


















技术领域technical field
本发明涉及通信领域,具体是基于高速数传中的快速时间同步方法。The invention relates to the field of communication, in particular to a fast time synchronization method based on high-speed data transmission.
背景技术Background technique
在无线通信系统中,为了抵抗多径传输带来的干扰,一般采用OFDM(正交频分复用)或SC-FDE(单载波频域均衡)作为通信体制。尤其在现如今的遥测系统中,无人机的快速发展,使得机器的载荷能力越来越强,因此对通信速率的要求越高。In a wireless communication system, in order to resist the interference caused by multipath transmission, OFDM (Orthogonal Frequency Division Multiplexing) or SC-FDE (Single Carrier Frequency Domain Equalization) is generally used as a communication system. Especially in today's telemetry system, the rapid development of UAVs makes the load capacity of the machine stronger and stronger, so the requirements for the communication rate are higher.
在突发通信系统中,一般采用数据辅助的方式对信号进行时间同步。通过寻找本地序列与接收信号的相关峰位置,确定OFDM信号的起始位置。OFDM高数据率传输系统的主要瓶颈在于,较高的传输数据率需要较大的带宽来实现。带宽直接决定了OFDM系统的可用子载波点数。如果可用子载波点数较大,时间同步做相关计算时对硬件的存储和运算资源需求很大,并且会带来不少的延迟。因此,国内正在积极开展传输速率在300Mbit/s以上的突发传输链路的研究工作。In a burst communication system, a data-assisted manner is generally used to time-synchronize signals. The starting position of the OFDM signal is determined by finding the correlation peak position between the local sequence and the received signal. The main bottleneck of OFDM high data rate transmission system is that higher transmission data rate requires larger bandwidth to realize. The bandwidth directly determines the number of available subcarrier points in the OFDM system. If the number of available sub-carrier points is large, the hardware storage and computing resources are required for time synchronization to perform related calculations, and it will bring a lot of delay. Therefore, research work on burst transmission links with transmission rates above 300Mbit/s is being actively carried out in China.
对于点数较大的相关计算,一般采用两种思路,第一是对接收信号和本地序列分别取符号做相关;第二是对接收信号和本地序列分别抽取到可接受的范围做相关。取符号做相关的方法受系统频偏影响较大,因此本文主要基于抽取的快速时间同步方案。基于抽取的时间同步方案主要存在的问题是抽取偏移。接收端并不知道信号的到达时刻,也无法判断当前抽取点与里面抽取点的偏移是多少,因此,如果对接收信号和本地序列都做抽取的话,会破坏序列的相关性。本文基于该问题,提出一种新的时间同步方案。该方案同步序列的相关性不受抽取偏移点的影响,并且可以大大的减少硬件实现需要的存储运算资源和处理时间。For the correlation calculation with a large number of points, two ideas are generally adopted. The first is to correlate the received signal and the local sequence with symbols respectively; the second is to extract the received signal and the local sequence to an acceptable range for correlation. The method of taking symbols for correlation is greatly affected by the system frequency offset, so this paper is mainly based on the fast time synchronization scheme of extraction. The main problem of the decimation-based time synchronization scheme is decimation offset. The receiving end does not know the arrival time of the signal, nor can it judge the offset between the current extraction point and the extraction point in it. Therefore, if the received signal and the local sequence are extracted, the correlation of the sequence will be destroyed. Based on this problem, this paper proposes a new time synchronization scheme. The correlation of the synchronization sequence of the scheme is not affected by the extraction offset point, and can greatly reduce the storage computing resources and processing time required for hardware implementation.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足,提供基于高速数传中的快速时间同步方法,包括如下步骤:The object of the present invention is to overcome the deficiencies in the prior art, provide a method for fast time synchronization based on high-speed data transmission, comprising the steps:
步骤一,产生Ns个长度为L根指数不同的ZC(zadoff-chu)序列seqi,i=1,..,Ns;
步骤二,将这Ns个ZC序列seqi首尾相连拼接成为一个长度为LNs的序列seq;
步骤三,将得到的序列seq进行子载波映射,然后变换到时域,进行Ns个不同偏移量的Ns倍抽取,得到Ns个不同的序列,将这些序列加和起来得到本地序列得到本地序列Slocal;Step 3: Perform subcarrier mapping on the obtained sequence seq, then transform it into the time domain, and perform Ns times extraction of Ns different offsets to obtain Ns different sequences, and add these sequences to obtain the local sequence. get the local sequence Slocal ;
步骤四,对接收到的OFDM信号进行Ns倍抽取得到序列r,将序列r与本地序列Slocal进行滑动相关计算检测,得到相关峰值;Step 4: Perform Ns times extraction on the received OFDM signal to obtain a sequence r, and perform sliding correlation calculation and detection on the sequence r and the local sequence Slocal to obtain a correlation peak;
步骤五,根据相关峰的位置确定信号的帧头起始位置。Step 5: Determine the starting position of the frame header of the signal according to the position of the correlation peak.
进一步的,所述的ZC序列的产生公式为:Further, the generation formula of described ZC sequence is:
(1)式中N表示ZC序列的长度,R表示根指数,N与R是互质的整数。(1) In the formula, N represents the length of the ZC sequence, R represents the root exponent, and N and R are relatively prime integers.
进一步的,步骤三中所述的将拼接后的序列seq进行子载波映射是ZC序列排列在OFDM的正负子载波上,排列方式为,ZC序列的第1至Ns/2个元素排列在负子载波上,第Ns/2+1至Ns个元素排列在正子载波上。Further, performing subcarrier mapping on the spliced sequence seq described in step 3 is that the ZC sequence is arranged on the positive and negative subcarriers of the OFDM, and the arrangement is as follows: the first toNs /2 elements of the ZC sequence are arranged in On the negative sub-carriers, the Ns /2+1 to Ns elements are arranged on the positive sub-carriers.
进一步的,所述对步骤二中得到的seq序列进行反傅里叶变换得到序列seqtime;设有Ns个序列的集合{si},i=1…Ns;si是由seqi补零之后得到的长度为LNs的序列,其补零方式如式(2)-(5)所示:Further, inverse Fourier transform is performed on the seq sequence obtained in
由傅里叶变换性质可知seqtime为:According to the Fourier transform property, the seqtime is:
进一步的,所述步骤三中的本地序列slocal为对seqtime进行Ns倍下采后,Ns个偏移量产生的序列相加得到的序列为slocal,其计算方式如下:Further, thelocal sequence slocal in the step 3 is the sequence obtained by adding the sequences generated by the Ns offsets after performing Ns times of downsampling on the seqtime , and the calculation method is as follows:
进一步的,所述步骤四中的滑动相关的具体实现方式为,取当前滑动窗口的点及其往后L个点作为一个序列,与本地序列slocal进行相关计算,计算公式为:Further, the specific implementation mode of the sliding correlation in the
其中x(i),i=1,…,N,y(i),i=1,…,N表示两个长度分别为N的复数序列。conj(A)表示对A取共轭,abs|A|表示对A取绝对值。where x(i), i=1,...,N, y(i), i=1,...,N represent two complex number sequences of length N respectively. conj(A) means taking the conjugate of A, and abs|A| means taking the absolute value of A.
进一步的,所述步骤五中的相关峰的值是滑动窗口每滑动一次可得到一个相关值,若相关值大于设定值,并且是所有相关值中最大的值,该点即为相关峰位置。Further, the value of the correlation peak in the
附图说明Description of drawings
图1为一种高速数传中的快速时间同步方法流程图;Fig. 1 is a kind of flow chart of fast time synchronization method in high-speed data transmission;
图2为时间同步方案ZC序列子载波映射示意图;FIG. 2 is a schematic diagram of a time synchronization scheme ZC sequence subcarrier mapping;
图3为ZC序列拼接示意图;Fig. 3 is a schematic diagram of ZC sequence splicing;
图4新方案偏移量为0时相关图;Figure 4. Correlation diagram when the offset of the new scheme is 0;
图5新方案偏移量为1时相关图;Figure 5. Correlation diagram when the offset of the new scheme is 1;
图6新方案偏移量为2时相关图;Figure 6. Correlation diagram when the offset of the new scheme is 2;
图7新方案偏移量为3时相关图;Figure 7. Correlation diagram when the offset of the new scheme is 3;
图8新方案偏移量为4时相关图;Figure 8. Correlation diagram when the offset of the new scheme is 4;
图9新方案偏移量为5时相关图;Figure 9. Correlation diagram when the offset of the new scheme is 5;
图10新方案偏移量为6时相关图;Figure 10. Correlation diagram when the offset of the new scheme is 6;
图11新方案偏移量为7时相关图;Figure 11. Correlation diagram when the offset of the new scheme is 7;
图12新方案偏移量为8时相关图;Figure 12. Correlation diagram when the offset of the new scheme is 8;
图13新方案偏移量为9时相关图;Figure 13. Correlation diagram when the offset of the new scheme is 9;
图14新方案偏移量为10时相关图;Figure 14. Correlation diagram when the offset of the new scheme is 10;
图15新方案偏移量为11时相关图;Figure 15. Correlation diagram when the offset of the new scheme is 11;
图16新方案偏移量为12时相关图;Figure 16. Correlation diagram when the offset of the new scheme is 12;
图17新方案偏移量为13时相关图;Figure 17. Correlation diagram when the offset of the new scheme is 13;
图18新方案偏移量为14时相关图;Figure 18. Correlation diagram when the offset of the new scheme is 14;
图19新方案偏移量为15时相关图。Figure 19. Correlation diagram when the offset of the new scheme is 15.
具体实施方式Detailed ways
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。The technical solutions of the present invention are further described in detail below with reference to the accompanying drawings, but the protection scope of the present invention is not limited to the following.
以300Mbps高速率数据传输OFDM系统为例。系统采用TDMA(时分多址)体制。系统的子载波间隔为15KHz,可用子载波数为12240个,FFT点数为16384点,CP(循环前缀)的长度为1152个点。采用16QAM 1/2码率的信道编码。一个物理层时隙的长度为1ms(毫秒),包含了14个OFDM符号,其中第一个OFDM符号为同步头,用于实现时间同步。抽取的倍数为16。Take the 300Mbps high-speed data transmission OFDM system as an example. The system adopts TDMA (Time Division Multiple Access) system. The subcarrier interval of the system is 15KHz, the number of available subcarriers is 12240, the number of FFT points is 16384 points, and the length of CP (cyclic prefix) is 1152 points. Channel coding with
同步头组帧流程如下:The synchronization header framing process is as follows:
根据公式(1),产生16个长度为765,根指数分别为[1 7 11 13 19 23 29 31 3741 43 47 53 59 61 67]的ZC序列,seqi,i=1,..,16。According to formula (1), 16 ZC sequences of length 765 and root indices of [1 7 11 13 19 23 29 31 3741 43 47 53 59 61 67] are generated, seqi , i=1, .., 16.
seq1(m+1)=exp(-j*pi*m*(m+1)/765),m=0,…,764seq1 (m+1)=exp(-j*pi*m*(m+1)/765), m=0,...,764
seq2(m+1)=exp(-j*pi*7*m*(m+1)/765),m=0,…,764seq2 (m+1)=exp(-j*pi*7*m*(m+1)/765), m=0,...,764
seq3(m+1)=exp(-j*pi*11*m*(m+1)/765),m=0,…,764seq3 (m+1)=exp(-j*pi*11*m*(m+1)/765), m=0,...,764
seq4(m+1)=exp(-j*pi*13*m*(m+1)/765),m=0,…,764seq4 (m+1)=exp(-j*pi*13*m*(m+1)/765), m=0,...,764
seq5(m+1)=exp(-j*pi*19*m*(m+1)/765),m=0,…,764seq5 (m+1)=exp(-j*pi*19*m*(m+1)/765), m=0,...,764
seq6(m+1)=exp(-j*pi*23*m*(m+1)/765),m=0,…,764seq6 (m+1)=exp(-j*pi*23*m*(m+1)/765), m=0,...,764
seq7(m+1)=exp(-j*pi*29*m*(m+1)/765),m=0,…,764seq7 (m+1)=exp(-j*pi*29*m*(m+1)/765), m=0,…,764
seq8(m+1)=exp(-j*pi*31*m*(m+1)/765),m=0,…,764seq8 (m+1)=exp(-j*pi*31*m*(m+1)/765), m=0,...,764
seq9(m+1)=exp(-j*pi*37*m*(m+1)/765),m=0,…,764seq9 (m+1)=exp(-j*pi*37*m*(m+1)/765), m=0,...,764
seq10(m+1)=exp(-j*pi*41*m*(m+1)/765),m=0,…,764seq10 (m+1)=exp(-j*pi*41*m*(m+1)/765), m=0,…,764
seq11(m+1)=exp(-j*pi*43*m*(m+1)/765),m=0,…,764seq11 (m+1)=exp(-j*pi*43*m*(m+1)/765), m=0,...,764
seq12(m+1)=exp(-j*pi*47*m*(m+1)/765),m=0,…,764seq12 (m+1)=exp(-j*pi*47*m*(m+1)/765), m=0,...,764
seq13(m+1)=exp(-j*pi*53*m*(m+1)/765),m=0,…,764seq13 (m+1)=exp(-j*pi*53*m*(m+1)/765), m=0,...,764
seq14(m+1)=exp(-j*pi*59*m*(m+1)/765),m=0,…,764seq14 (m+1)=exp(-j*pi*59*m*(m+1)/765), m=0,…,764
seq15(m+1)=exp(-j*pi*61*m*(m+1)/765),m=0,…,764seq15 (m+1)=exp(-j*pi*61*m*(m+1)/765), m=0,...,764
seq16(m+1)=exp(-j*pi*67*m*(m+1)/765),m=0,…,764seq16 (m+1)=exp(-j*pi*67*m*(m+1)/765), m=0,…,764
将这16个长度为765的ZC序列seqi,i=1,..,16按照图3所示的方式首尾拼接成一个长度为12240的序列seq。The 16 ZC sequences seqi with a length of 765, i=1, .., 16 are spliced end-to-end into a sequence seq with a length of 12240 in the manner shown in FIG. 3 .
对进行子载波映射后的seq进行16384点的ifft得到的序列为16384点的时域序列seqtime。对seqtime进行16个不同偏移量的16倍抽取,可得到16个1024长的序列,seqDi,i=1,…,16,其中A sequence obtained by performing ifft of 16384 points on the seq after subcarrier mapping is a time domain sequence of 16384 points seqtime . 16 times of 16 different offsets for seqtime can be extracted, and 16 sequences of 1024 length can be obtained, seqDi , i=1,...,16, where
偏移量为0对应的序列为:The sequence corresponding to an offset of 0 is:
seqD1=[seqtime(1) seqtime(17) seqtime(33) … seqtime(16369)]seqD1 = [seqtime (1) seqtime (17) seqtime (33) … seqtime (16369)]
偏移量为1对应的序列为:The sequence corresponding to an offset of 1 is:
seqD2=[seqtime(2) seqtime(18) seqtime(34) … seqtime(16370)]seqD2 = [seqtime (2) seqtime (18) seqtime (34) ... seqtime (16370)]
偏移量为2对应的序列为:The sequence corresponding to an offset of 2 is:
seqD3=[seqtime(3) seqtime(19) seqtime(35) … seqtime(16371)]seqD3 = [seqtime (3) seqtime (19) seqtime (35) … seqtime (16371)]
偏移量为3对应的序列为:The sequence corresponding to an offset of 3 is:
seqD4=[seqtime(4) seqtime(20) seqtime(36) … seqtime(16372)]seqD4 = [seqtime (4) seqtime (20) seqtime (36) … seqtime (16372)]
偏移量为4对应的序列为:The sequence corresponding to an offset of 4 is:
seqD5=[seqtime(5) seqtime(21) seqtime(37) … seqtime(16373)]seqD5 = [seqtime (5) seqtime (21) seqtime (37) ... seqtime (16373)]
偏移量为5对应的序列为:The sequence corresponding to an offset of 5 is:
seqD6=[seqtime(6) seqtime(22) seqtime(38) … seqtime(16374)]seqD6 = [seqtime (6) seqtime (22) seqtime (38) … seqtime (16374)]
偏移量为6对应的序列为:The sequence corresponding to offset 6 is:
seqD7=[seqtime(7) seqtime(23) seqtime(39) … seqtime(16375)]seqD7 = [seqtime (7) seqtime (23) seqtime (39) ... seqtime (16375)]
偏移量为7对应的序列为:The sequence corresponding to offset 7 is:
seqD8=[seqtime(8) seqtime(24) seqtime(40) … seqtime(16376)]seqD8 = [seqtime (8) seqtime (24) seqtime (40) ... seqtime (16376)]
偏移量为8对应的序列为:The sequence corresponding to an offset of 8 is:
seqD9=[seqtime(9) seqtime(25) seqtime(41) … seqtime(16377)]seqD9 = [seqtime (9) seqtime (25) seqtime (41) … seqtime (16377)]
偏移量为9对应的序列为:The sequence corresponding to offset 9 is:
seqD10=[seqtime(10) seqtime(26) seqtime(42) … seqtime(16378)]seqD10 = [seqtime (10) seqtime (26) seqtime (42) … seqtime (16378)]
偏移量为10对应的序列为:The sequence corresponding to an offset of 10 is:
seqD11=[seqtime(11) seqtime(27) seqtime(43) … seqtime(16379)]seqD11 = [seqtime (11) seqtime (27) seqtime (43) … seqtime (16379)]
偏移量为11对应的序列为:The sequence corresponding to offset 11 is:
seqD12=[seqtime(12) seqtime(28) seqtime(44) … seqtime(16380)]seqD12 = [seqtime (12) seqtime (28) seqtime (44) … seqtime (16380)]
偏移量为12对应的序列为:The sequence corresponding to an offset of 12 is:
seqD13=[seqtime(13) seqtime(29) seqtime(45) … seqtime(16381)]seqD13 = [seqtime (13) seqtime (29) seqtime (45) … seqtime (16381)]
偏移量为13对应的序列为:The sequence corresponding to offset 13 is:
seqD14=[seqtime(14) seqtime(30) seqtime(46) … seqtime(16382)]seqD14 = [seqtime (14) seqtime (30) seqtime (46) … seqtime (16382)]
偏移量为14对应的序列为:The sequence corresponding to an offset of 14 is:
seqD15=[seqtime(15) seqtime(31) seqtime(47) … seqtime(16383)]seqD15 = [seqtime (15) seqtime (31) seqtime (47) … seqtime (16383)]
偏移量为15对应的序列为:The sequence corresponding to an offset of 15 is:
seqD16=[seqtime(16) seqtime(32) seqtime(48) … seqtime(16384)]seqD16 = [seqtime (16) seqtime (32) seqtime (48) … seqtime (16384)]
将这16个序列累加在一起组合成本地序列Combine these 16 sequences together into a local sequence
接收端的同步流程主要如下:The synchronization process at the receiving end is mainly as follows:
对接收序列进行16倍抽取得到序列rD与slocal进行滑动相关。滑动相关的具体实现方式即,取当前时刻及其往后1024个点作为一个序列,与本地序列slocal进行相关计算。也就是第一次取的索引为1到1024的点与slocal进行相关。第二次取索引为2到1025的点与slocal进行相关。以此类推。每滑动一次可得到一个相关值。相关值超过10,并且是所有相关值中最大的,该点记为相关峰值。因为本地序列的长度为1024,因此与抽slocal取后的接收序列做滑动相关时,峰值对应的点为1024,才实现了正确的时间同步。The received sequence is extracted 16 times to obtain a sliding correlation between the sequence rD and slocal . The specific implementation of the sliding correlation is to take the current moment and its next 1024 points as a sequence, and perform correlation calculation with the local sequence slocal . That is, the points with indices from 1 to 1024 taken for the first time are correlated with slocal . The second time the points with
在-3dB信噪比环境下,对接收序列进行16倍抽取,偏移量分别为[0 1 2 3 4 5 67 8 9 10 11 12 13 14 15],得到的16个下抽后的接收序列与本地序列slocal进行相关计算的结果如图4-19。从图中可以看出,每个相关峰的位置都位于第1024个点,因此16个不同偏移量对应的下抽序列均正确实现了时间同步。由此可得,本方案的本地序列与接收序列的相关性并没有被偏移量破坏。不同偏移量场景下,相关性依然很好。因此在实际的实现过程中,可根据系统的硬件资源,设计合理的抽取倍数。既能减少硬件存储资源、运算开销和信号同步时间,又可以获得较好的时间同步性能。Under the environment of -3dB SNR, 16 times of decimation is performed on the received sequence, and the offsets are [0 1 2 3 4 5 67 8 9 10 11 12 13 14 15], and the obtained 16 down-decimated received sequences The result of the correlation calculation with the local sequence slocal is shown in Figure 4-19. It can be seen from the figure that the position of each correlation peak is located at the 1024th point, so the down-sampling sequences corresponding to 16 different offsets have correctly achieved time synchronization. It can be seen from this that the correlation between the local sequence and the received sequence in this scheme is not destroyed by the offset. In different offset scenarios, the correlation is still very good. Therefore, in the actual implementation process, a reasonable extraction multiple can be designed according to the hardware resources of the system. It can not only reduce hardware storage resources, computing overhead and signal synchronization time, but also obtain better time synchronization performance.
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。The foregoing are only preferred embodiments of the present invention, and it should be understood that the present invention is not limited to the forms disclosed herein, and should not be construed as an exclusion of other embodiments, but may be used in various other combinations, modifications, and environments, and Modifications can be made within the scope of the concepts described herein, from the above teachings or from skill or knowledge in the relevant field. However, modifications and changes made by those skilled in the art do not depart from the spirit and scope of the present invention, and should all fall within the protection scope of the appended claims of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911305353.1ACN111193681B (en) | 2019-02-28 | 2019-02-28 | Fast time synchronization method based on high-speed data transmission |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910154353.XACN110071888B (en) | 2019-02-28 | 2019-02-28 | Fast time synchronization method in high-speed data transmission |
| CN201911305353.1ACN111193681B (en) | 2019-02-28 | 2019-02-28 | Fast time synchronization method based on high-speed data transmission |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910154353.XADivisionCN110071888B (en) | 2019-02-28 | 2019-02-28 | Fast time synchronization method in high-speed data transmission |
| Publication Number | Publication Date |
|---|---|
| CN111193681A CN111193681A (en) | 2020-05-22 |
| CN111193681Btrue CN111193681B (en) | 2020-10-16 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911305353.1AActiveCN111193681B (en) | 2019-02-28 | 2019-02-28 | Fast time synchronization method based on high-speed data transmission |
| CN201910154353.XAActiveCN110071888B (en) | 2019-02-28 | 2019-02-28 | Fast time synchronization method in high-speed data transmission |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910154353.XAActiveCN110071888B (en) | 2019-02-28 | 2019-02-28 | Fast time synchronization method in high-speed data transmission |
| Country | Link |
|---|---|
| CN (2) | CN111193681B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111988108B (en)* | 2020-10-22 | 2020-12-29 | 南京沁恒微电子股份有限公司 | Anti-jamming and high-precision signal synchronization method based on access code in bluetooth receiver |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101001232A (en)* | 2006-01-09 | 2007-07-18 | 华为技术有限公司 | Sending method and system for synchronous signal |
| GB2458418B (en)* | 2006-12-19 | 2011-08-03 | Lg Electronics Inc | Sequence generating method for efficient detection and method for transmitting and receiving signals using the same |
| KR100938756B1 (en)* | 2007-07-06 | 2010-01-26 | 엘지전자 주식회사 | How to perform cell search in wireless communication system |
| CN101252565B (en)* | 2008-03-28 | 2012-05-02 | 杭州国芯科技股份有限公司 | Fast Frame Synchronization Method |
| EP2211515B1 (en)* | 2009-01-22 | 2016-05-25 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving uplink sounding signal in broadband wireless communication system |
| CN101651650B (en)* | 2009-09-15 | 2012-03-28 | 北京天碁科技有限公司 | Synchronization and frequency deviation combining evaluating method and device |
| CN102148785B (en)* | 2010-02-05 | 2014-03-12 | 中兴通讯股份有限公司 | Methods and devices for detecting main synchronous signal and generating sequence in LTE (Long Term Evolution) system |
| CN102347924B (en)* | 2010-07-30 | 2014-09-24 | 大连海兰德维通信技术有限公司 | Frequency offset estimation and timing method and device |
| CN101909036B (en)* | 2010-08-13 | 2013-11-13 | 北京交通大学 | Improved cross-correlation timing synchronization method of orthogonal frequency division multiplexing |
| CN103379077A (en)* | 2012-04-27 | 2013-10-30 | 株式会社Ntt都科摩 | Frame synchronization and symbol synchronization method and device in wireless communication system |
| CN103338177B (en)* | 2013-07-01 | 2016-11-23 | 北京大学 | A kind of frame synchornization method resisting mono-tone interference |
| CN103701733B (en)* | 2013-09-28 | 2017-03-01 | 河北工业大学 | A kind of method of TD LTE relay system offset estimation |
| CN103684521B (en)* | 2013-12-20 | 2016-08-17 | 中国船舶重工集团公司第七一五研究所 | A kind of quick precise synchronization method of spread-spectrum underwater sound communication |
| US9584245B2 (en)* | 2014-03-26 | 2017-02-28 | National Central University | Non-coherent neighbor cell searching method |
| CN104468038B (en)* | 2014-11-27 | 2018-03-09 | 江苏中兴微通信息科技有限公司 | A kind of MIMO targeting sequencings generation method and reception device based on ZCZ sequences |
| US9491024B2 (en)* | 2015-02-04 | 2016-11-08 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Methods for frequency offset estimation with Zadoff-Chu sequences |
| CN104717174B (en)* | 2015-03-27 | 2018-05-15 | 电子科技大学 | A kind of OFDM anti-interference synchronous methods under complexity multipath channel |
| CN104883249B (en)* | 2015-06-16 | 2017-12-08 | 桂林电子科技大学 | Time synchronized relay system and method based on radio communication |
| CN107431679B (en)* | 2015-09-24 | 2020-09-25 | 华为技术有限公司 | Synchronous signal transmission method and device |
| CN105847212A (en)* | 2016-03-23 | 2016-08-10 | 北京裕源大通科技股份有限公司 | Detection method and device of downlink primary synchronization signals in LTE system |
| US10547417B2 (en)* | 2016-09-27 | 2020-01-28 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving signal in communication system using scalable frame structure |
| CN106789811B (en)* | 2016-12-12 | 2019-11-05 | 哈尔滨工业大学 | Anti- big frequency deviation synchronous method based on conjugate sequence |
| CN106453176B (en)* | 2016-12-13 | 2019-11-26 | 中国联合网络通信集团有限公司 | A kind of method, apparatus and system of offset estimation |
| CN108540250B (en)* | 2018-04-23 | 2020-04-21 | 佛山市顺德区德雅军民融合创新研究院 | A Fast Time Synchronization Method Based on Laser Pulses for Satellite-Earth Quantum Key Distribution |
| Publication number | Publication date |
|---|---|
| CN110071888B (en) | 2020-06-12 |
| CN111193681A (en) | 2020-05-22 |
| CN110071888A (en) | 2019-07-30 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103701733B (en) | A kind of method of TD LTE relay system offset estimation | |
| CN102291351B (en) | Timing synchronization method of receiver in OFDM wireless communication system | |
| CN107257324B (en) | Time-frequency joint synchronization method and device in OFDM system | |
| CN110474856B (en) | A Channel Estimation Method Based on Complete Interference Cancellation | |
| CN113079122B (en) | Design method for truncating and extrapolating pilot frequency sequence in reconstructed multi-carrier signal | |
| CN102318305B (en) | Method, equipment and system to deal with optical orthogonal frequency division multiplexing (OFDM) signal | |
| CN112910805B (en) | Frequency offset estimation method based on 5G new air interface system | |
| CN103023832A (en) | Method and device for carrying out frequency offset estimation and compensation on receiver | |
| CN118869423B (en) | Unmanned aerial vehicle signal blind timing synchronization method, device, storage medium and product | |
| CN100477655C (en) | A Method for Estimating OFDM Integer Multiple Frequency Offset | |
| CN110971307A (en) | A method for compensating for inherent inter-subcarrier interference in SEFDM system | |
| CN111193681B (en) | Fast time synchronization method based on high-speed data transmission | |
| CN117336133B (en) | Low-complexity OFDM (orthogonal frequency division multiplexing) cyclic prefix removing method and device | |
| CN116389213B (en) | OFDM system time-frequency synchronization method, terminal equipment and storage medium | |
| CN106534020A (en) | Method and device for estimating frequency offset | |
| CN114710386B (en) | Method and system for inhibiting non-uniform Doppler frequency offset in underwater acoustic OFDM communication | |
| CN114422313B (en) | A frame detection method | |
| CN106612153B (en) | The synchronous method designed suitable for the synchronizing symbol of general filtering multicarrier waveform | |
| CN107465637A (en) | It is a kind of to be applied to OFDM channel estimation method and device based on pilot tone in smart city | |
| CN109039985B (en) | A Blind Demodulation Method of OFDM Signal Based on Resampling | |
| CN111371718B (en) | A method for generating acyclic preamble signals in a wireless communication system | |
| CN103516655B (en) | Symbol fine timing synchronization method | |
| WO2017097077A1 (en) | Data processing method and apparatus | |
| CN114553647B (en) | High-precision Doppler frequency offset estimation method based on FBMC-OQAM system under high dynamic environment | |
| CN115514606B (en) | High-precision timing estimation method based on mutual quality sampling |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address | Address after:No. 388 Kangqiang Second Road, High tech Zone, Chengdu, Sichuan Province, 610000 Patentee after:KSW TECHNOLOGIES CO.,LTD. Country or region after:China Address before:No.4, 1st floor, building 6, No.22, Xinwen Road, high tech Zone, Chengdu, Sichuan 610000 Patentee before:KSW TECHNOLOGIES CO.,LTD. Country or region before:China | |
| CP03 | Change of name, title or address |