned embodiment, the t1 is greater than 1, and the reference time-frequency resource block is the t1 time-frequency resource block among the T time-frequency resource blocks respectively corresponding to the t1 sub-frequency bands. The start time of the Q time subpools is the closest time-frequency resource block in the time domain.
作为上述实施例的一个子实施例,所述t1等于1,所述参考时频资源块是所述t1个子频带对应的所述T个时频资源块中的t1个时频资源块。As a sub-embodiment of the foregoing embodiment, the t1 is equal to 1, and the reference time-frequency resource blocks are t1 time-frequency resource blocks among the T time-frequency resource blocks corresponding to the t1 sub-frequency bands.
实施例8Example 8
实施例8示例了另一个参考时频资源块的选择的示意图,如附图8所示。Embodiment 8 illustrates another schematic diagram of selection of reference time-frequency resource blocks, as shown in FIG. 8 .
在实施例8中,所述参考时频资源块的选择与本申请中的所述第一子频带和所述参考子频带中的至少之一有关;本申请中的所述T个时频资源块中的t个时频资源块在频域上都包括所述第一子频带,所述t是不大于所述T的正整数;所述参考时频资源块是所述t个时频资源块中的一个时频资源块。In Embodiment 8, the selection of the reference time-frequency resource block is related to at least one of the first sub-frequency band and the reference sub-frequency band in this application; the T time-frequency resources in this application The t time-frequency resource blocks in the block all include the first sub-frequency band in the frequency domain, and the t is a positive integer not greater than the T; the reference time-frequency resource block is the t time-frequency resource A block of time-frequency resources in the block.
作为一个实施例,所述参考时频资源块的选择与所述第一子频带和所述参考子频带有关。As an embodiment, the selection of the reference time-frequency resource block is related to the first sub-frequency band and the reference sub-frequency band.
作为一个实施例,所述t等于1,所述参考时频资源块是所述t个时频资源块。As an embodiment, the t is equal to 1, and the reference time-frequency resource blocks are the t time-frequency resource blocks.
作为一个实施例,所述t大于1,所述参考时频资源块是所述t个时频资源块中与所述Q个时间子池的起始时刻在时域上最接近的一个时频资源块。As an embodiment, the t is greater than 1, and the reference time-frequency resource block is a time-frequency resource block that is closest to the starting moment of the Q time subpools in the time domain among the t time-frequency resource blocks resource blocks.
作为一个实施例,所述t大于1,所述参考时频资源块是所述t个时频资源块中对应的起始时刻与所述Q个时间子池的起始时刻在时域上最接近的一个时频资源块。As an embodiment, the t is greater than 1, and the reference time-frequency resource block is the closest in the time domain between the start time corresponding to the t time-frequency resource blocks and the start time of the Q time subpools A time-frequency resource block that is close to each other.
实施例9Example 9
实施例9示例了另一个参考时频资源块的选择的示意图,如附图9所示。Embodiment 9 illustrates another schematic diagram of selection of reference time-frequency resource blocks, as shown in FIG. 9 .
在实施例9中,所述参考时频资源块的选择与本申请中的所述第一子频带和所述参考子频带中的至少之一有关;本申请中的所述T个时频资源块中的t个时频资源块在频域上都包括所述第一子频带,所述t是不大于所述T的正整数;所述t个时频资源块中的t1个时频资源块分别包括的频域资源都和所述第一子频带包括的频域资源相同,所述t1是不大于所述t的正整数,所述参考时频资源块是所述t1个时频资源块中的一个时频资源块;或者,所述t个时频资源块中任一时频资源块包括的频域资源都和所述第一子频带包括的频域资源不完全相同,所述参考时频资源块是所述t个时频资源块中的一个时频资源块。In Embodiment 9, the selection of the reference time-frequency resource block is related to at least one of the first sub-frequency band and the reference sub-frequency band in this application; the T time-frequency resources in this application The t time-frequency resource blocks in the block all include the first sub-frequency band in the frequency domain, and the t is a positive integer not greater than the T; the t1 time-frequency resources in the t time-frequency resource blocks The frequency domain resources included in each block are the same as the frequency domain resources included in the first sub-frequency band, the t1 is a positive integer not greater than the t, and the reference time-frequency resource block is the t1 time-frequency resources one time-frequency resource block in the block; or, the frequency-domain resources included in any time-frequency resource block among the t time-frequency resource blocks are not exactly the same as the frequency-domain resources included in the first sub-frequency band, and the reference The time-frequency resource block is one of the t time-frequency resource blocks.
作为一个实施例,所述t个时频资源块中的t1个时频资源块分别包括的频域资源都和所述第一子频带包括的频域资源相同,所述t1等于1,所述参考时频资源块是所述t1个时频资源块。As an embodiment, the frequency domain resources included in the t1 time-frequency resource blocks in the t time-frequency resource blocks are the same as the frequency domain resources included in the first sub-frequency band, the t1 is equal to 1, and the The reference time-frequency resource blocks are the t1 time-frequency resource blocks.
作为一个实施例,所述t个时频资源块中的t1个时频资源块分别包括的频域资源都和所述第一子频带包括的频域资源相同,所述t1大于1,所述参考时频资源块是所述t1个时频资源块中与所述Q个时间子池的起始时刻在时域上最接近的一个时频资源块。As an embodiment, the frequency domain resources included in the t1 time-frequency resource blocks in the t time-frequency resource blocks are the same as the frequency domain resources included in the first sub-frequency band, the t1 is greater than 1, and the The reference time-frequency resource block is a time-frequency resource block closest in time domain to the starting moment of the Q time subpools among the t1 time-frequency resource blocks.
作为一个实施例,所述t个时频资源块中的t1个时频资源块分别包括的频域资源都和所述第一子频带包括的频域资源相同,所述t 1大于1,所述参考时频资源块是所述t1个时频资源块中对应的起始时刻与所述Q个时间子池的起始时刻在时域上最接近的一个时频资源块。As an embodiment, the frequency domain resources included in the t1 time-frequency resource blocks in the t time-frequency resource blocks are the same as the frequency domain resources included in the first sub-frequency band, and the t1 is greater than 1, so The reference time-frequency resource block is a time-frequency resource block whose corresponding starting time is closest to the starting time of the Q time subpools in the time domain among the t1 time-frequency resource blocks.
作为一个实施例,所述t个时频资源块中任一时频资源块包括的频域资源都和所述第一子频带包括的频域资源不完全相同,所述t等于1,所述参考时频资源块是所述t个时频资源块。As an embodiment, the frequency domain resources included in any time-frequency resource block among the t time-frequency resource blocks are not exactly the same as the frequency domain resources included in the first sub-frequency band, the t is equal to 1, and the reference The time-frequency resource blocks are the t time-frequency resource blocks.
作为一个实施例,所述t个时频资源块中任一时频资源块包括的频域资源都和所述第一子频带包括的频域资源不完全相同,所述t大于1,所述参考时频资源块是所述t个时频资源块中与所述Q个时间子池的起始时刻在时域上最接近的一个时频资源块。As an embodiment, the frequency domain resources included in any time-frequency resource block among the t time-frequency resource blocks are not exactly the same as the frequency domain resources included in the first sub-frequency band, the t is greater than 1, and the reference The time-frequency resource block is the closest time-frequency resource block in the time domain to the starting moment of the Q time subpools among the t time-frequency resource blocks.
作为一个实施例,所述t个时频资源块中任一时频资源块包括的频域资源都和所述第一子频带包括的频域资源不完全相同,所述t大于1,所述参考时频资源块是所述t个时频资源块中对应的起始时刻与所述Q个时间子池的起始时刻在时域上最接近的一个时频资源块。As an embodiment, the frequency domain resources included in any time-frequency resource block among the t time-frequency resource blocks are not exactly the same as the frequency domain resources included in the first sub-frequency band, the t is greater than 1, and the reference The time-frequency resource block is a time-frequency resource block whose corresponding start time is closest to the start time of the Q time subpools in the time domain among the t time-frequency resource blocks.
实施例10Example 10
实施例10示例了一个J个给定第一无线信号、J个给定第二无线信号和Q的关系的示意图,如附图10所示。Embodiment 10 illustrates a schematic diagram of the relationship between J given first wireless signals, J given second wireless signals and Q, as shown in FIG. 10 .
在实施例10中,本申请中的所述第一节点是基站,所述J个给定第一无线信号分别指示所述J个给定第二无线信号是否被正确接收;所述J个给定第二无线信号包括Y个子信号,所述J个给定第一无线信号指示所述Y个子信号中任一子信号是否被正确接收,所述Y是不小于所述J的正整数;所述Y个子信号是否被正确接收被用于确定所述Q。所述J个给定第一无线信号对应本申请中的所述参考第一类无线信号,所述J个给定第二无线信号对应本申请中的所述参考第二类无线信号,所述Y个子信号对应本申请中的所述W个子信号,所述J等于1,所述Y等于所述W;或者,所述J个给定第一无线信号包括本申请中的所述S个第四类无线信号和所述参考第一类无线信号,所述J个给定第二无线信号包括本申请中的所述S个第五类无线信号和所述参考第二类无线信号,所述Y个子信号包括本申请中的所述W1个子信号和所述W个子信号,所述J等于所述S和1之和,所述Y等于所述W1和所述W之和。In Embodiment 10, the first node in this application is a base station, and the J given first wireless signals respectively indicate whether the J given second wireless signals are received correctly; the J given The second wireless signal includes Y sub-signals, the J given first wireless signals indicate whether any sub-signal in the Y sub-signals is correctly received, and the Y is a positive integer not less than the J; Whether the Y sub-signals are received correctly is used to determine the Q. The J given first wireless signals correspond to the reference first-type wireless signals in this application, the J given second wireless signals correspond to the reference second-type wireless signals in this application, and the The Y sub-signals correspond to the W sub-signals in this application, the J is equal to 1, and the Y is equal to the W; or, the J given first wireless signals include the S-th sub-signals in this application Four types of wireless signals and the reference first type wireless signal, the J given second wireless signals include the S fifth type wireless signals in this application and the reference second type wireless signal, the The Y sub-signals include the W1 sub-signals and the W sub-signals in this application, the J is equal to the sum of the S and 1, and the Y is equal to the sum of the W1 and the W.
作为一个实施例,所述Y等于所述J,所述J个给定第一无线信号分别指示所述Y个子信号是否被正确接收。As an embodiment, the Y is equal to the J, and the J given first wireless signals respectively indicate whether the Y sub-signals are received correctly.
作为一个实施例,所述Y大于所述J,所述J个给定第二无线信号中至少存在一个给定第二无线信号包括多个子信号。As an embodiment, the Y is greater than the J, and at least one given second wireless signal among the J given second wireless signals includes multiple sub-signals.
作为一个实施例,所述Y大于所述J,所述J个给定第二无线信号中任一给定第二无线信号包括多个子信号。As an embodiment, the Y is greater than the J, and any given second wireless signal among the J given second wireless signals includes multiple sub-signals.
作为一个实施例,第一参考无线信号包括Y2个子信号,所述第一参考无线信号是所述J个给定第二无线信号中任一给定第二无线信号,所述Y2个子信号属于所述Y个子信号。As an embodiment, the first reference radio signal includes Y2 sub-signals, the first reference radio signal is any given second radio signal among the J given second radio signals, and the Y2 sub-signals belong to all Said Y sub-signals.
作为上述实施例的一个子实施例,所述Y2大于1,所述Y2个子信号都占用相同的时域资源。As a sub-embodiment of the foregoing embodiment, the Y2 is greater than 1, and the Y2 sub-signals all occupy the same time-domain resource.
作为上述实施例的一个子实施例,所述Y2大于1,至少一个多载波符号被所述Y2个子信号都占用。As a sub-embodiment of the foregoing embodiment, the Y2 is greater than 1, and at least one multi-carrier symbol is occupied by the Y2 sub-signals.
作为上述实施例的一个子实施例,所述Y2大于1,所述Y2个子信号都占用相同的频域资源。As a sub-embodiment of the foregoing embodiment, the Y2 is greater than 1, and the Y2 sub-signals all occupy the same frequency domain resource.
作为上述实施例的一个子实施例,所述Y2大于1,至少一个子载波被所述Y2个子信号都占用。As a sub-embodiment of the foregoing embodiment, the Y2 is greater than 1, and at least one subcarrier is occupied by all the Y2 sub-signals.
作为上述实施例的一个子实施例,所述Y2是不大于2的正整数。As a sub-embodiment of the above-mentioned embodiment, the Y2 is a positive integer not greater than 2.
作为上述实施例的一个子实施例,所述Y2等于1。As a sub-embodiment of the above-mentioned embodiment, the Y2 is equal to 1.
作为上述实施例的一个子实施例,所述Y2等于2。As a sub-embodiment of the above-mentioned embodiment, the Y2 is equal to 2.
作为上述实施例的一个子实施例,所述Y2等于所述第一参考无线信号的码字(codeword)的数目。As a sub-embodiment of the foregoing embodiment, the Y2 is equal to the number of codewords (codewords) of the first reference wireless signal.
作为上述实施例的一个子实施例,所述第一参考无线信号包括Y2个码字,所述Y2个子信号分别和所述Y2个码字对应。As a sub-embodiment of the foregoing embodiment, the first reference wireless signal includes Y2 codewords, and the Y2 sub-signals correspond to the Y2 codewords respectively.
作为上述实施例的一个子实施例,所述Y2大于1,所述Y2个子信号分别占用互不相同的天线端口或天线端口组。As a sub-embodiment of the foregoing embodiment, the Y2 is greater than 1, and the Y2 sub-signals respectively occupy different antenna ports or antenna port groups.
作为上述实施例的一个子实施例,所述第一参考无线信号对应的所述J个给定第一无线信号中的一个给定第一无线信号包括Y2个第一子信号,所述Y2个第一子信号分别被用于确定所述Y2个子信号是否被正确接收。As a sub-embodiment of the above-mentioned embodiment, one given first wireless signal among the J given first wireless signals corresponding to the first reference wireless signal includes Y2 first sub-signals, and the Y2 The first sub-signals are respectively used to determine whether the Y2 sub-signals are received correctly.
作为一个实施例,第一比值等于所述Y个子信号中没有被正确接收的子信号的数量和所述Y的比值,所述第一比值被用于确定所述Q。As an embodiment, the first ratio is equal to the ratio of the number of sub-signals that are not correctly received among the Y sub-signals to the ratio of Y, and the first ratio is used to determine the Q.
作为一个实施例,所述实施例10A对应所述Y等于所述J或者所述Y大于所述J,所述J个给定第一无线信号总共包括Y个HARQ-ACK反馈,所述Y个HARQ-ACK反馈分别对应所述Y个子信号,所述Y个HARQ-ACK反馈中的任一HARQ-ACK反馈的取值属于{ACK(ACKnowledgement,确认),NACK(Negative ACKnowledgement,否认)}中之一,第一比值等于所述Y个HARQ-ACK反馈中NACK的数量和所述Y的比值的所述J个给定第一无线信号、所述J个给定第二无线信号和所述Q的关系的示意图。As an example, in the embodiment 10A, corresponding to the Y equal to the J or the Y greater than the J, the J given first wireless signals include a total of Y HARQ-ACK feedbacks, and the Y The HARQ-ACK feedback corresponds to the Y sub-signals respectively, and the value of any HARQ-ACK feedback in the Y HARQ-ACK feedbacks belongs to {ACK (ACKnowledgement, confirmation), NACK (Negative ACKnowledgment, denial)} One, the first ratio is equal to the ratio of the number of NACKs in the Y HARQ-ACK feedback to the Y ratio of the J given first radio signals, the J given second radio signals, and the Q A schematic diagram of the relationship.
作为一个实施例,所述Y大于所述J,所述Y个子信号是否被正确接收被用于确定J个第一统计值,所述J个第一统计值分别指示所述J个给定第二无线信号是否被统计为正确接收,所述J个第一统计值被用于确定所述Q。As an embodiment, the Y is greater than the J, and whether the Y sub-signals are received correctly is used to determine J first statistical values, and the J first statistical values respectively indicate that the J given th Whether the two wireless signals are statistically received correctly, the J first statistical values are used to determine the Q.
作为上述实施例的一个子实施例,第一参考无线信号是所述J个给定第二无线信号中任一给定第二无线信号,所述Y个子信号中被所述第一参考无线信号包括的所有子信号全部都被正确接收,所述第一参考无线信号被统计为正确接收。As a sub-embodiment of the above-mentioned embodiment, the first reference wireless signal is any given second wireless signal in the J given second wireless signals, and the Y sub-signals are replaced by the first reference wireless signal All included sub-signals are all received correctly, and the first reference wireless signal is counted as correctly received.
作为上述实施例的一个子实施例,第一参考无线信号是所述J个给定第二无线信号中任一给定第二无线信号,所述Y个子信号中被所述第一参考无线信号包括的所有子信号中至少一个子信号没有被正确接收,所述第一参考无线信号被统计为没有正确接收。As a sub-embodiment of the above-mentioned embodiment, the first reference wireless signal is any given second wireless signal in the J given second wireless signals, and the Y sub-signals are replaced by the first reference wireless signal At least one sub-signal among all included sub-signals is incorrectly received, and the first reference wireless signal is counted as incorrectly received.
作为一个实施例,所述Y大于所述J,所述Y个子信号是否被正确接收被用于确定J个第一统计值,所述J个第一统计值分别指示所述J个给定第二无线信号是否被统计为正确接收,第一比值等于所述J个第一统计值指示的所述J个给定第二无线信号中被统计为没有正确接收的给定第二无线信号的数量和所述J的比值,所述第一比值被用于确定所述Q。As an embodiment, the Y is greater than the J, and whether the Y sub-signals are received correctly is used to determine J first statistical values, and the J first statistical values respectively indicate that the J given th Whether the two wireless signals are counted as correctly received, the first ratio is equal to the number of the given second wireless signals counted as incorrectly received among the J given second wireless signals indicated by the J first statistical values and said J ratio, said first ratio is used to determine said Q.
作为一个实施例,所述实施例10B对应所述Y大于所述J,所述J个给定第一无线信号总共包括Y个HARQ-ACK反馈,所述Y个HARQ-ACK反馈分别对应所述Y个子信号,所述Y个HARQ-ACK反馈中的任一HARQ-ACK反馈的取值属于{ACK,NACK}中之一;所述Y个HARQ-ACK反馈被用于确定J个第一统计值,所述J个第一统计值中的任一第一统计值的取值属于{ACK,NACK}中之一;第一比值等于所述J个第一统计值中NACK的数量和所述J的比值的所述J个给定第一无线信号、所述J个给定第二无线信号和所述Q的关系的示意图。As an example, the embodiment 10B corresponds to the fact that the Y is greater than the J, and the J given first wireless signals include a total of Y HARQ-ACK feedbacks, and the Y HARQ-ACK feedbacks respectively correspond to the Y sub-signals, the value of any HARQ-ACK feedback in the Y HARQ-ACK feedbacks belongs to one of {ACK, NACK}; the Y HARQ-ACK feedbacks are used to determine J first statistics value, the value of any first statistical value in the J first statistical values belongs to one of {ACK, NACK}; the first ratio is equal to the number of NACKs in the J first statistical values and the A schematic diagram of the relationship between the J given first wireless signals, the J given second wireless signals, and the Q of the ratio of J.
实施例11Example 11
实施例11示例了另一个J个给定第三无线信号、J个给定第四无线信号和Q的关系的示意图,如附图11所示。Embodiment 11 illustrates another schematic diagram of the relationship between J given third wireless signals, J given fourth wireless signals and Q, as shown in FIG. 11 .
在实施例11中,本申请中的所述第一节点是用户设备,所述J个给定第三无线信号分别包括J个第二信息,所述J个第二信息分别包括所述J个给定第四无线信号的调度信息;所述J个给定第四无线信号包括Z个子信号,所述J个第二信息指示所述Z个子信号中任一子信号是否包括新数据,所述Z是不小于所述J的正整数;所述Z个子信号是否包括新数据被用于确定所述Q。所述J个给定第三无线信号对应本申请中的所述参考第一类无线信号,所述J个给定第四无线信号对应本申请中的所述参考第二类无线信号,所述Z个子信号对应本申请中的所述V个子信号,所述J等于1,所述Z等于所述V;或者,所述J个给定第三无线信号包括本申请中的所述S个第四类无线信号和所述参考第一类无线信号,所述J个给定第四无线信号包括本申请中的所述S个第五类无线信号和所述参考第二类无线信号,所述Z个子信号包括本申请中的所述V1个子信号和所述V个子信号,所述J等于所述S和1之和,所述Z等于所述V1和所述V之和。In embodiment 11, the first node in this application is a user equipment, and the J given third wireless signals respectively include J pieces of second information, and the J pieces of second information respectively include the J pieces of Scheduling information of a given fourth wireless signal; the J given fourth wireless signals include Z sub-signals, and the J pieces of second information indicate whether any sub-signal in the Z sub-signals includes new data, the Z is a positive integer not less than the J; whether the Z sub-signals include new data is used to determine the Q. The J given third wireless signals correspond to the reference first-type wireless signals in this application, the J given fourth wireless signals correspond to the reference second-type wireless signals in this application, and the The Z sub-signals correspond to the V sub-signals in this application, the J is equal to 1, and the Z is equal to the V; or, the J given third wireless signals include the S-th sub-signals in this application Four types of wireless signals and the reference first type wireless signal, the J given fourth wireless signals include the S fifth type wireless signals in this application and the reference second type wireless signal, the The Z sub-signals include the V1 sub-signals and the V sub-signals in this application, the J is equal to the sum of the S and 1, and the Z is equal to the sum of the V1 and the V.
作为一个实施例,所述J个第二信息中的每一个第二信息都由动态信令承载。As an embodiment, each second information in the J pieces of second information is carried by dynamic signaling.
作为一个实施例,所述J个第二信息中的每一个第二信息都由物理层信令承载。As an embodiment, each second information in the J pieces of second information is carried by physical layer signaling.
作为一个实施例,所述J个第二信息中的每一个第二信息都由用于上行授予的动态信令承载。As an embodiment, each second information in the J pieces of second information is carried by dynamic signaling for uplink grant.
作为一个实施例,所述J个第二信息中的每一个第二信息都由DCI(DownlinkControl Information,下行控制信息)信令承载。As an embodiment, each second information in the J pieces of second information is carried by DCI (Downlink Control Information, downlink control information) signaling.
作为一个实施例,所述J个第二信息中的每一个第二信息都由上行授予(UpLinkGrant)DCI信令承载。As an embodiment, each second information in the J pieces of second information is carried by uplink grant (UpLinkGrant) DCI signaling.
作为一个实施例,给定第二信息是所述J个第二信息中的任一第二信息,所述给定第二信息包括第一域,所述给定第二信息包括的所述第一域指示对应的所述J个给定第四无线信号中的一个给定第二无线信号包括的每个子信号是否包括新数据。As an embodiment, the given second information is any second information among the J pieces of second information, the given second information includes the first field, and the given second information includes the first A field indicates whether each sub-signal included in a given second radio signal among the corresponding J given fourth radio signals includes new data.
作为上述实施例的一个子实施例,所述给定第二信息包括的所述第一域是NDI(New Data Indicator,新数据指示)。As a sub-embodiment of the foregoing embodiment, the first field included in the given second information is NDI (New Data Indicator, new data indication).
作为上述实施例的一个子实施例,所述给定第二信息包括的所述第一域包括正整数个比特。As a sub-embodiment of the foregoing embodiment, the first field included in the given second information includes a positive integer number of bits.
作为上述实施例的一个子实施例,所述给定第二信息包括的所述第一域包括1比特。As a sub-embodiment of the foregoing embodiment, the first field included in the given second information includes 1 bit.
作为上述实施例的一个子实施例,所述给定第二信息包括的所述第一域包括2比特。As a sub-embodiment of the foregoing embodiment, the first field included in the given second information includes 2 bits.
作为一个实施例,所述Z等于所述J,所述J个给定第三无线信号分别指示所述Z个子信号是否被正确接收。As an embodiment, the Z is equal to the J, and the J given third wireless signals respectively indicate whether the Z sub-signals are received correctly.
作为一个实施例,所述Z等于所述J,所述J个第二信息分别指示所述Z个子信号是否被正确接收。As an embodiment, the Z is equal to the J, and the J pieces of second information respectively indicate whether the Z sub-signals are received correctly.
作为一个实施例,所述Z大于所述J,所述J个给定第四无线信号中至少存在一个给定第二无线信号包括多个子信号。As an embodiment, the Z is greater than the J, and at least one given second radio signal among the J given fourth radio signals includes multiple sub-signals.
作为一个实施例,所述Z大于所述J,所述J个给定第四无线信号中至少存在一个给定第二无线信号包括多个子信号。As an embodiment, the Z is greater than the J, and at least one given second radio signal among the J given fourth radio signals includes multiple sub-signals.
作为一个实施例,所述Z大于所述J,所述J个给定第四无线信号中任一给定第二无线信号包括多个子信号。As an embodiment, the Z is greater than the J, and any given second wireless signal among the J given fourth wireless signals includes multiple sub-signals.
作为一个实施例,第二参考无线信号包括Z2个子信号,所述第二参考无线信号是所述J个给定第四无线信号中任一给定第二无线信号,所述Z2个子信号属于所述Z个子信号。As an embodiment, the second reference radio signal includes Z2 sub-signals, the second reference radio signal is any given second radio signal in the J given fourth radio signals, and the Z2 sub-signals belong to all The Z sub-signals.
作为上述实施例的一个子实施例,所述Z2大于1,所述Z2个子信号都占用相同的时域资源。As a sub-embodiment of the foregoing embodiment, the Z2 is greater than 1, and the Z2 sub-signals all occupy the same time-domain resource.
作为上述实施例的一个子实施例,所述Z2大于1,至少一个多载波符号被所述Z2个子信号都占用。As a sub-embodiment of the foregoing embodiment, the Z2 is greater than 1, and at least one multi-carrier symbol is occupied by all the Z2 sub-signals.
作为上述实施例的一个子实施例,所述Z2大于1,所述Z2个子信号都占用相同的频域资源。As a sub-embodiment of the foregoing embodiment, the Z2 is greater than 1, and the Z2 sub-signals all occupy the same frequency domain resource.
作为上述实施例的一个子实施例,所述Z2大于1,至少一个子载波被所述Z2个子信号都占用。As a sub-embodiment of the foregoing embodiment, the Z2 is greater than 1, and at least one subcarrier is occupied by all the Z2 sub-signals.
作为上述实施例的一个子实施例,所述Z2是不大于2的正整数。As a sub-embodiment of the above-mentioned embodiment, the Z2 is a positive integer not greater than 2.
作为上述实施例的一个子实施例,所述Z2等于1。As a sub-embodiment of the above-mentioned embodiment, the Z2 is equal to 1.
作为上述实施例的一个子实施例,所述Z2等于2。As a sub-embodiment of the above-mentioned embodiment, the Z2 is equal to 2.
作为上述实施例的一个子实施例,所述Z2等于所述第二参考无线信号的码字(codeword)的数目。As a sub-embodiment of the foregoing embodiment, the Z2 is equal to the number of codewords (codewords) of the second reference wireless signal.
作为上述实施例的一个子实施例,所述第二参考无线信号包括Z2个码字,所述Z2个子信号分别和所述Z2个码字对应。As a sub-embodiment of the foregoing embodiment, the second reference wireless signal includes Z2 codewords, and the Z2 sub-signals correspond to the Z2 codewords respectively.
作为上述实施例的一个子实施例,所述Z2大于1,所述Z2个子信号分别占用互不相同的天线端口或天线端口组。As a sub-embodiment of the foregoing embodiment, the Z2 is greater than 1, and the Z2 sub-signals respectively occupy different antenna ports or antenna port groups.
作为上述实施例的一个子实施例,所述第二参考无线信号对应的所述J个第二信息中的一个第二信息指示所述Z2个子信号中的每一个子信号是否包括新数据。As a sub-embodiment of the foregoing embodiment, one of the J pieces of second information corresponding to the second reference wireless signal indicates whether each of the Z2 sub-signals includes new data.
作为一个实施例,第一数值等于所述Z个子信号中包括新数据的子信号的数量,所述第一数值被用于确定所述Q。As an embodiment, the first value is equal to the number of sub-signals including new data among the Z sub-signals, and the first value is used to determine the Q.
作为一个实施例,所述实施例11A对应第一数值等于所述Z个子信号中包括新数据的子信号的数量的所述J个给定第三无线信号、所述J个给定第四无线信号和所述Q的关系的示意图。As an example, the embodiment 11A corresponds to the J given third radio signals and the J given fourth radio signals whose first value is equal to the number of sub-signals including new data among the Z sub-signals. Schematic diagram of the relationship between signal and Q.
作为一个实施例,第一数值等于所述Z个子信号中包括新数据的子信号的数量与所述Z的比值,所述第一数值被用于确定所述Q。As an embodiment, the first value is equal to the ratio of the number of sub-signals including new data among the Z sub-signals to the Z ratio, and the first value is used to determine the Q.
作为一个实施例,所述实施例11B对应第一数值等于所述Z个子信号中包括新数据的子信号的数量与所述Z的比值的所述J个给定第三无线信号、所述J个给定第四无线信号和所述Q的关系的示意图。As an example, the embodiment 11B corresponds to the J given third wireless signals whose first value is equal to the ratio of the number of sub-signals including new data among the Z sub-signals to the Z ratio, and the J A schematic diagram of the relationship between a given fourth wireless signal and the Q.
作为一个实施例,所述Z大于所述J,所述Z个子信号是否包括新数据被用于确定J个第二统计值,所述J个第二统计值分别指示所述J个给定第四无线信号是否被统计为包括新数据,所述J个第二统计值被用于确定所述Q。As an embodiment, the Z is greater than the J, whether the Z sub-signals include new data is used to determine J second statistical values, and the J second statistical values respectively indicate the J given th Whether the four wireless signals are counted as including new data, the J second statistical values are used to determine the Q.
作为上述实施例的一个子实施例,第二参考无线信号是所述J个给定第四无线信号中任一给定第二无线信号,所述Z个子信号中被所述第二参考无线信号包括的所有子信号全部都包括新数据,所述第二参考无线信号被统计为包括新数据。As a sub-embodiment of the above-mentioned embodiment, the second reference wireless signal is any given second wireless signal in the J given fourth wireless signals, and the Z sub-signals are replaced by the second reference wireless signal All included sub-signals include new data, and the second reference radio signal is counted as including new data.
作为上述实施例的一个子实施例,第二参考无线信号是所述J个给定第四无线信号中任一给定第二无线信号,所述Z个子信号中被所述第二参考无线信号包括的所有子信号中至少一个子信号包括新数据,所述第二参考无线信号被统计为包括新数据。As a sub-embodiment of the above-mentioned embodiment, the second reference wireless signal is any given second wireless signal in the J given fourth wireless signals, and the Z sub-signals are replaced by the second reference wireless signal At least one sub-signal among all included sub-signals includes new data, and the second reference wireless signal is counted as including new data.
作为上述实施例的一个子实施例,第二参考无线信号是所述J个给定第四无线信号中任一给定第二无线信号,所述Z个子信号中被所述第二参考无线信号包括的所有子信号中至少一个子信号不包括新数据,所述第二参考无线信号被统计为不包括新数据。As a sub-embodiment of the above-mentioned embodiment, the second reference wireless signal is any given second wireless signal in the J given fourth wireless signals, and the Z sub-signals are replaced by the second reference wireless signal At least one sub-signal among all included sub-signals does not include new data, and the second reference wireless signal is counted as not including new data.
作为一个实施例,第一数值等于所述J个第二统计值指示的所述J个给定第四无线信号中被统计为包括新数据的给定第二无线信号的数量,所述第一数值被用于确定所述Q。As an embodiment, the first value is equal to the number of given second radio signals counted as including new data among the J given fourth radio signals indicated by the J second statistical values, and the first Numerical values are used to determine the Q.
作为一个实施例,所述实施例11C对应所述J个第二统计值中的任一第二统计值的取值属于{包括新数据,不包括新数据}中之一,第一数值等于所述J个第二统计值中取值为包括新数据的第二统计值的数量的所述J个给定第三无线信号、所述J个给定第四无线信号和所述Q的关系的示意图。As an example, in the embodiment 11C, the value corresponding to any second statistical value among the J second statistical values belongs to one of {including new data, excluding new data}, and the first value is equal to all The relationship between the J given third wireless signals, the J given fourth wireless signals, and the Q of the number of second statistical values including new data in the J second statistical values schematic diagram.
作为一个实施例,第一数值等于所述J个第二统计值指示的所述J个给定第四无线信号中被统计为包括新数据的给定第二无线信号的数量与所述J的比值,所述第一数值被用于确定所述Q。As an embodiment, the first value is equal to the number of given second wireless signals counted as including new data among the J given fourth wireless signals indicated by the J second statistical values and the J Ratio, the first value is used to determine the Q.
作为一个实施例,所述实施例11D对应所述J个第二统计值中的任一第二统计值的取值属于{包括新数据,不包括新数据}中之一,第一数值等于所述J个第二统计值中取值为包括新数据的第二统计值的数量与所述J的比值的所述J个给定第三无线信号、所述J个给定第四无线信号和所述Q的关系的示意图。As an example, in the embodiment 11D, the value corresponding to any second statistical value among the J second statistical values belongs to one of {including new data, excluding new data}, and the first value is equal to all The J given third wireless signals, the J given fourth wireless signals and Schematic representation of the Q relationship.
实施例12Example 12
实施例12示例了一个参考第一类无线信号被用于确定Q的示意图,如附图12所示。
在实施例12中,所述参考第一类无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;本申请中的所述Q个检测值中的Q1个检测值均低于本申请中的所述第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。In
作为一个实施例,所述参考第一类无线信号和本申请中的所述S个第四类无线信号共同被用于确定所述K个备选整数。As an embodiment, the reference first type wireless signal and the S fourth type wireless signals in this application are jointly used to determine the K candidate integers.
作为一个实施例,本申请中的所述第一节点在所述K个备选整数中随机选取所述Q1的值。As an embodiment, the first node in this application randomly selects the value of Q1 from the K candidate integers.
作为一个实施例,本申请中的所述第一节点在所述K个备选整数中选取任一备选整数作为所述Q1的值的概率都相等。As an embodiment, the probability that the first node in this application selects any candidate integer from the K candidate integers as the value of Q1 is equal.
作为一个实施例,所述K个备选整数为0,1,2,…,K-1。As an embodiment, the K optional integers are 0, 1, 2, ..., K-1.
作为一个实施例,所述K是CWp,所述CWp是竞争窗口(contention window)的大小,所述CWp的具体定义参见3GPP TS36.213中的15章节。As an embodiment, the K is CWp, and the CWp is the size of a contention window. For a specific definition of the CWp, refer to
作为一个实施例,所述K个备选整数中的任一备选整数为非负整数。As an embodiment, any candidate integer among the K candidate integers is a non-negative integer.
作为一个实施例,所述K个备选整数中包括0。As an embodiment, the K optional integers include 0.
作为一个实施例,所述K个备选整数中的任意两个备选整数不等。As an example, any two of the K candidate integers are not equal.
作为一个实施例,所述K为一个大于1的正整数。As an embodiment, the K is a positive integer greater than 1.
实施例13Example 13
实施例13示例了一个J个给定第五无线信号被用于确定K个备选整数的示意图,如附图13所示。Embodiment 13 illustrates a schematic diagram in which J given fifth wireless signals are used to determine K candidate integers, as shown in FIG. 13 .
在实施例13中,所述K是第一整数集合中的一个正整数,所述第一整数集合中包括正整数个正整数;如果第一条件满足,所述K等于K1,否则所述K等于所述第一整数集合中的最小正整数;如果K0不是所述第一整数集合中的最大正整数,所述K1等于所述第一整数集合中大于所述K0的最小正整数,否则所述K1等于所述K0;所述K0为所述第一整数集合中的一个正整数。本申请中的所述Q1是所述K个备选整数中的一个备选整数;本申请中的所述Q个检测值中的Q1个检测值均低于本申请中的所述第一阈值;本申请中的所述第一节点是基站;所述第一条件是:J个给定第五无线信号对应的给定比值不小于第一目标数值;所述J个给定第五无线信号对应本申请中的所述参考第一类无线信号,或者,所述J个给定第五无线信号对应本申请中的所述参考第一类无线信号和所述S个第四类无线信号;所述给定比值对应本申请中的所述第一比值。In Embodiment 13, the K is a positive integer in the first set of integers, and the first set of integers includes positive integers; if the first condition is met, the K is equal to K1, otherwise the K equal to the smallest positive integer in the first set of integers; if K0 is not the largest positive integer in the first set of integers, the K1 is equal to the smallest positive integer greater than the K0 in the first set of integers, otherwise the The K1 is equal to the K0; the K0 is a positive integer in the first set of integers. The Q1 in the present application is an optional integer among the K candidate integers; the Q1 detected values in the Q detected values in the present application are all lower than the first threshold in the present application ; The first node in this application is a base station; the first condition is: the given ratio corresponding to the J given fifth wireless signals is not less than the first target value; the J given fifth wireless signals Corresponding to the reference first-type wireless signals in this application, or, the J given fifth wireless signals correspond to the reference first-type wireless signals and the S fourth-type wireless signals in this application; The given ratio corresponds to the first ratio in this application.
在附图13中,所述第一整数集合是{15,31,63},所述K0等于31,所述K1等于63。如果所述给定比值不小于所述第一目标数值,所述K等于所述K1;否则所述K等于15。In FIG. 13 , the first set of integers is {15, 31, 63}, the K0 is equal to 31, and the K1 is equal to 63. If the given ratio is not less than the first target value, the K is equal to the K1; otherwise, the K is equal to 15.
作为一个实施例,本申请中的所述第三类无线信号所对应的优先等级被用于确定所述第一整数集合。As an embodiment, the priority level corresponding to the third type of wireless signal in this application is used to determine the first integer set.
作为上述实施例的一个子实施例,所述第三类无线信号所对应的优先等级是3。As a sub-embodiment of the foregoing embodiment, the priority level corresponding to the third type of wireless signal is 3.
作为一个实施例,所述K0为所述Q个时间子池之前最近的一次Cat 4的LBT过程中的CWp,所述CWp是竞争窗口(contention window)的大小,所述CWp的具体定义参见3GPPTS36.213中的15章节。As an embodiment, the K0 is the CWp in the latest Cat 4 LBT process before the Q time subpools, and the CWp is the size of a contention window. For the specific definition of the CWp, refer to 3GPPTS36 15 chapters in .213.
作为一个实施例,所述第一目标数值是预定义的。As an embodiment, the first target value is predefined.
作为一个实施例,所述第一目标数值非负实数。As an embodiment, the first target value is a non-negative real number.
作为一个实施例,所述第一目标数值等于80%。As an example, the first target value is equal to 80%.
实施例14Example 14
实施例14示例了另一个J个给定第六无线信号被用于确定K个备选整数的示意图,如附图14所示。Embodiment 14 illustrates another schematic diagram in which J given sixth wireless signals are used to determine K candidate integers, as shown in FIG. 14 .
在实施例14中,所述K是第一整数集合中的一个正整数,所述第一整数集合中包括正整数个正整数;如果第二条件满足,所述K等于K1,否则所述K等于所述第一整数集合中的最小正整数;如果K0不是所述第一整数集合中的最大正整数,所述K1等于所述第一整数集合中大于所述K0的最小正整数,否则所述K1等于所述K0;所述K0为所述第一整数集合中的一个正整数。本申请中的所述Q1是所述K个备选整数中的一个备选整数;本申请中的所述Q个检测值中的Q1个检测值均低于本申请中的所述第一阈值。In Embodiment 14, the K is a positive integer in the first set of integers, and the first set of integers includes positive integers; if the second condition is met, the K is equal to K1, otherwise the K equal to the smallest positive integer in the first set of integers; if K0 is not the largest positive integer in the first set of integers, the K1 is equal to the smallest positive integer greater than the K0 in the first set of integers, otherwise the The K1 is equal to the K0; the K0 is a positive integer in the first set of integers. The Q1 in the present application is an optional integer among the K candidate integers; the Q1 detected values in the Q detected values in the present application are all lower than the first threshold in the present application .
在实施例14中,本申请中的所述第一节点是用户设备;所述第二条件是:所述J个给定第六无线信号被用于对应的给定数值不大于第二目标数值。所述J个给定第六无线信号对应本申请中的所述参考第一类无线信号,或者,所述J个给定第六无线信号对应本申请中的所述参考第一类无线信号和所述S个第四类无线信号;所述给定数值对应本申请中的所述第一数值。In embodiment 14, the first node in this application is a user equipment; the second condition is: the J given sixth wireless signals are used for a corresponding given value not greater than the second target value . The J given sixth wireless signals correspond to the reference first-type wireless signals in this application, or the J given sixth wireless signals correspond to the reference first-type wireless signals and The S fourth type wireless signals; the given value corresponds to the first value in this application.
在附图14中,所述第一整数集合是{15,31,63},所述K0等于63,所述K0是所述第一整数集合中的最大正整数,所述K1等于所述K0。如果所述给定数值不大于所述第二目标数值,所述K等于所述K0;否则所述K等于15。In accompanying drawing 14, described first integer set is {15, 31, 63}, and described K0 is equal to 63, and described K0 is the maximum positive integer in described first integer set, and described K1 is equal to described K0 . If the given value is not greater than the second target value, the K is equal to the K0; otherwise, the K is equal to 15.
作为一个实施例,所述第二目标数值是预定义的。As an embodiment, the second target value is predefined.
作为一个实施例,所述第二目标数值非负实数。As an embodiment, the second target value is a non-negative real number.
作为一个实施例,所述第二目标数值非负整数。As an embodiment, the second target value is a non-negative integer.
作为一个实施例,所述第二目标数值等于0。As an embodiment, the second target value is equal to 0.
实施例15Example 15
实施例15示例了一个给定接入检测被用于确定是否在给定子频带中的给定时域资源内进行无线发送的示意图;如附图15所示。
在实施例15中,所述给定接入检测包括在所述给定子频带上的X个时间子池中分别执行X次能量检测,得到X个检测值,所述X是正整数;所述X个时间子池的结束时刻不晚于给定时刻,所述给定时刻是所述给定子频带中的给定时域资源的起始时刻。所述给定子频带对应本申请中的所述第一子频带,所述给定子频带中的给定时域资源对应本申请中的所述第三类无线信号所占用的时域资源,所述X对应本申请中的所述Q,X1对应本申请中的所述Q1;或者,所述给定接入检测对应本申请中的所述T个接入检测中任一接入检测,所述给定子频带对应所述给定接入检测对应的本申请中的所述T子频带中的一个子频带,所述给定子频带中的给定时域资源对应所述给定子频带对应的本申请中的所述T个时频资源块中的一个时频资源块所包括的时域资源。所述给定接入检测的过程可以由附图15中的流程图来描述。In
在附图15中,本申请中的所述基站设备在步骤S1001中处于闲置状态,在步骤S1002中判断是否需要发送;在步骤1003中在一个延迟时段(defer duration)内执行能量检测;在步骤S1004中判断这个延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1005中设置第一计数器等于X1,所述X1是不大于所述X的整数;否则返回步骤S1004;在步骤S1006中判断所述第一计数器是否为0,如果是,进行到步骤S1007中在所述给定子频带中的给定时域资源内进行无线发送;否则进行到步骤S1008中在一个附加时隙时段(additional slot duration)内执行能量检测;在步骤S1009中判断这个附加时隙时段是否空闲,如果是,进行到步骤S1010中把所述第一计数器减1,然后返回步骤1006;否则进行到步骤S1011中在一个附加延迟时段(additional defer duration)内执行能量检测;在步骤S1012中判断这个附加延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1010;否则返回步骤S1011。In accompanying drawing 15, described base station equipment among the present application is in idle state in step S1001, judges in step S1002 whether needs to send; In step 1003, carries out energy detection in a delay period (defer duration); In step In S1004, it is judged whether all time slot periods in this delay period are all idle, if so, proceed to step S1005 and set the first counter to be equal to X1, and said X1 is an integer not greater than said X; otherwise return to step S1004; in step S1004 In S1006, it is judged whether the first counter is 0, if yes, proceed to step S1007 to perform wireless transmission in the given time domain resources in the given sub-band; otherwise proceed to step S1008 in an additional time slot period ( additional slot duration) to perform energy detection; in step S1009, it is judged whether this additional time slot period is idle, if so, proceed to step S1010 and decrement the first counter by 1, and then return to step 1006; otherwise proceed to step S1011 Perform energy detection in an additional delay period (additional defer duration); judge in step S1012 whether all time slot periods in this additional delay period are idle, if yes, proceed to step S1010; otherwise return to step S1011.
在实施例15中,在所述给定时刻之前附图15中的所述第一计数器清零,所述给定接入检测的结果为信道空闲,可以在所述给定子频带中的给定时域资源内进行无线发送;否则放弃在所述给定子频带中的给定时域资源内进行无线发送。所述第一计数器清零的条件是所述X个时间子池中的X1个时间子池对应的所述X个检测值中的X1个检测值均低于本申请中的所述第一参考阈值,所述X1个时间子池的起始时间在附图15中的步骤S1005之后。In
作为一个实施例,所述X个时间子池包括附图15中的所有延时时段。As an embodiment, the X time subpools include all delay periods in FIG. 15 .
作为一个实施例,所述X个时间子池包括附图15中的部分延时时段。As an embodiment, the X time sub-pools include part of the delay periods shown in FIG. 15 .
作为一个实施例,所述X个时间子池包括附图15中的所有延时时段和所有附加时隙时段。As an embodiment, the X time subpools include all delay periods and all additional time slot periods in FIG. 15 .
作为一个实施例,所述X个时间子池包括附图15中的所有延时时段和部分附加时隙时段。As an embodiment, the X time subpools include all delay periods and some additional time slot periods in FIG. 15 .
作为一个实施例,所述X个时间子池包括附图15中的所有延时时段、所有附加时隙时段和所有附加延时时段。As an embodiment, the X time subpools include all delay periods, all additional time slot periods and all additional delay periods in FIG. 15 .
作为一个实施例,所述X个时间子池包括附图15中的所有延时时段、部分附加时隙时段和所有附加延时时段。As an embodiment, the X time subpools include all delay periods, some additional time slot periods and all additional delay periods in FIG. 15 .
作为一个实施例,所述X个时间子池包括附图15中的所有延时时段、部分附加时隙时段和部分附加延时时段。As an embodiment, the X time subpools include all delay periods, part of additional time slot periods and part of additional delay periods shown in FIG. 15 .
作为一个实施例,所述X个时间子池中的任一时间子池的持续时间是{16微秒、9微秒}中之一。As an embodiment, the duration of any time subpool in the X time subpools is one of {16 microseconds, 9 microseconds}.
作为一个实施例,给定时间时段内的任意一个时隙时段(slot duration)是所述X个时间子池中的一个时间子池;所述给定时间时段是附图15中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。As an embodiment, any time slot period (slot duration) in a given time period is a time subpool in the X time subpools; the given time period is {all Delay period, all additional time slot periods, all additional delay periods} any one period.
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时隙时段(slot duration)内执行能量检测;所述给定时间时段是附图15中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。As an embodiment, performing energy detection within a given time period refers to: performing energy detection within all slot durations (slot duration) within the given time period; the given time period is shown in Figure 15 Any one of the included {all delay periods, all additional time slot periods, all additional delay periods}.
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时隙时段通过能量检测都被判断为空闲;所述给定时间时段是附图15中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。As an embodiment, being judged as idle through energy detection in a given time period refers to: all time slot periods included in the given time period are judged to be idle through energy detection; the given time period is shown in Fig. Any one of {all delay periods, all additional time slot periods, all additional delay periods} included in 15.
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述基站设备在给定时间单元中在所述给定子频带上感知(Sense)所有无线信号的功率,并在时间上平均,所获得的接收功率低于所述第一参考阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。As an embodiment, the given time slot period is judged to be idle through energy detection means: the base station device senses (Senses) the power of all wireless signals on the given sub-frequency band in a given time unit, and On average, the obtained received power is lower than the first reference threshold; the given time unit is a continuous time period in the given time slot period.
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。As a sub-embodiment of the above-mentioned embodiment, the duration of the given time unit is not shorter than 4 microseconds.
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述基站设备在给定时间单元中在所述给定子频带上感知(Sense)所有无线信号的能量,并在时间上平均,所获得的接收能量低于所述第一参考阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。As an embodiment, a given time slot period is judged to be idle through energy detection means: the base station device senses (Senses) the energy of all wireless signals on the given sub-frequency band in a given time unit, and On average, the obtained received energy is lower than the first reference threshold; the given time unit is a continuous time period in the given time slot period.
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。As a sub-embodiment of the above-mentioned embodiment, the duration of the given time unit is not shorter than 4 microseconds.
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时间子池内执行能量检测;所述给定时间时段是附图15中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述X个时间子池。As an embodiment, performing energy detection within a given time period refers to: performing energy detection in all time subpools within the given time period; the given time period is {all delays included in FIG. time period, all additional time slot periods, and all additional delay periods}, all time subpools belong to the X time subpools.
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时间子池通过能量检测得到的检测值都低于所述第一参考阈值;所述给定时间时段是附图15中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述X个时间子池,所述检测值属于所述X个检测值。As an embodiment, being judged to be idle through energy detection in a given time period refers to: the detection values obtained through energy detection of all time subpools included in the given time period are all lower than the first reference threshold; The given time period is any period in {all delay periods, all additional time slot periods, all additional delay periods} included in accompanying drawing 15, and all time subpools belong to the X time subpools , the detection value belongs to the X detection values.
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上Y1个9微秒,所述Y1是正整数。As an example, the duration of a delay period (defer duration) is 16 microseconds plus Y1 of 9 microseconds, where Y1 is a positive integer.
作为上述实施例的一个子实施例,一个延时时段包括所述X个时间子池中的Y1+1个时间子池。As a sub-embodiment of the foregoing embodiment, one delay period includes Y1+1 time sub-pools in the X time sub-pools.
作为上述子实施例的一个参考实施例,所述Y1+1个时间子池中的第一个时间子池的持续时间是16微秒,其他Y1个时间子池的持续时间均是9微秒。As a reference example of the above sub-embodiments, the duration of the first time sub-pool in the Y1+1 time sub-pools is 16 microseconds, and the duration of the other Y1 time sub-pools is 9 microseconds .
作为上述实施例的一个子实施例,所述给定优先等级被用于确定所述Y1。As a sub-embodiment of the above-mentioned embodiment, the given priority level is used to determine the Y1.
作为上述子实施例的一个参考实施例,所述给定优先等级是信道接入优先等级(Channel Access Priority Class),所述信道接入优先等级的定义参见3GPP TS36.213中的15章节。As a reference embodiment of the above sub-embodiments, the given priority class is a channel access priority class (Channel Access Priority Class), and the definition of the channel access priority class can be found in
作为上述实施例的一个子实施例,所述Y1属于{1,2,3,7}。As a sub-embodiment of the foregoing embodiment, the Y1 belongs to {1, 2, 3, 7}.
作为一个实施例,一个延时时段(defer duration)包括多个时隙时段(slotduration)。As an embodiment, a delay period (defer duration) includes multiple slot periods (slotduration).
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。As a sub-embodiment of the foregoing embodiment, the first time slot period and the second time slot period among the plurality of time slot periods are discontinuous.
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。As a sub-embodiment of the above embodiment, the time interval between the first time slot period and the second time slot period among the plurality of time slot periods is 7 milliseconds.
作为一个实施例,一个附加延时时段(additional defer duration)的持续时间是16微秒再加上Y2个9微秒,所述Y2是正整数。As an example, the duration of an additional delay period (additional defer duration) is 16 microseconds plus Y2 of 9 microseconds, where Y2 is a positive integer.
作为上述实施例的一个子实施例,一个附加延时时段包括所述X个时间子池中的Y2+1个时间子池。As a sub-embodiment of the foregoing embodiment, one additional delay period includes Y2+1 time sub-pools in the X time sub-pools.
作为上述子实施例的一个参考实施例,所述Y2+1个时间子池中的第一个时间子池的持续时间是16微秒,其他Y2个时间子池的持续时间均是9微秒。As a reference example of the above sub-embodiments, the duration of the first time sub-pool in the Y2+1 time sub-pools is 16 microseconds, and the duration of the other Y2 time sub-pools is 9 microseconds .
作为上述实施例的一个子实施例,所述给定优先等级被用于确定所述Y2。As a sub-embodiment of the above-mentioned embodiment, the given priority level is used to determine the Y2.
作为上述实施例的一个子实施例,所述Y2属于{1,2,3,7}。As a sub-embodiment of the foregoing embodiment, the Y2 belongs to {1, 2, 3, 7}.
作为一个实施例,一个延时时段的持续时间等于一个附加延时时段的持续时间。As an embodiment, the duration of one delay period is equal to the duration of one additional delay period.
作为一个实施例,所述Y1等于所述Y2。As an example, the Y1 is equal to the Y2.
作为一个实施例,一个附加延时时段(additional defer duration)包括多个时隙时段(slot duration)。As an embodiment, an additional delay period (additional defer duration) includes multiple slot periods (slot duration).
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。As a sub-embodiment of the foregoing embodiment, the first time slot period and the second time slot period among the plurality of time slot periods are discontinuous.
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。As a sub-embodiment of the above embodiment, the time interval between the first time slot period and the second time slot period among the plurality of time slot periods is 7 milliseconds.
作为一个实施例,一个时隙时段(slot duration)的持续时间是9微秒。As an example, the duration of a slot duration is 9 microseconds.
作为一个实施例,一个时隙时段是所述X个时间子池中的1个时间子池。As an embodiment, one time slot period is one time subpool in the X time subpools.
作为一个实施例,一个附加时隙时段(additional slot duration)的持续时间是9微秒。As an example, the duration of an additional slot duration is 9 microseconds.
作为一个实施例,一个附加时隙时段包括所述X个时间子池中的1个时间子池。As an embodiment, one additional time slot period includes 1 time subpool in the X time subpools.
作为一个实施例,所述X次能量检测被用于确定所述给定子频带是否闲置(Idle)。As an embodiment, the X times of energy detection are used to determine whether the given sub-frequency band is idle (Idle).
作为一个实施例,所述X次能量检测被用于确定所述给定子频带是否能被所述基站设备用于传输无线信号。As an embodiment, the X times of energy detection are used to determine whether the given sub-frequency band can be used by the base station device to transmit wireless signals.
作为一个实施例,所述X个检测值单位都是dBm(毫分贝)。As an embodiment, the units of the X detection values are all in dBm (millidb).
作为一个实施例,所述X个检测值的单位都是毫瓦(mW)。As an example, the units of the X detection values are all milliwatts (mW).
作为一个实施例,所述X个检测值的单位都是焦耳。As an example, the units of the X detection values are joules.
作为一个实施例,所述X1小于所述X。As an example, the X1 is smaller than the X.
作为一个实施例,所述X大于1。As an example, said X is greater than 1.
作为一个实施例,所述第一参考阈值的单位是dBm(毫分贝)。As an embodiment, the unit of the first reference threshold is dBm (millidb).
作为一个实施例,所述第一参考阈值的单位是毫瓦(mW)。As an embodiment, the unit of the first reference threshold is milliwatt (mW).
作为一个实施例,所述第一参考阈值的单位是焦耳。As an embodiment, the unit of the first reference threshold is Joule.
作为一个实施例,所述第一参考阈值等于或小于72dBm。As an embodiment, the first reference threshold is equal to or smaller than 72dBm.
作为一个实施例,所述第一参考阈值是等于或小于第一给定值的任意值。As an embodiment, the first reference threshold is any value equal to or smaller than the first given value.
作为上述实施例的一个子实施例,所述第一给定值是预定义的。As a sub-embodiment of the foregoing embodiment, the first given value is predefined.
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的。As a sub-embodiment of the foregoing embodiment, the first given value is configured by high-layer signaling.
作为一个实施例,所述第一参考阈值是由所述基站设备在等于或小于第一给定值的条件下自由选择的。As an embodiment, the first reference threshold is freely selected by the base station device under the condition that it is equal to or smaller than a first given value.
作为上述实施例的一个子实施例,所述第一给定值是预定义的。As a sub-embodiment of the foregoing embodiment, the first given value is predefined.
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的。As a sub-embodiment of the foregoing embodiment, the first given value is configured by high-layer signaling.
作为一个实施例,所述X次能量检测是Cat 4的LBT(Listen Before Talk,先听后发)过程中的能量检测,所述X1是所述Cat 4的LBT过程中的CWp,所述CWp是竞争窗口(contention window)的大小,所述CWp的具体定义参见3GPP TS36.213中的15章节。As an embodiment, the X energy detection is the energy detection in the LBT (Listen Before Talk, listen before talk) process of Cat 4, the X1 is the CWp in the LBT process of Cat 4, and the CWp is the size of the contention window, and for the specific definition of the CWp, refer to
作为一个实施例,所述X个检测值中不属于所述X1个检测值的检测值中至少有一个检测值低于所述第一参考阈值。As an embodiment, at least one detection value among the X detection values that do not belong to the X1 detection values is lower than the first reference threshold.
作为一个实施例,所述X个检测值中不属于所述X1个检测值的检测值中至少有一个检测值不低于所述第一参考阈值。As an embodiment, at least one detection value among the X detection values that do not belong to the X1 detection values is not lower than the first reference threshold.
作为一个实施例,所述X1个时间子池中的任意两个时间子池的持续时间都相等。As an embodiment, durations of any two time subpools in the X1 time subpools are equal.
作为一个实施例,所述X1个时间子池中至少存在两个时间子池的持续时间不相等。As an embodiment, durations of at least two time subpools among the X1 time subpools are unequal.
作为一个实施例,所述X1个时间子池中包括所述X个时间子池中的最晚的时间子池。As an embodiment, the X1 time subpools include the latest time subpool among the X time subpools.
作为一个实施例,所述X1个时间子池只包括了eCCA中的时隙时段。As an embodiment, the X1 time subpools only include time slot periods in the eCCA.
作为一个实施例,所述X个时间子池包括所述X1个时间子池和X2个时间子池,所述X2个时间子池中的任一时间子池不属于所述X1个时间子池;所述X2是不大于所述X减所述X1的正整数。As an embodiment, the X time subpools include the X1 time subpools and the X2 time subpools, and any time subpool in the X2 time subpools does not belong to the X1 time subpools ; The X2 is a positive integer not greater than the X minus the X1.
作为上述实施例的一个子实施例,所述X2个时间子池包括了初始CCA中的时隙时段。As a sub-embodiment of the above-mentioned embodiment, the X2 time subpools include the time slot periods in the initial CCA.
作为上述实施例的一个子实施例,所述X2个时间子池在所述X个时间子池中的位置是连续的。As a sub-embodiment of the foregoing embodiment, the positions of the X2 time sub-pools in the X time sub-pools are continuous.
作为上述实施例的一个子实施例,所述X2个时间子池中至少有一个时间子池对应的检测值低于所述第一参考阈值。As a sub-embodiment of the foregoing embodiment, the detection value corresponding to at least one time sub-pool in the X2 time sub-pools is lower than the first reference threshold.
作为上述实施例的一个子实施例,所述X2个时间子池中至少有一个时间子池对应的检测值不低于所述第一参考阈值。As a sub-embodiment of the foregoing embodiment, the detection value corresponding to at least one time sub-pool in the X2 time sub-pools is not lower than the first reference threshold.
作为上述实施例的一个子实施例,所述X2个时间子池包括所有延时时段内的所有时隙时段。As a sub-embodiment of the foregoing embodiment, the X2 time subpools include all time slot periods in all delay periods.
作为上述实施例的一个子实施例,所述X2个时间子池包括至少一个附加延时时段内的所有时隙时段。As a sub-embodiment of the foregoing embodiment, the X2 time subpools include all time slot periods within at least one additional delay period.
作为上述实施例的一个子实施例,所述X2个时间子池包括至少一个附加时隙时段。As a sub-embodiment of the foregoing embodiment, the X2 time subpools include at least one additional time slot period.
作为上述实施例的一个子实施例,所述X2个时间子池包括附图15中通过能量检测被判断为非空闲的所有附加时隙时段和所有附加延时时段内的所有时隙时段。As a sub-embodiment of the foregoing embodiment, the X2 time subpools include all additional time slot periods and all time slot periods in all additional delay periods that are judged to be non-idle through energy detection in FIG. 15 .
作为一个实施例,所述X1个时间子池分别属于X1个子池集合,所述X1个子池集合中的任一子池集合包括所述X个时间子池中的正整数个时间子池;所述X1个子池集合中的任一时间子池对应的检测值低于所述第一参考阈值。As an embodiment, the X1 time subpools respectively belong to X1 subpool sets, and any subpool set in the X1 subpool sets includes a positive integer number of time subpools in the X time subpools; The detection value corresponding to any time sub-pool in the X1 sub-pool set is lower than the first reference threshold.
作为上述实施例的一个子实施例,所述X1个子池集合中至少存在一个子池集合包括的时间子池的数量等于1。As a sub-embodiment of the foregoing embodiment, the number of time sub-pools included in at least one sub-pool set is equal to 1 among the X1 sub-pool sets.
作为上述实施例的一个子实施例,所述X1个子池集合中至少存在一个子池集合包括的时间子池的数量大于1。As a sub-embodiment of the foregoing embodiment, at least one sub-pool set includes more than one time sub-pool in the X1 sub-pool sets.
作为上述实施例的一个子实施例,所述X1个子池集合中至少存在两个子池集合包括的时间子池的数量是不相等的。As a sub-embodiment of the foregoing embodiment, at least two of the X1 sub-pool sets include unequal numbers of time sub-pools.
作为上述实施例的一个子实施例,所述X个时间子池中不存在一个时间子池同时属于所述X1个子池集合中的两个子池集合。As a sub-embodiment of the foregoing embodiment, none of the X time sub-pools belongs to two sub-pool sets in the X1 set of sub-pools at the same time.
作为上述实施例的一个子实施例,所述X1个子池集合中任意一个子池集合中的所有时间子池属于同一个通过能量检测被判断为空闲的附加延时时段或附加时隙时段。As a sub-embodiment of the above-mentioned embodiment, all time sub-pools in any sub-pool set in the X1 sub-pool sets belong to the same additional delay period or additional time slot period that is judged to be idle through energy detection.
作为上述实施例的一个子实施例,所述X个时间子池中不属于所述X1个子池集合的时间子池中至少存在一个时间子池对应的检测值低于所述第一参考阈值。As a sub-embodiment of the foregoing embodiment, among the time sub-pools of the X time sub-pools that do not belong to the set of X1 sub-pools, there is at least one time sub-pool whose detection value is lower than the first reference threshold.
作为上述实施例的一个子实施例,所述X个时间子池中不属于所述X1个子池集合的时间子池中至少存在一个时间子池对应的检测值不低于所述第一参考阈值。As a sub-embodiment of the above embodiment, among the X time sub-pools that do not belong to the X1 sub-pool set, there is at least one time sub-pool whose detection value is not lower than the first reference threshold .
实施例16Example 16
实施例16示例了另一个给定接入检测被用于确定是否在给定子频带中的给定时域资源内进行无线发送的示意图;如附图16所示。Embodiment 16 illustrates another schematic diagram in which a given access detection is used to determine whether to perform wireless transmission within a given time domain resource in a given sub-frequency band; as shown in FIG. 16 .
在实施例16中,所述给定接入检测包括在所述给定子频带上的X个时间子池中分别执行X次能量检测,得到X个检测值,所述X是正整数;所述X个时间子池的结束时刻不晚于6给定时刻,所述给定时刻是所述给定子频带中的给定时域资源的起始时刻。所述给定子频带对应本申请中的所述第一子频带,所述给定子频带中的给定时域资源对应本申请中的所述第三类无线信号所占用的时域资源,所述X对应本申请中的所述Q,X1对应本申请中的所述Q1;或者,所述给定接入检测对应本申请中的所述T个接入检测中任一接入检测,所述给定子频带对应所述给定接入检测对应的本申请中的所述T子频带中的一个子频带,所述给定子频带中的给定时域资源对应所述给定子频带对应的本申请中的所述T个时频资源块中的一个时频资源块所包括的时域资源。所述给定接入检测的过程可以由附图16中的流程图来描述。In embodiment 16, the given access detection includes performing X times of energy detection in the X time subpools on the given sub-frequency band to obtain X detection values, where X is a positive integer; the X The end time of each time sub-pool is no later than 6 given time, and the given time is the start time of a given time-domain resource in the given sub-frequency band. The given sub-frequency band corresponds to the first sub-frequency band in this application, the given time-domain resources in the given sub-frequency band correspond to the time-domain resources occupied by the third type of wireless signal in this application, and the X Corresponding to the Q in this application, X1 corresponds to the Q1 in this application; or, the given access detection corresponds to any one of the T access detections in this application, and the given The stator frequency band corresponds to one of the T sub-frequency bands in this application corresponding to the given access detection, and the given time domain resource in the given sub-frequency band corresponds to the T sub-frequency band in this application corresponding to the given sub-frequency band. A time-domain resource included in one time-frequency resource block among the T time-frequency resource blocks. The process of the given access detection can be described by the flow chart in Fig. 16 .
在实施例16中,本申请中的所述用户设备在步骤S2201中处于闲置状态,在步骤S2202中判断是否需要发送;在步骤2203中在一个感知时间(Sensing interval)内执行能量检测;在步骤S2204中判断这个感知时间内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S2205中在所述给定子频带中的给定时域资源内进行无线发送;否则返回步骤S2203。In Embodiment 16, the user equipment in this application is in an idle state in step S2201, and it is judged in step S2202 whether to send; in step 2203, energy detection is performed within a sensing interval (Sensing interval); in step In S2204, it is judged whether all time slot periods within the sensing time are idle (Idle), if yes, proceed to step S2205 to perform wireless transmission within the given time domain resource in the given sub-frequency band; otherwise, return to step S2203.
在实施例16中,第一给定时段包括所述X个时间子池中的正整数个时间子池,所述第一给定时段是附图16中包括的{所有感知时间}中的任意一个时段。第二给定时段包括所述X1个时间子池中的1个时间子池,所述第二给定时段是附图16中通过能量检测被判断为空闲(Idle)的感知时间。In Embodiment 16, the first given period of time includes a positive integer number of time subpools in the X time subpools, and the first given period of time is any of {all perception times} included in FIG. 16 a time period. The second given time period includes 1 time sub-pool in the X1 time sub-pools, and the second given time period is the perceived time judged as idle (Idle) through energy detection in FIG. 16 .
作为一个实施例,所述感知时间的具体定义参见3GPP TS36.213中的15.2章节。As an embodiment, for the specific definition of the perception time, refer to Section 15.2 in 3GPP TS36.213.
作为一个实施例,所述X1等于2。As an example, the X1 is equal to 2.
作为一个实施例,所述X1等于所述X。As an example, said X1 is equal to said X.
作为一个实施例,一个感知时间(Sensing interval)的持续时间是25微秒。As an example, the duration of one sensing interval (Sensing interval) is 25 microseconds.
作为一个实施例,一个感知时间包括2个时隙时段,所述2个时隙时段在时域是不连续的。As an embodiment, one perception time includes 2 time slot periods, and the 2 time slot periods are discontinuous in the time domain.
作为上述实施例的一个子实施例,所述2个时隙时段中的时间间隔是7微秒。As a sub-embodiment of the above-mentioned embodiment, the time interval in the two time slot periods is 7 microseconds.
作为一个实施例,所述X个时间子池包括Category 2 LBT中的监听时间。As an embodiment, the X time subpools include listening time in
作为一个实施例,所述X个时间子池包括Type 2 UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的时隙,所述感知时间间隔的具体定义参见3GPP TS36.213中的15.2章节。As an embodiment, the X time subpools include time slots in a sensing interval (sensing interval) in a
作为上述实施例的一个子实施例,所述感知时间间隔的持续时间是25微秒。As a sub-embodiment of the foregoing embodiment, the duration of the sensing time interval is 25 microseconds.
作为一个实施例,所述X个时间子池包括Type 2 UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的Tf和Tsl,所述Tf和所述Tsl的具体定义参见3GPP TS36.213中的15.2章节。As an embodiment, the X time subpools include Tf and Tsl in the sensing interval (sensing interval) in
作为上述实施例的一个子实施例,所述Tf的持续时间是16微秒。As a sub-embodiment of the above-mentioned embodiment, the duration of Tf is 16 microseconds.
作为上述实施例的一个子实施例,所述Tsl的持续时间是9微秒。As a sub-embodiment of the foregoing embodiment, the duration of Tsl is 9 microseconds.
作为一个实施例,所述X1个时间子池中的第一个时间子池的持续时间是16微秒,所述X1个时间子池中的第二个时间子池的持续时间是9微秒,所述X1等于2。As an embodiment, the duration of the first time subpool in the X1 time subpools is 16 microseconds, and the duration of the second time subpool in the X1 time subpools is 9 microseconds , the x1 is equal to 2.
作为一个实施例,所述X1个时间子池的持续时间都是9微秒;所述X1个时间子池中的第一个时间子池和第二个时间子池之间的时间间隔是7微秒,所述X1等于2。As an embodiment, the duration of the X1 time subpools is 9 microseconds; the time interval between the first time subpool and the second time subpool in the X1 time subpools is 7 microseconds seconds, the X1 is equal to 2.
实施例17Example 17
实施例17示例了一个用于第一节点中的处理装置的结构框图,如附图17所示。附图17中,第一节点中的处理装置1700主要由第一收发机模块1701、第一接收机模块1702和第一发射机模块1703组成。Embodiment 17 illustrates a structural block diagram of a processing device used in the first node, as shown in FIG. 17 . In FIG. 17 , the
作为一个实施例,所述第一节点是用户设备,所述第一收发机模块1701包括实施例4中的发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490。As an embodiment, the first node is a user equipment, and the
作为一个实施例,所述第一节点是用户设备,所述第一收发机模块1701包括实施例4中的发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者。As an embodiment, the first node is a user equipment, and the
作为一个实施例,所述第一节点是用户设备,所述第一接收机模块1702包括实施例4中的接收器456、接收处理器452和控制器/处理器490。As an embodiment, the first node is a user equipment, and the
作为一个实施例,所述第一节点是用户设备,所述第一接收机模块1702包括实施例4中的接收器456、接收处理器452和控制器/处理器490中的至少前二者。As an embodiment, the first node is a user equipment, and the
作为一个实施例,所述第一节点是用户设备,所述第一发射机模块1703包括实施例4中的发射器456、发射处理器455和控制器/处理器490。As an embodiment, the first node is a user equipment, and the
作为一个实施例,所述第一节点是用户设备,所述第一发射机模块1703包括实施例4中的发射器456、发射处理器455和控制器/处理器490中的至少前二者。As an embodiment, the first node is a user equipment, and the
作为一个实施例,所述第一节点是基站,所述第一收发机模块1701包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412和控制器/处理器440。As an embodiment, the first node is a base station, and the
作为一个实施例,所述第一节点是基站,所述第一收发机模块1701包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412和控制器/处理器440中的至少前三者。As an embodiment, the first node is a base station, and the
作为一个实施例,所述第一节点是基站,所述第一接收机模块1702包括实施例4中的接收器416、接收处理器412和控制器/处理器440。As an embodiment, the first node is a base station, and the
作为一个实施例,所述第一节点是基站,所述第一接收机模块1702包括实施例4中的接收器416、接收处理器412和控制器/处理器440中的至少前二者。As an embodiment, the first node is a base station, and the
作为一个实施例,所述第一节点是基站,所述第一发射机模块1703包括实施例4中的发射器416、发射处理器415和控制器/处理器440。As an embodiment, the first node is a base station, and the
作为一个实施例,所述第一节点是基站,所述第一发射机模块1703包括实施例4中的发射器416、发射处理器415和控制器/处理器440中的至少前二者。As an embodiment, the first node is a base station, and the
-第一收发机模块1701,接收T个第一类无线信号,所述T是大于1的正整数;在T个子频带上分别进行T个接入检测,在T个时频资源块中分别发送T个第二类无线信号;- The
-第一接收机模块1702,在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值,所述Q是正整数;- The
在实施例17中,所述T个子频带都包括至少一个相同的频点,或者所述T个子频带都属于同一个载波;所述T个子频带中至少一个子频带和所述第一子频带不同;所述T个第一类无线信号分别被关联到所述T个第二类无线信号;参考第一类无线信号是所述T个第一类无线信号中的一个第一类无线信号,所述Q与所述T个第一类无线信号中的仅所述参考第一类无线信号有关;所述T个接入检测分别被用于确定所述T个第二类无线信号的发送;参考子频带是所述T个子频带中对应所述参考第一类无线信号的一个子频带,参考时频资源块是所述T个时频资源块中对应所述参考第一类无线信号的一个时频资源块;所述参考时频资源块的选择与所述第一子频带和所述参考子频带中的至少之一有关;所述第一节点是基站,或者所述第一节点是用户设备。In Embodiment 17, the T sub-frequency bands all include at least one same frequency point, or the T sub-frequency bands all belong to the same carrier; at least one of the T sub-frequency bands is different from the first sub-frequency band The T first-type wireless signals are respectively associated with the T second-type wireless signals; the reference first-type wireless signal is a first-type wireless signal among the T first-type wireless signals, so The Q is related to only the reference first-type wireless signal among the T first-type wireless signals; the T access detections are respectively used to determine the sending of the T second-type wireless signals; refer to The sub-frequency band is a sub-frequency band corresponding to the reference first-type wireless signal among the T sub-frequency bands, and the reference time-frequency resource block is a time-frequency resource block corresponding to the reference first-type wireless signal among the T time-frequency resource blocks. frequency resource block; the selection of the reference time-frequency resource block is related to at least one of the first sub-frequency band and the reference sub-frequency band; the first node is a base station, or the first node is a user equipment .
作为一个实施例,所述参考子频带的带宽等于所述参考子频带所属的载波的带宽。As an embodiment, the bandwidth of the reference sub-frequency band is equal to the bandwidth of the carrier to which the reference sub-frequency band belongs.
作为一个实施例,所述T个时频资源块中的t个时频资源块在频域上都包括所述第一子频带,所述t是不大于所述T的正整数;所述参考时频资源块是所述t个时频资源块中的一个时频资源块。As an embodiment, t time-frequency resource blocks in the T time-frequency resource blocks all include the first sub-frequency band in the frequency domain, and the t is a positive integer not greater than the T; the reference The time-frequency resource block is one of the t time-frequency resource blocks.
作为一个实施例,所述T个时频资源块中的t个时频资源块在频域上都包括所述第一子频带,所述t是不大于所述T的正整数;所述t个时频资源块中的t1个时频资源块分别包括的频域资源都和所述第一子频带包括的频域资源相同,所述t1是不大于所述t的正整数,所述参考时频资源块是所述t1个时频资源块中的一个时频资源块;或者,所述t个时频资源块中任一时频资源块包括的频域资源都和所述第一子频带包括的频域资源不完全相同,所述参考时频资源块是所述t个时频资源块中的一个时频资源块。As an embodiment, t time-frequency resource blocks in the T time-frequency resource blocks all include the first sub-frequency band in the frequency domain, and the t is a positive integer not greater than the T; the t The frequency domain resources included in the t1 time-frequency resource blocks in the time-frequency resource blocks are the same as the frequency domain resources included in the first sub-frequency band, the t1 is a positive integer not greater than the t, and the reference The time-frequency resource block is a time-frequency resource block in the t1 time-frequency resource blocks; or, the frequency domain resources included in any time-frequency resource block in the t time-frequency resource blocks are the same as the first sub-frequency band The included frequency domain resources are not completely the same, and the reference time-frequency resource block is one of the t time-frequency resource blocks.
作为一个实施例,所述第一节点是基站,所述T个第一类无线信号分别指示所述T个第二类无线信号是否被正确接收;参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考第二类无线信号包括W个子信号,所述W是正整数;所述W个子信号是否被正确接收被用于确定所述Q。As an embodiment, the first node is a base station, and the T first-type wireless signals respectively indicate whether the T second-type wireless signals are received correctly; the reference second-type wireless signal is the reference first One of the T second-type wireless signals to which the type wireless signal is associated, the reference second-type wireless signal includes W sub-signals, and W is a positive integer; whether the W sub-signals is correctly received and is used to determine the Q.
作为一个实施例,所述第一节点是用户设备,所述T个第一类无线信号分别包括所述T个第二类无线信号的调度信息;参考第二类无线信号是所述参考第一类无线信号被关联到的所述T个第二类无线信号中的一个第二类无线信号,所述参考第二类无线信号包括V个子信号,所述V是正整数;所述参考第一类无线信号分别被用于确定所述V个子信号是否包括新数据;所述V个子信号是否包括新数据被用于确定所述Q。As an embodiment, the first node is a user equipment, and the T first-type wireless signals respectively include scheduling information of the T second-type wireless signals; the reference second-type wireless signal is the reference first One of the T second-type wireless signals to which the type wireless signal is associated, the reference second-type wireless signal includes V sub-signals, and V is a positive integer; the reference first-type The wireless signals are respectively used to determine whether the V sub-signals include new data; whether the V sub-signals include new data is used to determine the Q.
作为一个实施例,所述参考第一类无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值均低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。As an embodiment, the reference first type wireless signal is used to determine K candidate integers, Q1 is a candidate integer among the K candidate integers; Q1 detection values among the Q detection values The values are all lower than the first threshold, the K is a positive integer, and the Q1 is a positive integer not greater than the Q.
作为一个实施例,所述第一节点中的处理装置还包括:As an embodiment, the processing device in the first node further includes:
第一发射机模块1703,在所述第一子频带中发送第三类无线信号;The
其中,所述第三类无线信号所占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。Wherein, the start time of the time domain resource occupied by the third type of wireless signal is not earlier than the end time of the Q time subpools.
作为一个实施例,所述第一收发机模块1701还操作第一信息;其中,所述第一信息包括所述第三类无线信号的调度信息;所述操作是接收,所述第一节点是用户设备;或者所述操作是发送,所述第一节点是基站。As an embodiment, the
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。Those skilled in the art can understand that all or part of the steps in the above method can be completed by instructing related hardware through a program, and the program can be stored in a computer-readable storage medium, such as a read-only memory, a hard disk or an optical disk. Optionally, all or part of the steps in the foregoing embodiments may also be implemented using one or more integrated circuits. Correspondingly, each module unit in the above-mentioned embodiments may be implemented in the form of hardware, or may be implemented in the form of software function modules, and the present application is not limited to any specific combination of software and hardware. The user equipment, terminal and UE in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle communication equipment, wireless sensors, network cards, Internet of things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle communication equipment, low-cost mobile phone, low-cost cost tablet PCs and other wireless communication devices. The base station or system equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node) and other wireless communication equipment.
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the protection scope of the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| CN202310355237.0ACN116321458A (en) | 2018-05-28 | 2018-05-28 | Method and device used in user equipment and base station for wireless communication | 
| CN202310349754.7ACN116321457A (en) | 2018-05-28 | 2018-05-28 | User equipment, method and device in base station for wireless communication | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| PCT/CN2018/088675WO2019227280A1 (en) | 2018-05-28 | 2018-05-28 | User equipment used for wireless communication and method and device of base station | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| CN202310349754.7ADivisionCN116321457A (en) | 2018-05-28 | 2018-05-28 | User equipment, method and device in base station for wireless communication | 
| CN202310355237.0ADivisionCN116321458A (en) | 2018-05-28 | 2018-05-28 | Method and device used in user equipment and base station for wireless communication | 
| Publication Number | Publication Date | 
|---|---|
| CN111512683A CN111512683A (en) | 2020-08-07 | 
| CN111512683Btrue CN111512683B (en) | 2023-04-28 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| CN201880083630.6AActiveCN111512683B (en) | 2018-05-28 | 2018-05-28 | User equipment, method and device in base station for wireless communication | 
| CN202310349754.7APendingCN116321457A (en) | 2018-05-28 | 2018-05-28 | User equipment, method and device in base station for wireless communication | 
| CN202310355237.0APendingCN116321458A (en) | 2018-05-28 | 2018-05-28 | Method and device used in user equipment and base station for wireless communication | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| CN202310349754.7APendingCN116321457A (en) | 2018-05-28 | 2018-05-28 | User equipment, method and device in base station for wireless communication | 
| CN202310355237.0APendingCN116321458A (en) | 2018-05-28 | 2018-05-28 | Method and device used in user equipment and base station for wireless communication | 
| Country | Link | 
|---|---|
| US (2) | US11533139B2 (en) | 
| EP (2) | EP3806559B1 (en) | 
| CN (3) | CN111512683B (en) | 
| WO (1) | WO2019227280A1 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN116056141A (en)* | 2017-08-09 | 2023-05-02 | 上海朗帛通信技术有限公司 | Method and device in user equipment and base station for wireless communication | 
| CN111385882B (en)* | 2018-12-28 | 2023-02-03 | 上海朗帛通信技术有限公司 | Method and device used in user equipment and base station for wireless communication | 
| CN115243374A (en)* | 2020-01-13 | 2022-10-25 | 上海朗帛通信技术有限公司 | A method and apparatus for wireless communication | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN107624265A (en)* | 2015-05-12 | 2018-01-23 | Lg 电子株式会社 | Method for adjusting contention window size in wireless access system supporting unlicensed band and equipment supporting the method | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US8705339B2 (en) | 2009-05-29 | 2014-04-22 | Panasonic Corporation | Wireless communication apparatus and frequency hopping method | 
| EP3968561B1 (en)* | 2014-09-10 | 2023-06-07 | Telefonaktiebolaget LM Ericsson (publ) | Radio access node, communication terminal and methods performed therein | 
| CN107113878B (en)* | 2014-09-10 | 2020-09-22 | 瑞典爱立信有限公司 | Radio access node, communication terminal and method performed therein | 
| US10123350B2 (en)* | 2015-02-06 | 2018-11-06 | Htc Corporation | Communication device and wireless communication system for handling random access procedure | 
| US10742562B2 (en)* | 2015-07-16 | 2020-08-11 | Samsung Electronics Co., Ltd. | Method and apparatus for adaptive control of contention window in LAA | 
| CN106455087B (en)* | 2015-08-06 | 2021-09-03 | 中兴通讯股份有限公司 | Method and device for determining competition resources | 
| EP3700287B1 (en)* | 2015-08-21 | 2022-07-13 | LG Electronics Inc. | Method for channel access in wireless communciation system and apparatus for performing same | 
| CN105472762B (en)* | 2016-01-08 | 2019-06-11 | 宇龙计算机通信科技(深圳)有限公司 | Random access method, random access device and terminal | 
| CN107295695A (en)* | 2016-04-01 | 2017-10-24 | 索尼公司 | Electronic installation, message processing device and information processing method | 
| US20190182865A1 (en)* | 2016-08-12 | 2019-06-13 | Telefonaktiebolaget L M Ericsson (Publ) | Lbt parameters for uplink in unlicensed spectrum | 
| CN107872847B (en)* | 2016-09-28 | 2024-01-19 | 华为技术有限公司 | Method for transmitting data, network device and terminal device | 
| WO2019109345A1 (en)* | 2017-12-08 | 2019-06-13 | 南通朗恒通信技术有限公司 | Method and device in user equipment and base station used for wireless communication | 
| CN111970100B (en)* | 2018-01-05 | 2024-10-18 | 上海朗帛通信技术有限公司 | A method and device for user equipment and base station used for wireless communication | 
| CN111769929B (en)* | 2018-03-21 | 2025-05-13 | 荣耀终端股份有限公司 | A method and device for user equipment and base station used for wireless communication | 
| CN110460360B (en)* | 2018-05-08 | 2020-06-30 | 上海朗帛通信技术有限公司 | Method and device used in user equipment and base station for wireless communication | 
| CN115484683A (en)* | 2018-09-05 | 2022-12-16 | 上海朗帛通信技术有限公司 | Method and device used in user equipment and base station for wireless communication | 
| CN110896322B (en)* | 2018-09-11 | 2022-03-01 | 上海朗帛通信技术有限公司 | Method and apparatus in a node used for wireless communication | 
| CN111148238B (en)* | 2018-11-03 | 2023-03-17 | 上海朗帛通信技术有限公司 | Method and device used in node of wireless communication | 
| CN111224752B (en)* | 2018-11-23 | 2021-09-24 | 上海朗帛通信技术有限公司 | A method and apparatus used in a node for wireless communication | 
| CN111385882B (en)* | 2018-12-28 | 2023-02-03 | 上海朗帛通信技术有限公司 | Method and device used in user equipment and base station for wireless communication | 
| CN111405503B (en)* | 2019-01-02 | 2021-04-27 | 上海朗帛通信技术有限公司 | A method and apparatus used in a node for wireless communication | 
| CN116405972A (en)* | 2019-02-26 | 2023-07-07 | 上海朗帛通信技术有限公司 | User equipment, method and device in base station for wireless communication | 
| CN111818639B (en)* | 2019-04-11 | 2022-12-27 | 上海朗帛通信技术有限公司 | Method and device used in user equipment and base station for wireless communication | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN107624265A (en)* | 2015-05-12 | 2018-01-23 | Lg 电子株式会社 | Method for adjusting contention window size in wireless access system supporting unlicensed band and equipment supporting the method | 
| Title | 
|---|
| "R1-1712124".3GPP tsg_ran\WG1_RL1.2017,全文.* | 
| "R1-1719865 LAA LBT_final".3GPP tsg_ran\WG1_RL1.2017,全文.* | 
| "R1-1802155 LAA LBT_final".3GPP tsg_ran\WG1_RL1.2018,全文.* | 
| Publication number | Publication date | 
|---|---|
| CN116321457A (en) | 2023-06-23 | 
| US20230074940A1 (en) | 2023-03-09 | 
| CN111512683A (en) | 2020-08-07 | 
| US20200412501A1 (en) | 2020-12-31 | 
| US12047307B2 (en) | 2024-07-23 | 
| EP3806559B1 (en) | 2025-03-26 | 
| US11533139B2 (en) | 2022-12-20 | 
| CN116321458A (en) | 2023-06-23 | 
| WO2019227280A1 (en) | 2019-12-05 | 
| EP3806559A4 (en) | 2021-06-23 | 
| EP4604641A2 (en) | 2025-08-20 | 
| EP3806559A1 (en) | 2021-04-14 | 
| EP4604641A3 (en) | 2025-09-17 | 
| Publication | Publication Date | Title | 
|---|---|---|
| US11343813B2 (en) | Method and device in UE and base station used for wireless communication | |
| CN111065164B (en) | Method and device in user equipment, base station for wireless communication | |
| WO2019134656A1 (en) | Method and apparatus for use in user equipment and base station for wireless communication | |
| CN111818639B (en) | Method and device used in user equipment and base station for wireless communication | |
| CN110418348A (en) | Method and device used in user equipment and base station for wireless communication | |
| US12047307B2 (en) | Wireless communication method and device that support data transmission on unlicensed spectrum | |
| CN110391826A (en) | Method and device used in user equipment and base station for wireless communication | |
| WO2020199976A1 (en) | Method and apparatus used in nodes for radio communication | |
| CN110366146B (en) | A kind of user equipment used for wireless communication, method and apparatus in base station | |
| CN110582118B (en) | Method and device used in user equipment and base station for wireless communication | |
| US11375389B2 (en) | Method and device of channel access for wireless communication on unlicensed spectrum in UE and base station | |
| CN111294972A (en) | Method and device used in user equipment and base station for wireless communication | |
| CN116156655A (en) | User equipment, method and device in base station for wireless communication | |
| CN110602785B (en) | Method and device used in user equipment and base station for wireless communication | |
| CN111669256B (en) | Method and device used in user equipment and base station for wireless communication | 
| Date | Code | Title | Description | 
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |