Movatterモバイル変換


[0]ホーム

URL:


CN111263401A - Multi-user cooperative computing unloading method based on mobile edge computing - Google Patents

Multi-user cooperative computing unloading method based on mobile edge computing
Download PDF

Info

Publication number
CN111263401A
CN111263401ACN202010043845.4ACN202010043845ACN111263401ACN 111263401 ACN111263401 ACN 111263401ACN 202010043845 ACN202010043845 ACN 202010043845ACN 111263401 ACN111263401 ACN 111263401A
Authority
CN
China
Prior art keywords
execution
task
idle
expression
decision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010043845.4A
Other languages
Chinese (zh)
Inventor
曲雯毓
姜巍
周晓波
邱铁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin UniversityfiledCriticalTianjin University
Priority to CN202010043845.4ApriorityCriticalpatent/CN111263401A/en
Publication of CN111263401ApublicationCriticalpatent/CN111263401A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

The invention discloses a multi-user cooperative computing unloading method based on mobile edge computing.A mobile device in an MEC service coverage area is divided into a busy device and an idle device according to the change of a task arrival rate, the computing resource of the idle device is utilized for cooperative computing unloading, and if a device j determines to update a decision matrix, the device j requests an MEC server to update a decision; step 10, other busy devices obtain the information of the update decision of the device j with the help of the MEC server and update the decision according to the step 6 in the same way; when the MEC server does not receive the request message for updating the decision matrix any more, the convergence state of the system is reached, and the decision matrix D is the optimal cooperative computing unloading method. Compared with the prior art, the method and the device can expand the computing capability of the system under the condition that a single small-sized base station provides computing resources for users in the area, reduce the average task response time delay, enable the users to obtain better user experience, and can better improve the performance of the whole system.

Description

Translated fromChinese
一种基于移动边缘计算的多用户协作计算卸载方法A multi-user collaborative computing offloading method based on mobile edge computing

技术领域technical field

本发明属于无线通信技术领域,尤其是涉及移动边缘计算的通信系统架构下多用户的协作计算卸载。The invention belongs to the technical field of wireless communication, and in particular relates to multi-user cooperative computing offloading under the communication system architecture of mobile edge computing.

背景技术Background technique

随着越来越多的应用例如计算机视觉(CV)、人工智能(AI)等的发展,日常使用的移动设备由于计算能力和电池容量等限制不能提供令人满意的用户体验。移动边缘计算(MEC)作为一种新兴的计算技术,近年来引起了学术界和工业界的广泛关注。MEC能够在移动设备附近的蜂窝网络边缘提供计算资源。但由于MEC服务器是由所有移动设备“共享”的,MEC服务器上有限的计算资源并不总是足以支持其覆盖范围内的所有移动设备。并且虽然将任务卸载到计算能力更强的MEC服务器可以降低任务响应延迟,但数据通过无线信道传输到MEC服务器,这会导致额外的传输延迟和能量消耗。现有的多用户卸载方法,要么是基于设备本地与MEC服务器的协同卸载,要么是引入D2D的协同卸载。这些卸载方法不能很好地利用整个系统内的计算资源、面对基站计算能力较弱而用户的任务计算需求较大的情况会造成较长时延和较差的用户体验。With the development of more and more applications such as computer vision (CV), artificial intelligence (AI), etc., mobile devices used daily cannot provide a satisfactory user experience due to limitations such as computing power and battery capacity. Mobile edge computing (MEC), as an emerging computing technology, has attracted extensive attention from academia and industry in recent years. MEC can provide computing resources at the edge of the cellular network near mobile devices. But since the MEC server is "shared" by all mobile devices, the limited computing resources on the MEC server are not always sufficient to support all mobile devices within its coverage. And although offloading tasks to the MEC server with more computing power can reduce the task response delay, the data is transmitted to the MEC server through the wireless channel, which causes additional transmission delay and energy consumption. The existing multi-user offloading methods are either based on the collaborative offloading between the device and the MEC server, or the collaborative offloading by introducing D2D. These offloading methods cannot make good use of the computing resources in the entire system, and will result in longer delay and poorer user experience when the base station has weak computing power and the user's task computing demand is large.

因此,如何设计高效的计算卸载方法来提高MEC系统在任务执行延迟和能量消耗两方面的性能,是MEC系统的一个关键和基础问题。目前解决上述问题的方法分为三类:1)移动设备独立进行卸载决策,使用该方法一旦计算资源利用率超过MEC服务器的某个阈值,即将任务卸载到远程云。由于主干网传输延迟导致任务的执行延迟增加。2)移动设备协同进行卸载决策,该方法根据优先级提供MEC服务器的计算资源,在这种情况下,只有部分手机设备可以享受计算卸载的好处。3)允许设备到设备(D2D)计算卸载,移动设备可以将任务卸载到MEC服务器,或者通过D2D链路将任务卸载到相邻的计算节点。但是由于D2D通信范围较短,因此D2D通信受限。Therefore, how to design an efficient computational offload method to improve the performance of MEC systems in terms of task execution delay and energy consumption is a key and fundamental issue of MEC systems. The current methods to solve the above problems are divided into three categories: 1) The mobile device makes the offloading decision independently, using this method to offload the task to the remote cloud once the computing resource utilization exceeds a certain threshold of the MEC server. The execution delay of the task increases due to the transmission delay of the backbone network. 2) The mobile devices cooperate to make the offloading decision. This method provides the computing resources of the MEC server according to the priority. In this case, only some mobile devices can enjoy the benefits of computing offloading. 3) To allow device-to-device (D2D) computing offload, mobile devices can offload tasks to the MEC server, or offload tasks to adjacent computing nodes through D2D links. However, D2D communication is limited due to the short range of D2D communication.

发明内容SUMMARY OF THE INVENTION

针对多用户MEC系统的计算卸载问题这一技术问题,本发明提出了一种基于移动边缘计算的多用户协作计算卸载方法,根据任务到达率的变化将MEC服务覆盖区域内的移动设备分为繁忙设备和空闲设备,利用空闲设备的计算资源协作计算卸载,实现整个移动通信系统的性能提升。Aiming at the technical problem of computing offloading in a multi-user MEC system, the present invention proposes a multi-user collaborative computing offloading method based on mobile edge computing. According to the change of task arrival rate, the mobile devices in the MEC service coverage area are divided into busy ones. The device and the idle device use the computing resources of the idle device to coordinate computing offload, so as to improve the performance of the entire mobile communication system.

本发明的一种基于移动边缘计算的多用户协作计算卸载方法,该方法包括以下步骤:A kind of multi-user collaborative computing offloading method based on mobile edge computing of the present invention, the method comprises the following steps:

步骤1、初始化区域内的设备总数量N,任务在每个时隙的开始到达各个设备,可以在本地执行、或者被卸载到MEC服务器同时在MEC服务器上执行、或者通过MEC服务器被卸载到空闲设备并在空闲设备上执行;Step 1. The total number of devices in the initialization area is N. The task arrives at each device at the beginning of each time slot, and can be executed locally, or offloaded to the MEC server and executed on the MEC server at the same time, or offloaded to idle through the MEC server. device and execute on an idle device;

步骤2、根据任务到达率将设备划分为忙碌设备J、空闲设备K;Step 2. According to the task arrival rate, the equipment is divided into busy equipment J and idle equipment K;

步骤3、初始化设备参数、任务参数及通信链路参数;初始化设备的决策矩阵D为全部为本地执行;Step 3, initialize equipment parameters, task parameters and communication link parameters; the decision matrix D of the initialization equipment is all local execution;

步骤4、确定任务的切片分配给K空闲设备;Step 4. Determine that the slice of the task is allocated to K idle devices;

步骤5、判断设备j在时隙t到达了任务It,j.Step 5. Determine that the device j has reached the taskIt, j in the time slot t.

步骤6、分别考虑任务在3个目的地的执行情况:处理这个任务所需的总CPU周期为St,j,每处理一个CPU周期消耗的能量为et,j,设备j的完整计算能力为Cj,可利用的比率为βt,jStep 6. Consider the execution of the task at the three destinations: the total CPU cycle required to process this task is St,j , the energy consumed per CPU cycle processed is et,j , and the complete computing power of device j is Cj , the available ratio is βt,j ;

情况一、本地执行:Case 1. Local execution:

本地执行所需时间表达式为:The expression for the time required for local execution is:

Figure BDA0002368681360000031
Figure BDA0002368681360000031

本地执行能量消耗表达式为:The local execution energy consumption expression is:

Figure BDA0002368681360000032
Figure BDA0002368681360000032

本地执行的执行负载表达式为:The execution load expression for local execution is:

Figure BDA0002368681360000033
Figure BDA0002368681360000033

其中,λ为权重比例参数;Among them, λ is the weight ratio parameter;

情况二、MEC卸载执行:Situation 2. MEC uninstall execution:

无线网络链路传输速率表达式为:The wireless network link transmission rate is expressed as:

Figure BDA0002368681360000034
Figure BDA0002368681360000034

数据传输时间表达式为:The data transfer time expression is:

Figure BDA0002368681360000035
Figure BDA0002368681360000035

本地计算时间表达式为:The local calculation time expression is:

Figure BDA0002368681360000036
Figure BDA0002368681360000036

MEC卸载执行所需时间的表达式为:The expression for the time required for MEC offload execution is:

Figure BDA0002368681360000037
Figure BDA0002368681360000037

其中,Qt,j为MEC服务器任务排队的动态函数;Among them, Qt,j is the dynamic function of MEC server task queuing;

MEC卸载执行能量消耗的表达式为:The expression for the energy consumption of MEC offloading execution is:

Figure BDA0002368681360000038
Figure BDA0002368681360000038

MEC卸载执行的执行负载的表达式为:The expression for the execution load of MEC offloading execution is:

Figure BDA0002368681360000041
Figure BDA0002368681360000041

情况三、空闲设备卸载执行:Scenario 3: Uninstall the idle device and execute:

任务通过MEC服务器卸载到多个空闲设备,为了保证任务在空闲设备上并行计算的时间最短,确定任务的切片分配给K空闲设备的方式θt,kThe task is unloaded to multiple idle devices through the MEC server. In order to ensure the shortest time for the task to be calculated in parallel on the idle device, determine the way θt,k that the slice of the task is allocated to K idle devices;

任务在MEC服务器被切片分给空闲设备K的时间包括数据传输时间和K计算时间:The time when the task is sliced and distributed to the idle device K on the MEC server includes the data transmission time and the K calculation time:

数据传输时间的表达式为:The expression for data transfer time is:

Figure BDA0002368681360000042
Figure BDA0002368681360000042

任务到达多个空闲设备,计算分片任务在设备K上执行的计算时间:The task arrives at multiple idle devices, and the computation time of the sharded task execution on device K is calculated:

K计算时间的表达式为:The expression for K calculation time is:

Figure BDA0002368681360000043
Figure BDA0002368681360000043

总时间及分配目标的表达式为:The expressions for the total time and allocation target are:

Figure BDA0002368681360000044
Figure BDA0002368681360000044

空闲设备卸载执行所需时间的表达式为:The expression for the time required for the offload execution of the idle device is:

Figure BDA0002368681360000045
Figure BDA0002368681360000045

空闲设备卸载执行能量消耗的表达式为:The expression for the energy consumption of idle device offloading execution is:

Figure BDA0002368681360000046
Figure BDA0002368681360000046

空闲设备卸载执行的执行负载的表达式为:The expression for the execution load of idle device offload execution is:

Figure BDA0002368681360000047
Figure BDA0002368681360000047

步骤6、依据以下条件,比较选择最小系统负载的目的地:Step 6. Compare and select the destination with the least system load according to the following conditions:

Figure BDA0002368681360000048
Figure BDA0002368681360000049
时,选择本地执行;when
Figure BDA0002368681360000048
and
Figure BDA0002368681360000049
, select local execution;

Figure BDA0002368681360000051
Figure BDA0002368681360000052
时,选择MEC卸载执行;when
Figure BDA0002368681360000051
and
Figure BDA0002368681360000052
, select MEC uninstall execution;

Figure BDA0002368681360000053
Figure BDA0002368681360000054
时,选择空闲设备卸载执行;when
Figure BDA0002368681360000053
and
Figure BDA0002368681360000054
, select the idle device to uninstall and execute;

步骤7、此为设备j在时隙t的最优决策

Figure BDA0002368681360000055
如果
Figure BDA0002368681360000056
更新决策矩阵;Step 7. This is the optimal decision of device j in time slot t
Figure BDA0002368681360000055
if
Figure BDA0002368681360000056
update the decision matrix;

步骤8、如果设备j决定更新决策矩阵,设备j向MEC服务器发送更新决策请求消息;Step 8. If device j decides to update the decision matrix, device j sends an update decision request message to the MEC server;

步骤9、MEC服务器收到更新决策的请求会发回一个确认消息,进行最优决策更新;Step 9. When the MEC server receives the request to update the decision, it will send back a confirmation message to update the optimal decision;

步骤10、其他的繁忙设备在MEC服务器的帮助下也得到设备j更新决策的信息,了解当前系统的计算资源使用情况并以同样的方式根据步骤6更新决策;Step 10, other busy devices also obtain the information of device j update decision with the help of the MEC server, understand the computing resource usage of the current system and update the decision according tostep 6 in the same way;

当MEC服务器不再接收到更新决策矩阵的请求消息时,达到系统的收敛状态;此时,决策矩阵D为最优的协作计算卸载方法。When the MEC server no longer receives the request message to update the decision matrix, the convergence state of the system is reached; at this time, the decision matrix D is the optimal unloading method for cooperative computing.

与现有技术相比,本发明可以在单个小型基站为区域内用户提供计算资源的情况下扩大系统的计算能力,降低平均任务响应时延,使用户得到更良好的用户体验,可以更好地提升整个系统的性能Compared with the prior art, the present invention can expand the computing capability of the system under the condition that a single small base station provides computing resources for users in the area, reduce the average task response delay, enable users to obtain better user experience, and can better Improve overall system performance

附图说明Description of drawings

图1为本发明的一种基于移动边缘计算的多用户协作计算卸载方法流程示意图;1 is a schematic flowchart of a method for offloading multi-user collaborative computing based on mobile edge computing according to the present invention;

图2为移动设备分布示例(繁忙设备数量为35、空闲设备数量为15)。Figure 2 is an example of the distribution of mobile devices (the number of busy devices is 35 and the number of idle devices is 15).

具体实施方式Detailed ways

下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。The present invention will be further described below in conjunction with the accompanying drawings and embodiments, but not as a basis for limiting the present invention.

如图1所示,为本发明的一种基于移动边缘计算的多用户协作计算卸载方法流程示意图,具体操作步骤如下:As shown in FIG. 1, it is a schematic flowchart of a method for unloading multi-user collaborative computing based on mobile edge computing according to the present invention, and the specific operation steps are as follows:

步骤1、初始化区域内的设备总数量N,任务在每个时隙的开始到达各个设备,可以在本地执行、或者被卸载到MEC服务器同时在MEC服务器上执行、或者通过MEC服务器被卸载到空闲设备并在空闲设备上执行;Step 1. The total number of devices in the initialization area is N. The task arrives at each device at the beginning of each time slot, and can be executed locally, or offloaded to the MEC server and executed on the MEC server at the same time, or offloaded to idle through the MEC server. device and execute on an idle device;

步骤2、根据任务到达率将设备划分为忙碌设备J、空闲设备K(N=J+K);Step 2. According to the task arrival rate, the devices are divided into busy devices J and idle devices K (N=J+K);

步骤3、初始化设备参数(包括设备位置、设备计算能力CN、MEC服务器计算能力Cm、设备功率P)、任务参数(包括计算输入数据的大小It,j、处理任务所需的总CPU周期St,j=αIt,j、部分卸载的比例系数为ω)及通信链路参数(包括信道带宽B、信道增益GN、噪声功率N0),初始化设备的决策矩阵D为全部为本地执行;Step 3. Initialize device parameters (including device location, device computing capability CN, MEC server computing capability Cm , device power P), task parameters (including computing input data sizeIt,j , total CPU cycles required for processing tasks St,j =αIt,j , the proportional coefficient of partial unloading is ω) and communication link parameters (including channel bandwidth B, channel gain GN , noise power N0 ), the decision matrix D of the initialization device is all local implement;

步骤4、任务可以通过MEC服务器卸载到多个空闲设备,为了保证并行计算的时间相同,确定任务的切片分配给K空闲设备;Step 4. The task can be offloaded to multiple idle devices through the MEC server. In order to ensure that the parallel computing time is the same, it is determined that the slice of the task is allocated to K idle devices;

步骤5、判断设备j在时隙t到达了任务It,jStep 5. Determine whether the device j has reached the taskIt, j in the time slot t?

步骤6、分别考虑任务在3个目的地的执行情况:处理这个任务所需的总CPU周期为St,j,每处理一个CPU周期消耗的能量为et,j(取决于设备的芯片架构的有效开关电容系数η)。设备j的完整计算能力为Cj,可利用的比率为βt,jStep 6. Consider the execution of the task at the three destinations: the total CPU cycle required to process this task is St,j , and the energy consumed per CPU cycle processed is et,j (depending on the chip architecture of the device) The effective switched capacitance coefficient η). The full computing power of device j is Cj , and the available ratio is βt,j ;

情况一、本地执行:Case 1. Local execution:

本地执行所需时间表达式为:The expression for the time required for local execution is:

Figure BDA0002368681360000061
Figure BDA0002368681360000061

本地执行能量消耗表达式为:The local execution energy consumption expression is:

Figure BDA0002368681360000062
Figure BDA0002368681360000062

本地执行的执行负载表达式为:The execution load expression for local execution is:

Figure BDA0002368681360000063
Figure BDA0002368681360000063

其中,λ为权重比例参数;Among them, λ is the weight ratio parameter;

情况二、MEC卸载执行:Situation 2. MEC uninstall execution:

无线网络链路传输速率表达式为:The wireless network link transmission rate is expressed as:

Figure BDA0002368681360000071
Figure BDA0002368681360000071

数据传输时间表达式为:The data transfer time expression is:

Figure BDA0002368681360000072
Figure BDA0002368681360000072

本地计算时间表达式为:The local calculation time expression is:

Figure BDA0002368681360000073
Figure BDA0002368681360000073

MEC卸载执行所需时间的表达式为:The expression for the time required for MEC offload execution is:

Figure BDA0002368681360000074
Figure BDA0002368681360000074

其中,Qt,j为MEC服务器任务排队的动态函数;Among them, Qt,j is the dynamic function of MEC server task queuing;

MEC卸载执行能量消耗的表达式为:The expression for the energy consumption of MEC offloading execution is:

Figure BDA0002368681360000075
Figure BDA0002368681360000075

MEC卸载执行的执行负载的表达式为:The expression for the execution load of MEC offloading execution is:

Figure BDA0002368681360000076
Figure BDA0002368681360000076

情况三、空闲设备卸载执行:Scenario 3: Uninstall the idle device and execute:

任务可以通过MEC服务器卸载到多个空闲设备,为了保证任务在空闲设备上并行计算的时间最短,确定任务的切片分配给K空闲设备的方式θt,kTasks can be offloaded to multiple idle devices through the MEC server. In order to ensure the shortest time for tasks to be calculated in parallel on idle devices, the method θt,k of assigning task slices to K idle devices is determined.

任务在MEC服务器被切片分给空闲设备K的时间包括数据传输时间和K计算时间:The time when the task is sliced and distributed to the idle device K on the MEC server includes the data transmission time and the K calculation time:

数据传输时间的表达式为:The expression for data transfer time is:

Figure BDA0002368681360000081
Figure BDA0002368681360000081

任务到达多个空闲设备,计算分片任务在设备K上执行的计算时间:The task arrives at multiple idle devices, and the computation time of the sharded task execution on device K is calculated:

K计算时间的表达式为:The expression for K calculation time is:

Figure BDA0002368681360000082
Figure BDA0002368681360000082

总时间及分配目标的表达式为:The expressions for the total time and allocation target are:

Figure BDA0002368681360000083
Figure BDA0002368681360000083

空闲设备卸载执行所需时间的表达式为:The expression for the time required for the offload execution of the idle device is:

Figure BDA0002368681360000084
Figure BDA0002368681360000084

空闲设备卸载执行能量消耗的表达式为:The expression for the energy consumption of idle device offloading execution is:

Figure BDA0002368681360000085
Figure BDA0002368681360000085

空闲设备卸载执行的执行负载的表达式为:The expression for the execution load of idle device offload execution is:

Figure BDA0002368681360000086
Figure BDA0002368681360000086

步骤6、依据以下条件,比较选择最小系统负载的目的地:Step 6. Compare and select the destination with the least system load according to the following conditions:

Figure BDA0002368681360000087
Figure BDA0002368681360000088
时,选择本地执行;when
Figure BDA0002368681360000087
and
Figure BDA0002368681360000088
, select local execution;

Figure BDA0002368681360000089
Figure BDA00023686813600000810
时,选择MEC卸载执行;when
Figure BDA0002368681360000089
and
Figure BDA00023686813600000810
, select MEC uninstall execution;

Figure BDA00023686813600000811
Figure BDA00023686813600000812
时,选择空闲设备卸载执行;when
Figure BDA00023686813600000811
and
Figure BDA00023686813600000812
, select the idle device to uninstall and execute;

步骤7、此为设备j在时隙t的最优决策

Figure BDA00023686813600000813
如果
Figure BDA00023686813600000814
更新决策矩阵;Step 7. This is the optimal decision of device j in time slot t
Figure BDA00023686813600000813
if
Figure BDA00023686813600000814
update the decision matrix;

步骤8、如果设备j决定更新决策矩阵,设备j向MEC服务器发送更新决策请求消息;Step 8. If device j decides to update the decision matrix, device j sends an update decision request message to the MEC server;

步骤9、MEC服务器收到更新决策的请求会发回一个确认消息,进行最优决策更新;Step 9. When the MEC server receives the request to update the decision, it will send back a confirmation message to update the optimal decision;

步骤10、其他的繁忙设备在MEC服务器的帮助下也得到设备j更新决策的信息,了解当前系统的计算资源使用情况并以同样的方式根据步骤6更新决策;Step 10, other busy devices also obtain the information of device j update decision with the help of the MEC server, understand the computing resource usage of the current system and update the decision according tostep 6 in the same way;

当MEC服务器不再接收到更新决策矩阵的请求消息时,达到系统的收敛状态;此时,决策矩阵D为最优的协作计算卸载方法。When the MEC server no longer receives the request message to update the decision matrix, the convergence state of the system is reached; at this time, the decision matrix D is the optimal unloading method for cooperative computing.

Claims (1)

Translated fromChinese
1.一种基于移动边缘计算的多用户协作计算卸载方法,其特征在于,该方法包括以下步骤:1. a multi-user collaborative computing offloading method based on mobile edge computing, is characterized in that, this method comprises the following steps:步骤1、初始化区域内的设备总数量N,任务在每个时隙的开始到达各个设备,可以在本地执行、或者被卸载到MEC服务器同时在MEC服务器上执行、或者通过MEC服务器被卸载到空闲设备并在空闲设备上执行;Step 1. The total number of devices in the initialization area is N. The task arrives at each device at the beginning of each time slot, and can be executed locally, or offloaded to the MEC server and executed on the MEC server at the same time, or offloaded to idle through the MEC server. device and execute on an idle device;步骤2、根据任务到达率将设备划分为忙碌设备J、空闲设备K;Step 2. According to the task arrival rate, the equipment is divided into busy equipment J and idle equipment K;步骤3、初始化设备参数、任务参数及通信链路参数;初始化设备的决策矩阵D为全部为本地执行;Step 3, initialize equipment parameters, task parameters and communication link parameters; the decision matrix D of the initialization equipment is all local execution;步骤4、确定任务的切片分配给K空闲设备;Step 4. Determine that the slice of the task is allocated to K idle devices;步骤5、判断设备j在时隙t到达了任务It,j.Step 5. Determine that the device j has reached the taskIt, j in the time slot t.步骤6、分别考虑任务在3个目的地的执行情况:处理这个任务所需的总CPU周期为St,j,每处理一个CPU周期消耗的能量为et,j,设备j的完整计算能力为Cj,可利用的比率为βt,jStep 6. Consider the execution of the task at the three destinations: the total CPU cycle required to process this task is St,j , the energy consumed per CPU cycle processed is et,j , and the complete computing power of device j is Cj , the available ratio is βt,j ;情况一、本地执行:Case 1. Local execution:本地执行所需时间表达式为:The expression for the time required for local execution is:
Figure FDA0002368681350000011
Figure FDA0002368681350000011
本地执行能量消耗表达式为:The local execution energy consumption expression is:
Figure FDA0002368681350000012
Figure FDA0002368681350000012
本地执行的执行负载表达式为:The execution load expression for local execution is:
Figure FDA0002368681350000013
Figure FDA0002368681350000013
其中,λ为权重比例参数;Among them, λ is the weight ratio parameter;情况二、MEC卸载执行:Situation 2. MEC uninstall execution:无线网络链路传输速率表达式为:The wireless network link transmission rate is expressed as:
Figure FDA0002368681350000021
Figure FDA0002368681350000021
数据传输时间表达式为:The data transfer time expression is:
Figure FDA0002368681350000022
Figure FDA0002368681350000022
本地计算时间表达式为:The local calculation time expression is:
Figure FDA0002368681350000023
Figure FDA0002368681350000023
MEC卸载执行所需时间的表达式为:The expression for the time required for MEC offload execution is:
Figure FDA0002368681350000024
Figure FDA0002368681350000024
其中,Qt,j为MEC服务器任务排队的动态函数;Among them, Qt,j is the dynamic function of MEC server task queuing;MEC卸载执行能量消耗的表达式为:The expression for the energy consumption of MEC offloading execution is:
Figure FDA0002368681350000025
Figure FDA0002368681350000025
MEC卸载执行的执行负载的表达式为:The expression for the execution load of MEC offloading execution is:
Figure FDA0002368681350000026
Figure FDA0002368681350000026
情况三、空闲设备卸载执行:Scenario 3: Uninstall the idle device and execute:任务通过MEC服务器卸载到多个空闲设备,为了保证任务在空闲设备上并行计算的时间最短,确定任务的切片分配给K空闲设备的方式θt,kThe task is unloaded to multiple idle devices through the MEC server. In order to ensure the shortest time for the task to be calculated in parallel on the idle device, the method θt,k in which the slice of the task is allocated to K idle devices is determined;任务在MEC服务器被切片分给空闲设备K的时间包括数据传输时间和K计算时间:The time when the task is sliced and distributed to the idle device K on the MEC server includes the data transmission time and the K calculation time:数据传输时间的表达式为:The expression for data transfer time is:
Figure FDA0002368681350000031
Figure FDA0002368681350000031
任务到达多个空闲设备,计算分片任务在设备K上执行的计算时间:The task arrives at multiple idle devices, and the computation time of the sharded task execution on device K is calculated:K计算时间的表达式为:The expression for K calculation time is:
Figure FDA0002368681350000032
Figure FDA0002368681350000032
总时间及分配目标的表达式为:The expressions for the total time and allocation target are:
Figure FDA0002368681350000033
Figure FDA0002368681350000033
空闲设备卸载执行所需时间的表达式为:The expression for the time required for the offload execution of the idle device is:
Figure FDA0002368681350000034
Figure FDA0002368681350000034
空闲设备卸载执行能量消耗的表达式为:The expression for the energy consumption of idle device offloading execution is:
Figure FDA0002368681350000035
Figure FDA0002368681350000035
空闲设备卸载执行的执行负载的表达式为:The expression for the execution load of idle device offload execution is:
Figure FDA0002368681350000036
Figure FDA0002368681350000036
步骤6、依据以下条件,比较选择最小系统负载的目的地:Step 6. Compare and select the destination with the least system load according to the following conditions:
Figure FDA0002368681350000037
Figure FDA0002368681350000038
时,选择本地执行;
when
Figure FDA0002368681350000037
and
Figure FDA0002368681350000038
, select local execution;
Figure FDA0002368681350000039
Figure FDA00023686813500000310
时,选择MEC卸载执行;
when
Figure FDA0002368681350000039
and
Figure FDA00023686813500000310
, select MEC uninstall execution;
Figure FDA00023686813500000311
Figure FDA00023686813500000312
时,选择空闲设备卸载执行;
when
Figure FDA00023686813500000311
and
Figure FDA00023686813500000312
, select the idle device to uninstall and execute;
步骤7、此为设备j在时隙t的最优决策
Figure FDA00023686813500000313
如果
Figure FDA00023686813500000314
更新决策矩阵;
Step 7. This is the optimal decision of device j in time slot t
Figure FDA00023686813500000313
if
Figure FDA00023686813500000314
update the decision matrix;
步骤8、如果设备j决定更新决策矩阵,设备j向MEC服务器发送更新决策请求消息;Step 8. If device j decides to update the decision matrix, device j sends an update decision request message to the MEC server;步骤9、MEC服务器收到更新决策的请求会发回一个确认消息,进行最优决策更新;Step 9. When the MEC server receives the request to update the decision, it will send back a confirmation message to update the optimal decision;步骤10、其他的繁忙设备在MEC服务器的帮助下也得到设备j更新决策的信息,了解当前系统的计算资源使用情况并以同样的方式根据步骤6更新决策;Step 10, other busy devices also obtain the information of the device j update decision with the help of the MEC server, understand the computing resource usage of the current system and update the decision according to step 6 in the same way;当MEC服务器不再接收到更新决策矩阵的请求消息时,达到系统的收敛状态;此时,决策矩阵D为最优的协作计算卸载方法。When the MEC server no longer receives the request message to update the decision matrix, the convergence state of the system is reached; at this time, the decision matrix D is the optimal unloading method for cooperative computing.
CN202010043845.4A2020-01-152020-01-15Multi-user cooperative computing unloading method based on mobile edge computingPendingCN111263401A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202010043845.4ACN111263401A (en)2020-01-152020-01-15Multi-user cooperative computing unloading method based on mobile edge computing

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202010043845.4ACN111263401A (en)2020-01-152020-01-15Multi-user cooperative computing unloading method based on mobile edge computing

Publications (1)

Publication NumberPublication Date
CN111263401Atrue CN111263401A (en)2020-06-09

Family

ID=70952141

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202010043845.4APendingCN111263401A (en)2020-01-152020-01-15Multi-user cooperative computing unloading method based on mobile edge computing

Country Status (1)

CountryLink
CN (1)CN111263401A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN112039965A (en)*2020-08-242020-12-04重庆邮电大学 A method and system for multitasking offloading in a time-sensitive network
CN112600869A (en)*2020-11-112021-04-02南京邮电大学Calculation unloading distribution method and device based on TD3 algorithm
CN113342409A (en)*2021-04-252021-09-03山东师范大学Delay sensitive task unloading decision method and system for multi-access edge computing system
CN114189521A (en)*2021-12-152022-03-15福州大学 A method for collaborative computing offload in F-RAN architecture
CN114900860A (en)*2022-05-052022-08-12中国联合网络通信集团有限公司Mobile terminal edge calculation method, device, edge calculation server and medium
CN115314942A (en)*2022-07-112022-11-08中国科学院深圳先进技术研究院Load balancing method of unmanned aerial vehicle-assisted energy transmission mobile edge computing system
CN118972903A (en)*2024-10-182024-11-15浙江理工大学 A novel IIoT-MEC task offloading method for joint optimization of latency and energy consumption

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20090271502A1 (en)*2007-10-092009-10-29Xue ChuansongData distribution method, data distribution system and relevant devices in edge network
CN106534333A (en)*2016-11-302017-03-22北京邮电大学 A Two-way Selective Computing Offloading Method Based on MEC and MCC
CN108809695A (en)*2018-04-282018-11-13国网浙江省电力有限公司电力科学研究院A kind of distribution uplink unloading strategy towards mobile edge calculations
US20190141120A1 (en)*2018-12-282019-05-09Intel CorporationTechnologies for providing selective offload of execution to the edge
CN110290507A (en)*2019-05-282019-09-27南京邮电大学 A caching strategy and spectrum allocation method for a D2D communication-assisted edge caching system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20090271502A1 (en)*2007-10-092009-10-29Xue ChuansongData distribution method, data distribution system and relevant devices in edge network
CN106534333A (en)*2016-11-302017-03-22北京邮电大学 A Two-way Selective Computing Offloading Method Based on MEC and MCC
CN108809695A (en)*2018-04-282018-11-13国网浙江省电力有限公司电力科学研究院A kind of distribution uplink unloading strategy towards mobile edge calculations
US20190141120A1 (en)*2018-12-282019-05-09Intel CorporationTechnologies for providing selective offload of execution to the edge
CN110290507A (en)*2019-05-282019-09-27南京邮电大学 A caching strategy and spectrum allocation method for a D2D communication-assisted edge caching system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUISHENG HU 等: "Multi-User Computation Offloading with D2D for Mobile Edge Computing", 《2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)》*
任静: "移动边缘网络三层处理架构中计算-通信资源调度策略研究", 《中国优秀硕士学位论文全文数据库(信息科技I辑)》*

Cited By (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN112039965A (en)*2020-08-242020-12-04重庆邮电大学 A method and system for multitasking offloading in a time-sensitive network
CN112039965B (en)*2020-08-242022-07-12重庆邮电大学Multitask unloading method and system in time-sensitive network
CN112600869A (en)*2020-11-112021-04-02南京邮电大学Calculation unloading distribution method and device based on TD3 algorithm
CN113342409A (en)*2021-04-252021-09-03山东师范大学Delay sensitive task unloading decision method and system for multi-access edge computing system
CN114189521A (en)*2021-12-152022-03-15福州大学 A method for collaborative computing offload in F-RAN architecture
CN114189521B (en)*2021-12-152024-01-26福州大学Method for collaborative computing offloading in F-RAN architecture
CN114900860A (en)*2022-05-052022-08-12中国联合网络通信集团有限公司Mobile terminal edge calculation method, device, edge calculation server and medium
CN114900860B (en)*2022-05-052024-04-02中国联合网络通信集团有限公司 Mobile terminal edge computing method, device, edge computing server and medium
CN115314942A (en)*2022-07-112022-11-08中国科学院深圳先进技术研究院Load balancing method of unmanned aerial vehicle-assisted energy transmission mobile edge computing system
CN115314942B (en)*2022-07-112024-08-09中国科学院深圳先进技术研究院 Load balancing method for UAV-assisted energy transmission mobile edge computing system
CN118972903A (en)*2024-10-182024-11-15浙江理工大学 A novel IIoT-MEC task offloading method for joint optimization of latency and energy consumption

Similar Documents

PublicationPublication DateTitle
CN111263401A (en)Multi-user cooperative computing unloading method based on mobile edge computing
CN111447619B (en) A method for joint task offloading and resource allocation in mobile edge computing networks
CN110647391B (en)Edge computing method and system for satellite-ground cooperative network
CN109862592B (en) A resource management and scheduling method in mobile edge computing environment based on multi-base station cooperation
CN108809695B (en) A distributed uplink offloading strategy for mobile edge computing
CN110392079B (en)Node computing task scheduling method and device for fog computing
CN111930436A (en)Random task queuing and unloading optimization method based on edge calculation
CN110493757B (en)Mobile edge computing unloading method for reducing system energy consumption under single server
CN109684075A (en)Method for unloading computing tasks based on edge computing and cloud computing cooperation
CN110234127B (en)SDN-based fog network task unloading method
CN109922479B (en) A computing task offloading method based on delay estimation
CN109413724A (en)A kind of task unloading and Resource Allocation Formula based on MEC
CN107766135A (en)Method for allocating tasks based on population and simulated annealing optimization in mobile cloudlet
CN110489176B (en) A multi-access edge computing task offloading method based on the packing problem
CN111132235B (en)Mobile offload migration algorithm based on improved HRRN algorithm and multi-attribute decision
CN114363984B (en)Cloud edge collaborative optical carrier network spectrum resource allocation method and system
CN109639833B (en) A task scheduling method based on wireless metropolitan area network micro-cloud load balancing
Rui et al.Computation offloading in a mobile edge communication network: A joint transmission delay and energy consumption dynamic awareness mechanism
CN115499875B (en) A satellite Internet task offloading method, system and readable storage medium
CN113992678A (en) A computational migration method for joint optimization of maritime MEC load balancing and resource allocation
Kim et al.Task popularity-based energy minimized computation offloading for fog computing wireless networks
CN110149401B (en) A method and system for optimizing edge computing tasks
Zu et al.SMETO: Stable matching for energy-minimized task offloading in cloud-fog networks
CN116133049B (en) A cloud-edge-device collaborative MEC task offloading strategy based on DRL and security
CN109005211A (en)Thin cloud deployment and scheduling user task method under a kind of wireless MAN environment

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
WD01Invention patent application deemed withdrawn after publication
WD01Invention patent application deemed withdrawn after publication

Application publication date:20200609


[8]ページ先頭

©2009-2025 Movatter.jp