技术领域Technical Field
本发明涉及视频编解码领域,尤其涉及帧间预测的方法和装置。The present invention relates to the field of video coding and decoding, and in particular to a method and device for inter-frame prediction.
背景技术Background Art
视频编码(视频编码和解码)广泛用于数字视频应用,例如广播数字电视、互联网和移动网络上的视频传播、视频聊天和视频会议等实时会话应用、DVD和蓝光光盘、视频内容采集和编辑系统以及可携式摄像机的安全应用。Video coding (video encoding and decoding) is widely used in digital video applications such as broadcast digital television, video distribution over the Internet and mobile networks, real-time conversation applications such as video chat and video conferencing, DVD and Blu-ray Discs, video content acquisition and editing systems, and security applications in camcorders.
随着1990年H.261标准中基于块的混合型视频编码方式的发展,新的视频编码技术和工具得到发展并为新的视频编码标准形成基础。其它视频编码标准包括MPEG-1视频、MPEG-2视频、ITU-T H.262/MPEG-2、ITU-T H.263、ITU-T H.264/MPEG-4第10部分高级视频编码(Advanced Video Coding,AVC)、ITU-T H.265/高效视频编码(High EfficiencyVideo Coding,HEVC)…以及此类标准的扩展,例如可扩展性和/或3D(three-dimensional)扩展。随着视频创建和使用变得越来越广泛,视频流量成为通信网络和数据存储的最大负担。因此大多数视频编码标准的目标之一是相较之前的标准,在不牺牲图片质量的前提下减少比特率。即使最新的高效视频编码(High Efficiency video coding,HEVC)可以在不牺牲图片质量的前提下比AVC大约多压缩视频一倍,仍然亟需新技术相对HEVC进一步压缩视频。With the development of block-based hybrid video coding in the H.261 standard in 1990, new video coding techniques and tools have been developed and formed the basis for new video coding standards. Other video coding standards include MPEG-1 video, MPEG-2 video, ITU-T H.262/MPEG-2, ITU-T H.263, ITU-T H.264/MPEG-4 Part 10 Advanced Video Coding (AVC), ITU-T H.265/High Efficiency Video Coding (HEVC) ... and extensions of such standards, such as scalability and/or 3D (three-dimensional) extensions. As video creation and use become more and more widespread, video traffic has become the largest burden on communication networks and data storage. Therefore, one of the goals of most video coding standards is to reduce the bit rate compared to previous standards without sacrificing picture quality. Even though the latest High Efficiency video coding (HEVC) can compress video about twice as much as AVC without sacrificing picture quality, there is still a great need for new technologies to further compress video relative to HEVC.
发明内容Summary of the invention
本发明实施例提供一种视频图像的帧间预测方法、装置及相应的编码器和解码器,一定程度上提高图像块的运动信息的预测准确性,提高编解码性能。The embodiments of the present invention provide a method and device for inter-frame prediction of a video image, and a corresponding encoder and decoder, which can improve the prediction accuracy of motion information of an image block to a certain extent and improve encoding and decoding performance.
第一方面,本发明实施例提供了一种基于仿射预测模式的帧间预测的方法,该包括:获取待处理图像块(或称当前块)的多个控制点的GBi索引号(the Generalization Bi-prediction weight index);根据所述多个控制点的GBi索引号,确定所述待处理图像块的参考帧(例如为某一方向参考帧)对应的权重值;根据所述权重值进行加权预测,以获得所述待处理图像块的预测值。In a first aspect, an embodiment of the present invention provides a method for inter-frame prediction based on an affine prediction mode, which includes: obtaining GBi index numbers (the Generalization Bi-prediction weight index) of multiple control points of an image block to be processed (or current block); determining a weight value corresponding to a reference frame (for example, a reference frame in a certain direction) of the image block to be processed according to the GBi index numbers of the multiple control points; and performing weighted prediction according to the weight value to obtain a prediction value of the image block to be processed.
其中,所述多个控制点的GBi索引号来源于不同的已处理图像块,所述多个控制点的GBi索引号用于在广义双向预测(Generalized Bi-prediction)中确定所述已处理图像块的参考帧的权重值(即GBi索引号与权重值之间具有对应关系);所述已处理图像块的参考帧对应的权重值表示所述已处理图像块的参考帧的像素值在所述广义双向预测中所占的权重。Among them, the GBi index numbers of the multiple control points come from different processed image blocks, and the GBi index numbers of the multiple control points are used to determine the weight value of the reference frame of the processed image block in the generalized bi-prediction (that is, there is a corresponding relationship between the GBi index number and the weight value); the weight value corresponding to the reference frame of the processed image block represents the weight of the pixel value of the reference frame of the processed image block in the generalized bi-prediction.
需要说明的是,在可能的应用场景中,本发明中所涉及的“GBi索引号”还可能被命名为其他的名称,例如权重值索引、索引信息、GBi索引信息、GBi权重值索引,等等,示例性地,还可能被称为“平均加权双向预测(Bi-prediction with weighted averaging(BWA))索引号”,本发明对此并不做限定。It should be noted that, in possible application scenarios, the "GBi index number" involved in the present invention may also be named by other names, such as weight value index, index information, GBi index information, GBi weight value index, etc. For example, it may also be called "Bi-prediction with weighted averaging (BWA) index number", which is not limited to the present invention.
可以看到,在当前待处理块的控制点对应的GBi索引号不同的情况下,通过实施本发明实施例上述方案,能够快速确定当前待处理块的参考帧的权重值,从而基于所述权重值进行加权预测,从而保证双向预测的编码过程的正常进行,提高编码效率和准确度。It can be seen that when the GBi index numbers corresponding to the control points of the current block to be processed are different, by implementing the above-mentioned scheme of the embodiment of the present invention, the weight value of the reference frame of the current block to be processed can be quickly determined, and weighted prediction can be performed based on the weight value, thereby ensuring the normal progress of the bidirectional prediction encoding process and improving the encoding efficiency and accuracy.
基于第一方面,在具体的实施例中,所述待处理图像包括多个子块,所述多个控制点的运动矢量是分别由不同的相邻已处理块的运动矢量确定的(例如基于仿射预测模式的帧间预测过程采用的是构造的控制点运动矢量预测方法);所述方法还包括:根据所述多个控制点的运动矢量,获得所述待处理图像块中每个子块的运动矢量;Based on the first aspect, in a specific embodiment, the image to be processed includes a plurality of sub-blocks, and the motion vectors of the plurality of control points are respectively determined by motion vectors of different adjacent processed blocks (for example, the inter-frame prediction process based on the affine prediction mode adopts a constructed control point motion vector prediction method); the method further includes: obtaining a motion vector of each sub-block in the image block to be processed according to the motion vectors of the plurality of control points;
相应的,所述根据所述权重值进行加权预测,以获得所述待处理图像块的预测值,包括:根据所述待处理图像块中每个子块的至少两个运动矢量和所述至少两个运动矢量分别对应的至少两个参考帧,获得所述每个子块的至少两个运动补偿块(运动补偿块又可称为参考块或预测块);根据所述至少两个参考帧分别对应的权重值对所述至少两个运动补偿块的像素值进行加权,以获得所述每个子块的预测值。Correspondingly, the weighted prediction is performed according to the weight value to obtain the prediction value of the image block to be processed, including: obtaining at least two motion compensation blocks (motion compensation blocks can also be called reference blocks or prediction blocks) of each sub-block according to at least two motion vectors of each sub-block in the image block to be processed and at least two reference frames corresponding to the at least two motion vectors; and weighting the pixel values of the at least two motion compensation blocks according to the weight values corresponding to the at least two reference frames to obtain the prediction value of each sub-block.
可以看到,在帧间预测过程中,若当前块采用仿射运动模型,帧间预测过程采用构造的控制点运动矢量预测方法,那么可根据控制点的相邻已解码块的GBi索引号确定当前块的参考帧对应权重值,从而可基于参考帧对应权重值进行加权预测,进而获得当前块的每个子块的预测值,保证了编码/解码过程的顺利进行,提高了编码效率和预测准确性。It can be seen that in the inter-frame prediction process, if the current block adopts the affine motion model and the inter-frame prediction process adopts the constructed control point motion vector prediction method, then the reference frame corresponding weight value of the current block can be determined according to the GBi index number of the adjacent decoded block of the control point, so that weighted prediction can be performed based on the reference frame corresponding weight value, and then the prediction value of each sub-block of the current block is obtained, which ensures the smooth progress of the encoding/decoding process and improves the encoding efficiency and prediction accuracy.
基于第一方面,在一些具体的实施例中,根据所述多个控制点的GBi索引号,确定所述待处理图像块的参考帧对应的权重值,包括:根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号;将所述待处理图像块的GBi索引号对应的权重值作为所述待处理图像块的参考帧对应的权重值。Based on the first aspect, in some specific embodiments, determining the weight value corresponding to the reference frame of the image block to be processed according to the GBi index numbers of the multiple control points includes: determining the GBi index number of the image block to be processed according to the GBi index numbers of the multiple control points; and using the weight value corresponding to the GBi index number of the image block to be processed as the weight value corresponding to the reference frame of the image block to be processed.
其中,所述待处理图像块的GBi索引号用于在广义双向预测中确定所述待处理图像块的的参考帧的权重值(即GBi索引号与权重值之间具有对应关系);所述待处理图像块的参考帧对应的权重值表示所述待处理图像块的参考帧的像素值在所述广义双向预测中所占的权重;在一具体的实现中,采用基于仿射运动模型的融合模式(Affine Merge mode)对所述待处理图像块进行预测中,所构建的控制点运动矢量融合候选列表中的运动信息中可包含所述待处理图像块的GBi索引号。Among them, the GBi index number of the image block to be processed is used to determine the weight value of the reference frame of the image block to be processed in the generalized bidirectional prediction (that is, there is a corresponding relationship between the GBi index number and the weight value); the weight value corresponding to the reference frame of the image block to be processed represents the weight of the pixel value of the reference frame of the image block to be processed in the generalized bidirectional prediction; in a specific implementation, when predicting the image block to be processed in the fusion mode (Affine Merge mode) based on the affine motion model, the motion information in the constructed control point motion vector fusion candidate list may include the GBi index number of the image block to be processed.
可以看到,在当前待处理块的控制点对应的GBi索引号不同的情况下,通过实施本发明实施例上述方案,能够快速确定各个控制点的候选运动信息对应的GBi索引号,从而保证双向预测的编码过程的正常进行,而当前块的GBi索引号又可以继续用于后续图像块的编码/解码过程,提高了编码效率和预测准确性。It can be seen that when the GBi index numbers corresponding to the control points of the current block to be processed are different, by implementing the above-mentioned scheme of the embodiment of the present invention, the GBi index numbers corresponding to the candidate motion information of each control point can be quickly determined, thereby ensuring the normal progress of the bidirectional prediction encoding process, and the GBi index number of the current block can continue to be used in the encoding/decoding process of subsequent image blocks, thereby improving the encoding efficiency and prediction accuracy.
基于第一方面,在一种可行的实施方案中,所述根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号,包括:在所述多个控制点的GBi索引号均相同的情况下,将所述相同的GBi索引号作为所述待处理图像块的GBi索引号。Based on the first aspect, in a feasible implementation scheme, determining the GBi index number of the image block to be processed based on the GBi index numbers of the multiple control points includes: when the GBi index numbers of the multiple control points are the same, using the same GBi index number as the GBi index number of the image block to be processed.
相应的,由所述相同的GBi索引号对应的权重值作为在GBi方法中所述待处理图像块的参考帧对应的权重值。Correspondingly, the weight value corresponding to the same GBi index number is used as the weight value corresponding to the reference frame of the image block to be processed in the GBi method.
基于第一方面,在一种可行的实施方案中,所述根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号,包括:在所述多个控制点的GBi索引号中存在不相同的GBi索引号的情况下,将预设值对应的GBi索引号作为所述待处理图像块的GBi索引号。Based on the first aspect, in a feasible implementation scheme, determining the GBi index number of the image block to be processed based on the GBi index numbers of the multiple control points includes: when there are different GBi index numbers among the GBi index numbers of the multiple control points, using the GBi index number corresponding to the preset value as the GBi index number of the image block to be processed.
相应的,可将预设值作为在所述广义双向预测中所述待处理图像块的参考帧对应的权重值。Correspondingly, the preset value may be used as the weight value corresponding to the reference frame of the image block to be processed in the generalized bidirectional prediction.
基于第一方面,在一种可行的实施方案中,所述根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号,包括:Based on the first aspect, in a feasible implementation manner, determining the GBi index number of the image block to be processed according to the GBi index numbers of the multiple control points includes:
在所述多个控制点的GBi索引号中存在相同的GBi索引号的情况下,将所述多个控制点的GBi索引号中数量最多的GBi索引号作为所述待处理图像块的GBi索引号。In the case that the GBi index numbers of the multiple control points have the same GBi index number, the GBi index number with the largest number among the GBi index numbers of the multiple control points is used as the GBi index number of the image block to be processed.
相应的,可将数量最多的相同的GBi索引号作为在所述广义双向预测中所述待处理图像块的参考帧对应的权重值。Correspondingly, the largest number of identical GBi index numbers may be used as the weight value corresponding to the reference frame of the image block to be processed in the generalized bidirectional prediction.
基于第一方面,在一种可行的实施方案中,所述根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号,包括:Based on the first aspect, in a feasible implementation manner, determining the GBi index number of the image block to be processed according to the GBi index numbers of the multiple control points includes:
在所述多个控制点的GBi索引号互不相同的情况下,将预设值对应的GBi索引号作为所述待处理图像块的GBi索引号。In the case that the GBi index numbers of the multiple control points are different from each other, the GBi index number corresponding to the preset value is used as the GBi index number of the image block to be processed.
相应的,可将预设值作为在所述广义双向预测中所述待处理图像块的参考帧对应的权重值。Correspondingly, the preset value may be used as the weight value corresponding to the reference frame of the image block to be processed in the generalized bidirectional prediction.
基于第一方面,在一种可行的实施方案中,所述根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号,包括:Based on the first aspect, in a feasible implementation manner, determining the GBi index number of the image block to be processed according to the GBi index numbers of the multiple control points includes:
在所述多个控制点的GBi索引号中的至少一个对应的权重值等于预设值的情况下,将所述预设值对应的GBi索引号作为所述待处理图像块的GBi索引号。When at least one weight value corresponding to the GBi index numbers of the multiple control points is equal to a preset value, the GBi index number corresponding to the preset value is used as the GBi index number of the image block to be processed.
相应的,可将所述预设值作为在所述广义双向预测中所述待处理图像块的参考帧对应的权重值。Correspondingly, the preset value may be used as a weight value corresponding to the reference frame of the image block to be processed in the generalized bidirectional prediction.
基于第一方面,在一种可行的实施方案中,所述根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号,包括:Based on the first aspect, in a feasible implementation manner, determining the GBi index number of the image block to be processed according to the GBi index numbers of the multiple control points includes:
在所述多个控制点的GBi索引号对应的多个权重值均与预设值不同的情况下,将所述多个权重值中与所述预设值的差值最小的权重值对应的GBi索引号作为所述待处理图像块的GBi索引号。When the multiple weight values corresponding to the GBi index numbers of the multiple control points are all different from the preset values, the GBi index number corresponding to the weight value with the smallest difference from the preset value among the multiple weight values is used as the GBi index number of the image block to be processed.
相应的,可将所述多个权重值中与所述预设值的差值最小的权重值作为在所述广义双向预测中所述待处理图像块的参考帧对应的权重值。Correspondingly, the weight value with the smallest difference from the preset value among the multiple weight values may be used as the weight value corresponding to the reference frame of the image block to be processed in the generalized bidirectional prediction.
基于第一方面,在一种可行的实施方案中,所述根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号,包括:Based on the first aspect, in a feasible implementation manner, determining the GBi index number of the image block to be processed according to the GBi index numbers of the multiple control points includes:
在所述多个控制点的GBi索引号对应的多个权重值的平均值等于预设值的情况下,将所述预设值对应的GBi索引号作为所述待处理图像块的GBi索引号。When an average value of a plurality of weight values corresponding to the GBi index numbers of the plurality of control points is equal to a preset value, the GBi index number corresponding to the preset value is used as the GBi index number of the image block to be processed.
相应的,可将所述预设值作为在所述广义双向预测中所述待处理图像块的参考帧对应的权重值。Correspondingly, the preset value may be used as a weight value corresponding to the reference frame of the image block to be processed in the generalized bidirectional prediction.
基于第一方面,在一种可行的实施方案中,所述根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号,包括:Based on the first aspect, in a feasible implementation manner, determining the GBi index number of the image block to be processed according to the GBi index numbers of the multiple control points includes:
在所述多个控制点的GBi索引号对应的多个权重值均与所述预设值不同,且所述多个权重值的平均值不等于所述预设值的情况下,将所述多个权重值中与所述预设值的差值最小的权重值对应的GBi索引号作为所述待处理图像块的GBi索引号。When the multiple weight values corresponding to the GBi index numbers of the multiple control points are different from the preset value, and the average value of the multiple weight values is not equal to the preset value, the GBi index number corresponding to the weight value with the smallest difference from the preset value among the multiple weight values is used as the GBi index number of the image block to be processed.
相应的,可将所述多个权重值中与所述预设值的差值最小的权重值作为在所述广义双向预测中所述待处理图像块的参考帧对应的权重值。Correspondingly, the weight value with the smallest difference from the preset value among the multiple weight values may be used as the weight value corresponding to the reference frame of the image block to be processed in the generalized bidirectional prediction.
基于第一方面,在一种可行的实施方案中,所述根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号,包括:Based on the first aspect, in a feasible implementation manner, determining the GBi index number of the image block to be processed according to the GBi index numbers of the multiple control points includes:
在所述多个控制点的GBi索引号对应的多个权重值均与预设值不同,且所述多个权重值中存在至少两个权重值的平均值等于所述预设值的情况下,将所述预设值对应的GBi索引号作为所述待处理图像块的GBi索引号。When the multiple weight values corresponding to the GBi index numbers of the multiple control points are different from the preset values, and there are at least two weight values among the multiple weight values whose average value is equal to the preset value, the GBi index number corresponding to the preset value is used as the GBi index number of the image block to be processed.
相应的,可将所述预设值作为在所述广义双向预测中所述待处理图像块的参考帧对应的权重值。Correspondingly, the preset value may be used as a weight value corresponding to the reference frame of the image block to be processed in the generalized bidirectional prediction.
上述各种可行的实施方案中,所述预设值例如可以是1/2,所述预设值对应的GBi索引号例如可以是0。In the various feasible implementation schemes described above, the preset value may be, for example, 1/2, and the GBi index number corresponding to the preset value may be, for example, 0.
第二方面,本发明实施例提供了一种基于仿射预测模式的帧间预测方法,该方法包括:将预设的GBi索引号作为待处理图像块的GBi索引号,其中,所述待处理图像块的多个控制点的运动矢量分别根据多个已处理图像块的运动矢量获得(例如基于仿射预测模式的帧间预测过程采用的是构造的控制点运动矢量预测方法);将所述待处理图像块的GBi索引号对应的权重值作为所述待处理图像块的参考帧对应的权重值;根据所述权重值进行加权预测,以获得所述待处理图像块的预测值。In the second aspect, an embodiment of the present invention provides an inter-frame prediction method based on an affine prediction mode, the method comprising: using a preset GBi index number as the GBi index number of an image block to be processed, wherein the motion vectors of multiple control points of the image block to be processed are respectively obtained according to the motion vectors of multiple processed image blocks (for example, the inter-frame prediction process based on the affine prediction mode adopts a constructed control point motion vector prediction method); using the weight value corresponding to the GBi index number of the image block to be processed as the weight value corresponding to the reference frame of the image block to be processed; and performing weighted prediction according to the weight value to obtain the prediction value of the image block to be processed.
其中,GBi索引号与权重值之间具有对应关系;所述已处理图像块的参考帧对应的权重值表示所述已处理图像块的参考帧的像素值在所述广义双向预测中所占的权重;There is a corresponding relationship between the GBi index number and the weight value; the weight value corresponding to the reference frame of the processed image block represents the weight of the pixel value of the reference frame of the processed image block in the generalized bidirectional prediction;
可以看到,在本方案中,当所述多个控制点的运动矢量是分别根据不同的已处理图像块的运动矢量而得到时,无论在当前待处理块的各控制点对应的已处理图像块的GBi索引号是否相同,直接采用预设的GBi索引号作为待处理图像块的GBi索引号,所述待处理图像块的GBi索引号对应的权重值作为所述待处理图像块的参考帧对应的权重值,从而基于所述权重值进行加权预测。所以实施本发明实施例,能够快速确定当前处理图像块的GBi索引号和待处理块的参考帧的权重值,从而基于所述权重值进行加权预测,从而保证双向预测的编码过程的正常进行,提高编码效率和准确度。It can be seen that in this solution, when the motion vectors of the multiple control points are obtained according to the motion vectors of different processed image blocks, no matter whether the GBi index numbers of the processed image blocks corresponding to the control points of the current block to be processed are the same, the preset GBi index number is directly used as the GBi index number of the image block to be processed, and the weight value corresponding to the GBi index number of the image block to be processed is used as the weight value corresponding to the reference frame of the image block to be processed, so as to perform weighted prediction based on the weight value. Therefore, by implementing the embodiment of the present invention, it is possible to quickly determine the GBi index number of the current processed image block and the weight value of the reference frame of the block to be processed, so as to perform weighted prediction based on the weight value, thereby ensuring the normal progress of the encoding process of the bidirectional prediction and improving the encoding efficiency and accuracy.
基于第二方面,在具体的实施例中,所述待处理图像包括多个子块,所述方法还包括:根据所述多个控制点的运动矢量,获得所述待处理图像块中每个子块的运动矢量;Based on the second aspect, in a specific embodiment, the image to be processed includes a plurality of sub-blocks, and the method further includes: obtaining a motion vector of each sub-block in the image block to be processed according to the motion vectors of the plurality of control points;
相应的,所述根据所述权重值进行加权预测,以获得所述待处理图像块的预测值,包括:根据所述待处理图像块中每个子块的至少两个运动矢量和所述至少两个运动矢量分别对应的至少两个参考帧,获得所述每个子块的至少两个运动补偿块;根据所述至少两个参考帧分别对应的权重值对所述至少两个运动补偿块的像素值进行加权,以获得所述每个子块的预测值。Correspondingly, performing weighted prediction according to the weight value to obtain the prediction value of the image block to be processed includes: obtaining at least two motion compensation blocks of each sub-block according to at least two motion vectors of each sub-block in the image block to be processed and at least two reference frames corresponding to the at least two motion vectors; and weighting the pixel values of the at least two motion compensation blocks according to the weight values corresponding to the at least two reference frames to obtain the prediction value of each sub-block.
可以看到,在帧间预测过程中,若当前块采用仿射运动模型,帧间预测过程采用构造的控制点运动矢量预测方法,那么直接采用预设的GBi索引号作为待处理图像块的GBi索引号,所述待处理图像块的GBi索引号对应的权重值作为所述待处理图像块的参考帧对应的权重值,从而基于所述权重值进行加权预测,进而获得当前块的每个子块的预测值,保证了编码/解码过程的顺利进行,提高了编码效率和预测准确性。It can be seen that in the inter-frame prediction process, if the current block adopts the affine motion model and the inter-frame prediction process adopts the constructed control point motion vector prediction method, then the preset GBi index number is directly used as the GBi index number of the image block to be processed, and the weight value corresponding to the GBi index number of the image block to be processed is used as the weight value corresponding to the reference frame of the image block to be processed, so as to perform weighted prediction based on the weight value, and then obtain the prediction value of each sub-block of the current block, thereby ensuring the smooth progress of the encoding/decoding process and improving the encoding efficiency and prediction accuracy.
在本方案中,所述预设的GBi索引号例如为0,当前待处理图像块的GBi索引号对应的权重值例如等于1/2,后续根据权重值进行加权预测(双向预测)的加权方式为平均加权。In this solution, the preset GBi index number is, for example, 0, and the weight value corresponding to the GBi index number of the current image block to be processed is, for example, equal to 1/2, and the subsequent weighted prediction (bidirectional prediction) based on the weight value is average weighting.
第三方面,本发明实施例提供了一种装置,所述装置包括:获取模块,用于获取待处理图像块的多个控制点的GBi索引号(the Generalization Bi-prediction weightindex);权重确定模块,用于根据所述多个控制点的GBi索引号,确定所述待处理图像块的参考帧对应的权重值;预测模块,用于根据所述权重值进行加权预测,以获得所述待处理图像块的预测值。In a third aspect, an embodiment of the present invention provides a device, comprising: an acquisition module, used to acquire the GBi index numbers (the Generalization Bi-prediction weightindex) of multiple control points of an image block to be processed; a weight determination module, used to determine the weight value corresponding to the reference frame of the image block to be processed according to the GBi index numbers of the multiple control points; and a prediction module, used to perform weighted prediction according to the weight value to obtain a prediction value of the image block to be processed.
该装置的各功能模块具体可用于实现第一方面所描述的方法。The functional modules of the device can be specifically used to implement the method described in the first aspect.
第四方面,本发明实施例提供了又一种装置,该装置包括:权重确定模块,用于将预设的GBi索引号作为待处理图像块的GBi索引号,其中,所述待处理图像块的多个控制点的运动矢量分别根据多个已处理图像块的运动矢量获得;将所述待处理图像块的GBi索引号对应的权重值作为所述待处理图像块的参考帧对应的权重值;预测模块,用于根据所述权重值进行加权预测,以获得所述待处理图像块的预测值。In a fourth aspect, an embodiment of the present invention provides another device, which includes: a weight determination module, used to use a preset GBi index number as the GBi index number of the image block to be processed, wherein the motion vectors of multiple control points of the image block to be processed are respectively obtained according to the motion vectors of multiple processed image blocks; the weight value corresponding to the GBi index number of the image block to be processed is used as the weight value corresponding to the reference frame of the image block to be processed; and a prediction module, used to perform weighted prediction according to the weight value to obtain the prediction value of the image block to be processed.
该装置的各功能模块具体可用于实现第二方面所描述的方法。The functional modules of the device can be specifically used to implement the method described in the second aspect.
第五方面,本发明实施例提供一种视频编解码设备,所述设备包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行如第一方面所述的方法。In a fifth aspect, an embodiment of the present invention provides a video encoding and decoding device, the device comprising: a non-volatile memory and a processor coupled to each other, the processor calling a program code stored in the memory to execute the method as described in the first aspect.
第六方面,本发明实施例提供一种视频编解码设备,所述设备包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行如第二方面所述的方法。In a sixth aspect, an embodiment of the present invention provides a video encoding and decoding device, the device comprising: a non-volatile memory and a processor coupled to each other, the processor calling a program code stored in the memory to execute the method as described in the second aspect.
第七方面,本发明实施例提供了一种用于解码视频的设备,该设备包括:In a seventh aspect, an embodiment of the present invention provides a device for decoding a video, the device comprising:
存储器,用于存储码流形式的视频数据;A memory, used for storing video data in the form of code stream;
解码器,获取待处理图像块的多个控制点的GBi索引号;根据所述多个控制点的GBi索引号,确定所述待处理图像块的参考帧对应的权重值;根据所述权重值进行加权预测,以获得所述待处理图像块的预测值。The decoder obtains GBi index numbers of multiple control points of the image block to be processed; determines the weight value corresponding to the reference frame of the image block to be processed according to the GBi index numbers of the multiple control points; and performs weighted prediction according to the weight value to obtain the prediction value of the image block to be processed.
第八方面,本发明实施例提供了一种用于解码视频的设备,该设备包括:In an eighth aspect, an embodiment of the present invention provides a device for decoding a video, the device comprising:
存储器,用于存储码流形式的视频数据;A memory, used for storing video data in the form of code stream;
解码器,用于将预设的GBi索引号作为待处理图像块的GBi索引号,其中,所述待处理图像块的多个控制点的运动矢量分别根据多个已处理图像块的运动矢量获得;将所述待处理图像块的GBi索引号对应的权重值作为所述待处理图像块的参考帧对应的权重值;根据所述权重值进行加权预测,以获得所述待处理图像块的预测值。A decoder, configured to use a preset GBi index number as the GBi index number of an image block to be processed, wherein motion vectors of a plurality of control points of the image block to be processed are respectively obtained according to motion vectors of a plurality of processed image blocks; use a weight value corresponding to the GBi index number of the image block to be processed as a weight value corresponding to a reference frame of the image block to be processed; and perform weighted prediction according to the weight value to obtain a prediction value of the image block to be processed.
第九方面,本发明实施例提供了一种用于编码视频的设备,该设备包括:In a ninth aspect, an embodiment of the present invention provides a device for encoding a video, the device comprising:
存储器,用于存储码流形式的视频数据;A memory, used for storing video data in the form of code stream;
编码器,用于从多个已处理图像块中,获取待处理图像块的多个控制点的GBi索引号;所述待处理图像块采用仿射预测模式;根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号,所述待处理图像块的GBi索引号用于确定所述待处理图像块的参考帧对应的权重值。The encoder is used to obtain GBi index numbers of multiple control points of an image block to be processed from multiple processed image blocks; the image block to be processed adopts an affine prediction mode; and the GBi index number of the image block to be processed is determined according to the GBi index numbers of the multiple control points, and the GBi index number of the image block to be processed is used to determine a weight value corresponding to a reference frame of the image block to be processed.
第十方面,本发明实施例提供了一种用于编码视频的设备,该设备包括:In a tenth aspect, an embodiment of the present invention provides a device for encoding a video, the device comprising:
存储器,用于存储码流形式的视频数据;A memory, used for storing video data in the form of code stream;
编码器,用于将预设的GBi索引号作为待处理图像块的GBi索引号,其中,所述待处理图像块的多个控制点的运动矢量分别根据多个已处理图像块的运动矢量获得;相应的,所述待处理图像块的GBi索引号对应的权重值为所述待处理图像块的参考帧对应的权重值。An encoder is used to use a preset GBi index number as the GBi index number of an image block to be processed, wherein the motion vectors of multiple control points of the image block to be processed are respectively obtained according to the motion vectors of multiple processed image blocks; correspondingly, the weight value corresponding to the GBi index number of the image block to be processed is the weight value corresponding to the reference frame of the image block to be processed.
第十一方面,本发明实施例提供了计算机可读存储介质,其上储存有指令,所述指令执行时,使得一个或多个处理器编码视频数据。所述指令使得所述一个或多个处理器执行根据第一方面任何可能实施例的方法。In an eleventh aspect, an embodiment of the present invention provides a computer-readable storage medium having instructions stored thereon, wherein when the instructions are executed, one or more processors are caused to encode video data. The instructions cause the one or more processors to perform the method according to any possible embodiment of the first aspect.
第十二方面,本发明实施例提供了计算机可读存储介质,其上储存有指令,所述指令执行时,使得一个或多个处理器编码视频数据。所述指令使得所述一个或多个处理器执行根据第二方面任何可能实施例的方法。In a twelfth aspect, an embodiment of the present invention provides a computer-readable storage medium having instructions stored thereon, wherein when the instructions are executed, one or more processors are caused to encode video data. The instructions cause the one or more processors to execute the method according to any possible embodiment of the second aspect.
第十三方面,本发明实施例提供了包括程序代码的计算机程序,所述程序代码在计算机上运行时执行根据第一方面任何可能实施例的方法。In a thirteenth aspect, an embodiment of the present invention provides a computer program comprising a program code, which, when running on a computer, executes a method according to any possible embodiment of the first aspect.
第十四方面,本发明实施例提供了包括程序代码的计算机程序,所述程序代码在计算机上运行时执行根据第二方面任何可能实施例的方法。In a fourteenth aspect, an embodiment of the present invention provides a computer program comprising a program code, which, when running on a computer, executes a method according to any possible embodiment of the second aspect.
可以看到,在当前待处理块的各个控制点的运动矢量来源于已处理块(邻近已编/解码块)的情况下,各个已处理块的GBi索引号可能不同,通过实施本发明实施例上述方案,能够快速确定当前待处理块的GBi索引号,从而保证双向预测的编码过程的正常进行,提高编码效率和准确度。It can be seen that when the motion vectors of each control point of the current block to be processed are derived from a processed block (an adjacent encoded/decoded block), the GBi index numbers of the processed blocks may be different. By implementing the above scheme of the embodiment of the present invention, the GBi index number of the current block to be processed can be quickly determined, thereby ensuring the normal progress of the bidirectional prediction encoding process and improving the encoding efficiency and accuracy.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the background technology, the drawings required for use in the embodiments of the present invention or the background technology will be described below.
图1A是用于实现本发明实施例的视频编码及解码系统10实例的框图;FIG. 1A is a block diagram of an example video encoding and decoding system 10 for implementing an embodiment of the present invention;
图1B是用于实现本发明实施例的视频译码系统40实例的框图;FIG. 1B is a block diagram of an example of a video decoding system 40 for implementing an embodiment of the present invention;
图2是用于实现本发明实施例的编码器20实例结构的框图;FIG2 is a block diagram of an example structure of an encoder 20 for implementing an embodiment of the present invention;
图3是用于实现本发明实施例的解码器30实例结构的框图;FIG3 is a block diagram of an example structure of a decoder 30 for implementing an embodiment of the present invention;
图4是用于实现本发明实施例的视频译码设备400实例的框图;FIG4 is a block diagram of an example of a video decoding device 400 for implementing an embodiment of the present invention;
图5是用于实现本发明实施例的另一种编码装置或解码装置实例的框图;FIG5 is a block diagram of another example of an encoding device or a decoding device for implementing an embodiment of the present invention;
图6是用于表示当前块空域和时域候选运动信息的示例性示意图;FIG6 is an exemplary schematic diagram for representing spatial and temporal candidate motion information of a current block;
图7是用于表示仿射模型运动信息获取的示例性示意图;FIG7 is an exemplary schematic diagram for illustrating acquisition of affine model motion information;
图8A是对构造的控制点运动矢量预测方法的示例性示意图;FIG8A is an exemplary schematic diagram of a method for predicting a constructed control point motion vector;
图8B是对构造的控制点运动矢量预测方法的示例性流程图;FIG8B is an exemplary flow chart of a method for predicting motion vectors of constructed control points;
图9是ATMVP技术的示例性示意图;FIG9 is an exemplary schematic diagram of the ATMVP technique;
图10是PLANAR(帧间平面模式)技术的示例性示意图;FIG10 is an exemplary schematic diagram of the PLANAR (Plane Mode Between Frames) technique;
图11A是一种帧间预测方法的示例性流程图;FIG11A is an exemplary flow chart of an inter-frame prediction method;
图11B是又一种帧间预测方法的示例性流程图;FIG11B is an exemplary flow chart of yet another inter-frame prediction method;
图12是一种控制点运动信息的示例性示意图;FIG12 is an exemplary schematic diagram of a control point motion information;
图13是用于实现本发明实施例的设备1000实例的框图;FIG. 13 is a block diagram of an example of a device 1000 for implementing an embodiment of the present invention;
图14是用于实现本发明实施例的设备2000实例的框图。FIG. 14 is a block diagram of an example of a device 2000 for implementing an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合本发明实施例中的附图对本发明实施例进行描述。以下描述中,参考形成本公开一部分并以说明之方式示出本发明实施例的具体方面或可使用本发明实施例的具体方面的附图。应理解,本发明实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本发明的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。The embodiments of the present invention are described below in conjunction with the drawings in the embodiments of the present invention. In the following description, reference is made to the drawings that form part of the present disclosure and show specific aspects of the embodiments of the present invention or specific aspects of the embodiments of the present invention in an illustrative manner. It should be understood that the embodiments of the present invention can be used in other aspects and may include structural or logical changes not depicted in the drawings. Therefore, the following detailed description should not be understood in a restrictive sense, and the scope of the present invention is defined by the appended claims. For example, it should be understood that the disclosure in conjunction with the described method can also be applied to the corresponding device or system for performing the method, and vice versa. For example, if one or more specific method steps are described, the corresponding device may include one or more units such as functional units to perform the one or more method steps described (for example, one unit performs one or more steps, or multiple units, each of which performs one or more of the multiple steps), even if such one or more units are not explicitly described or illustrated in the drawings. On the other hand, for example, if a specific device is described based on one or more units such as functional units, the corresponding method may include a step to perform the functionality of one or more units (for example, one step performs the functionality of one or more units, or multiple steps, each of which performs the functionality of one or more units in multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings. Further, it should be understood that, unless explicitly stated otherwise, features of the various exemplary embodiments and/or aspects described herein may be combined with each other.
本发明实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。In the embodiments of the present invention, "at least one" refers to one or more, and "more than one" refers to two or more. "And/or" describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B may be singular or plural. The character "/" generally indicates that the previous and next associated objects are in an "or" relationship. "At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items. For example, at least one of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple.
本发明实施例所涉及的技术方案不仅可能应用于现有的视频编码标准中(如H.264、HEVC等标准),还可能应用于未来的视频编码标准中(如H.266标准)。本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。下面先对本发明实施例可能涉及的一些概念进行简单介绍。The technical solutions involved in the embodiments of the present invention may not only be applied to existing video coding standards (such as H.264, HEVC and other standards), but may also be applied to future video coding standards (such as H.266 standards). The terms used in the implementation methods of the present invention are only used to explain the specific embodiments of the present invention, and are not intended to limit the present invention. The following is a brief introduction to some concepts that may be involved in the embodiments of the present invention.
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本文中使用的视频编码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。Video coding generally refers to processing a sequence of pictures that form a video or video sequence. In the field of video coding, the terms "picture", "frame" or "image" can be used as synonyms. Video coding used in this article means video encoding or video decoding. Video encoding is performed on the source side and generally includes processing (for example, by compression) the original video picture to reduce the amount of data required to represent the video picture, thereby more efficiently storing and/or transmitting. Video decoding is performed on the destination side and generally includes inverse processing relative to the encoder to reconstruct the video picture. The "encoding" of video pictures involved in the embodiments should be understood as involving "encoding" or "decoding" of video sequences. The combination of the encoding part and the decoding part is also referred to as codec (encoding and decoding).
视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,在H.264标准中有宏块(macroblock,MB),宏块可进一步划分成多个可用于预测编码的预测块(partition)。在高性能视频编码(high efficiency videocoding,HEVC)标准中,采用编码单元(coding unit,CU),预测单元(prediction unit,PU)和变换单元(transform unit,TU)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。比如CU可以按照四叉树进行划分为更小的CU,而更小的CU还可以继续划分,从而形成一种四叉树结构,CU是对编码图像进行划分和编码的基本单元。对于PU和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。A video sequence includes a series of pictures, which are further divided into slices, and slices are further divided into blocks. Video coding is performed in blocks. In some new video coding standards, the concept of blocks is further expanded. For example, in the H.264 standard, there are macroblocks (MB), which can be further divided into multiple prediction blocks (partitions) that can be used for predictive coding. In the high-performance video coding (HEVC) standard, basic concepts such as coding units (CU), prediction units (PU) and transform units (TU) are used to functionally divide various block units and describe them using a new tree-based structure. For example, CU can be divided into smaller CUs according to a quadtree, and smaller CUs can be further divided to form a quadtree structure. CU is the basic unit for dividing and encoding coded images. There are similar tree structures for PU and TU. PU can correspond to prediction blocks and is the basic unit of predictive coding. CU is further divided into multiple PUs according to the division mode. TU may correspond to a transform block, which is a basic unit for transforming a prediction residual. However, no matter CU, PU or TU, they all belong to the concept of a block (or image block) in essence.
例如在HEVC中,通过使用表示为编码树的四叉树结构将CTU拆分为多个CU。在CU层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个CU可以根据PU拆分类型进一步拆分为一个、两个或四个PU。一个PU内应用相同的预测过程,并在PU基础上将相关信息传输到解码器。在通过基于PU拆分类型应用预测过程获取残差块之后,可以根据类似于用于CU的编码树的其它四叉树结构将CU分割成变换单元(transformunit,TU)。在视频压缩技术最新的发展中,使用四叉树和二叉树(Quad-tree and binarytree,QTBT)分割帧来分割编码块。在QTBT块结构中,CU可以为正方形或矩形形状。For example, in HEVC, a CTU is split into multiple CUs using a quadtree structure represented as a coding tree. A decision is made at the CU level whether to use inter-picture (temporal) or intra-picture (spatial) prediction to encode a picture area. Each CU can be further split into one, two or four PUs according to the PU split type. The same prediction process is applied within a PU, and relevant information is transmitted to the decoder on a PU basis. After obtaining the residual block by applying the prediction process based on the PU split type, the CU can be divided into transform units (TUs) according to other quadtree structures similar to the coding tree for the CU. In the latest developments in video compression technology, quadtree and binarytree (QTBT) are used to split frames to split coding blocks. In the QTBT block structure, the CU can be square or rectangular in shape.
本文中,为了便于描述和理解,可将当前编码图像中待处理的图像块(简称待处理图像块)称为当前块,例如在编码中,待处理图像块指当前正在编码的块;在解码中,待处理图像块指当前正在解码的块。将参考图像中用于对当前块进行预测的已解码的图像块称为参考块,即参考块是为当前块提供参考信号的块,其中,参考信号表示图像块内的像素值。可将参考图像中为当前块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前块提供预测,此块可称为预测块。In this article, for the convenience of description and understanding, the image block to be processed in the current encoded image (referred to as the image block to be processed) may be referred to as the current block. For example, in encoding, the image block to be processed refers to the block currently being encoded; in decoding, the image block to be processed refers to the block currently being decoded. The decoded image block in the reference image used to predict the current block is referred to as a reference block, that is, the reference block is a block that provides a reference signal for the current block, wherein the reference signal represents the pixel value in the image block. The block in the reference image that provides a prediction signal for the current block may be referred to as a prediction block, wherein the prediction signal represents the pixel value or sampling value or sampling signal in the prediction block. For example, after traversing multiple reference blocks, the best reference block is found. This best reference block will provide a prediction for the current block, and this block may be referred to as a prediction block.
无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。In the case of lossless video coding, the original video picture can be reconstructed, that is, the reconstructed video picture has the same quality as the original video picture (assuming no transmission loss or other data loss during storage or transmission). In the case of lossy video coding, further compression is performed by, for example, quantization to reduce the amount of data required to represent the video picture, but the decoder side cannot fully reconstruct the video picture, that is, the quality of the reconstructed video picture is lower or worse than the quality of the original video picture.
H.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常分割成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。Several video coding standards of H.261 belong to the category of "lossy hybrid video codecs" (i.e., combining spatial and temporal prediction in the sample domain with 2D transform coding in the transform domain for applying quantization). Each picture of a video sequence is usually divided into a set of non-overlapping blocks, which are usually encoded at the block level. In other words, the encoder side usually processes, i.e., encodes the video at the block (video block) level, for example, by generating a prediction block through spatial (intra-picture) prediction and temporal (inter-picture) prediction, subtracting the prediction block from the current block (currently processed or to be processed block) to obtain a residual block, transforming the residual block in the transform domain and quantizing the residual block to reduce the amount of data to be transmitted (compressed), while the decoder side applies the inverse processing part relative to the encoder to the coded or compressed block to reconstruct the current block for representation. In addition, the encoder replicates the decoder processing cycle, so that the encoder and decoder generate the same prediction (e.g., intra-frame prediction and inter-frame prediction) and/or reconstruction for processing, i.e., encoding subsequent blocks.
下面描述本发明实施例所应用的系统架构。参见图1A,图1A示例性地给出了本发明实施例所应用的视频编码及解码系统10的示意性框图。如图1A所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一或多个处理器以及耦合到所述一或多个处理器的存储器。所述存储器可包含但不限于RAM、ROM、EEPROM、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。源设备12和目的地设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机、无线通信设备或其类似者。The system architecture used in the embodiment of the present invention is described below. Referring to FIG. 1A, FIG. 1A exemplarily shows a schematic block diagram of a video encoding and decoding system 10 used in the embodiment of the present invention. As shown in FIG. 1A, the video encoding and decoding system 10 may include a source device 12 and a destination device 14, and the source device 12 generates encoded video data, so the source device 12 may be referred to as a video encoding device. The destination device 14 may decode the encoded video data generated by the source device 12, so the destination device 14 may be referred to as a video decoding device. Various embodiments of the source device 12, the destination device 14, or both may include one or more processors and a memory coupled to the one or more processors. The memory may include, but is not limited to, RAM, ROM, EEPROM, flash memory, or any other media that can be used to store desired program code in the form of instructions or data structures that can be accessed by a computer, as described herein. Source device 12 and destination device 14 may include a variety of devices, including desktop computers, mobile computing devices, notebook (e.g., laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called "smart" phones, televisions, cameras, display devices, digital media players, video game consoles, in-vehicle computers, wireless communication devices, or the like.
虽然图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。Although FIG. 1A illustrates the source device 12 and the destination device 14 as separate devices, device embodiments may also include both the source device 12 and the destination device 14 or the functionality of both, i.e., the source device 12 or the corresponding functionality and the destination device 14 or the corresponding functionality. In such embodiments, the source device 12 or the corresponding functionality and the destination device 14 or the corresponding functionality may be implemented using the same hardware and/or software, or using separate hardware and/or software, or any combination thereof.
源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。所述一或多个通信媒体可包含无线和/或有线通信媒体,例如射频(RF)频谱或一或多个物理传输线。所述一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。The source device 12 and the destination device 14 may be communicatively connected via a link 13, and the destination device 14 may receive the encoded video data from the source device 12 via the link 13. The link 13 may include one or more media or devices capable of moving the encoded video data from the source device 12 to the destination device 14. In one example, the link 13 may include one or more communication media that enable the source device 12 to transmit the encoded video data directly to the destination device 14 in real time. In this example, the source device 12 may modulate the encoded video data according to a communication standard (e.g., a wireless communication protocol), and may transmit the modulated video data to the destination device 14. The one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines. The one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (e.g., the Internet). The one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from the source device 12 to the destination device 14.
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,所述编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:The source device 12 includes an encoder 20. Optionally, the source device 12 may also include a picture source 16, a picture preprocessor 18, and a communication interface 22. In a specific implementation, the encoder 20, the picture source 16, the picture preprocessor 18, and the communication interface 22 may be hardware components in the source device 12, or may be software programs in the source device 12. They are described as follows:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmentedreality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。The picture source 16 may include or may be any type of picture capture device, for example, for capturing real-world pictures, and/or any type of pictures or comments (for screen content encoding, some text on the screen is also considered to be part of the picture or image to be encoded) generating device, for example, a computer graphics processor for generating computer animation pictures, or any type of device for acquiring and/or providing real-world pictures, computer animation pictures (e.g., screen content, virtual reality (VR) pictures), and/or any combination thereof (e.g., augmented reality (AR) pictures). The picture source 16 may be a camera for capturing pictures or a memory for storing pictures, and the picture source 16 may also include any type of (internal or external) interface for storing previously captured or generated pictures and/or acquiring or receiving pictures. When the picture source 16 is a camera, the picture source 16 may be, for example, a local or integrated camera integrated in the source device; when the picture source 16 is a memory, the picture source 16 may be, for example, a local or integrated memory integrated in the source device. When the picture source 16 includes an interface, the interface may be, for example, an external interface for receiving pictures from an external video source, such as an external picture capture device, such as a camera, an external memory, or an external picture generating device, such as an external computer graphics processor, a computer, or a server. The interface may be any type of interface according to any proprietary or standardized interface protocol, such as a wired or wireless interface, an optical interface.
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本发明实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。Among them, the picture can be regarded as a two-dimensional array or matrix of pixels (picture element). The pixels in the array can also be called sampling points. The number of sampling points in the array or picture in the horizontal and vertical directions (or axes) defines the size and/or resolution of the picture. In order to represent the color, three color components are usually used, that is, the picture can be represented as or include three sampling arrays. For example, in the RBG format or color space, the picture includes corresponding red, green and blue sampling arrays. However, in video coding, each pixel is usually represented in a brightness/chroma format or color space, such as for a picture in the YUV format, including a brightness component indicated by Y (sometimes also indicated by L) and two chroma components indicated by U and V. The brightness (luma) component Y represents the brightness or grayscale level intensity (for example, the two are the same in a grayscale picture), and the two chroma (chroma) components U and V represent the chroma or color information components. Accordingly, the picture in the YUV format includes a brightness sampling array of brightness sampling values (Y), and two chroma sampling arrays of chroma values (U and V). An image in RGB format can be converted or transformed into YUV format, and vice versa, which is also called color conversion or transformation. If the image is black and white, the image may only include a brightness sampling array. In the embodiment of the present invention, the image transmitted from the image source 16 to the image processor may also be referred to as raw image data 17.
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。The image preprocessor 18 is used to receive the original image data 17 and perform preprocessing on the original image data 17 to obtain a preprocessed image 19 or preprocessed image data 19. For example, the preprocessing performed by the image preprocessor 18 may include refurbishment, color format conversion (e.g., from RGB format to YUV format), color adjustment, or denoising.
编码器20(或称编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图4或图5描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本发明所描述的色度块预测方法在编码侧的应用。The encoder 20 (or encoder 20) is used to receive the pre-processed picture data 19, and process the pre-processed picture data 19 using a relevant prediction mode (such as the prediction mode in various embodiments of this document), thereby providing encoded picture data 21 (the structural details of the encoder 20 will be further described below based on FIG. 2 or FIG. 4 or FIG. 5). In some embodiments, the encoder 20 can be used to execute various embodiments described below to implement the application of the chroma block prediction method described in the present invention on the encoding side.
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。The communication interface 22 can be used to receive the encoded picture data 21 and transmit the encoded picture data 21 to the destination device 14 or any other device (such as a memory) through the link 13 for storage or direct reconstruction. The other device can be any device for decoding or storage. The communication interface 22 can, for example, be used to encapsulate the encoded picture data 21 into a suitable format, such as a data packet, for transmission on the link 13.
目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:The destination device 14 includes a decoder 30. Optionally, the destination device 14 may also include a communication interface 28, a picture post-processor 32, and a display device 34. They are described as follows:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。The communication interface 28 can be used to receive the encoded picture data 21 from the source device 12 or any other source, such as a storage device, such as an encoded picture data storage device. The communication interface 28 can be used to transmit or receive the encoded picture data 21 via the link 13 between the source device 12 and the destination device 14 or via any type of network, such as a direct wired or wireless connection, any type of network, such as a wired or wireless network or any combination thereof, or any type of private network and public network, or any combination thereof. The communication interface 28 can be used, for example, to decapsulate the data packet transmitted by the communication interface 22 to obtain the encoded picture data 21.
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。Both communication interface 28 and communication interface 22 may be configured as unidirectional communication interfaces or bidirectional communication interfaces and may be used, for example, to send and receive messages to establish connections, confirm and exchange any other information related to communication links and/or data transmissions such as encoded picture data transmissions.
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图4或图5描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本发明所描述的色度块预测方法在解码侧的应用。The decoder 30 (or decoder 30) is used to receive the encoded picture data 21 and provide decoded picture data 31 or decoded picture 31 (the structural details of the decoder 30 will be further described below based on FIG. 3 or FIG. 4 or FIG. 5). In some embodiments, the decoder 30 can be used to execute the various embodiments described below to implement the application of the chroma block prediction method described in the present invention on the decoding side.
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它处理,还可用于将将经后处理图片数据33传输至显示设备34。The picture post-processor 32 is used to perform post-processing on the decoded picture data 31 (also called reconstructed picture data) to obtain post-processed picture data 33. The post-processing performed by the picture post-processor 32 may include: color format conversion (for example, from YUV format to RGB format), color adjustment, repair or resampling, or any other processing, and can also be used to transmit the post-processed picture data 33 to the display device 34.
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digitallight processor,DLP)或任何类别的其它显示器。A display device 34 is provided for receiving the post-processed picture data 33 to display the picture to, for example, a user or viewer. The display device 34 may be or may include any type of display for presenting the reconstructed picture, such as an integrated or external display or monitor. For example, the display may include a liquid crystal display (LCD), an organic light emitting diode (OLED) display, a plasma display, a projector, a micro-LED display, a liquid crystal on silicon (LCoS), a digital light processor (DLP), or any other type of display.
虽然,图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。Although FIG. 1A illustrates the source device 12 and the destination device 14 as separate devices, device embodiments may also include both the source device 12 and the destination device 14 or both functionalities, i.e., the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality. In such embodiments, the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality may be implemented using the same hardware and/or software, or using separate hardware and/or software, or any combination thereof.
本领域技术人员基于描述明显可知,不同单元的功能性或图1A所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。It is obvious to those skilled in the art based on the description that the functionality of different units or the existence and (accurate) division of the functionality of the source device 12 and/or the destination device 14 shown in FIG1A may vary according to actual devices and applications. The source device 12 and the destination device 14 may include any of a variety of devices, including any type of handheld or stationary device, such as a notebook or laptop computer, a mobile phone, a smart phone, a tablet or tablet computer, a camera, a desktop computer, a set-top box, a television, a camera, a car device, a display device, a digital media player, a video game console, a video streaming device (such as a content service server or a content distribution server), a broadcast receiver device, a broadcast transmitter device, etc., and may not use or use any type of operating system.
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一或多个处理器以硬件执行指令从而执行本公开的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一或多个处理器。Both the encoder 20 and the decoder 30 may be implemented as any of a variety of suitable circuits, such as one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), discrete logic, hardware, or any combination thereof. If the technology is implemented in part in software, the device may store the instructions of the software in a suitable non-transitory computer-readable storage medium, and may use one or more processors to execute the instructions in hardware to perform the technology of the present disclosure. Any of the foregoing (including hardware, software, a combination of hardware and software, etc.) may be considered one or more processors.
在一些情况下,图1A中所示视频编码及解码系统10仅为示例,本发明的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。In some cases, the video encoding and decoding system 10 shown in FIG. 1A is merely an example, and the techniques of the present invention may be applicable to video encoding settings (e.g., video encoding or video decoding) that do not necessarily include any data communication between encoding and decoding devices. In other instances, data may be retrieved from a local memory, streamed over a network, etc. A video encoding device may encode data and store the data in a memory, and/or a video decoding device may retrieve data from a memory and decode the data. In some instances, encoding and decoding are performed by devices that do not communicate with each other but only encode data to a memory and/or retrieve data from a memory and decode data.
参见图1B,图1B是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本发明实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。Referring to FIG. 1B , FIG. 1B is an illustrative diagram of an example of a video decoding system 40 including the encoder 20 of FIG. 2 and/or the decoder 30 of FIG. 3 according to an exemplary embodiment. The video decoding system 40 may implement a combination of various techniques of the embodiments of the present invention. In the illustrated implementation, the video decoding system 40 may include an imaging device 41, an encoder 20, a decoder 30 (and/or a video codec implemented by logic circuits 47 of a processing unit 46), an antenna 42, one or more processors 43, one or more memories 44, and/or a display device 45.
如图1B所示,成像设备41、天线42、处理单元46、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。1B , imaging device 41, antenna 42, processing unit 46, logic circuit 47, encoder 20, decoder 30, processor 43, memory 44, and/or display device 45 are capable of communicating with each other. As discussed, although video decoding system 40 is illustrated with encoder 20 and decoder 30, in different examples, video decoding system 40 may include only encoder 20 or only decoder 30.
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以通过处理单元46实施。处理单元46可以包含专用集成电路(application-specific integratedcircuit,ASIC)逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含专用集成电路(application-specific integratedcircuit,ASIC)逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(StaticRandom Access Memory,SRAM)、动态随机存储器(Dynamic Random Access Memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。In some examples, antenna 42 can be used to transmit or receive a coded bit stream of video data. In addition, in some examples, display device 45 can be used to present video data. In some examples, logic circuit 47 can be implemented by processing unit 46. Processing unit 46 can include application-specific integrated circuit (ASIC) logic, graphics processor, general processor, etc. Video decoding system 40 can also include optional processor 43, which can similarly include application-specific integrated circuit (ASIC) logic, graphics processor, general processor, etc. In some examples, logic circuit 47 can be implemented by hardware, such as video encoding dedicated hardware, etc., and processor 43 can be implemented by general software, operating system, etc. In addition, memory 44 can be any type of memory, such as volatile memory (e.g., static random access memory (SRAM), dynamic random access memory (DRAM), etc.) or non-volatile memory (e.g., flash memory, etc.). In a non-limiting example, memory 44 can be implemented by cache memory. In some examples, logic circuitry 47 may access memory 44 (eg, for implementing an image buffer). In other examples, logic circuitry 47 and/or processing unit 46 may include memory (eg, cache, etc.) for implementing an image buffer, etc.
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图2和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。In some examples, encoder 20 implemented by logic circuits may include an image buffer (e.g., implemented by processing unit 46 or memory 44) and a graphics processing unit (e.g., implemented by processing unit 46). The graphics processing unit may be communicatively coupled to the image buffer. The graphics processing unit may include encoder 20 implemented by logic circuits 47 to implement the various modules discussed with reference to FIG. 2 and/or any other encoder system or subsystem described herein. The logic circuits may be used to perform the various operations discussed herein.
在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图3的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元2820或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图3和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。In some examples, the decoder 30 may be implemented by logic circuit 47 in a similar manner to implement the various modules discussed with reference to the decoder 30 of FIG. 3 and/or any other decoder system or subsystem described herein. In some examples, the decoder 30 implemented by logic circuit may include an image buffer (implemented by processing unit 2820 or memory 44) and a graphics processing unit (implemented, for example, by processing unit 46). The graphics processing unit may be communicatively coupled to the image buffer. The graphics processing unit may include the decoder 30 implemented by logic circuit 47 to implement the various modules discussed with reference to FIG. 3 and/or any other decoder system or subsystem described herein.
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。In some examples, antenna 42 may be used to receive an encoded bitstream of video data. As discussed, the encoded bitstream may include data related to the encoded video frames discussed herein, indicators, index values, mode selection data, etc., such as data related to the encoded partitions (e.g., transform coefficients or quantized transform coefficients, (as discussed) optional indicators, and/or data defining the encoded partitions). Video decoding system 40 may also include decoder 30 coupled to antenna 42 and used to decode the encoded bitstream. Display device 45 is used to present the video frames.
应理解,本发明实施例中对于参考编码器20所描述的实例,解码器30可以用于执行相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频数据。It should be understood that for the examples described with reference to encoder 20 in the embodiments of the present invention, decoder 30 can be used to perform the reverse process. With respect to signaling syntax elements, decoder 30 can be used to receive and parse such syntax elements and decode the associated video data accordingly. In some examples, encoder 20 can entropy encode the syntax elements into an encoded video bitstream. In such examples, decoder 30 can parse such syntax elements and decode the associated video data accordingly.
需要说明的是,本发明实施例描述的方法主要用于帧间预测过程,此过程在编码器20和解码器30均存在,本发明实施例中的编码器20和解码器30可以是例如H.263、H.264、HEVV、MPEG-2、MPEG-4、VP8、VP9等视频标准协议或者下一代视频标准协议(如H.266等)对应的编/解码器。It should be noted that the method described in the embodiment of the present invention is mainly used for the inter-frame prediction process, which exists in both the encoder 20 and the decoder 30. The encoder 20 and the decoder 30 in the embodiment of the present invention can be encoders/decoders corresponding to video standard protocols such as H.263, H.264, HEVV, MPEG-2, MPEG-4, VP8, VP9, or next-generation video standard protocols (such as H.266, etc.).
参见图2,图2示出用于实现本发明实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图2所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。Referring to FIG. 2 , FIG. 2 shows a schematic/conceptual block diagram of an example of an encoder 20 for implementing an embodiment of the present invention. In the example of FIG. 2 , the encoder 20 includes a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, an inverse transform processing unit 212, a reconstruction unit 214, a buffer 216, a loop filter unit 220, a decoded picture buffer (DPB) 230, a prediction processing unit 260, and an entropy coding unit 270. The prediction processing unit 260 may include an inter-frame prediction unit 244, an intra-frame prediction unit 254, and a mode selection unit 262. The inter-frame prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown). The encoder 20 shown in FIG. 2 may also be referred to as a hybrid video encoder or a video encoder according to a hybrid video codec.
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。For example, the residual calculation unit 204, the transform processing unit 206, the quantization unit 208, the prediction processing unit 260 and the entropy coding unit 270 form a forward signal path of the encoder 20, while for example, the inverse quantization unit 210, the inverse transform processing unit 212, the reconstruction unit 214, the buffer 216, the loop filter 220, the decoded picture buffer (DPB) 230, and the prediction processing unit 260 form a backward signal path of the encoder, wherein the backward signal path of the encoder corresponds to the signal path of the decoder (see the decoder 30 in Figure 3).
编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前编码块或待处理图像块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。The encoder 20 receives a picture 201 or an image block 203 of the picture 201, for example, a picture in a sequence of pictures forming a video or a video sequence, via, for example, an input 202. The image block 203 may also be referred to as a current coding block or an image block to be processed, and the picture 201 may be referred to as a current picture or a picture to be coded (especially when the current picture is distinguished from other pictures in video coding, such as previously coded and/or decoded pictures in the same video sequence, i.e., a video sequence that also includes the current picture).
编码器20的实施例可以包括分割单元(图2中未绘示),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。An embodiment of the encoder 20 may include a segmentation unit (not shown in FIG. 2 ) for segmenting the picture 201 into a plurality of blocks, such as image blocks 203 , typically into a plurality of non-overlapping blocks. The segmentation unit may be used to use the same block size for all pictures in the video sequence and define a corresponding grid of block sizes, or to change the block size between pictures or subsets or groups of pictures and segment each picture into corresponding blocks.
在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。In one example, prediction processing unit 260 of encoder 20 may be used to perform any combination of the above-described segmentation techniques.
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。Like the picture 201, the image block 203 is also or can be regarded as a two-dimensional array or matrix of sampling points with sample values, although its size is smaller than that of the picture 201. In other words, the image block 203 may include, for example, one sampling array (e.g., a luminance array in the case of the black and white picture 201) or three sampling arrays (e.g., one luminance array and two chrominance arrays in the case of a color picture) or any other number and/or type of arrays depending on the color format applied. The number of sampling points in the horizontal and vertical directions (or axes) of the image block 203 defines the size of the image block 203.
如图2所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和预测。The encoder 20 shown in FIG. 2 is used to encode the picture 201 block by block, for example, performing encoding and prediction on each image block 203 .
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。The residual calculation unit 204 is used to calculate the residual block 205 based on the picture image block 203 and the prediction block 265 (other details of the prediction block 265 are provided below), for example, by subtracting the sample value of the prediction block 265 from the sample value of the picture image block 203 sample by sample (pixel by pixel) to obtain the residual block 205 in the sample domain.
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discretecosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。The transform processing unit 206 is used to apply a transform such as discrete cosine transform (DCT) or discrete sine transform (DST) on the sample values of the residual block 205 to obtain a transform coefficient 207 in the transform domain. The transform coefficient 207 may also be referred to as a transform residual coefficient and represents the residual block 205 in the transform domain.
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为HEVC/H.265指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。The transform processing unit 206 can be used to apply an integer approximation of the DCT/DST, such as the transform specified for HEVC/H.265. Compared to the orthogonal DCT transform, this integer approximation is usually scaled by a certain factor. In order to maintain the norm of the residual block processed by the forward transform and the inverse transform, an additional scaling factor is applied as part of the transform process. The scaling factor is usually selected based on certain constraints, such as the scaling factor is a power of 2 for the shift operation, the bit depth of the transform coefficients, the trade-off between accuracy and implementation cost, etc. For example, a specific scaling factor is specified for the inverse transform on the decoder 30 side by, for example, the inverse transform processing unit 212 (and for the corresponding inverse transform on the encoder 20 side by, for example, the inverse transform processing unit 212), and accordingly, a corresponding scaling factor can be specified for the forward transform on the encoder 20 side by the transform processing unit 206.
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过量化参数(quantizationparameter,QP)指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如HEVC的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。The quantization unit 208 is used to quantize the transform coefficients 207, for example, by applying scalar quantization or vector quantization, to obtain quantized transform coefficients 209. The quantized transform coefficients 209 may also be referred to as quantized residual coefficients 209. The quantization process may reduce the bit depth associated with some or all of the transform coefficients 207. For example, an n-bit transform coefficient may be rounded down to an m-bit transform coefficient during quantization, where n is greater than m. The degree of quantization may be modified by adjusting a quantization parameter (QP). For example, for scalar quantization, different scales may be applied to achieve finer or coarser quantization. A smaller quantization step size corresponds to finer quantization, while a larger quantization step size corresponds to coarser quantization. A suitable quantization step size may be indicated by a quantization parameter (QP). For example, the quantization parameter may be an index to a predefined set of suitable quantization step sizes. For example, a smaller quantization parameter may correspond to fine quantization (a smaller quantization step size), a larger quantization parameter may correspond to coarse quantization (a larger quantization step size), and vice versa. Quantization may include division by a quantization step size and corresponding quantization or inverse quantization, for example, performed by inverse quantization 210, or may include multiplication by a quantization step size. Embodiments according to some standards such as HEVC may use a quantization parameter to determine the quantization step size. In general, the quantization step size may be calculated based on the quantization parameter using a fixed-point approximation of an equation containing division. Additional scaling factors may be introduced for quantization and inverse quantization to recover the norm of the residual block that may be modified due to the scale used in the fixed-point approximation of the equation for the quantization step size and the quantization parameter. In an example embodiment, the scales of the inverse transform and inverse quantization may be merged. Alternatively, a custom quantization table may be used and sent from an encoder to a decoder through a signal, for example in a bitstream. Quantization is a lossy operation, where the larger the quantization step size, the greater the loss.
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。The inverse quantization unit 210 is used to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain inverse quantized coefficients 211, for example, applying an inverse quantization scheme of the quantization scheme applied by the quantization unit 208 based on or using the same quantization step size as the quantization unit 208. The inverse quantized coefficients 211 may also be referred to as inverse quantized residual coefficients 211, corresponding to the transform coefficients 207, although the loss due to quantization is generally different from that of the transform coefficients.
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sinetransform,DST),以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。The inverse transform processing unit 212 is used to apply the inverse transform of the transform applied by the transform processing unit 206, such as an inverse discrete cosine transform (DCT) or an inverse discrete sine transform (DST), to obtain an inverse transform block 213 in the sample domain. The inverse transform block 213 may also be referred to as an inverse transform dequantized block 213 or an inverse transform residual block 213.
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。The reconstruction unit 214 (e.g., the summer 214) is used to add the inverse transform block 213 (i.e., the reconstructed residual block 213) to the prediction block 265 to obtain the reconstructed block 215 in the sample domain, for example, by adding the sample values of the reconstructed residual block 213 to the sample values of the prediction block 265.
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。Optionally, a buffer unit 216 (or simply "buffer" 216), such as a line buffer 216, is used to buffer or store the reconstructed blocks 215 and corresponding sample values for, for example, intra-frame prediction. In other embodiments, the encoder can be used to use the unfiltered reconstructed blocks and/or corresponding sample values stored in the buffer unit 216 for any type of estimation and/or prediction, such as intra-frame prediction.
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。For example, embodiments of the encoder 20 may be configured such that the buffer unit 216 is used not only to store the reconstructed blocks 215 for the intra-frame prediction 254, but also for the loop filter unit 220 (not shown in FIG. 2 ), and/or, for example, such that the buffer unit 216 and the decoded picture buffer unit 230 form one buffer. Other embodiments may be used to use the filtered blocks 221 and/or blocks or samples from the decoded picture buffer 230 (neither shown in FIG. 2 ) as input or basis for the intra-frame prediction 254.
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。The loop filter unit 220 (or simply "loop filter" 220) is used to filter the reconstructed block 215 to obtain the filtered block 221, so as to smoothly perform pixel conversion or improve video quality. The loop filter unit 220 is intended to represent one or more loop filters, such as a deblocking filter, a sample adaptive offset (sample-adaptive offset, SAO) filter or other filters, such as a bilateral filter, an adaptive loop filter (adaptive loop filter, ALF), or a sharpening or smoothing filter, or a collaborative filter. Although the loop filter unit 220 is shown as an in-loop filter in Figure 2, in other configurations, the loop filter unit 220 can be implemented as a post-loop filter. The filtered block 221 can also be referred to as a filtered reconstructed block 221. The decoded picture buffer 230 can store the reconstructed coding block after the loop filter unit 220 performs a filtering operation on the reconstructed coding block.
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。Embodiments of the encoder 20 (correspondingly, the loop filter unit 220) can be used to output loop filter parameters (e.g., sample adaptive offset information), for example, directly or after entropy encoding by the entropy encoding unit 270 or any other entropy encoding unit, such that the decoder 30 can receive and apply the same loop filter parameters for decoding.
经解码图片缓冲器(decoded picture buffer,DPB)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB 230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamic random access memory,DRAM)(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM)、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB 230和缓冲器216。在某一实例中,经解码图片缓冲器(decoded picturebuffer,DPB)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经重构块215。The decoded picture buffer (DPB) 230 may be a reference picture memory for storing reference picture data for use by the encoder 20 in encoding video data. The DPB 230 may be formed by any of a variety of memory devices, such as a dynamic random access memory (DRAM) (including synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM)) or other types of memory devices. The DPB 230 and the buffer 216 may be provided by the same memory device or separate memory devices. In one example, the decoded picture buffer (DPB) 230 is used to store the filtered block 221. The decoded picture buffer 230 may further be used to store other previously filtered blocks of the same current picture or a different picture, such as a previously reconstructed picture, such as the previously reconstructed and filtered block 221, and may provide a complete previously reconstructed, i.e., decoded picture (and corresponding reference blocks and samples) and/or a portion of the reconstructed current picture (and corresponding reference blocks and samples), such as for inter-frame prediction. In one example, if the reconstructed block 215 is reconstructed without in-loop filtering, the decoded picture buffer (DPB) 230 is used to store the reconstructed block 215.
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。The prediction processing unit 260, also referred to as the block prediction processing unit 260, is used to receive or obtain an image block 203 (a current image block 203 of a current image 201) and reconstructed image data, such as reference samples of the same (current) image from the buffer 216 and/or reference image data 231 of one or more previously decoded images from the decoded image buffer 230, and to process such data for prediction, i.e., to provide a prediction block 265 which may be an inter-prediction block 245 or an intra-prediction block 255.
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。The mode selection unit 262 may be used to select a prediction mode (eg, intra or inter prediction mode) and/or a corresponding prediction block 245 or 255 for use as a prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215 .
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。Embodiments of the mode selection unit 262 may be used to select a prediction mode (e.g., from those prediction modes supported by the prediction processing unit 260) that provides the best match or minimum residual (minimum residual means better compression in transmission or storage), or provides minimum signaling overhead (minimum signaling overhead means better compression in transmission or storage), or considers or balances both. The mode selection unit 262 may be used to determine the prediction mode based on rate distortion optimization (RDO), i.e., select a prediction mode that provides minimum rate distortion optimization, or select a prediction mode whose associated rate distortion at least satisfies the prediction mode selection criteria.
下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。The prediction processing performed by an example of encoder 20 (eg, by prediction processing unit 260) and the mode selection performed (eg, by mode selection unit 262) will be explained in detail below.
如上文所述,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。As described above, the encoder 20 is used to determine or select the best or optimal prediction mode from a (predetermined) prediction mode set. The prediction mode set may include, for example, an intra-frame prediction mode and/or an inter-frame prediction mode.
在可能的实现中,帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如H.265中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如正在发展中的H.266中定义的方向性模式。In a possible implementation, the intra-frame prediction mode set may include 35 different intra-frame prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.265, or may include 67 different intra-frame prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.266 under development.
在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在DBP 230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模式集合例如可包括先进运动矢量(Advanced Motion Vector Prediction,AMVP)模式和融合(merge)模式。具体实施中,帧间预测模式集合可包括本发明实施例所描述的基于仿射运动模型的预测模式,例如基于仿射运动模型的先进运动矢量预测模式(Affine AMVPmode)或者基于仿射运动模型的融合模式(Affine Merge mode),具体的,基于控制点的AMVP模式(继承的控制点运动矢量预测方法或者构造的控制点运动矢量预测方法),基于控制点的merge模式(继承的控制点运动矢量预测方法或者构造的控制点运动矢量预测方法);以及,高级时域运动矢量预测(advanced temporal motion vector prediction,ATMVP)方法,PLANAER方法等等;或者,通过上述仿基于仿射运动模型的融合模式、ATMVP和/或PLANAR方法的综合形成的子块融合模式(Sub-block based merging mode),等等。本发明实施例中,对待处理推图像块的帧间预测可应用于单向预测(前向或后向)、双向预测(前向和后向)或多帧预测中,当应用于双向预测时,可采用双向预测块级的广义双向预测(Generalized Bi-prediction,GBi),或称加权预测方法,在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。In a possible implementation, the inter-frame prediction mode set depends on the available reference picture (i.e., at least part of the decoded picture stored in the DBP 230 as mentioned above) and other inter-frame prediction parameters, such as whether to use the entire reference picture or only a part of the reference picture, such as a search window area around the area of the current block, to search for the best matching reference block, and/or, for example, whether pixel interpolation such as half-pixel and/or quarter-pixel interpolation is applied. The inter-frame prediction mode set may, for example, include an Advanced Motion Vector Prediction (AMVP) mode and a merge mode. In a specific implementation, the inter-frame prediction mode set may include the prediction mode based on the affine motion model described in the embodiment of the present invention, such as the advanced motion vector prediction mode (Affine AMVP mode) based on the affine motion model or the fusion mode (Affine Merge mode) based on the affine motion model, specifically, the AMVP mode based on the control point (the inherited control point motion vector prediction method or the constructed control point motion vector prediction method), the merge mode based on the control point (the inherited control point motion vector prediction method or the constructed control point motion vector prediction method); and, the advanced temporal motion vector prediction (ATMVP) method, the PLANAER method, etc.; or, a sub-block based merging mode (Sub-block based merging mode) formed by the combination of the above-mentioned fusion mode based on the affine motion model, the ATMVP and/or the PLANAR method, etc. In an embodiment of the present invention, inter-frame prediction of the image block to be processed can be applied to unidirectional prediction (forward or backward), bidirectional prediction (forward and backward) or multi-frame prediction. When applied to bidirectional prediction, generalized bi-prediction (GBi) at the bidirectional prediction block level, or weighted prediction method, can be adopted. In one example, the intra-frame prediction unit 254 can be used to perform any combination of the inter-frame prediction techniques described below.
除了以上预测模式,本发明实施例也可以应用跳过模式和/或直接模式。In addition to the above prediction modes, embodiments of the present invention may also apply skip mode and/or direct mode.
预测处理单元260可以进一步用于将图像块203分割成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,QT)分割、二进制树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割,或其任何组合,以及用于例如为块分区或子块中的每一个执行预测,其中模式选择包括选择分割的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。The prediction processing unit 260 can be further used to partition the image block 203 into smaller block partitions or sub-blocks, for example, by iteratively using quad-tree (QT) partitioning, binary-tree (BT) partitioning or triple-tree (TT) partitioning, or any combination thereof, and for performing prediction for each of the block partitions or sub-blocks, for example, wherein the mode selection includes selecting a tree structure of the partitioned image block 203 and selecting a prediction mode to be applied to each of the block partitions or sub-blocks.
帧间预测单元244可以包含运动估计(motion estimation,ME)单元(图2中未示出)和运动补偿(motion compensation,MC)单元(图2中未示出)。运动估计单元用于接收或获取图片图像块203(当前图片201的当前图片图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构块,基于所确定的帧间预测模式来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。The inter prediction unit 244 may include a motion estimation (ME) unit (not shown in FIG. 2 ) and a motion compensation (MC) unit (not shown in FIG. 2 ). The motion estimation unit is used to receive or obtain a picture image block 203 (a current picture image block 203 of a current picture 201 ) and a decoded picture 231 , or at least one or more previously reconstructed blocks, for example, reconstructed blocks of one or more other/different previously decoded pictures 231 , and perform motion estimation based on the determined inter prediction mode. For example, a video sequence may include a current picture and a previously decoded picture 31 , or in other words, the current picture and the previously decoded picture 31 may be part of a picture sequence forming a video sequence, or form the picture sequence.
例如,编码器20可以用于从多个其它图片(参考图像)中的同一或不同图片的多个参考块中选择参考块,并向运动估计单元(图2中未示出)提供参考图片和/或提供参考块的位置(X、Y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数。该偏移也称为运动向量(motion vector,MV)。For example, the encoder 20 may be configured to select a reference block from a plurality of reference blocks of the same or different pictures in a plurality of other pictures (reference images), and provide the reference picture to a motion estimation unit (not shown in FIG. 2 ) and/or provide an offset (spatial offset) between the position (X, Y coordinates) of the reference block and the position of the current block as an inter-frame prediction parameter. The offset is also referred to as a motion vector (MV).
运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获取帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块(预测值)。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的PU的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的语法元素,以供解码器30在解码视频条带的图片块时使用。The motion compensation unit is used to obtain inter-frame prediction parameters and perform inter-frame prediction based on or using the inter-frame prediction parameters to obtain an inter-frame prediction block 245. Motion compensation performed by the motion compensation unit (not shown in Figure 2) may include retrieving or generating a prediction block (prediction value) based on a motion/block vector determined by motion estimation (possibly performing interpolation to sub-pixel accuracy). Interpolation filtering can generate additional pixel samples from known pixel samples, thereby potentially increasing the number of candidate prediction blocks that can be used to encode the picture block. Upon receiving the motion vector for the PU of the current picture block, the motion compensation unit 246 can locate the prediction block pointed to by the motion vector in a reference picture list. The motion compensation unit 246 can also generate syntax elements associated with blocks and video slices for use by the decoder 30 when decoding picture blocks of the video slice.
具体的,上述帧间预测单元244可向熵编码单元270传输语法元素,所述语法元素例如包括帧间预测参数(比如遍历多个帧间预测模式后选择用于当前块预测的帧间预测模式的指示信息)、候选运动矢量列表的索引号,可选地还包括GBi索引号、参考帧索引等等。可能应用场景中,如果帧间预测模式只有一种,那么也可以不在语法元素中携带帧间预测参数,此时解码器30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。Specifically, the inter-frame prediction unit 244 may transmit syntax elements to the entropy coding unit 270, and the syntax elements may include, for example, inter-frame prediction parameters (such as indication information of selecting an inter-frame prediction mode for current block prediction after traversing multiple inter-frame prediction modes), the index number of the candidate motion vector list, and optionally the GBi index number, the reference frame index, etc. In a possible application scenario, if there is only one inter-frame prediction mode, the inter-frame prediction parameters may not be carried in the syntax elements, and the decoder 30 may directly use the default prediction mode for decoding. It can be understood that the inter-frame prediction unit 244 can be used to perform any combination of inter-frame prediction techniques.
帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。The intra prediction unit 254 is used to obtain, for example, receive a picture block 203 (current picture block) of the same picture and one or more previously reconstructed blocks, for example, reconstructed adjacent blocks, for intra estimation. For example, the encoder 20 can be used to select an intra prediction mode from a plurality of (predetermined) intra prediction modes.
编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。Embodiments of the encoder 20 may be configured to select an intra prediction mode based on an optimization criterion, such as minimum residual (eg, the intra prediction mode that provides a prediction block 255 most similar to the current picture block 203) or minimum rate distortion.
帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。The intra prediction unit 254 is further configured to determine an intra prediction block 255 based on the intra prediction parameters of the selected intra prediction mode. In any case, after selecting the intra prediction mode for the block, the intra prediction unit 254 is further configured to provide the intra prediction parameters, i.e., information indicating the selected intra prediction mode for the block, to the entropy encoding unit 270. In one example, the intra prediction unit 254 can be configured to perform any combination of intra prediction techniques.
具体的,上述帧内预测单元254可向熵编码单元270传输语法元素,所述语法元素包括帧内预测参数(比如遍历多个帧内预测模式后选择用于当前块预测的帧内预测模式的指示信息)。可能应用场景中,如果帧内预测模式只有一种,那么也可以不在语法元素中携带帧内预测参数,此时解码器30可直接使用默认的预测模式进行解码。Specifically, the intra prediction unit 254 may transmit a syntax element to the entropy coding unit 270, wherein the syntax element includes an intra prediction parameter (such as indication information of selecting an intra prediction mode for current block prediction after traversing multiple intra prediction modes). In a possible application scenario, if there is only one intra prediction mode, the intra prediction parameter may not be carried in the syntax element, and the decoder 30 may directly use the default prediction mode for decoding.
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable lengthcoding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binaryarithmetic coding,SBAC)、概率区间分割熵(probability interval partitioningentropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到解码器30,或将其存档稍后由解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。The entropy coding unit 270 is used to apply an entropy coding algorithm or scheme (e.g., a variable length coding (VLC) scheme, a context adaptive VLC (CAVLC) scheme, an arithmetic coding scheme, a context adaptive binary arithmetic coding (CABAC), a syntax-based context-adaptive binary arithmetic coding (SBAC), a probability interval partitioning entropy (PIPE) coding, or other entropy coding methods or techniques) to a single or all (or none) of the quantized residual coefficients 209, inter-frame prediction parameters, intra-frame prediction parameters, and/or loop filter parameters to obtain encoded picture data 21 that can be output through an output 272 in the form of, for example, an encoded bitstream 21. The encoded bitstream can be transmitted to the decoder 30 or archived for later transmission or retrieval by the decoder 30. The entropy coding unit 270 can also be used to entropy encode other syntax elements of the current video slice being encoded.
编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。Other structural variations of the encoder 20 may be used to encode the video stream. For example, a non-transform based encoder 20 may directly quantize the residual signal without a transform processing unit 206 for certain blocks or frames. In another embodiment, the encoder 20 may have a quantization unit 208 and an inverse quantization unit 210 combined into a single unit.
在具体实施例中,编码器20可用于实现后文图11B实施例中描述的帧间预测方法。In a specific embodiment, the encoder 20 may be used to implement the inter-frame prediction method described in the embodiment of FIG. 11B below.
应当理解的是,编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。It should be understood that other structural changes of the encoder 20 can be used to encode the video stream. For example, for some image blocks or image frames, the encoder 20 can directly quantize the residual signal without processing by the transform processing unit 206, and accordingly, it does not need to be processed by the inverse transform processing unit 212; or, for some image blocks or image frames, the encoder 20 does not generate residual data, and accordingly, it does not need to be processed by the transform processing unit 206, the quantization unit 208, the inverse quantization unit 210 and the inverse transform processing unit 212; or, the encoder 20 can directly store the reconstructed image block as a reference block without processing by the filter 220; or, the quantization unit 208 and the inverse quantization unit 210 in the encoder 20 can be combined together. The loop filter 220 is optional, and in the case of lossless compression encoding, the transform processing unit 206, the quantization unit 208, the inverse quantization unit 210 and the inverse transform processing unit 212 are optional. It should be understood that according to different application scenarios, the inter-frame prediction unit 244 and the intra-frame prediction unit 254 can be selectively enabled.
参见图3,图3示出用于实现本发明实施例的解码器30的实例的示意性/概念性框图。解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,解码器30从编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。3, a schematic/conceptual block diagram of an example of a decoder 30 for implementing an embodiment of the present invention is shown. The decoder 30 is used to receive coded picture data (e.g., coded bitstream) 21, for example, encoded by the encoder 20, to obtain a decoded picture 231. During the decoding process, the decoder 30 receives video data from the encoder 20, such as a coded video bitstream representing picture blocks of a coded video slice and associated syntax elements.
在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测单元354和模式选择单元362。在一些实例中,解码器30可执行大体上与参照图2的编码器20描述的编码遍次互逆的解码遍次。3 , decoder 30 includes an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (e.g., summer 314), a buffer 316, a loop filter 320, a decoded picture buffer 330, and a prediction processing unit 360. Prediction processing unit 360 may include an inter-prediction unit 344, an intra-prediction unit 354, and a mode selection unit 362. In some examples, decoder 30 may perform a decoding pass that is generally reciprocal to the encoding pass described with reference to encoder 20 of FIG. 2 .
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。解码器30可接收视频条带层级和/或视频块层级的语法元素。The entropy decoding unit 304 is used to perform entropy decoding on the encoded picture data 21 to obtain, for example, quantized coefficients 309 and/or decoded coding parameters (not shown in FIG. 3 ), such as any one or all of (decoded) inter-frame prediction, intra-frame prediction parameters, loop filter parameters, and/or other syntax elements. The entropy decoding unit 304 is further used to forward the inter-frame prediction parameters, intra-frame prediction parameters, and/or other syntax elements to the prediction processing unit 360. The decoder 30 may receive syntax elements at the video slice level and/or the video block level.
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲器330功能上可与经解码图片缓冲器230相同。The inverse quantization unit 310 may be functionally the same as the inverse quantization unit 110, the inverse transform processing unit 312 may be functionally the same as the inverse transform processing unit 212, the reconstruction unit 314 may be functionally the same as the reconstruction unit 214, the buffer 316 may be functionally the same as the buffer 216, the loop filter 320 may be functionally the same as the loop filter 220, and the decoded picture buffer 330 may be functionally the same as the decoded picture buffer 230.
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择的预测模式的信息。The prediction processing unit 360 may include an inter-frame prediction unit 344 and an intra-frame prediction unit 354, wherein the inter-frame prediction unit 344 may be functionally similar to the inter-frame prediction unit 244, and the intra-frame prediction unit 354 may be functionally similar to the intra-frame prediction unit 254. The prediction processing unit 360 is generally used to perform block prediction and/or obtain a prediction block 365 from the encoded data 21, and receive or obtain prediction related parameters and/or information about the selected prediction mode from, for example, the entropy decoding unit 304 (explicitly or implicitly).
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。解码器30可基于存储于DPB330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。When the video slice is encoded as an intra-coded (I) slice, the intra-prediction unit 354 of the prediction processing unit 360 is used to generate a prediction block 365 for a picture block of the current video slice based on the signaled intra-prediction mode and data from a previously decoded block of the current frame or picture. When the video frame is encoded as an inter-coded (i.e., B or P) slice, the inter-prediction unit 344 (e.g., motion compensation unit) of the prediction processing unit 360 is used to generate a prediction block 365 for the video block of the current video slice based on the motion vector and other syntax elements received from the entropy decoding unit 304. For inter-prediction, the prediction block may be generated from one of the reference pictures within one of the reference picture lists. The decoder 30 may construct the reference frame lists: List 0 and List 1 using a default construction technique based on the reference pictures stored in the DPB 330.
预测处理单元360用于通过解析运动向量和其它语法元素,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本发明的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息,以解码当前视频条带的视频块。在本公开的另一实例中,解码器30从比特流接收的语法元素包含接收自适应参数集(adaptive parameter set,APS)、序列参数集(sequence parameterset,SPS)、图片参数集(picture parameter set,PPS)或条带标头中的一个或多个中的语法元素。The prediction processing unit 360 is configured to determine prediction information for a video block of a current video slice by parsing motion vectors and other syntax elements, and to generate a prediction block for the current video block being decoded using the prediction information. In one example of the present invention, the prediction processing unit 360 uses some of the received syntax elements to determine a prediction mode (e.g., intra-frame or inter-frame prediction) for encoding a video block of a video slice, an inter-frame prediction slice type (e.g., a B slice, a P slice, or a GPB slice), construction information for one or more of a reference picture list for the slice, a motion vector for each inter-frame coded video block of the slice, an inter-frame prediction state for each inter-frame coded video block of the slice, and other information to decode the video block of the current video slice. In another example of the present disclosure, the syntax elements received by the decoder 30 from the bitstream include syntax elements received in one or more of an adaptive parameter set (APS), a sequence parameter set (SPS), a picture parameter set (PPS), or a slice header.
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。Inverse quantization unit 310 may be used to inverse quantize (i.e., dequantize) quantized transform coefficients provided in the bitstream and decoded by entropy decoding unit 304. The inverse quantization process may include using quantization parameters calculated by encoder 20 for each video block in a video slice to determine a degree of quantization that should be applied and likewise a degree of inverse quantization that should be applied.
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。The inverse transform processing unit 312 is used to apply an inverse transform (eg, an inverse DCT, an inverse integer transform, or a conceptually similar inverse transform process) to the transform coefficients to generate a residual block in the pixel domain.
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。The reconstruction unit 314 (e.g., the summer 314) is used to add the inverse transform block 313 (i.e., the reconstructed residual block 313) to the prediction block 365 to obtain the reconstructed block 315 in the sample domain, for example, by adding the sample values of the reconstructed residual block 313 to the sample values of the prediction block 365.
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。The loop filter unit 320 (during or after the encoding cycle) is used to filter the reconstructed block 315 to obtain the filtered block 321, so as to smoothly perform pixel conversion or improve video quality. In one example, the loop filter unit 320 can be used to perform any combination of filtering techniques described below. The loop filter unit 320 is intended to represent one or more loop filters, such as a deblocking filter, a sample adaptive offset (sample-adaptive offset, SAO) filter or other filters, such as a bilateral filter, an adaptive loop filter (adaptive loop filter, ALF), or a sharpening or smoothing filter, or a collaborative filter. Although the loop filter unit 320 is shown as an in-loop filter in FIG. 3, in other configurations, the loop filter unit 320 can be implemented as a post-loop filter.
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。The decoded video blocks 321 in a given frame or picture are then stored in a decoded picture buffer 330 which stores reference pictures for subsequent motion compensation.
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。Decoder 30 is operable to output decoded picture 31 , eg, via output 332 , for presentation to or viewing by a user.
解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。Other variations of the decoder 30 may be used to decode the compressed bitstream. For example, the decoder 30 may generate an output video stream without the loop filter unit 320. For example, a non-transform based decoder 30 may directly inverse quantize the residual signal without the inverse transform processing unit 312 for certain blocks or frames. In another embodiment, the decoder 30 may have the inverse quantization unit 310 and the inverse transform processing unit 312 combined into a single unit.
在具体实施例中,解码器30可用于实现后文图11A实施例中描述的帧间预测方法。In a specific embodiment, the decoder 30 may be used to implement the inter-frame prediction method described in the embodiment of FIG. 11A below.
应当理解的是,解码器30的其它结构变化可用于解码经编码视频位流。例如,解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。It should be understood that other structural changes of the decoder 30 can be used to decode the encoded video bitstream. For example, the decoder 30 can generate an output video stream without being processed by the filter 320; or, for some image blocks or image frames, the entropy decoding unit 304 of the decoder 30 does not decode the quantized coefficients, and accordingly does not need to be processed by the inverse quantization unit 310 and the inverse transform processing unit 312. The loop filter 320 is optional; and for lossless compression, the inverse quantization unit 310 and the inverse transform processing unit 312 are optional. It should be understood that according to different application scenarios, the inter-frame prediction unit and the intra-frame prediction unit can be selectively enabled.
应当理解的是,本发明的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之后,对相应环节的处理结果进一步进行Clip或移位shift等操作。It should be understood that in the encoder 20 and decoder 30 of the present invention, the processing result of a certain link can be output to the next link after further processing. For example, after the interpolation filtering, motion vector derivation or loop filtering links, the processing result of the corresponding link can be further subjected to operations such as Clip or shift.
例如,按照相邻仿射编码块的运动矢量推导得到的当前图像块的控制点的运动矢量,可以经过进一步处理,本发明对此不做限定。例如,对运动矢量的取值范围进行约束,使其在一定的位宽内。假设允许的运动矢量的位宽为bitDepth,则运动矢量的范围为-2^(bitDepth-1)~2^(bitDepth-1)-1,其中“^”符号表示幂次方。如bitDepth为16,则取值范围为-32768~32767。For example, the motion vector of the control point of the current image block derived according to the motion vector of the adjacent affine coding block can be further processed, and the present invention does not limit this. For example, the value range of the motion vector is constrained so that it is within a certain bit width. Assuming that the bit width of the allowed motion vector is bitDepth, the range of the motion vector is -2^(bitDepth-1)~2^(bitDepth-1)-1, where the "^" symbol represents the power. If bitDepth is 16, the value range is -32768~32767.
如bitDepth为18,则取值范围为-131072~131071。可以通过以下两种方式进行约束:If bitDepth is 18, the value range is -131072 to 131071. You can constrain it in the following two ways:
方式1,将运动矢量溢出的高位去除:Method 1: remove the high bits of motion vector overflow:
ux=(vx+2bitDepth)%2bitDepthux=(vx+2bitDepth )%2bitDepth
vx=(ux>=2bitDepth-1)?(ux-2bitDepth):uxvx=(ux>=2bitDepth-1 )? (ux-2bitDepth ):ux
uy=(vy+2bitDepth)%2bitDepthuy=(vy+2bitDepth )%2bitDepth
vy=(uy>=2bitDepth-1)?(uy-2bitDepth):uyvy=(uy>=2bitDepth-1 )? (uy-2bitDepth ):uy
例如vx的值为-32769,通过以上公式得到的为32767。因为在计算机中,数值是以二进制的补码形式存储的,-32769的二进制补码为1,0111,1111,1111,1111(17位),计算机对于溢出的处理为丢弃高位,则vx的值为0111,1111,1111,1111,则为32767,与通过公式处理得到的结果一致。For example, if the value of vx is -32769, the value obtained by the above formula is 32767. Because in computers, values are stored in binary complement form, the binary complement of -32769 is 1,0111,1111,1111,1111 (17 bits), and the computer handles overflow by discarding the high bits, so the value of vx is 0111,1111,1111,1111, which is 32767, which is consistent with the result obtained by the formula.
方法2,将运动矢量进行Clipping,如以下公式所示:Method 2: Clipping the motion vector, as shown in the following formula:
vx=Clip3(-2bitDepth-1,2bitDepth-1 -1,vx)vx=Clip3(-2bitDepth- 1,2bitDepth-1 -1,vx)
vy=Clip3(-2bitDepth-1,2bitDepth-1 -1,vy)vy=Clip3(-2bitDepth- 1,2bitDepth-1 -1,vy)
其中Clip3的定义为,表示将z的值钳位到区间[x,y]之间:The definition of Clip3 is to clamp the value of z to the interval [x, y]:
参见图4,图4是本发明实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1A的解码器30)或视频编码器(例如图1A的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1A的解码器30或图1A的编码器20中的一个或多个组件。Referring to FIG. 4 , FIG. 4 is a schematic diagram of the structure of a video decoding device 400 (e.g., a video encoding device 400 or a video decoding device 400) provided in an embodiment of the present invention. The video decoding device 400 is suitable for implementing the embodiments described herein. In one embodiment, the video decoding device 400 may be a video decoder (e.g., the decoder 30 of FIG. 1A ) or a video encoder (e.g., the encoder 20 of FIG. 1A ). In another embodiment, the video decoding device 400 may be one or more components of the decoder 30 of FIG. 1A or the encoder 20 of FIG. 1A .
视频译码设备400包括:用于接收数据的入口端口410和接收单元(Rx)420,用于处理数据的处理器、逻辑单元或中央处理器(CPU)430,用于传输数据的发射器单元(Tx)440和出口端口450,以及,用于存储数据的存储器460。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。The video decoding device 400 includes: an inlet port 410 and a receiving unit (Rx) 420 for receiving data, a processor, a logic unit or a central processing unit (CPU) 430 for processing data, a transmitter unit (Tx) 440 and an outlet port 450 for transmitting data, and a memory 460 for storing data. The video decoding device 400 may also include an optical-to-electrical conversion component and an electro-optical (EO) component coupled to the inlet port 410, the receiver unit 420, the transmitter unit 440 and the outlet port 450 for the outlet or inlet of an optical signal or an electrical signal.
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器单元420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所公开的实施例,以实现本发明实施例所提供的色度块预测方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。The processor 430 is implemented by hardware and software. The processor 430 can be implemented as one or more CPU chips, cores (e.g., multi-core processors), FPGAs, ASICs, and DSPs. The processor 430 communicates with the inlet port 410, the receiver unit 420, the transmitter unit 440, the outlet port 450, and the memory 460. The processor 430 includes a decoding module 470 (e.g., an encoding module 470 or a decoding module 470). The encoding/decoding module 470 implements the embodiments disclosed herein to implement the chrominance block prediction method provided by the embodiments of the present invention. For example, the encoding/decoding module 470 implements, processes, or provides various encoding operations. Therefore, the encoding/decoding module 470 provides substantial improvements to the functions of the video decoding device 400 and affects the conversion of the video decoding device 400 to different states. Alternatively, the encoding/decoding module 470 is implemented by instructions stored in the memory 460 and executed by the processor 430.
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。The memory 460 includes one or more disks, tape drives, and solid-state hard disks, and can be used as an overflow data storage device for storing programs when these programs are selectively executed, and for storing instructions and data read during program execution. The memory 460 can be volatile and/or non-volatile, and can be a read-only memory (ROM), a random access memory (RAM), a random access memory (ternary content-addressable memory, TCAM), and/or a static random access memory (SRAM).
参见图5,图5是根据一示例性实施例的可用作图1A中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本发明的技术。换言之,图5为本发明实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本发明描述的各种视频编码或解码方法。为避免重复,这里不再详细描述。Referring to FIG. 5 , FIG. 5 is a simplified block diagram of an apparatus 500 that can be used as either or both of the source device 12 and the destination device 14 in FIG. 1A according to an exemplary embodiment. The apparatus 500 can implement the technology of the present invention. In other words, FIG. 5 is a schematic block diagram of an implementation method of an encoding device or a decoding device (referred to as a decoding device 500) of an embodiment of the present invention. Among them, the decoding device 500 may include a processor 510, a memory 530, and a bus system 550. Among them, the processor and the memory are connected via a bus system, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory. The memory of the decoding device stores program code, and the processor can call the program code stored in the memory to execute the various video encoding or decoding methods described in the present invention. To avoid repetition, it is not described in detail here.
在本发明实施例中,该处理器510可以是中央处理单元(Central ProcessingUnit,简称为“CPU”),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。In the embodiment of the present invention, the processor 510 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. A general-purpose processor may be a microprocessor or any conventional processor, etc.
该存储器530可以包括只读存储器(ROM)设备或者随机存取存储器(RAM)设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本发明描述的视频编码或解码方法的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本发明描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。The memory 530 may include a read-only memory (ROM) device or a random access memory (RAM) device. Any other suitable type of storage device may also be used as the memory 530. The memory 530 may include code and data 531 accessed by the processor 510 using the bus 550. The memory 530 may further include an operating system 533 and an application 535, which includes at least one program that allows the processor 510 to perform the video encoding or decoding method described in the present invention. For example, the application 535 may include applications 1 to N, which further include a video encoding or decoding application (referred to as a video decoding application) that executes the video encoding or decoding method described in the present invention.
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。The bus system 550 may include, in addition to the data bus, a power bus, a control bus, a status signal bus, etc. However, for the sake of clarity, various buses are labeled as the bus system 550 in the figure.
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。Optionally, the decoding device 500 may further include one or more output devices, such as a display 570. In one example, the display 570 may be a touch-sensitive display that combines a display with a touch-sensitive unit operable to sense touch input. The display 570 may be connected to the processor 510 via the bus 550.
虽然图5中将装置500的处理器510和存储器530绘示为集成在单个单元中,但是还可以使用其它配置。处理器510的运行可以分布在多个可直接耦合的机器中(每个机器具有一个或多个处理器),或分布在本地区域或其它网络中。存储器530可以分布在多个机器中,例如基于网络的存储器或多个运行装置500的机器中的存储器。虽然此处只绘示单个总线,但装置500的总线550可以由多个总线形成。进一步地,从存储器530可以直接耦合至装置500的其它组件或可以通过网络访问,并且可包括单个集成单元,例如一个存储卡,或多个单元,例如多个存储卡。因此,可以以多种配置实施装置500。Although the processor 510 and memory 530 of device 500 are illustrated as being integrated in a single unit in FIG. 5 , other configurations may also be used. The operation of processor 510 may be distributed in a plurality of directly coupled machines (each machine having one or more processors), or distributed in a local area or other network. Memory 530 may be distributed in a plurality of machines, such as a network-based memory or a memory in a plurality of machines running device 500. Although only a single bus is illustrated here, bus 550 of device 500 may be formed by a plurality of buses. Further, other components of device 500 may be directly coupled from memory 530 or may be accessed through a network, and may include a single integrated unit, such as a memory card, or a plurality of units, such as a plurality of memory cards. Therefore, device 500 may be implemented in a variety of configurations.
为了更好理解本发明实施例的技术方案,下面进一步描述本发明实施例涉及的帧间预测模式、非平动运动模型、继承的控制点运动矢量预测方法、构造的控制点运动矢量预测方法、基于仿射运动模型的先进运动矢量预测模式、基于仿射运动模型的融合模式、子块融合模式和广义双向预测方法。In order to better understand the technical solutions of the embodiments of the present invention, the inter-frame prediction mode, non-translational motion model, inherited control point motion vector prediction method, constructed control point motion vector prediction method, advanced motion vector prediction mode based on affine motion model, fusion mode based on affine motion model, sub-block fusion mode and generalized bidirectional prediction method involved in the embodiments of the present invention are further described below.
1)帧间预测模式。在HEVC中,使用两种帧间预测模式,分别为先进的运动矢量预测(advanced motion vector prediction,AMVP)模式和融合(merge)模式。1) Inter-frame prediction mode. In HEVC, two inter-frame prediction modes are used, namely advanced motion vector prediction (AMVP) mode and merge mode.
对于AMVP模式,先遍历当前块空域或者时域相邻的已编码块(记为相邻块),根据各个邻块的运动信息构建候选运动矢量列表(也可以称为运动信息候选列表),然后通过率失真代价从候选运动矢量列表中确定最优的运动矢量,将率失真代价最小的候选运动信息作为当前块的运动矢量预测值(motion vector predictor,MVP)。其中,邻块的位置及其遍历顺序都是预先定义好的。率失真代价由公式(1)计算获得,其中,J表示率失真代价RDCost,SAD为使用候选运动矢量预测值进行运动估计后得到的预测像素值与原始像素值之间的绝对误差和(sum of absolute differences,SAD),R表示码率,λ表示拉格朗日乘子。编码端将选择的运动矢量预测值在候选运动矢量列表中的索引值和参考帧索引值传递到解码端。进一步地,在MVP为中心的邻域内进行运动搜索获得当前块实际的运动矢量,编码端将MVP与实际运动矢量之间的差值(motion vector difference)传递到解码端。For the AMVP mode, first traverse the coded blocks (referred to as neighboring blocks) adjacent to the current block in the spatial domain or temporal domain, build a candidate motion vector list (also referred to as a motion information candidate list) based on the motion information of each neighboring block, and then determine the optimal motion vector from the candidate motion vector list by the rate-distortion cost, and use the candidate motion information with the minimum rate-distortion cost as the motion vector predictor (MVP) of the current block. The positions of the neighboring blocks and their traversal order are predefined. The rate-distortion cost is calculated by formula (1), where J represents the rate-distortion cost RDCost, SAD is the sum of absolute differences (SAD) between the predicted pixel value and the original pixel value obtained after motion estimation using the candidate motion vector predictor, R represents the bit rate, and λ represents the Lagrange multiplier. The encoder transmits the index value of the selected motion vector predictor in the candidate motion vector list and the reference frame index value to the decoder. Furthermore, a motion search is performed in the neighborhood centered on the MVP to obtain the actual motion vector of the current block, and the encoder transmits the difference (motion vector difference) between the MVP and the actual motion vector to the decoder.
J=SAD+λR (1)J=SAD+λR (1)
对于Merge模式,先通过当前块空域或者时域相邻的已编码块的运动信息,构建候选运动矢量列表,然后通过计算率失真代价从候选运动矢量列表中确定最优的运动信息作为当前块的运动信息,再将最优的运动信息在候选运动矢量列表中位置的索引值(记为merge index,下同)传递到解码端。当前块空域和时域候选运动信息如图6所示,空域候选运动信息来自于空间相邻的5个块(A0,A1,B0,B1和B2),若相邻块不可得(相邻块不存在或者相邻块未编码或者相邻块采用的预测模式不为帧间预测模式),则该相邻块的运动信息不加入候选运动矢量列表。当前块的时域候选运动信息根据参考帧和当前帧的图序计数(picture order count,POC)对参考帧中对应位置块的MV进行缩放后获得。首先判断参考帧中T位置的块是否可得,若不可得则选择C位置的块。For the Merge mode, the motion information of the coded blocks adjacent to the current block in the spatial or temporal domain is first used to construct a candidate motion vector list. Then, the optimal motion information is determined from the candidate motion vector list by calculating the rate-distortion cost as the motion information of the current block. Then, the index value of the position of the optimal motion information in the candidate motion vector list (referred to as merge index, the same below) is transmitted to the decoder. The spatial and temporal candidate motion information of the current block is shown in FIG6. The spatial candidate motion information comes from the five spatially adjacent blocks (A0, A1, B0, B1 and B2). If the adjacent block is not available (the adjacent block does not exist or the adjacent block is not encoded or the prediction mode used by the adjacent block is not the inter-frame prediction mode), the motion information of the adjacent block is not added to the candidate motion vector list. The temporal candidate motion information of the current block is obtained by scaling the MV of the corresponding position block in the reference frame according to the picture order count (POC) of the reference frame and the current frame. First, determine whether the block at position T in the reference frame is available. If not, select the block at position C.
与AMVP模式类似,Merge模式的邻块的位置及其遍历顺序也是预先定义好的,且邻块的位置及其遍历顺序在不同模式下可能不同。Similar to the AMVP mode, the positions of neighbor blocks and their traversal order in the Merge mode are also predefined, and the positions of neighbor blocks and their traversal order may be different in different modes.
可以看到,在AMVP模式和Merge模式中,都需要维护一个候选运动矢量列表。每次向候选列表中加入新的运动信息之前都会先检查列表中是否已经存在相同的运动信息,如果存在则不会将该运动信息加入列表中。我们将这个检查过程称为候选运动矢量列表的修剪。列表修剪是为了防止列表中出现相同的运动信息,避免冗余的率失真代价计算。As you can see, in both AMVP mode and Merge mode, a candidate motion vector list needs to be maintained. Each time before adding new motion information to the candidate list, it will first check whether the same motion information already exists in the list. If so, the motion information will not be added to the list. We call this checking process pruning the candidate motion vector list. List pruning is to prevent the same motion information from appearing in the list and avoid redundant rate-distortion cost calculation.
在HEVC的帧间预测中,编码块内的所有像素都采用了相同的运动信息,然后根据运动信息进行运动补偿,得到编码块的像素的预测值。然而在编码块内,并不是所有的像素都有相同的运动特性,采用相同的运动信息可能会导致运动补偿预测的不准确,进而增加了残差信息。In HEVC inter-frame prediction, all pixels in the coding block use the same motion information, and then motion compensation is performed based on the motion information to obtain the predicted value of the pixels in the coding block. However, not all pixels in the coding block have the same motion characteristics, and using the same motion information may lead to inaccurate motion compensation prediction, thereby increasing residual information.
现有的视频编码标准使用基于平动运动模型的块匹配运动估计,并且假设块中所有像素点的运动一致。但是由于在现实世界中,运动多种多样,存在很多非平动运动的物体,如旋转的的物体,在不同方向旋转的过山车,投放的烟花和电影中的一些特技动作,特别是在UGC场景中的运动物体,对它们的编码,如果采用当前编码标准中的基于平动运动模型的块运动补偿技术,编码效率会受到很大的影响,因此,产生了非平动运动模型,比如仿射运动模型,以便进一步提高编码效率。Existing video coding standards use block matching motion estimation based on translational motion models and assume that the motion of all pixels in a block is consistent. However, in the real world, there are many kinds of motion, and there are many objects with non-translational motion, such as rotating objects, roller coasters rotating in different directions, fireworks, and some stunts in movies, especially moving objects in UGC scenes. If the block motion compensation technology based on translational motion models in the current coding standards is used to encode them, the coding efficiency will be greatly affected. Therefore, non-translational motion models, such as affine motion models, are generated to further improve the coding efficiency.
基于此,根据运动模型的不同,AMVP模式可以分为基于平动模型的AMVP模式以及基于非平动模型的AMVP模式;Merge模式可以分为基于平动模型的Merge模式和基于非平动运动模型的Merge模式。Based on this, according to different motion models, the AMVP mode can be divided into the AMVP mode based on the translational model and the AMVP mode based on the non-translational model; the Merge mode can be divided into the Merge mode based on the translational model and the Merge mode based on the non-translational motion model.
2)非平动运动模型。非平动运动模型预测指在编解码端使用相同的运动模型推导出当前块内每一个子运动补偿单元的运动信息,根据子运动补偿单元的运动信息进行运动补偿,得到预测块,从而提高预测效率。常用的非平动运动模型有4参数仿射运动模型或者6参数仿射运动模型。2) Non-translational motion model. Non-translational motion model prediction refers to using the same motion model at the codec end to derive the motion information of each sub-motion compensation unit in the current block, perform motion compensation based on the motion information of the sub-motion compensation unit, and obtain a predicted block, thereby improving prediction efficiency. Commonly used non-translational motion models include 4-parameter affine motion models or 6-parameter affine motion models.
其中,本发明实施例中涉及到的子运动补偿单元可以是一个像素点或按照特定方法划分的大小为N1×N2的像素块,其中,N1和N2均为正整数,N1可以等于N2,也可以不等于N2。The sub-motion compensation unit involved in the embodiment of the present invention may be a pixel point or a pixel block of size N1 ×N2 divided according to a specific method, wherein N1 and N2 are both positive integers, and N1 may be equal to N2 or may not be equal to N2 .
常用的非平动运动模型有4参数仿射运动模型或者6参数仿射运动模型,在可能的应用场景中,还有8参数双线性模型。下面将分别进行说明。Common non-translational motion models include 4-parameter affine motion models or 6-parameter affine motion models. In possible application scenarios, there is also an 8-parameter bilinear model. They will be explained below.
4参数仿射运动模型如公式(2)所示:The 4-parameter affine motion model is shown in formula (2):
4参数仿射运动模型可以通过两个像素点的运动矢量及其相对于当前块左上顶点像素的坐标来表示,将用于表示运动模型参数的像素点称为控制点。若采用左上顶点(0,0)和右上顶点(W,0)像素点作为控制点,则先确定当前块左上顶点和右上顶点控制点的运动矢量(vx0,vy0)和(vx1,vy1),然后根据公式(3)得到当前块中每一个子运动补偿单元的运动信息,其中(x,y)为子运动补偿单元相对于当前块左上顶点像素的坐标,W为当前块的宽。The 4-parameter affine motion model can be represented by the motion vectors of two pixels and their coordinates relative to the upper left vertex pixel of the current block. The pixels used to represent the motion model parameters are called control points. If the upper left vertex (0,0) and the upper right vertex (W,0) pixels are used as control points, the motion vectors (vx0,vy0) and (vx1,vy1) of the upper left vertex and upper right vertex control points of the current block are first determined, and then the motion information of each sub-motion compensation unit in the current block is obtained according to formula (3), where (x,y) is the coordinate of the sub-motion compensation unit relative to the upper left vertex pixel of the current block, and W is the width of the current block.
6参数仿射运动模型如公式(4)所示:The 6-parameter affine motion model is shown in formula (4):
6参数仿射运动模型可以通过三个像素点的运动矢量及其相对于当前块左上顶点像素的坐标来表示。若采用左上顶点(0,0)、右上顶点(W,0)和左下顶点(0,H)像素点作为控制点,则先确定当前块左上顶点、右上顶点和左下顶点控制点的运动矢量分别为(vx0,vy0)和(vx1,vy1)和(vx2,vy2),然后根据公式(5)得到当前块中每一个子运动补偿单元的运动信息,其中(x,y)为子运动补偿单元相对于当前块的左上顶点像素的坐标,W和H分别为当前块的宽和高。The 6-parameter affine motion model can be represented by the motion vectors of three pixels and their coordinates relative to the upper left vertex pixel of the current block. If the upper left vertex (0,0), upper right vertex (W,0) and lower left vertex (0,H) pixels are used as control points, the motion vectors of the upper left vertex, upper right vertex and lower left vertex control points of the current block are first determined as (vx0,vy0), (vx1,vy1) and (vx2,vy2), respectively. Then, the motion information of each sub-motion compensation unit in the current block is obtained according to formula (5), where (x,y) is the coordinate of the sub-motion compensation unit relative to the upper left vertex pixel of the current block, and W and H are the width and height of the current block respectively.
8参数双线性模型如下公式(6)所示:The 8-parameter bilinear model is shown in the following formula (6):
8参数双线性模型可以通过四个像素点的运动矢量及其相对于当前编码块左上顶点像素的坐标来表示。若采用左上顶点(0,0)、右上顶点(W,0)、左下顶点(0,H)和右下定点(W,H)像素点作为控制点,则先确定当前编码块左上顶点、右上顶点、左下顶点和右下顶点控制点的运动矢量(vx0,vy0)、(vx1,vy1)、(vx2,vy2)和(vx3,vy3),然后根据如下公式(7)推导得到当前编码块中每一个子运动补偿单元的运动信息,其中(x,y)为子运动补偿单元相对于当前编码块左上顶点像素的坐标,W和H分别为当前编码块的宽和高。The 8-parameter bilinear model can be represented by the motion vectors of four pixels and their coordinates relative to the upper left vertex pixel of the current coding block. If the upper left vertex (0,0), upper right vertex (W,0), lower left vertex (0,H) and lower right fixed point (W,H) pixels are used as control points, the motion vectors (vx0,vy0), (vx1,vy1), (vx2,vy2) and (vx3,vy3) of the upper left vertex, upper right vertex, lower left vertex and lower right vertex control points of the current coding block are first determined, and then the motion information of each sub-motion compensation unit in the current coding block is derived according to the following formula (7), where (x,y) is the coordinate of the sub-motion compensation unit relative to the upper left vertex pixel of the current coding block, and W and H are the width and height of the current coding block respectively.
采用仿射运动模型进行预测的编码块也可称为仿射编码块。通过上文可以看出,仿射运动模型与仿射编码块的控制点的运动信息相关。A coding block predicted using an affine motion model may also be referred to as an affine coding block. As can be seen from the above, the affine motion model is related to the motion information of the control points of the affine coding block.
通常的,可以使用基于仿射运动模型的先进运动矢量预测(Advanced MotionVector Prediction,AMVP)模式或者基于仿射运动模型的融合(Merge)模式,获得仿射编码块的控制点的运动信息。进一步地,当前编码块的控制点的运动信息可以通过继承的控制点运动矢量预测方法或者构造的控制点运动矢量预测方法得到。Generally, the motion information of the control points of the affine coding block can be obtained by using the Advanced Motion Vector Prediction (AMVP) mode based on the affine motion model or the Merge mode based on the affine motion model. Furthermore, the motion information of the control points of the current coding block can be obtained by an inherited control point motion vector prediction method or a constructed control point motion vector prediction method.
3)继承的控制点运动矢量预测方法。继承的控制点运动矢量预测方法,是指利用相邻已编码的仿射编码块的运动模型,确定当前块的候选的控制点运动矢量。3) Inherited control point motion vector prediction method: The inherited control point motion vector prediction method refers to using the motion model of the adjacent encoded affine coding block to determine the candidate control point motion vector of the current block.
以图7所示的当前块为例,按照设定的顺序,比如A1→B1→B0→A0→B2的顺序遍历当前块周围的相邻位置块,找到该当前块的相邻位置块所在的仿射编码块,获得该仿射编码块的控制点运动信息,进而通过仿射编码块的控制点运动信息构造的运动模型,推导出当前块的控制点运动矢量(用于Merge模式)或者控制点的运动矢量预测值(用于AMVP模式)。A1→B1→B0→A0→B2仅作为一种示例,其它组合的顺序也适用于本发明。另外,相邻位置块不仅限于A1、B1、B0、A0、B2。Taking the current block shown in FIG. 7 as an example, the adjacent position blocks around the current block are traversed in a set order, such as A1→B1→B0→A0→B2, and the affine coding block where the adjacent position block of the current block is located is found, and the control point motion information of the affine coding block is obtained. Then, the motion model constructed by the control point motion information of the affine coding block is used to derive the control point motion vector of the current block (for Merge mode) or the motion vector prediction value of the control point (for AMVP mode). A1→B1→B0→A0→B2 is only used as an example, and other combined orders are also applicable to the present invention. In addition, the adjacent position blocks are not limited to A1, B1, B0, A0, B2.
相邻位置块可以为一个像素点,按照特定方法划分的预设大小的像素块,比如可以为一个4x4的像素块,也可以为一个4x2的像素块,也可以为其他大小的像素块,不作限定。其中,仿射编码块为在编码阶段采用仿射运动模型进行预测的与当前块相邻的已编码块(也可简称为相邻仿射编码块)。The adjacent position block can be a pixel point, a pixel block of a preset size divided according to a specific method, such as a 4x4 pixel block, a 4x2 pixel block, or a pixel block of other sizes, without limitation. Among them, the affine coding block is a coded block adjacent to the current block predicted by an affine motion model in the coding stage (also referred to as an adjacent affine coding block).
下面以如图7所示出的A1为例描述当前块的候选的控制点运动矢量的确定过程,其他情况以此类推:The following describes the process of determining the candidate control point motion vector of the current block by taking A1 as shown in FIG. 7 as an example, and other cases are similar:
若A1所在的编码块为4参数仿射编码块(即该仿射编码块采用4参数仿射运动模型进行预测),则获得该仿射编码块左上顶点(x4,y4)的运动矢量(vx4,vy4)、右上顶点(x5,y5)的运动矢量(vx5,vy5)。If the coding block where A1 is located is a 4-parameter affine coding block (that is, the affine coding block is predicted using a 4-parameter affine motion model), the motion vector (vx4, vy4) of the upper left vertex (x4, y4) and the motion vector (vx5, vy5) of the upper right vertex (x5, y5) of the affine coding block are obtained.
然后,利用如下公式(8)计算获得当前仿射编码块左上顶点(x0,y0)的运动矢量(vx0,vy0):Then, the motion vector (vx0, vy0) of the upper left vertex (x0, y0) of the current affine coding block is calculated using the following formula (8):
利用如下公式如下公式(9)计算获得当前仿射编码块右上顶点(x1,y1)的运动矢量(vx1,vy1):The motion vector (vx1, vy1) of the upper right vertex (x1, y1) of the current affine coding block is calculated using the following formula (9):
通过如上基于A1所在的仿射编码块获得的当前块的左上顶点(x0,y0)的运动矢量(vx0,vy0)、右上顶点(x1,y1)的运动矢量(vx1,vy1)的组合为当前块的候选的控制点运动矢量。The combination of the motion vector (vx0, vy0) of the upper left vertex (x0, y0) of the current block and the motion vector (vx1, vy1) of the upper right vertex (x1, y1) obtained as above based on the affine coding block where A1 is located is the candidate control point motion vector of the current block.
若A1所在的编码块为6参数仿射编码块(即该仿射编码块采用6参数仿射运动模型进行预测),则获得该仿射编码块左上顶点(x4,y4)的运动矢量(vx4,vy4)、右上顶点(x5,y5)的运动矢量(vx5,vy5)、左下顶点(x6,y6)的运动矢量(vx6,vy6)。If the coding block where A1 is located is a 6-parameter affine coding block (that is, the affine coding block is predicted using a 6-parameter affine motion model), the motion vector (vx4,vy4) of the upper left vertex (x4,y4), the motion vector (vx5,vy5) of the upper right vertex (x5,y5), and the motion vector (vx6,vy6) of the lower left vertex (x6,y6) of the affine coding block are obtained.
然后,利用如下公式(10)计算获得当前块左上顶点(x0,y0)的运动矢量(vx0,vy0):Then, the motion vector (vx0, vy0) of the upper left vertex (x0, y0) of the current block is calculated using the following formula (10):
利用如下公式(11)计算获得当前块右上顶点(x1,y1)的运动矢量(vx1,vy1):The motion vector (vx1, vy1) of the upper right vertex (x1, y1) of the current block is calculated using the following formula (11):
利用如下公式(12)计算获得当前块左下顶点(x2,y2)的运动矢量(vx2,vy2):The motion vector (vx2, vy2) of the lower left vertex (x2, y2) of the current block is calculated using the following formula (12):
通过如上基于A1所在的仿射编码块获得的当前块的左上顶点(x0,y0)的运动矢量(vx0,vy0)、右上顶点(x1,y1)的运动矢量(vx1,vy1)、当前块左下顶点(x2,y2)的运动矢量(vx2,vy2)的组合为当前块的候选的控制点运动矢量。The combination of the motion vector (vx0, vy0) of the upper left vertex (x0, y0) of the current block, the motion vector (vx1, vy1) of the upper right vertex (x1, y1), and the motion vector (vx2, vy2) of the lower left vertex (x2, y2) of the current block obtained as above based on the affine coding block where A1 is located is the candidate control point motion vector of the current block.
需要说明的是,其他运动模型、候选位置、查找遍历顺序也可以适用于本发明,本发明实施例对此不做赘述。It should be noted that other motion models, candidate positions, and search traversal orders may also be applicable to the present invention, which will not be elaborated in the embodiments of the present invention.
需要说明的是,采用其他控制点来表示相邻和当前编码块的运动模型的方法也可以适用于本发明,此处不做赘述。It should be noted that the method of using other control points to represent the motion model of the adjacent and current coding blocks can also be applied to the present invention, which will not be described in detail here.
4)构造的控制点运动矢量(constructed control point motion vectors)预测方法1:基于仿射运动模型的AMVP模式的构造的控制点运动矢量预测方法。4) Constructed control point motion vectors prediction method 1: Constructed control point motion vector prediction method based on the AMVP mode of the affine motion model.
构造的控制点运动矢量预测方法,是指将当前块的控制点周边相邻的已编码块的运动矢量进行组合,作为当前仿射编码块的控制点的运动矢量,而不需要考虑周边相邻的已编码块是否为仿射编码块。基于不同的预测模式(基于仿射运动模型的AMVP模式和基于仿射运动模型的Merge模式),构造的控制点运动矢量预测方法又有所差异。The constructed control point motion vector prediction method refers to combining the motion vectors of the adjacent coded blocks around the control point of the current block as the motion vector of the control point of the current affine coded block, without considering whether the adjacent coded blocks are affine coded blocks. Based on different prediction modes (AMVP mode based on affine motion model and Merge mode based on affine motion model), the constructed control point motion vector prediction method is different.
下面具体描述基于仿射运动模型的AMVP模式的构造的控制点运动矢量预测方法。以图8A所示为例对构造的控制点运动矢量预测方法进行描述,利用当前编码块周边相邻的已编码块的运动信息确定当前块左上顶点和右上顶点的运动矢量。需要说明的是,图8A仅作为一种示例。The following specifically describes the control point motion vector prediction method constructed based on the AMVP mode of the affine motion model. Taking FIG8A as an example, the constructed control point motion vector prediction method is described, and the motion information of the adjacent coded blocks around the current coding block is used to determine the motion vectors of the upper left vertex and the upper right vertex of the current block. It should be noted that FIG8A is only used as an example.
如图8A所示,在一实施例中(如当前块采用4参数仿射运动模型进行预测),利用左上顶点相邻已编码块A2,B2和B3块的运动矢量,作为当前块左上顶点的运动矢量的候选运动矢量;利用右上顶点相邻已编码块B1和B0块的运动矢量,作为当前块右上顶点的运动矢量的候选运动矢量。将上述左上顶点和右上顶点的候选运动矢量进行组合,构成多个二元组,二元组包括的两个已编码块的运动矢量可以作为当前块的候选的控制点运动矢量,参见如下(13A)所示:As shown in FIG8A , in one embodiment (such as the current block using a 4-parameter affine motion model for prediction), the motion vectors of the coded blocks A2, B2 and B3 adjacent to the upper left vertex are used as candidate motion vectors for the motion vector of the upper left vertex of the current block; the motion vectors of the coded blocks B1 and B0 adjacent to the upper right vertex are used as candidate motion vectors for the motion vector of the upper right vertex of the current block. The candidate motion vectors of the upper left vertex and the upper right vertex are combined to form multiple binary groups, and the motion vectors of the two coded blocks included in the binary group can be used as candidate control point motion vectors of the current block, as shown in (13A) below:
{vA2,vB1},{vA2,vB0},{vB2,vB1},{vB2,vB0},{vB3,vB1},{vB3,vB0} (13A){vA2 , vB1 }, {vA2 , vB0 }, {vB2 , vB1 }, {vB2 , vB0 }, {vB3 , vB1 }, {vB3 , vB0 } (13A)
其中,vA2表示A2的运动矢量,vB1表示B1的运动矢量,vB0表示B0的运动矢量,vB2表示B2的运动矢量,vB3表示B3的运动矢量。Among them, vA2 represents the motion vector of A2, vB1 represents the motion vector of B1, vB0 represents the motion vector of B0, vB2 represents the motion vector of B2, and vB3 represents the motion vector of B3.
如图8A所示,在又一实施例中(如当前块采用6参数仿射运动模型进行预测),利用左上顶点相邻已编码块A2,B2和B3块的运动矢量,作为当前块左上顶点的运动矢量的候选运动矢量;利用右上顶点相邻已编码块B1和B0块的运动矢量,作为当前块右上顶点的运动矢量的候选运动矢量,利用坐下顶点相邻已编码块A0、A1的运动矢量作为当前块左下顶点的运动矢量的候选运动矢量。将上述左上顶点、右上顶点以及左下顶点的候选运动矢量进行组合,构成三元组,三元组包括的三个已编码块的运动矢量可以作为当前块的候选的控制点运动矢量,参见如下公式(13B)、(13C)所示:As shown in FIG8A , in another embodiment (such as the current block is predicted using a 6-parameter affine motion model), the motion vectors of the coded blocks A2, B2 and B3 adjacent to the upper left vertex are used as candidate motion vectors for the motion vector of the upper left vertex of the current block; the motion vectors of the coded blocks B1 and B0 adjacent to the upper right vertex are used as candidate motion vectors for the motion vector of the upper right vertex of the current block, and the motion vectors of the coded blocks A0 and A1 adjacent to the lower vertex are used as candidate motion vectors for the motion vector of the lower left vertex of the current block. The candidate motion vectors of the upper left vertex, the upper right vertex and the lower left vertex are combined to form a triplet, and the motion vectors of the three coded blocks included in the triplet can be used as candidate control point motion vectors of the current block, as shown in the following formulas (13B) and (13C):
{vA2,vB1,vA0},{vA2,vB0,vA0},{vB2,vB1,vA0},{vB2,vB0,vA0},{vB3,vB1,vA0},{vB3,vB0,vA0} (13B){vA2 , vB1 , vA0 }, {vA2 , vB0 , vA0 }, {vB2 , vB1 , vA0 }, {vB2 , vB0 , vA0 }, {vB3 , vB1 , vA0 }, {vB3 , vB0 , vA0 } (13B)
{vA2,vB1,vA1},{vA2,vB0,vA1},{vB2,vB1,vA1},{vB2,vB0,vA1},{vB3,vB1,vA1},{vB3,vB0,vA1} (13C){vA2 , vB1 , vA1 }, {vA2 , vB0 , vA1 }, {vB2 , vB1 , vA1 }, {vB2 , vB0 , vA1 }, {vB3 , vB1 , vA1 }, {vB3 , vB0 , vA1 } (13C)
其中,vA2表示A2的运动矢量,vB1表示B1的运动矢量,vB0表示B0的运动矢量,vB2表示B2的运动矢量,vB3表示B3的运动矢量,vA0表示A0的运动矢量,vA1表示A1的运动矢量。Among them, vA2 represents the motion vector of A2, vB1 represents the motion vector of B1, vB0 represents the motion vector of B0, vB2 represents the motion vector of B2, vB3 represents the motion vector of B3, vA0 represents the motion vector of A0, and vA1 represents the motion vector of A1.
需要说明的是,其他控制点运动矢量的组合的方法也可适用于本发明,此处不做赘述。It should be noted that other methods of combining control point motion vectors are also applicable to the present invention, which will not be described in detail here.
需要说明的是,采用其他控制点来表示相邻和当前编码块的运动模型的方法也可以适用于本发明,此处不做赘述。It should be noted that the method of using other control points to represent the motion model of the adjacent and current coding blocks can also be applied to the present invention, which will not be described in detail here.
5)构造的控制点运动矢量(constructed control point motion vectors)预测方法2:基于仿射运动模型的Merge模式的构造的控制点运动矢量预测方法。5) Constructed control point motion vectors prediction method 2: Constructed control point motion vectors prediction method based on the Merge mode of the affine motion model.
以图8B所示为例对该构造的控制点运动矢量预测方法进行描述,利用当前编码块周边相邻的已编码块的运动信息确定当前块左上顶点和右上顶点的运动矢量。需要说明的是,图8B仅作为一种示例。Taking FIG8B as an example, the constructed control point motion vector prediction method is described, and the motion vectors of the upper left vertex and the upper right vertex of the current block are determined by using the motion information of the adjacent coded blocks around the current coding block. It should be noted that FIG8B is only an example.
如图8B所示,CPk(k=1,2,3,4)表示第k个控制点。A0,A1,A2,B0,B1,B2和B3为当前块的空域相邻位置,用于预测CP1、CP2或CP3;T为当前块的时域相邻位置,用于预测CP4。假设,CP1,CP2,CP3和CP4的坐标分别为(0,0),(W,0),(H,0)和(W,H),其中W和H为当前块的宽度和高度。那么对于当前块的每个控制点,可按照以下顺序获取当前块的各个控制点的运动信息:As shown in FIG8B , CPk (k=1, 2, 3, 4) represents the kth control point. A0, A1, A2, B0, B1, B2 and B3 are the spatial neighboring positions of the current block, which are used to predict CP1, CP2 or CP3; T is the temporal neighboring position of the current block, which is used to predict CP4. Assume that the coordinates of CP1, CP2, CP3 and CP4 are (0, 0), (W, 0), (H, 0) and (W, H), respectively, where W and H are the width and height of the current block. Then for each control point of the current block, the motion information of each control point of the current block can be obtained in the following order:
1、对于CP1,检查顺序为B2→A2→B3,如果B2可得,则采用B2的运动信息。否则,检测A2,B3。若三个位置的运动信息均不可得,则无法获得CP1的运动信息。1. For CP1, the checking order is B2→A2→B3. If B2 is available, the motion information of B2 is used. Otherwise, A2 and B3 are checked. If the motion information of the three positions is not available, the motion information of CP1 cannot be obtained.
2、对于CP2,检查顺序为B0→B1;如果B0可得,则CP2采用B0的运动信息。否则,检测B1。若两个位置的运动信息均不可得,则无法获得CP2的运动信息。2. For CP2, the checking order is B0→B1; if B0 is available, CP2 uses the motion information of B0. Otherwise, B1 is checked. If the motion information of both positions is not available, the motion information of CP2 cannot be obtained.
3、对于CP3,检测顺序为A0→A1;3. For CP3, the detection order is A0→A1;
4、对于CP4,采用T的运动信息。4. For CP4, the motion information of T is used.
此处X可得表示包括X(X为A0,A1,A2,B0,B1,B2,B3或T)位置的块已经编码并且采用帧间预测模式;否则,X位置不可得。需要说明的是,其他获得控制点的运动信息的方法也可适用于本发明实施例,此处不做赘述。Here, X is available, indicating that the block including position X (X is A0, A1, A2, B0, B1, B2, B3 or T) has been encoded and uses the inter-frame prediction mode; otherwise, position X is not available. It should be noted that other methods for obtaining motion information of control points may also be applicable to the embodiments of the present invention, which will not be described in detail here.
然后,将当前块的控制点的运动信息进行组合,得到构造的控制点运动信息。Then, the motion information of the control points of the current block is combined to obtain constructed control point motion information.
在一实施例中(如当前块采用4参数仿射运动模型进行预测),将当前块的两个控制点的运动信息进行组合构成二元组,用来构建4参数仿射运动模型。两个控制点的组合方式可以为{CP1,CP4},{CP2,CP3},{CP1,CP2},{CP2,CP4},{CP1,CP3},{CP3,CP4}。例如,采用CP1和CP2控制点组成的二元组构建的4参数仿射运动模型,可以记作Affine(CP1,CP2)。In one embodiment (such as the current block is predicted using a 4-parameter affine motion model), the motion information of the two control points of the current block is combined to form a binary group to construct the 4-parameter affine motion model. The combination of the two control points can be {CP1, CP4}, {CP2, CP3}, {CP1, CP2}, {CP2, CP4}, {CP1, CP3}, {CP3, CP4}. For example, the 4-parameter affine motion model constructed using a binary group consisting of CP1 and CP2 control points can be recorded as Affine (CP1, CP2).
在又一实施例中(如当前块采用6参数仿射运动模型进行预测),将当前块的三个控制点的运动信息进行组合构成三元组,用来构建6参数仿射运动模型。三个控制点的组合方式可以为{CP1,CP2,CP4},{CP1,CP2,CP3},{CP2,CP3,CP4},{CP1,CP3,CP4}。例如,采用CP1、CP2和CP3控制点构成的三元组构建的6参数仿射运动模型,可以记作Affine(CP1,CP2,CP3)。In another embodiment (such as the current block is predicted using a 6-parameter affine motion model), the motion information of the three control points of the current block is combined to form a triplet to construct the 6-parameter affine motion model. The three control points can be combined in the form of {CP1, CP2, CP4}, {CP1, CP2, CP3}, {CP2, CP3, CP4}, {CP1, CP3, CP4}. For example, the 6-parameter affine motion model constructed using a triplet consisting of CP1, CP2 and CP3 control points can be recorded as Affine (CP1, CP2, CP3).
在又一实施例中(如当前块采用8参数双线性模型进行预测),将当前块的四个控制点的运动信息进行组合构成的四元组,用来构建8参数双线性模型。采用CP1、CP2、CP3和CP4控制点构成的四元组构建的8参数双线性模型,记做Bilinear(CP1,CP2,CP3,CP4)。In another embodiment (such as the current block is predicted using an 8-parameter bilinear model), the motion information of the four control points of the current block is combined to form a quaternion to construct the 8-parameter bilinear model. The 8-parameter bilinear model constructed using the quaternion consisting of the CP1, CP2, CP3 and CP4 control points is denoted as Bilinear(CP1, CP2, CP3, CP4).
本发明实施例中,为了描述方便,将由两个控制点(或者两个已编码块)的运动信息组合简称为二元组,将三个控制点(或者两个已编码块)的运动信息组合简称为三元组,将四个控制点(或者四个已编码块)的运动信息组合简称为四元组。In the embodiment of the present invention, for the convenience of description, the motion information combination of two control points (or two encoded blocks) is referred to as a binary group, the motion information combination of three control points (or two encoded blocks) is referred to as a triplet, and the motion information combination of four control points (or four encoded blocks) is referred to as a quadruple.
按照预置的顺序遍历这些模型,若组合模型对应的某个控制点的运动信息不可得,则认为该模型不可得;否则,确定该模型的参考帧索引,并将控制点的运动矢量进行缩放,若缩放后的所有控制点的运动信息一致,则该模型不合法。若确定控制该模型的控制点的运动信息均可得,并且模型合法,则将该构建该模型的控制点的运动信息加入运动信息候选列表中。Traverse these models in a preset order. If the motion information of a control point corresponding to the combined model is not available, the model is considered to be unavailable. Otherwise, determine the reference frame index of the model and scale the motion vector of the control point. If the motion information of all control points after scaling is consistent, the model is illegal. If it is determined that the motion information of the control points controlling the model is available and the model is legal, the motion information of the control points that construct the model is added to the motion information candidate list.
控制点的运动矢量缩放的方法如公式(14)所示:The method for scaling the motion vector of the control point is shown in formula (14):
其中,CurPoc表示当前帧的POC号,DesPoc表示当前块的参考帧的POC号,SrcPoc表示控制点的参考帧的POC号,MVs表示缩放得到的运动矢量,MV表示控制点的运动矢量。Among them, CurPoc represents the POC number of the current frame, DesPoc represents the POC number of the reference frame of the current block, SrcPoc represents the POC number of the reference frame of the control point,MVs represents the scaled motion vector, and MV represents the motion vector of the control point.
可能实施例中,在候选列表构建过程中,构建装置(如编码器或解码器)判断该可选运动信息组合中的所有控制点的参考帧索引是否相同;在该可选运动信息组合中的所有控制点的参考帧索引相同的情况下,构建装置将该可选运动信息组合加入运动信息候选列表中。相比于上述如图8B实施例所描述方法,构建装置未进行组合内控制点的运动矢量的判断以及运动矢量的缩放,解决了运动矢量的缩放所导致的计算复杂度较高的问题。也就是说,这种场景中,满足预设条件的可选运动信息组合中的所有控制点的参考帧索引相同。In a possible embodiment, during the candidate list construction process, the construction device (such as an encoder or a decoder) determines whether the reference frame indexes of all control points in the optional motion information combination are the same; when the reference frame indexes of all control points in the optional motion information combination are the same, the construction device adds the optional motion information combination to the motion information candidate list. Compared with the method described in the embodiment of FIG8B, the construction device does not determine the motion vectors of the control points in the combination and scale the motion vectors, thereby solving the problem of high computational complexity caused by scaling the motion vectors. That is to say, in this scenario, the reference frame indexes of all control points in the optional motion information combination that meet the preset conditions are the same.
可能实施例中,在候选列表构建过程中,构建装置(如编码器或解码器)判断该可选运动信息组合中的所有控制点的参考帧索引是否相同;在该可选运动信息组合中的所有控制点的参考帧索引相同的情况下,构建装置判断该可选运动信息组合中的所有控制点的可选运动矢量是否相同;若该可选运动信息组合中的所有控制点的可选运动矢量不相同,构建装置将该可选运动信息组合存储于运动信息候选列表中。相比于上述如图8B实施例所描述方法,构建装置未进行运动矢量的缩放,解决了运动矢量的缩放所导致的计算复杂度较高的问题。也就是说,这种场景中,满足预设条件的可选运动信息组合中的所有控制点的参考帧索引相同、且至少两个控制点的可选运动矢量不相同。In a possible embodiment, during the candidate list construction process, a construction device (such as an encoder or a decoder) determines whether the reference frame indexes of all control points in the optional motion information combination are the same; when the reference frame indexes of all control points in the optional motion information combination are the same, the construction device determines whether the optional motion vectors of all control points in the optional motion information combination are the same; if the optional motion vectors of all control points in the optional motion information combination are not the same, the construction device stores the optional motion information combination in the motion information candidate list. Compared with the method described in the embodiment of FIG. 8B, the construction device does not scale the motion vector, which solves the problem of high computational complexity caused by the scaling of the motion vector. That is to say, in this scenario, the reference frame indexes of all control points in the optional motion information combination that meet the preset conditions are the same, and the optional motion vectors of at least two control points are not the same.
可能实施例中,在候选列表构建过程中,构建装置(如编码器或解码器)生成的可选运动信息组合还可以至少包括第一控制点的可选运动信息和第二控制点的可选运动信息,其中,第一控制点和第二控制点为当前图像块的相邻控制点。也就是说,可选运动信息组合不可以仅包括当前图像块的对角控制点的可选运动信息。In a possible embodiment, during the candidate list construction process, the optional motion information combination generated by the construction device (such as an encoder or a decoder) may also include at least the optional motion information of the first control point and the optional motion information of the second control point, wherein the first control point and the second control point are adjacent control points of the current image block. In other words, the optional motion information combination may not only include the optional motion information of the diagonal control points of the current image block.
需要说明的是,本发明具体实施例中,亦可将不同控制点的组合转换为同一位置的控制点。It should be noted that, in a specific embodiment of the present invention, a combination of different control points may also be converted into control points at the same position.
例如将{CP1,CP4},{CP2,CP3},{CP2,CP4},{CP1,CP3},{CP3,CP4}组合得到的4参数仿射运动模型转换为通过{CP1,CP2}或{CP1,CP2,CP3}来表示。转换方法为将控制点的运动矢量及其坐标信息,代入公式(2),得到模型参数,再将{CP1,CP2}的坐标信息代入公式(3),得到其运动矢量。For example, the 4-parameter affine motion model obtained by combining {CP1, CP4}, {CP2, CP3}, {CP2, CP4}, {CP1, CP3}, {CP3, CP4} is converted to be represented by {CP1, CP2} or {CP1, CP2, CP3}. The conversion method is to substitute the motion vector and coordinate information of the control point into formula (2) to obtain the model parameters, and then substitute the coordinate information of {CP1, CP2} into formula (3) to obtain its motion vector.
更直接地,可以按照以下公式(15)-(23)来进行转换,其中,W表示当前块的宽度,H表示当前块的高度,公式(15)-(23)中,(vx0,vy0)表示CP1的运动矢量,(vx1,vy1)表示CP2的运动矢量,(vx2,vy2)表示CP3的运动矢量,(vx3,vy3)表示CP4的运动矢量。More directly, the conversion can be performed according to the following formulas (15)-(23), where W represents the width of the current block, H represents the height of the current block, and in formulas (15)-(23), (vx0 , vy0 ) represents the motion vector of CP1, (vx1 , vy1 ) represents the motion vector of CP2, (vx2 , vy2 ) represents the motion vector of CP3, and (vx3 , vy3 ) represents the motion vector of CP4.
{CP1,CP2}转换为{CP1,CP2,CP3}可以通过如下公式(15)实现,即{CP1,CP2,CP3}中CP3的运动矢量可以通过公式(15)来确定:The conversion of {CP1, CP2} to {CP1, CP2, CP3} can be achieved by the following formula (15), that is, the motion vector of CP3 in {CP1, CP2, CP3} can be determined by formula (15):
{CP1,CP3}转换{CP1,CP2}或{CP1,CP2,CP3}可以通过如下公式(16)实现:The conversion of {CP1, CP3} to {CP1, CP2} or {CP1, CP2, CP3} can be achieved by the following formula (16):
{CP2,CP3}转换为{CP1,CP2}或{CP1,CP2,CP3}可以通过如下公式(17)实现:The conversion of {CP2, CP3} to {CP1, CP2} or {CP1, CP2, CP3} can be achieved by the following formula (17):
{CP1,CP4}转换为{CP1,CP2}或{CP1,CP2,CP3}可以通过如下公式(18)或者(19)实现:The conversion of {CP1, CP4} to {CP1, CP2} or {CP1, CP2, CP3} can be achieved by the following formula (18) or (19):
{CP2,CP4}转换为{CP1,CP2}可以通过如下公式(20)实现,{CP2,CP4}转换为{CP1,CP2,CP3}可以通过公式(20)和(21)实现:The conversion of {CP2, CP4} to {CP1, CP2} can be achieved by the following formula (20), and the conversion of {CP2, CP4} to {CP1, CP2, CP3} can be achieved by formulas (20) and (21):
{CP3,CP4}转换为{CP1,CP2}可以通过如下公式(20)实现,{CP3,CP4}转换为{CP1,CP2,CP3}可以通过如下公式(22)和(23)实现:The conversion of {CP3, CP4} to {CP1, CP2} can be achieved by the following formula (20), and the conversion of {CP3, CP4} to {CP1, CP2, CP3} can be achieved by the following formulas (22) and (23):
例如将{CP1,CP2,CP4},{CP2,CP3,CP4},{CP1,CP3,CP4}组合的6参数仿射运动模型转换为控制点{CP1,CP2,CP3}来表示。转换方法为将控制点的运动矢量及其坐标信息,代入上述公式(4),得到模型参数,再将{CP1,CP2,CP3}的坐标信息代入公式上述(5),得到其运动矢量。For example, the 6-parameter affine motion model composed of {CP1, CP2, CP4}, {CP2, CP3, CP4}, and {CP1, CP3, CP4} is converted to control points {CP1, CP2, CP3}. The conversion method is to substitute the motion vector and coordinate information of the control point into the above formula (4) to obtain the model parameters, and then substitute the coordinate information of {CP1, CP2, CP3} into the above formula (5) to obtain its motion vector.
更直接地,可以按照以下公式(24)-(26)进行转换,,其中,W表示当前块的宽度,H表示当前块的高度,公式(24)-(26)中,(vx0,vy0)表示CP1的运动矢量,(vx1,vy1)表示CP2的运动矢量,(vx2,vy2)表示CP3的运动矢量,(vx3,vy3)表示CP4的运动矢量。More directly, the conversion can be performed according to the following formulas (24)-(26), where W represents the width of the current block, H represents the height of the current block, and in formulas (24)-(26), (vx0 , vy0 ) represents the motion vector of CP1, (vx1 , vy1 ) represents the motion vector of CP2, (vx2 , vy2 ) represents the motion vector of CP3, and (vx3 , vy3 ) represents the motion vector of CP4.
{CP1,CP2,CP4}转换为{CP1,CP2,CP3}可以通过公式(24)实现:The conversion of {CP1, CP2, CP4} to {CP1, CP2, CP3} can be achieved by formula (24):
{CP2,CP3,CP4}转换为{CP1,CP2,CP3}可以通过公式(25)实现:The conversion of {CP2, CP3, CP4} to {CP1, CP2, CP3} can be achieved by formula (25):
{C P1,CP3,CP4}转换为{CP1,CP2,CP3}可以通过公式(26)实现:The conversion of {CP1, CP3, CP4} to {CP1, CP2, CP3} can be achieved by formula (26):
可能实施例中,将当前所构造的控制点运动信息加入候选运动矢量列表后,若此时候选列表的长度小于最大列表长度(如MaxAffineNumMrgCand),则可按照预置的顺序遍历这些组合,得到合法的组合作为候选的控制点运动信息,如果此时候选运动矢量列表为空,则将该候选的控制点运动信息加入候选运动矢量列表;否则依次遍历候选运动矢量列表中的运动信息,检查候选运动矢量列表中是否存在与该候选的控制点运动信息相同的运动信息。如果候选运动矢量列表中不存在与该候选的控制点运动信息相同的运动信息,则将该候选的控制点运动信息加入候选运动矢量列表。In a possible embodiment, after adding the currently constructed control point motion information to the candidate motion vector list, if the length of the candidate list is less than the maximum list length (such as MaxAffineNumMrgCand), these combinations can be traversed in a preset order to obtain a legal combination as the candidate control point motion information. If the candidate motion vector list is empty at this time, the candidate control point motion information is added to the candidate motion vector list; otherwise, the motion information in the candidate motion vector list is traversed in turn to check whether there is motion information identical to the candidate control point motion information in the candidate motion vector list. If there is no motion information identical to the candidate control point motion information in the candidate motion vector list, the candidate control point motion information is added to the candidate motion vector list.
示例性的,一种预置的顺序如下:Affine(CP1,CP2,CP3)→Affine(CP1,CP2,CP4)→Affine(CP1,CP3,CP4)→Affine(CP2,CP3,CP4)→Affine(CP1,CP2)→Affine(CP1,CP3)→Affine(CP2,CP3)→Affine(CP1,CP4)→Affine(CP2,CP4)→Affine(CP3,CP4),总共10种组合。Exemplarily, a preset order is as follows: Affine(CP1, CP2, CP3)→Affine(CP1, CP2, CP4)→Affine(CP1, CP3, CP4)→Affine(CP2, CP3, CP4)→Affine(CP1, CP2)→Affine(CP1, CP3)→Affine(CP2, CP3)→Affine(CP1, CP4)→Affine(CP2, CP4)→Affine(CP3, CP4), a total of 10 combinations.
若组合对应的控制点运动信息不可得,则认为该组合不可得。若组合可得,确定该组合的参考帧索引(两个控制点时,选择参考帧索引最小的作为该组合的参考帧索引;大于两个控制点时,先选择出现次数最多的参考帧索引,若有多个参考帧索引的出现次数一样多,则选择参考帧索引最小的作为该组合的参考帧索引),并将控制点的运动矢量进行缩放。若缩放后的所有控制点的运动信息一致,则该组合不合法。If the motion information of the control points corresponding to the combination is not available, the combination is considered unavailable. If the combination is available, determine the reference frame index of the combination (when there are two control points, select the reference frame index with the smallest index as the reference frame index of the combination; when there are more than two control points, first select the reference frame index with the largest number of occurrences. If there are multiple reference frame indexes with the same number of occurrences, select the reference frame index with the smallest index as the reference frame index of the combination), and scale the motion vector of the control point. If the motion information of all control points after scaling is consistent, the combination is illegal.
6)高级时域运动矢量预测(advanced temporal motion vector prediction,ATMVP)方法。HEVC的帧间预测中,编码单元(CodingUnit,CU)中的所有像素采用相同的运动信息进行运动补偿,以得到CU中的像素的预测值。但是CU内的像素并不一定都具有相同的运动特性,采用相同的运动信息对CU内所有的像素进行预测可能会降低运动补偿的准确性。而利用ATMVP方法,有利于提高运动补偿的准确性。6) Advanced temporal motion vector prediction (ATMVP) method. In the inter-frame prediction of HEVC, all pixels in the coding unit (CU) use the same motion information for motion compensation to obtain the predicted values of the pixels in the CU. However, the pixels in the CU do not necessarily have the same motion characteristics. Using the same motion information to predict all pixels in the CU may reduce the accuracy of motion compensation. The use of the ATMVP method is conducive to improving the accuracy of motion compensation.
以图9所示为例,利用ATMVP技术对当前图像进行帧间预测的过程主要包括:确定当前编码图像中的当前待处理块的偏移运动矢量;根据当前待处理块中的待处理子块的位置以及上述偏移运动矢量,在对应的参考图像(目标图像)中确定待处理子块的对应子块;根据对应子块的运动矢量,确定当前待处理子块的运动矢量;根据待处理子块的运动矢量对待处理子块进行运动补偿预测,得到待处理子块的较准确的预测像素值。可以理解的,基于上述过程可进一步获得当前待处理块的较准确的预测像素值。Taking FIG. 9 as an example, the process of using the ATMVP technology to perform inter-frame prediction on the current image mainly includes: determining the offset motion vector of the current block to be processed in the current coded image; determining the corresponding sub-block of the sub-block to be processed in the corresponding reference image (target image) according to the position of the sub-block to be processed in the current block to be processed and the above-mentioned offset motion vector; determining the motion vector of the current sub-block to be processed according to the motion vector of the corresponding sub-block; performing motion compensation prediction on the sub-block to be processed according to the motion vector of the sub-block to be processed to obtain a more accurate predicted pixel value of the sub-block to be processed. It can be understood that based on the above process, a more accurate predicted pixel value of the current block to be processed can be further obtained.
7)PLANAR模式。PLANAR方法使用水平和垂直方向的两个线性滤波器,并将二者的平均值作为当前块像素的预测值。这一做法能够使预测像素值平缓变化,提升图像的主观质量。7) PLANAR mode. The PLANAR method uses two linear filters in the horizontal and vertical directions and takes the average of the two as the predicted value of the current block pixel. This approach can make the predicted pixel value change smoothly and improve the subjective quality of the image.
以图10所示为例,利用PLANAR方法,通过获取当前块的每一个子块(子编码单元)的上边空域相邻位置、左边空域相邻位置、右边和下边位置的运动信息,求其平均值,并转化为当前每一个子块的运动信息。Taking Figure 10 as an example, using the PLANAR method, the motion information of the upper spatial adjacent position, the left spatial adjacent position, the right and the bottom position of each sub-block (sub-coding unit) of the current block is obtained, the average value is calculated, and it is converted into the motion information of each current sub-block.
具体的,对于坐标为(x,y)子块,子块运动矢量P(x,y)可使用水平方向插值运动矢量Ph(x,y)和竖直方向插值运动矢量Pv(x,y)计算得到,如公式(27)所示:Specifically, for a sub-block with coordinates (x, y), the sub-block motion vector P(x, y) can be calculated using the horizontal interpolation motion vectorPh (x, y) and the vertical interpolation motion vectorPv (x, y), as shown in formula (27):
P(x,y)=(H×ph(x,y)+W×Pv(x,y)+H×W)/(2×H×W) (27)P(x, y)=(H×ph (x, y)+W×Pv (x, y)+H×W)/(2×H×W) (27)
水平方向插值运动矢量Ph(x,y)和竖直方向插值运动矢量Pv(x,y)可通过使用当前子块左侧、右侧、上方和下侧的运动矢量计算得到,如公式(28)(29)所示:The horizontal interpolation motion vectorPh (x, y) and the vertical interpolation motion vectorPv (x, y) can be calculated by using the motion vectors on the left, right, top and bottom of the current sub-block, as shown in formulas (28) and (29):
Ph(x,y)=(W-1-x)×L(-1,y)+(x+1)×R(W,y) (28)Ph (x, y)=(W-1-x)×L(-1, y)+(x+1)×R(W, y) (28)
Pv(x,y)=(H-1-y)×A(x,-1)+(y+1)×B(x,H) (29)Pv (x, y)=(H-1-y)×A(x,-1)+(y+1)×B(x, H) (29)
其中,L(-1,y)和R(W,y)代表当前子块左侧和右侧位置的运动矢量,A(x,-1)和S(x,H)表示当前子块上方和下侧位置的运动矢量。Among them, L(-1, y) and R(W, y) represent the motion vectors of the left and right positions of the current sub-block, and A(x, -1) and S(x, H) represent the motion vectors of the upper and lower positions of the current sub-block.
左侧运动矢量L和上方运动矢量A可从当前编码块的空域临近块得到。根据子块坐标(x,y)得到预设位置(-1,y)和(x,-1)处的编码块的运动矢量L(-1,y)和A(x,-1)。The left motion vector L and the upper motion vector A can be obtained from the spatial neighboring blocks of the current coding block. The motion vectors L(-1, y) and A(x, -1) of the coding blocks at the preset positions (-1, y) and (x, -1) are obtained according to the sub-block coordinates (x, y).
右侧运动矢量R(W,y)和下方运动矢量B(x,H)通过以下方法提取:提取当前编码块右下位置的时域运动信息BR;使用提取到的右上空域临近位置的运动矢量AR和右下位置的时域运动信息BR加权计算得到右侧运动矢量R(W,y),如下式(30)所示:The right motion vector R(W, y) and the lower motion vector B(x, H) are extracted by the following method: extract the temporal motion information BR of the lower right position of the current coding block; use the extracted motion vector AR of the upper right spatial adjacent position and the temporal motion information BR of the lower right position to weightedly calculate the right motion vector R(W, y), as shown in the following equation (30):
R(W,y)=((H-y-1)AR+(y+1)BR)/H (30)R(W,y)=((H-y-1)AR+(y+1)BR)/H (30)
使用提取到的左下空域临近位置的运动矢量BL和右下位置的时域运动信息BR加权计算得到下方运动矢量B(x,H),如下式(31)所示:The motion vector B(x, H) below is obtained by weighting the extracted motion vector BL of the lower left spatial adjacent position and the temporal motion information BR of the lower right position, as shown in the following equation (31):
B(x,H)=((W-x-1)BL+(x+1)BR)/W (31)B(x,H)=((W-x-1)BL+(x+1)BR)/W (31)
上述计算中使用的所有运动矢量都被缩放到指向特定参考帧队列中第一个参考帧。All motion vectors used in the above calculations are scaled to point to the first reference frame in a particular reference frame queue.
8)基于仿射运动模型的先进运动矢量预测模式(Affine AMVP mode)。对于AffineAMVP mode,可利用继承的控制点运动矢量预测方法和/或构造的控制点运动矢量预测方法,构建基于仿射运动模型的AMVP模式的候选运动矢量列表。在本发明实施例实施例中可以将基于仿射运动模型的AMVP模式的候选运动矢量列表称为控制点运动矢量预测值候选列表(control point motion vectors predictor candidate list),列表中的控制点运动矢量预测值包括2个(如当前块为4参数仿射运动模型的情况)候选的控制点运动矢量或者包括3个(如当前块为6参数仿射运动模型的情况)候选的控制点运动矢量。8) Advanced motion vector prediction mode based on affine motion model (Affine AMVP mode). For AffineAMVP mode, the inherited control point motion vector prediction method and/or the constructed control point motion vector prediction method can be used to construct a candidate motion vector list of the AMVP mode based on the affine motion model. In an embodiment of the present invention, the candidate motion vector list of the AMVP mode based on the affine motion model may be referred to as a control point motion vector predictor candidate list, and the control point motion vector predictors in the list include 2 (such as when the current block is a 4-parameter affine motion model) candidate control point motion vectors or include 3 (such as when the current block is a 6-parameter affine motion model) candidate control point motion vectors.
可能的应用场景中,还可将控制点运动矢量预测值候选列表根据特定的规则进行剪枝和排序,并可将其截断或填充至特定的个数。In possible application scenarios, the candidate list of control point motion vector prediction values may be pruned and sorted according to specific rules, and may be truncated or padded to a specific number.
然后,在编码端,编码器(如前述编码器20)利用控制点运动矢量预测值候选列表中的每个控制点运动矢量预测值,通过公式(3)或(5)或(7)获得当前编码块中每个子运动补偿单元的运动矢量,进而得到每个子运动补偿单元的运动矢量所指向的参考帧中对应位置的像素值,作为其预测值,进行采用仿射运动模型的运动补偿。计算当前编码块中每个像素点的原始值和预测值之间差值的平均值,选择最小平均值对应的控制点运动矢量预测值为最优的控制点运动矢量预测值,并作为当前编码块2个或3个或4个控制点的运动矢量预测值。此外在可能实施例中,还以控制点运动矢量预测值作为搜索起始点在一定搜索范围内进行运动搜索获得控制点运动矢量(control point motion vectors,CPMV),并计算控制点运动矢量与控制点运动矢量预测值之间的差值(control point motion vectorsdifferences,CPMVD)。然后,编码器将表示该控制点运动矢量预测值在控制点运动矢量预测值候选列表中位置的索引号以及CPMVD编码入码流传递到解码端。Then, at the encoding end, the encoder (such as the aforementioned encoder 20) uses each control point motion vector prediction value in the control point motion vector prediction value candidate list to obtain the motion vector of each sub-motion compensation unit in the current coding block through formula (3) or (5) or (7), and then obtains the pixel value of the corresponding position in the reference frame pointed to by the motion vector of each sub-motion compensation unit as its prediction value, and performs motion compensation using an affine motion model. The average value of the difference between the original value and the prediction value of each pixel point in the current coding block is calculated, and the control point motion vector prediction value corresponding to the minimum average value is selected as the optimal control point motion vector prediction value, and is used as the motion vector prediction value of 2, 3 or 4 control points in the current coding block. In addition, in a possible embodiment, the control point motion vector prediction value is used as the search starting point to perform motion search within a certain search range to obtain the control point motion vector (CPMV), and the difference between the control point motion vector and the control point motion vector prediction value (CPMVD) is calculated. Then, the encoder transmits the index number indicating the position of the control point motion vector prediction value in the control point motion vector prediction value candidate list and the CPMVD coded bitstream to the decoding end.
在解码端,解码器(如前述解码器30)解析获得码流中的索引号以及控制点运动矢量差值(CPMVD),根据索引号从控制点运动矢量预测值候选列表中确定控制点运动矢量预测值(control point motion vectors predictor,CPMVP),将CPMVP与CPMVD相加,得到控制点运动矢量。At the decoding end, the decoder (such as the aforementioned decoder 30) parses to obtain the index number and the control point motion vector difference (CPMVD) in the bit stream, determines the control point motion vector prediction value (CPMVP) from the control point motion vector prediction value candidate list according to the index number, adds CPMVP and CPMVD to obtain the control point motion vector.
9)基于仿射运动模型的融合模式(Affine Merge mode)。对于Affine Mergemode,可利用继承的控制点运动矢量预测方法和/或构造的控制点运动矢量预测方法,构建控制点运动矢量融合候选列表(control point motion vectors merge candidatelist)。9) Affine Merge mode based on affine motion model: For Affine Merge mode, the inherited control point motion vector prediction method and/or the constructed control point motion vector prediction method may be used to construct a control point motion vector merge candidate list.
可能的应用场景中,可将控制点运动矢量融合候选列表根据特定的规则进行剪枝和排序,并可将其截断或填充至特定的个数。In possible application scenarios, the control point motion vector fusion candidate list may be pruned and sorted according to specific rules, and may be truncated or padded to a specific number.
在编码端,编码器(如前述编码器20)利用融合候选列表中的每个控制点运动矢量,通过公式(3)或(5)或(7)获得当前编码块中每个子运动补偿单元(像素点或特定方法划分的大小为N1×N2的像素块)的运动矢量,进而得到每个子运动补偿单元的运动矢量所指向的参考帧中位置的像素值,作为其预测值,进行仿射运动补偿。计算当前编码块中每个像素点的原始值和预测值之间差值的平均值,选择差值的平均值最小对应的控制点运动矢量作为当前编码块2个或3个或4个控制点的运动矢量。将表示该控制点运动矢量在候选列表中位置的索引号编码入码流发送给解码端。At the encoding end, the encoder (such as the aforementioned encoder 20) uses the motion vector of each control point in the fusion candidate list to obtain the motion vector of each sub-motion compensation unit (pixel point or pixel block of sizeN1 ×N2 divided by a specific method) in the current coding block through formula (3) or (5) or (7), and then obtains the pixel value of the position in the reference frame pointed to by the motion vector of each sub-motion compensation unit as its prediction value to perform affine motion compensation. The average value of the difference between the original value and the prediction value of each pixel in the current coding block is calculated, and the control point motion vector corresponding to the minimum average value of the difference is selected as the motion vector of 2, 3 or 4 control points in the current coding block. The index number representing the position of the control point motion vector in the candidate list is encoded into the bitstream and sent to the decoding end.
在解码端,解码器(如前述解码器30)解析索引号,根据索引号从控制点运动矢量融合候选列表中确定控制点运动矢量(control point motion vectors,CPMV)。At the decoding end, the decoder (such as the aforementioned decoder 30) parses the index number and determines the control point motion vectors (CPMV) from the control point motion vector fusion candidate list according to the index number.
10)子块融合模式(Sub-block based merging mode)。利用子块融合模式,可在9)的基础上,将ATMVP方法和/或PLANAR模式得到的候选运动信息加入候选列表。也就是说,可利用继承的控制点运动矢量预测方法,和/或,构造的控制点运动矢量预测方法,和/或,ATMVP方法,和/或,PLANAR方法,构建子块融合候选列表(sub-block based mergingcandidate list)。10) Sub-block based merging mode. Using the sub-block based merging mode, the candidate motion information obtained by the ATMVP method and/or the PLANAR mode can be added to the candidate list based on 9). In other words, the inherited control point motion vector prediction method, and/or the constructed control point motion vector prediction method, and/or the ATMVP method, and/or the PLANAR method can be used to construct a sub-block based merging candidate list.
可能的应用场景中,可将子块融合候选列表根据特定的规则进行剪枝和排序,并可将其截断或填充至特定的个数。In possible application scenarios, the sub-block fusion candidate list can be pruned and sorted according to specific rules, and can be truncated or padded to a specific number.
在编码端,利用子块融合候选列表中的每个候选运动信息,若候选为ATMVP方法或PLANAR方法,则按照6)或7)的方法得到每个子块的运动信息;若候选为仿射运动模式,则根据每个控制点运动矢量,通过公式(3)/(5)/(7)获得当前编码块中每个子运动补偿单元(子块,像素点或特定方法划分的大小为N1×N2的像素块)的运动矢量,进而得到每个子运动补偿单元的运动矢量所指向的参考帧中位置的像素值,作为其预测值,进行仿射运动补偿。计算当前编码块中每个像素点的原始值和预测值之间差值的平均值,选择差值的平均值最小对应的候选作为当前编码块的运动信息,将表示该候选运动信息在候选列表中位置的索引号编码入码流发送给解码器。At the encoding end, each candidate motion information in the sub-block fusion candidate list is used. If the candidate is the ATMVP method or the PLANAR method, the motion information of each sub-block is obtained according to the method 6) or 7). If the candidate is the affine motion mode, the motion vector of each sub-motion compensation unit (sub-block, pixel point or pixel block of sizeN1 ×N2 divided by a specific method) in the current coding block is obtained according to the motion vector of each control point through formula (3)/(5)/(7), and then the pixel value of the position in the reference frame pointed by the motion vector of each sub-motion compensation unit is obtained as its prediction value for affine motion compensation. The average value of the difference between the original value and the prediction value of each pixel point in the current coding block is calculated, and the candidate corresponding to the smallest average value of the difference is selected as the motion information of the current coding block. The index number representing the position of the candidate motion information in the candidate list is encoded into the bitstream and sent to the decoder.
在解码端,解析索引号,根据索引号从控制点运动矢量融合候选列表中确定控制点运动矢量(control point motion vectors,CPMV)或子块的运动信息(若为ATMVP方法或PLANAR方法)。At the decoding end, the index number is parsed, and the control point motion vectors (CPMV) or the motion information of the sub-block (if it is the ATMVP method or the PLANAR method) is determined from the control point motion vector fusion candidate list according to the index number.
11)块级的广义双向预测(Generalized Bi-prediction,GBi)方法,又可称为双向预测块级的加权预测方法。双向预测包括第一方向预测和第二方向预测,所述第一方向预测为基于第一方向的参考图像来预测当前块的运动矢量,进而得到当前块的在第一方向的参考块(或称预测块),其中,所述第一方向的参考图像为第一参考图像帧集合中的一个,所述第一参考图像帧集合包括一定数量的参考图像;所述第二方向预测为基于第二方向的参考图像来预测当前块的第二运动矢量,进而得到当前块的在第二方向的参考块(或称预测块),所述第二方向的参考图像为第二参考图像帧集合中的一个,所述第二参考图像帧集合包括一定数量的参考图像。例如,第一参考图像帧集合是参考图像列表0(referencepicture list 0,list0),第二参考图像帧集合是参考图像列表1(reference picturelist 1,list1)。又举例来说,第一参考图像帧集合是list1,第二参考图像帧集合是list0。11) Block-level generalized bi-prediction (GBi) method, also known as bi-prediction block-level weighted prediction method. Bi-prediction includes first-direction prediction and second-direction prediction. The first-direction prediction is to predict the motion vector of the current block based on the reference image in the first direction, thereby obtaining the reference block (or prediction block) of the current block in the first direction, wherein the reference image in the first direction is one of the first reference image frame set, and the first reference image frame set includes a certain number of reference images; the second-direction prediction is to predict the second motion vector of the current block based on the reference image in the second direction, thereby obtaining the reference block (or prediction block) of the current block in the second direction, wherein the reference image in the second direction is one of the second reference image frame set, and the second reference image frame set includes a certain number of reference images. For example, the first reference image frame set is reference picture list 0 (reference picture list 0, list0), and the second reference image frame set is reference picture list 1 (reference picture list 1, list1). For another example, the first reference image frame set is list1, and the second reference image frame set is list0.
当使用双向预测方法时,当前图像块会存在两个参考块(或称两个预测块),每个参考块各自需要运动矢量和参考帧索引进行指示。双向预测具体可为从第一参考图像帧集合和第二参考图像帧集合中各选择一个参考图像获取参考块,然后根据两个参考块内像素点的像素值确定当前图像块内像素点像素值的预测值。When using the bidirectional prediction method, there will be two reference blocks (or two prediction blocks) for the current image block, and each reference block needs a motion vector and a reference frame index to indicate it. Bidirectional prediction can be specifically to select a reference image from each of the first reference image frame set and the second reference image frame set to obtain a reference block, and then determine the predicted value of the pixel value of the pixel point in the current image block based on the pixel value of the pixel point in the two reference blocks.
示例性地,也可以将双向预测称为前向后向预测,也就是说,双向预测包括前向预测和后向预测,这样情况下,当第一方向预测为前向预测,那么第二方向预测相应为后向预测;当第一方向预测为后向预测,那么第二方向预测相应为前向预测。例如,在一种双向预测的实现中,可设置两个已编码帧列表(例如,List0和List1),这两个列表中都可包含前向和后向的多个已编码的参考帧,当前编码图像的当前待处理图像块的前后参考块(预测块)是由这两个已编码帧列表中的参考帧提供。Exemplarily, the bidirectional prediction may also be referred to as forward and backward prediction, that is, the bidirectional prediction includes forward prediction and backward prediction. In this case, when the first direction prediction is forward prediction, the second direction prediction is correspondingly backward prediction; when the first direction prediction is backward prediction, the second direction prediction is correspondingly forward prediction. For example, in an implementation of bidirectional prediction, two encoded frame lists (e.g., List0 and List1) may be set, and both lists may contain multiple forward and backward encoded reference frames, and the forward and backward reference blocks (prediction blocks) of the current to-be-processed image block of the current encoded image are provided by the reference frames in the two encoded frame lists.
在GBi方法中,每个双向预测的图像块可从多组权重值组合中选择一组权重值完成加权预测。In the GBi method, each bidirectionally predicted image block can select a set of weight values from multiple sets of weight value combinations to complete weighted prediction.
举例来说,在编码端,双向预测的图像块预测值Pbi-pred可通过公式(32)实现:For example, at the encoding end, the bidirectionally predicted image block prediction value Pbi-pred can be realized by formula (32):
Pbi-pred=((8-w)*P0+w*P1+4)>>3 (32)Pbi-pred = ((8-w)*P0 +w*P1 +4)>>3 (32)
其中,P0和P1分别是第一方向参考帧和后第二方向参考帧经过运动补偿后的预测像素,w是以1/8精度表示的第二方向参考帧的像素值在双向预测的图像块预测值中所占的权重参数(w is weighting parameter for list-1prediction represented in 1/8precision),>>表示右移运算。Among them, P0 and P1 are the predicted pixels of the first direction reference frame and the second direction reference frame after motion compensation, respectively, w is the weighting parameter for list-1 prediction represented in 1/8 precision in the image block prediction value of the bidirectional prediction, >> represents a right shift operation.
w的值例如可以从取值集{4,-2,10,3,5}中选取,可设置权重值{4/8,-2/8,10/8,3/8,5/8}对应的GBi索引号依次为{0,1,2,3,4}。在非低延迟的图像块中,w的值例如可以从取值集合{3,4,5}中选取。可设置权重值取值{3/8,4/8,5/8}对应的GBi索引号依次为{0,1,2},即权重值与GBi索引号之间具有对应关系。后续根据权重值进行加权预测,可获得双向预测的图像块的预测值。The value of w can be selected from the value set {4, -2, 10, 3, 5}, and the GBi index numbers corresponding to the weight values {4/8, -2/8, 10/8, 3/8, 5/8} can be set to {0, 1, 2, 3, 4}. In non-low-latency image blocks, the value of w can be selected from the value set {3, 4, 5}, for example. The GBi index numbers corresponding to the weight values {3/8, 4/8, 5/8} can be set to {0, 1, 2}, that is, there is a corresponding relationship between the weight value and the GBi index number. Subsequently, weighted prediction is performed according to the weight value to obtain the prediction value of the bidirectionally predicted image block.
在本发明的一实例中,也可直接建立w与GBi索引号之间的对应关系,例如,w的值例如可以从取值集{4,-2,10,3,5}中选取时,可设置w取值集{4,-2,10,3,5}对应的GBi索引号依次为{0,1,2,3,4}。后续根据权重值进行加权预测,可获得双向预测的图像块的预测值。本文主要从权重值与GBi索引号之间具有对应关系的角度来阐述本发明的技术方案/技术思想,应理解的是,这些技术方案/技术思想同样适用于“w与GBi索引号之间具有的对应关系”的情况,为了说明书的简洁,这里将不展开详述。In one example of the present invention, the correspondence between w and the GBi index number can also be directly established. For example, when the value of w can be selected from the value set {4, -2, 10, 3, 5}, the GBi index numbers corresponding to the w value set {4, -2, 10, 3, 5} can be set to {0, 1, 2, 3, 4} in sequence. Subsequently, weighted prediction is performed according to the weight value to obtain the predicted value of the bidirectionally predicted image block. This article mainly explains the technical solutions/technical ideas of the present invention from the perspective of the correspondence between the weight value and the GBi index number. It should be understood that these technical solutions/technical ideas are also applicable to the case of "the correspondence between w and the GBi index number". For the sake of brevity of the specification, they will not be elaborated here.
本发明实施例中,GBi索引号(the Generalization Bi-prediction weightindex)可用于在GBi方法的双向预测中确定图像块的某一方向参考帧(第一方向参考帧或第二方向参考帧)的权重值。具体的,在一实例中,GBi索引号对应的权重值可用于表示list0中的参考图像的参考块像素值在当前块预测值中所占的权重。在又一实例中,GBi索引号对应的权重值可用于表示list1中的参考图像的参考块像素值在当前块预测值中所占的权重。In an embodiment of the present invention, the GBi index number (the Generalization Bi-prediction weightindex) can be used to determine the weight value of a certain direction reference frame (first direction reference frame or second direction reference frame) of an image block in the bidirectional prediction of the GBi method. Specifically, in one example, the weight value corresponding to the GBi index number can be used to represent the weight of the reference block pixel value of the reference image in list0 in the current block prediction value. In another example, the weight value corresponding to the GBi index number can be used to represent the weight of the reference block pixel value of the reference image in list1 in the current block prediction value.
需要说明的是,上文例子仅用于方案解释而非限定,其他的GBi权重值以及其他的索引号的映射方式同样适用于本专利。例如在一种实现中,{-2/8,3/8,4/8,5/8,10/8}对应的索引号可以依次为{0,1,2,3,4}。{4/8,3/8,5/8}对应的索引号可以依次为{0,1,2}。It should be noted that the above examples are only used for scheme explanation and not limitation. Other GBi weight values and other index number mapping methods are also applicable to this patent. For example, in one implementation, the index numbers corresponding to {-2/8, 3/8, 4/8, 5/8, 10/8} can be {0, 1, 2, 3, 4} in sequence. The index numbers corresponding to {4/8, 3/8, 5/8} can be {0, 1, 2} in sequence.
当第一方向参考帧(例如后向参考帧)的权重值被确定(即为权重值取值集合中的一个取值),那么,第二方向参考帧(例如前向参考帧)的权重值也会相应被确定。例如在非低延迟的图像块中,后向参考帧对应的权重值取值为3/8(索引号例如为0)时,那么前向参考帧的权重值相应为5/8。这样的权重值组合<3/8,5/8>即为一组权重值组合。可以理解的,不同的索引号可对应不同的权重值组合。每个双向预测的图像块可从多组权重值组合中选择一组权重值完成加权预测。具体的,可根据每组权重值计算出双向预测的图像块的预测值,根据图像块中每个像素点的原始值和预测值计算率失真代价(RD Cost),从而选择率失真代价最小的一组权重值作为最终的权重值组合,并传递该权重值组合相关的索引号到解码端。When the weight value of the first direction reference frame (e.g., backward reference frame) is determined (i.e., one of the values in the weight value set), then the weight value of the second direction reference frame (e.g., forward reference frame) will also be determined accordingly. For example, in a non-low-latency image block, when the weight value corresponding to the backward reference frame is 3/8 (the index number is, for example, 0), then the weight value of the forward reference frame is 5/8 accordingly. Such a weight value combination <3/8, 5/8> is a set of weight value combinations. It can be understood that different index numbers can correspond to different weight value combinations. Each bidirectionally predicted image block can select a set of weight values from multiple sets of weight value combinations to complete weighted prediction. Specifically, the predicted value of the bidirectionally predicted image block can be calculated based on each set of weight values, and the rate-distortion cost (RD Cost) can be calculated based on the original value and predicted value of each pixel in the image block, so as to select a set of weight values with the smallest rate-distortion cost as the final weight value combination, and pass the index number related to the weight value combination to the decoding end.
在解码端,AMVP模式中,直接解析码流获得GBi索引号;Merge模式中,需构建候选运动信息列表,然后根据merge index从列表中得出运动信息及GBi索引号,再根据索引号从多组权重值组合中选出目标权重值组合,利用该权重值组合进行加权预测得到预测像素。At the decoding end, in AMVP mode, the bitstream is directly parsed to obtain the GBi index number; in Merge mode, a candidate motion information list needs to be constructed, and then the motion information and GBi index number are obtained from the list according to the merge index, and then the target weight value combination is selected from multiple groups of weight value combinations according to the index number, and the weight value combination is used for weighted prediction to obtain the predicted pixel.
当使用GBi预测方法时,在仿射运动预测中,利用继承的控制点运动矢量预测方法或构造的控制点运动矢量预测方法得到当前块的各个控制点的候选运动信息,同时得到各个控制点对应的GBi索引号,将其存储起来用于后续的运动补偿和预测;得到的候选运动信息、GBi索引号还将用于后续其他解码流程,例如作为相邻块解码过程中的运动矢量预测等。When the GBi prediction method is used, in affine motion prediction, the inherited control point motion vector prediction method or the constructed control point motion vector prediction method is used to obtain the candidate motion information of each control point of the current block, and the GBi index number corresponding to each control point is obtained, which is stored for subsequent motion compensation and prediction; the obtained candidate motion information and GBi index number will also be used in other subsequent decoding processes, such as motion vector prediction in the decoding process of adjacent blocks.
对于继承的控制点运动矢量预测方法,当前待处理图像块的各个控制点对应的GBi索引号皆来源于相同的编码单元(即同一相邻已编码块),故各个控制点对应的GBi索引号是一致的。然而,对于仿射融合模式中构造的控制点运动矢量预测方法中,当前待处理图像块的控制点的GBi索引号来自不同的编码单元(即不同的相邻已编码块),这样,会存在控制点的GBi索引号不一样的情况,最终会导致当前块的各个子块的GBi索引号不同。例如,若当前仿射解码块采用的仿射运动模型为4仿射运动模型,则将左上角子块、右上角子块的GBi索引号设置为左上、右上顶点控制点的GBi索引号,而左上子块和右上子块分别是不同的编码单元的子块,如果左上子块的GBi索引号为0,而右上子块的GBi索引号为1,则无法判断当前待处理图像块的GBi索引号是0还是1,那么在后续对各个子块的预测中,将无法确定双向预测中的权重值组合,导致预测出现问题,从而影响整个编码过程。For the inherited control point motion vector prediction method, the GBi index numbers corresponding to the control points of the current image block to be processed all come from the same coding unit (i.e., the same adjacent coded block), so the GBi index numbers corresponding to the control points are consistent. However, for the control point motion vector prediction method constructed in the affine fusion mode, the GBi index numbers of the control points of the current image block to be processed come from different coding units (i.e., different adjacent coded blocks), so there will be a situation where the GBi index numbers of the control points are different, which will eventually lead to different GBi index numbers of the sub-blocks of the current block. For example, if the affine motion model adopted by the current affine decoding block is the 4-affine motion model, the GBi index numbers of the upper-left sub-block and the upper-right sub-block are set to the GBi index numbers of the upper-left and upper-right vertex control points, and the upper-left sub-block and the upper-right sub-block are sub-blocks of different coding units. If the GBi index number of the upper-left sub-block is 0 and the GBi index number of the upper-right sub-block is 1, it is impossible to determine whether the GBi index number of the current image block to be processed is 0 or 1. In the subsequent prediction of each sub-block, the weight value combination in the bidirectional prediction cannot be determined, resulting in prediction problems, thereby affecting the entire encoding process.
本发明实施例提供了解决方案来为了解决上述问题,保证当使用GBi预测方法时的编码过程的正常进行,提高编码效率和准确度。下面具体描述基于构造的控制点运动矢量预测方法确定当前待处理图像块的GBi索引号的一些实施方案,当前待处理图像块的多个控制点的运动矢量分别根据多个已处理图像块(对于编码端,为多个邻近已编码块;对于解码端,为多个邻近已解码块)的运动矢量获得。The embodiment of the present invention provides a solution to solve the above-mentioned problem, ensure the normal progress of the encoding process when using the GBi prediction method, and improve the encoding efficiency and accuracy. The following specifically describes some implementation schemes for determining the GBi index number of the current image block to be processed based on the constructed control point motion vector prediction method, and the motion vectors of multiple control points of the current image block to be processed are respectively obtained according to the motion vectors of multiple processed image blocks (for the encoding end, multiple adjacent encoded blocks; for the decoding end, multiple adjacent decoded blocks).
在一些可能的实施方案中,可将预设的GBi索引号作为当前待处理图像块的GBi索引号,将所述待处理图像块的GBi索引号对应的权重值作为所述待处理图像块的参考帧对应的权重值。例如,所述预设的GBi索引号为0,当前待处理图像块的GBi索引号对应的权重值等于1/2,则后续根据权重值进行加权预测(双向预测)的加权方式为平均加权。In some possible implementations, the preset GBi index number can be used as the GBi index number of the current image block to be processed, and the weight value corresponding to the GBi index number of the image block to be processed can be used as the weight value corresponding to the reference frame of the image block to be processed. For example, if the preset GBi index number is 0, and the weight value corresponding to the GBi index number of the current image block to be processed is equal to 1/2, then the weighting method of subsequent weighted prediction (bidirectional prediction) based on the weight value is average weighting.
在一些可能的实施方案中,可获取待处理图像块的多个控制点的GBi索引号;在构造的控制点运动矢量预测方法中,所述多个控制点的GBi索引号分别为各个控制点对应的已处理图像块的GBi索引号;然后根据所述多个控制点的GBi索引号,确定当前待处理图像块的某一方向参考帧对应的权重值。例如,根据所述多个控制点的GBi索引号确定某一方向参考帧(例如后向参考帧)对应的权重值等于1/2,则后续根据权重值进行加权预测的加权方式为平均加权。在可能的实现场景中,还可根据所述多个控制点的GBi索引号,确定当前待处理图像块的GBi索引号,将所述待处理图像块的GBi索引号对应的权重值作为所述待处理图像块的参考帧对应的权重值。例如,根据所述多个控制点的GBi索引号,确定当前待处理图像块的GBi索引号为0,GBi索引号0对应的权重值1/2确定某一方向参考帧(例如后向参考帧)对应的权重值。In some possible implementation schemes, the GBi index numbers of multiple control points of the image block to be processed can be obtained; in the constructed control point motion vector prediction method, the GBi index numbers of the multiple control points are the GBi index numbers of the processed image blocks corresponding to each control point; then, according to the GBi index numbers of the multiple control points, the weight value corresponding to a certain direction reference frame of the current image block to be processed is determined. For example, according to the GBi index numbers of the multiple control points, the weight value corresponding to a certain direction reference frame (for example, a backward reference frame) is determined to be equal to 1/2, and then the weighting method of subsequent weighted prediction according to the weight value is average weighting. In a possible implementation scenario, the GBi index number of the current image block to be processed can also be determined according to the GBi index numbers of the multiple control points, and the weight value corresponding to the GBi index number of the image block to be processed is used as the weight value corresponding to the reference frame of the image block to be processed. For example, according to the GBi index numbers of the multiple control points, the GBi index number of the current image block to be processed is determined to be 0, and the weight value 1/2 corresponding to the GBi index number 0 determines the weight value corresponding to a certain direction reference frame (for example, a backward reference frame).
在一可能的实施方案中,可将预设值作为在GBi方法中当前待处理图像块的某一方向参考帧(第一方向参考帧或第二方向参考帧,下文同)的权重值,例如,所述预设值为1/2。也即是说,将基于构造的控制点运动矢量预测方法得到的各个控制点的候选运动信息对应的GBi索引号设置为权重值1/2对应的索引号(例如0)。In a possible implementation, the preset value may be used as a weight value of a certain direction reference frame (a first direction reference frame or a second direction reference frame, the same below) of the current image block to be processed in the GBi method, for example, the preset value is 1/2. In other words, the GBi index number corresponding to the candidate motion information of each control point obtained based on the constructed control point motion vector prediction method is set to the index number corresponding to the weight value 1/2 (for example, 0).
在一可能的实施方案中,在当前待处理图像块的多个控制点对应的编码单元的GBi索引号(可简称为多个控制点的GBi索引号,下文同)皆相同的情况下,将由所述相同的GBi索引号确定的权重值作为在GBi方法中所述待处理图像块的某一方向参考帧的权重值,控制点的候选运动信息对应的GBi索引号设置为所述相同的GBi索引号;在所述多个控制点的GBi索引号不全相同的情况下,将预设值作为在GBi方法中所述待处理图像块的某一方向参考帧的权重值,所述预设值例如等于1/2,各个控制点的候选运动信息对应的GBi索引号设置为权重值1/2对应的索引号。In a possible implementation, when the GBi index numbers of the coding units corresponding to multiple control points of the current image block to be processed (which may be referred to as the GBi index numbers of multiple control points, the same below) are all the same, the weight value determined by the same GBi index number is used as the weight value of a certain direction reference frame of the image block to be processed in the GBi method, and the GBi index number corresponding to the candidate motion information of the control point is set to the same GBi index number; when the GBi index numbers of the multiple control points are not all the same, a preset value is used as the weight value of a certain direction reference frame of the image block to be processed in the GBi method, and the preset value is, for example, equal to 1/2, and the GBi index number corresponding to the candidate motion information of each control point is set to the index number corresponding to the weight value 1/2.
举例来说,可定义1/2权重值对应的GBi索引号为K,按照以下方式设置基于构造的控制点运动矢量预测方法得到的候选运动信息的GBi索引号:For example, the GBi index number corresponding to the 1/2 weight value may be defined as K, and the GBi index number of the candidate motion information obtained by the constructed control point motion vector prediction method may be set in the following manner:
若当前待处理图像块有两个控制点,其候选运动信息分别由相邻已编码块A和B的运动信息得到,相邻已编码块A和B的GBi索引号分别为IA和IB。那么可根据IA和IB的值来推导候选运动信息对应的GBi索引号:若IA=IB,则候选运动信息对应的GBi索引号为IA;若IA≠IB,则候选运动信息对应的GBi索引号为K。If the current image block to be processed has two control points, its candidate motion information is obtained from the motion information of adjacent coded blocks A and B, and the GBi index numbers of adjacent coded blocks A and B areIA andIB respectively. Then the GBi index number corresponding to the candidate motion information can be derived according to the values ofIA andIB : ifIA =IB , the GBi index number corresponding to the candidate motion information isIA ; ifIA ≠IB , the GBi index number corresponding to the candidate motion information is K.
若当前待处理图像块有三个控制点,其候选运动信息分别由相邻已编码块A、B和C的运动信息得到,相邻已编码块A、B和C的GBi索引号分别为IA、IB和IC。那么可根据IA、IB和IC的值来推导各个控制点的候选运动信息对应的GBi索引号:若IA=IB=IC,则各个控制点的候选运动信息对应的GBi索引号为IA;若IA、IB和IC不全相同,则将各个控制点的候选运动信息对应的GBi索引号设置为K。If the current image block to be processed has three control points, its candidate motion information is obtained from the motion information of adjacent coded blocks A, B and C, and the GBi index numbers of adjacent coded blocks A, B and C areIA ,IB andIC respectively. Then the GBi index number corresponding to the candidate motion information of each control point can be derived according to the values ofIA ,IB andIC : ifIA =IB =IC , then the GBi index number corresponding to the candidate motion information of each control point isIA ; ifIA ,IB andIC are not all the same, then the GBi index number corresponding to the candidate motion information of each control point is set to K.
在一可能的实施方案中,在所述多个控制点的GBi索引号中存在相同的GBi索引号的情况下,将数量最多的相同的GBi索引号作为在GBi方法中所述待处理图像块的某一方向参考帧的权重值,控制点的候选运动信息对应的GBi索引号设置为所述相同的GBi索引号;在所述多个控制点的GBi索引号皆不相同的情况下,将预设值作为所述待处理图像块的某一方向参考帧的权重值,所述预设值例如为1/2,各个控制点的候选运动信息对应的GBi索引号设置为权重值1/2对应的索引号。In a possible implementation, when there are identical GBi index numbers among the GBi index numbers of the multiple control points, the largest number of identical GBi index numbers are used as the weight value of the reference frame in a certain direction of the image block to be processed in the GBi method, and the GBi index number corresponding to the candidate motion information of the control point is set to the identical GBi index number; when the GBi index numbers of the multiple control points are all different, a preset value is used as the weight value of the reference frame in a certain direction of the image block to be processed, and the preset value is, for example, 1/2, and the GBi index number corresponding to the candidate motion information of each control point is set to the index number corresponding to the weight value 1/2.
举例来说,可定义权重值1/2对应的GBi索引号为K,按照以下方式设置基于构造的控制点运动矢量预测方法得到的候选运动信息的GBi索引号:For example, the GBi index number corresponding to the weight value 1/2 may be defined as K, and the GBi index number of the candidate motion information obtained by the constructed control point motion vector prediction method may be set in the following manner:
若当前待处理图像块有两个控制点,其候选运动信息分别由相邻已编码块A和B的运动信息得到,A和B的GBi索引号分别为IA和IB。根据IA和IB的值来推导候选运动信息对应的GBi索引号:若IA=IB,则候选运动信息对应的GBi索引号为IA;若IA≠IB,则候选运动信息对应的GBi索引号为K。If the current image block to be processed has two control points, its candidate motion information is obtained from the motion information of adjacent coded blocks A and B, and the GBi index numbers of A and B areIA andIB respectively. The GBi index number corresponding to the candidate motion information is derived according to the values ofIA andIB : ifIA =IB , the GBi index number corresponding to the candidate motion information isIA ; ifIA ≠IB , the GBi index number corresponding to the candidate motion information is K.
若当前待处理图像块有三个控制点,其候选运动信息分别由相邻已编码块A、B和C的运动信息得到,相邻已编码块A、B和C的GBi索引号分别为IA、IB和IC。根据IA、IB和IC的值来推导候选运动信息对应的GBi索引号:若IA、IB和IC中存在有相等的值,则将各个控制点的候选运动信息对应的GBi索引号为出现频次最高的索引号;若IA、IB和IC互不相等,则将各个控制点的候选运动信息对应的GBi索引号设置为K。If the current image block to be processed has three control points, its candidate motion information is obtained from the motion information of adjacent coded blocks A,B and C, and the GBi index numbers of adjacent coded blocks A, B and C areIA ,IB andIC respectively. The GBi index number corresponding to the candidate motion information is derived according to the values ofIA , IB andIC : if there are equal values amongIA ,IB andIC , the GBi index number corresponding to the candidate motion information of each control point is the index number with the highest frequency of occurrence; ifIA ,IB andIC are not equal to each other, the GBi index number corresponding to the candidate motion information of each control point is set to K.
在一可能的实施方案中,在由所述多个控制点的GBi索引号确定的多个权重值中存在与预设值相同的权重值的情况下,将所述预设值作为在GBi方法中所述待处理图像块的某一方向参考帧的权重值,控制点的候选运动信息对应的GBi索引号设置为该权重值对应的索引号。在由多个控制点的GBi索引号确定的多个权重值皆与预设值不同的情况下,将多个权重值中与所述预设值的差值最小的权重值作为在GBi方法中所述待处理图像块的参考帧的权重值,控制点的候选运动信息对应的GBi索引号设置为所述差值最小的权重值对应的GBi索引号。In a possible implementation, when there is a weight value that is the same as a preset value among the multiple weight values determined by the GBi index numbers of the multiple control points, the preset value is used as the weight value of the reference frame of a certain direction of the image block to be processed in the GBi method, and the GBi index number corresponding to the candidate motion information of the control point is set to the index number corresponding to the weight value. When the multiple weight values determined by the GBi index numbers of the multiple control points are all different from the preset value, the weight value with the smallest difference from the preset value among the multiple weight values is used as the weight value of the reference frame of the image block to be processed in the GBi method, and the GBi index number corresponding to the candidate motion information of the control point is set to the GBi index number corresponding to the weight value with the smallest difference.
举例来说,可定义权重值1/2对应的GBi索引号为K,按照以下方式设置基于构造的控制点运动矢量预测方法得到的候选运动信息的GBi索引号。For example, the GBi index number corresponding to the weight value 1/2 may be defined as K, and the GBi index number of the candidate motion information obtained based on the constructed control point motion vector prediction method may be set in the following manner.
若当前待处理图像块有两个控制点,其候选运动信息分别为相邻已编码块A和B的运动信息,相邻已编码块A和B的GBi索引号分别为IA和IB。那么,可根据IA和IB的值来推导候选运动信息对应的GBi索引号:若IA和IB中有一个或者一个以上的值为K,将控制点的候选运动信息对应的GBi索引号设置为K;若IA和IB均不等于K,则将候选运动信息对应的GBi索引号设置为多个权重值中与1/2最接近的权重值对应的索引号。If the current image block to be processed has two control points, the candidate motion information thereof is the motion information of the adjacent coded blocks A and B, and the GBi index numbers of the adjacent coded blocks A and B areIA andIB , respectively. Then, the GBi index number corresponding to the candidate motion information can be derived according to the values ofIA andIB : if one or more of the values ofIA andIB is K, the GBi index number corresponding to the candidate motion information of the control point is set to K; if bothIA andIB are not equal to K, the GBi index number corresponding to the candidate motion information is set to the index number corresponding to the weight value closest to 1/2 among the multiple weight values.
在一可能的实施方案中,在由所述多个控制点的GBi索引号确定的多个权重值的平均值为预设值的情况下,将所述预设值作为在GBi方法中所述待处理图像块的某一方向参考帧的权重值。在由所述多个控制点的GBi索引号确定的多个权重值的平均值不等于预设值的情况下,将多个权重值中与所述预设值的差值最小的权重值作为在GBi方法中所述待处理图像块的参考帧的权重值,控制点的候选运动信息对应的GBi索引号设置为所述差值最小的权重值对应的GBi索引号。In a possible implementation, when the average value of the multiple weight values determined by the GBi index numbers of the multiple control points is a preset value, the preset value is used as the weight value of the reference frame of a certain direction of the image block to be processed in the GBi method. When the average value of the multiple weight values determined by the GBi index numbers of the multiple control points is not equal to the preset value, the weight value with the smallest difference from the preset value among the multiple weight values is used as the weight value of the reference frame of the image block to be processed in the GBi method, and the GBi index number corresponding to the candidate motion information of the control point is set to the GBi index number corresponding to the weight value with the smallest difference.
举例来说,可定义权重值1/2对应的GBi索引号为K,按照以下方式设置基于构造的控制点运动矢量预测方法得到的候选运动信息的GBi索引号。For example, the GBi index number corresponding to the weight value 1/2 may be defined as K, and the GBi index number of the candidate motion information obtained based on the constructed control point motion vector prediction method may be set in the following manner.
若当前待处理图像块有两个控制点,其候选运动信息分别为相邻已编码块A和B的运动信息,相邻已编码块A和B的GBi索引号分别为IA和IB。那么,可根据IA和IB的值来推导候选运动信息对应的GBi索引号:若IA和IB对应的权重值的平均值为1/2,则候选运动信息列表中GBi索引号设置为K;若IA和IB对应的权重值的平均值不为1/2,则将候选运动信息对应的GBi索引号设置为更接近1/2的权重值对应的索引号。If the current image block to be processed has two control points, its candidate motion information is the motion information of the adjacent coded blocks A and B, and the GBi index numbers of the adjacent coded blocks A and B areIA andIB respectively. Then, the GBi index number corresponding to the candidate motion information can be derived according to the values ofIA andIB : if the average value of the weight values corresponding toIA andIB is 1/2, the GBi index number in the candidate motion information list is set to K; if the average value of the weight values corresponding toIA andIB is not 1/2, the GBi index number corresponding to the candidate motion information is set to the index number corresponding to the weight value closer to 1/2.
在一可能的实施方案中,在由所述多个控制点的GBi索引号确定的多个权重值皆与预设值不同,且所述多个权重值中存在至少两个权重值的平均值等于所述预设值的情况下,将所述预设值作为在GBi方法中所述待处理图像块的某一方向参考帧的权重值。In a possible implementation, when multiple weight values determined by the GBi index numbers of the multiple control points are all different from preset values, and there are at least two weight values among the multiple weight values whose average value is equal to the preset value, the preset value is used as the weight value of a certain direction reference frame of the image block to be processed in the GBi method.
举例来说,可定义权重值1/2对应的GBi索引号为K,按照以下方式设置基于构造的控制点运动矢量预测方法得到的候选运动信息的GBi索引号。For example, the GBi index number corresponding to the weight value 1/2 may be defined as K, and the GBi index number of the candidate motion information obtained based on the constructed control point motion vector prediction method may be set in the following manner.
若当前待处理图像块有三个控制点,其候选运动信息分别由相邻已编码块A、B和C的运动信息得到,A、B和C的GBi索引号分别为IA,IB和IC。根据IA、IB和IC的值来推导候选运动信息对应的GBi索引号:若IA,IB和IC中有一个或者一个以上的值为K,则候选运动信息列表中GBi索引号可设置为K;若IA、IB和IC均不等于K,且IA、IB和IC对应的权重值中存在至少两个权重值的均值为1/2(例如IA对应的权重值和IB对应的权重值的均值等于1/2),则将各个控制点的候选运动信息对应的GBi索引号设置为K;否则,将各个控制点的候选运动信息对应的GBi索引号设置为更接近1/2的权重值对应的索引号。If the current image block to be processed has three control points, its candidate motion information is obtained from the motion information of adjacent coded blocks A, B and C, and the GBi index numbers of A, B and C areIA ,IB andIC respectively. The GBi index number corresponding to the candidate motion information is derived according to the values ofIA ,IB andIC : if one or more of the values ofIA ,IB andIC is K, the GBi index number in the candidate motion information list can be set to K; ifIA ,IB andIC are not equal to K, and there are at least two weight values in the weight values corresponding toIA ,IB andIC whose average is 1/2 (for example, the average of the weight value corresponding toIA and the weight value corresponding toIB is equal to 1/2), the GBi index number corresponding to the candidate motion information of each control point is set to K; otherwise, the GBi index number corresponding to the candidate motion information of each control point is set to the index number corresponding to the weight value closer to 1/2.
需要说明的是,上述各实施例中的示例(例如,GBi索引号为0,权重值为1/2等等)用于解释本申请的技术方案而非限定。It should be noted that the examples in the above embodiments (for example, the GBi index number is 0, the weight value is 1/2, etc.) are used to explain the technical solution of the present application but are not limiting.
还需要说明的是,基于上文的技术思想,还可以采取其他类似方案予以实施。另外,在具体应用场景中,还可以将上述方案中的一个或多个综合实施。It should also be noted that, based on the above technical ideas, other similar solutions can also be adopted for implementation. In addition, in a specific application scenario, one or more of the above solutions can also be implemented in combination.
可以看到,在当前块的控制点的GBi索引号不同的情况下,通过实施本发明实施例上述方案,能够快速确定各个控制点的候选运动信息对应的GBi索引号,从而保证双向预测的编码过程的正常进行,提高编码效率和准确度。It can be seen that when the GBi index numbers of the control points of the current block are different, by implementing the above-mentioned scheme of the embodiment of the present invention, the GBi index numbers corresponding to the candidate motion information of each control point can be quickly determined, thereby ensuring the normal progress of the bidirectional prediction encoding process and improving the encoding efficiency and accuracy.
在本发明实施例中,编码端可使用语法元素来向解码端指示当前块的帧间预测模式以及其他相关信息。In the embodiment of the present invention, the encoder may use syntax elements to indicate the inter-frame prediction mode of the current block and other related information to the decoder.
目前通常采用的解析当前块采用的帧间预测模式的部分语法结构,示例性地可以参见表1所示。需要说明的是,语法结构中的语法元素还可以通过其他标识来表示,本发明对此不作具体限定。The currently commonly used partial syntax structure for parsing the inter-frame prediction mode adopted by the current block can be exemplified as shown in Table 1. It should be noted that the syntax elements in the syntax structure can also be represented by other identifiers, which is not specifically limited in the present invention.
表1Table 1
表1中,ae(v)表示采用基于自适应二元算术编码(context-based adaptivebinary arithmetic coding,cabac)编码的语法元素。In Table 1, ae(v) represents a syntax element encoded using context-based adaptive binary arithmetic coding (cabac).
语法元素merge_flag[x0][y0]可用于指示针对当前块是否采用融合模式。比如,当merge_flag[x0][y0]=1时,指示针对当前块采用融合模式,当merge_flag[x0][y0]=0时,指示针对当前块不采用融合模式。x0,y0表示当前块在视频图像的坐标。The syntax element merge_flag[x0][y0] can be used to indicate whether the merge mode is used for the current block. For example, when merge_flag[x0][y0]=1, it indicates that the merge mode is used for the current block, and when merge_flag[x0][y0]=0, it indicates that the merge mode is not used for the current block. x0, y0 represent the coordinates of the current block in the video image.
语法元素merge_subblock_flag[x0][y0]可用于指示针对当前块是否采用基于子块的merge模式。当前块所在条带的类型(slice_type)为P型或B型。比如merge_subblock_flag[x0][y0]=1,指示针对当前块采用基于子块的merge模式,merge_subblock_flag[x0][y0]=0,指示针对当前块不采用基于子块的merge模式,可以采用平移运动模型的merge模式。The syntax element merge_subblock_flag[x0][y0] can be used to indicate whether the sub-block based merge mode is used for the current block. The type (slice_type) of the slice where the current block is located is P type or B type. For example, merge_subblock_flag[x0][y0]=1 indicates that the sub-block based merge mode is used for the current block, and merge_subblock_flag[x0][y0]=0 indicates that the sub-block based merge mode is not used for the current block, and the merge mode of the translation motion model can be used.
语法元素merge_idx[x0][y0]可用于指示针对merge候选列表的索引值。The syntax element merge_idx[x0][y0] may be used to indicate an index value for the merge candidate list.
语法元素merge_subblock_idx[x0][y0]可用于指示针对基于子块的merge候选列表的索引值。The syntax element merge_subblock_idx[x0][y0] may be used to indicate an index value for a sub-block based merge candidate list.
语法元素inter_affine_flag[x0][y0]可用于指示在当前块所在条带为P型条带或者B型条带时,针对当前块是否采用基于仿射运动模型的AMVP模式。The syntax element inter_affine_flag[x0][y0] may be used to indicate whether the AMVP mode based on the affine motion model is adopted for the current block when the slice where the current block is located is a P-type slice or a B-type slice.
语法元素cu_affine_type_flag[x0][y0]可以用于指示:在当前块所在条带为P型条带或者B型条带时,针对当前块是否采用6参数仿射运动模型进行运动补偿。The syntax element cu_affine_type_flag[x0][y0] may be used to indicate whether to use a 6-parameter affine motion model to perform motion compensation for the current block when the slice where the current block is located is a P-type slice or a B-type slice.
cu_affine_type_flag[x0][y0]=0,指示针对当前块不采用6参数仿射运动模型进行运动补偿,可以仅采用4参数仿射运动模型进行运动补偿;cu_affine_type_flag[x0][y0]=1,指示针对当前块采用6参数仿射运动模型进行运动补偿。cu_affine_type_flag[x0][y0]=0, indicating that the 6-parameter affine motion model is not used for motion compensation for the current block, and only the 4-parameter affine motion model can be used for motion compensation; cu_affine_type_flag[x0][y0]=1, indicating that the 6-parameter affine motion model is used for motion compensation for the current block.
参见表2所示,MotionModelIdc[x0][y0]=1,指示采用4参数仿射运动模型,MotionModelIdc[x0][y0]=2,指示采用6参数仿射运动模型,MotionModelIdc[x0][y0]=0指示采用平动运动模型。As shown in Table 2, MotionModelIdc[x0][y0]=1 indicates that a 4-parameter affine motion model is used, MotionModelIdc[x0][y0]=2 indicates that a 6-parameter affine motion model is used, and MotionModelIdc[x0][y0]=0 indicates that a translational motion model is used.
表2Table 2
此外,表1中,变量MaxNumMergeCand、MaxNumSubblockMergeCand用于表示最大列表长度,指示构造的候选运动矢量列表的最大长度。inter_pred_idc[x0][y0]用于指示预测方向。PRED_L1用于指示后向预测。num_ref_idx_l0_active_minus1指示前向参考帧列表的参考帧个数,ref_idx_l0[x0][y0]指示当前块的前向参考帧索引值。mvd_coding(x0,y0,0,0)指示第一个运动矢量差。mvp_l0_flag[x0][y0]指示前向MVP候选列表索引值。PRED_L0指示前向预测。num_ref_idx_l1_active_minus1指示后向参考帧列表的参考帧个数。ref_idx_l1[x0][y0]指示当前块的后向参考帧索引值,mvp_l1_flag[x0][y0]表示后向MVP候选列表索引值。In addition, in Table 1, variables MaxNumMergeCand and MaxNumSubblockMergeCand are used to indicate the maximum list length, indicating the maximum length of the constructed candidate motion vector list. inter_pred_idc[x0][y0] is used to indicate the prediction direction. PRED_L1 is used to indicate backward prediction. num_ref_idx_l0_active_minus1 indicates the number of reference frames in the forward reference frame list, and ref_idx_l0[x0][y0] indicates the forward reference frame index value of the current block. mvd_coding(x0,y0,0,0) indicates the first motion vector difference. mvp_l0_flag[x0][y0] indicates the forward MVP candidate list index value. PRED_L0 indicates forward prediction. num_ref_idx_l1_active_minus1 indicates the number of reference frames in the backward reference frame list. ref_idx_l1[x0][y0] indicates the backward reference frame index value of the current block, and mvp_l1_flag[x0][y0] indicates the backward MVP candidate list index value.
基于上文的描述,下面进一步描述本发明实施例提供的帧间预测方法,从解码端的角度进行描述,参见图11A,该方法包括但不限于以下步骤:Based on the above description, the inter-frame prediction method provided by the embodiment of the present invention is further described below, and is described from the perspective of the decoding end. Referring to FIG. 11A , the method includes but is not limited to the following steps:
S601:解析码流,确定当前待处理图像块(或称当前解码块,或称当前块)的帧间预测模式。S601: Parse the bitstream to determine the inter-frame prediction mode of the current image block to be processed (or called the current decoding block, or called the current block).
例如,可基于表1所示的语法结构,解析码流,从而确定当前块的帧间预测模式。For example, the bitstream may be parsed based on the syntax structure shown in Table 1 to determine the inter-frame prediction mode of the current block.
若确定当前块的帧间预测模式为基于仿射运动模型的AMVP模式,即,语法元素merge_flag=0且affine_inter_flag=1,指示当前块的帧间预测模式为基于仿射运动模型的AMVP模式,则后续执行S602a-S606a。If it is determined that the inter prediction mode of the current block is the AMVP mode based on the affine motion model, that is, the syntax elements merge_flag=0 and affine_inter_flag=1, indicating that the inter prediction mode of the current block is the AMVP mode based on the affine motion model, then S602a-S606a is subsequently executed.
若确定当前块的帧间预测模式为基于仿射运动模型的merge模式,即,语法元素merge_flag=1且affine_merge_flag=1,指示当前块的帧间预测模式为基于仿射运动模型的Merge模式,则后续执行S602b-S605b。If it is determined that the inter prediction mode of the current block is the merge mode based on the affine motion model, that is, the syntax elements merge_flag=1 and affine_merge_flag=1, indicating that the inter prediction mode of the current block is the merge mode based on the affine motion model, then S602b-S605b is subsequently executed.
S602a:构建基于仿射运动模型的AMVP模式对应的候选运动矢量列表。S602a: Construct a candidate motion vector list corresponding to the AMVP mode based on the affine motion model.
本发明实施例中,利用继承的控制点运动矢量预测方法和/或构造的控制点运动矢量预测方法,推导得到当前块的候选的控制点运动矢量,来加入AMVP模式对应的候选运动矢量列表。候选运动信息列表中的运动信息可包含:候选的控制点运动矢量预测值、预测方向。在可能的实施例中,该运动信息还可以包括其他的信息。In an embodiment of the present invention, the inherited control point motion vector prediction method and/or the constructed control point motion vector prediction method are used to derive the candidate control point motion vector of the current block to add to the candidate motion vector list corresponding to the AMVP mode. The motion information in the candidate motion information list may include: candidate control point motion vector prediction value and prediction direction. In a possible embodiment, the motion information may also include other information.
候选运动矢量列表可以包括二元组列表(当前编码块为4参数仿射运动模型)或三元组列表或四元组列表。二元组列表中包括一个或者多个用于构造4参数仿射运动模型的二元组。三元组列表中包括一个或者多个用于构造6参数仿射运动模型的三元组。四元组列表中包括一个或者多个用于构造8参数双线性模型的三元组The candidate motion vector list may include a two-tuple list (the current coding block is a 4-parameter affine motion model) or a three-tuple list or a four-tuple list. The two-tuple list includes one or more two-tuples for constructing a 4-parameter affine motion model. The three-tuple list includes one or more triplets for constructing a 6-parameter affine motion model. The four-tuple list includes one or more triplets for constructing an 8-parameter bilinear model.
其中,根据继承的控制点运动矢量预测方法在确定当前块的候选的控制点运动矢量过程中,采用相邻仿射解码块至少两个子块的运动矢量来推导得到当前块的候选的控制点运动矢量预测值(候选运动矢量二元组/三元组/四元组),来加入候选运动矢量列表。关于继承的控制点运动矢量预测方法的具体内容可参考前文3)中的详细描述,为了说明书的简洁,这里不再赘述。Among them, in the process of determining the candidate control point motion vector of the current block according to the inherited control point motion vector prediction method, the motion vectors of at least two sub-blocks of the adjacent affine decoding block are used to derive the candidate control point motion vector prediction value (candidate motion vector binary/triplet/quadruplet) of the current block to add it to the candidate motion vector list. For the specific content of the inherited control point motion vector prediction method, please refer to the detailed description in 3) above, and for the sake of brevity of the specification, it will not be repeated here.
其中,根据构造的控制点运动矢量预测方法在确定当前块的候选的控制点运动矢量过程中,将当前块的控制点周边相邻的已编码块的运动矢量进行组合,作为当前仿射编码块的控制点的运动矢量。具体内容可参考前文4)和5)的详细描述。Among them, according to the constructed control point motion vector prediction method, in the process of determining the candidate control point motion vector of the current block, the motion vectors of the adjacent coded blocks around the control point of the current block are combined as the motion vector of the control point of the current affine coded block. For specific content, please refer to the detailed description of 4) and 5) above.
示例性的,当前块采用的仿射运动模型是4参数仿射运动模型(即,MotionModelIdc为1),利用当前块周边相邻的已编码块的运动信息确定当前块左上顶点和右上顶点的运动矢量。具体可以采用构造的控制点运动矢量预测方法1,或者采用构造的控制点运动矢量预测方法2,来得到当前块的候选的控制点运动矢量,进而加入AMVP模式对应的候选运动矢量列表。Exemplarily, the affine motion model used by the current block is a 4-parameter affine motion model (i.e., MotionModelIdc is 1), and the motion vectors of the upper left vertex and the upper right vertex of the current block are determined using the motion information of the adjacent coded blocks around the current block. Specifically, the constructed control point motion vector prediction method 1 or the constructed control point motion vector prediction method 2 can be used to obtain the candidate control point motion vectors of the current block, and then added to the candidate motion vector list corresponding to the AMVP mode.
示例性的,当前块采用的仿射运动模型是6参数仿射运动模型(即,MotionModelIdc为2),利用当前块周边相邻的已编码块的运动信息确定当前块左上顶点和右上顶点以及左下顶点的运动矢量。具体可以采用构造的控制点运动矢量预测方法1,或者采用构造的控制点运动矢量预测方法2,来得到当前块的候选的控制点运动矢量,进而加入AMVP模式对应的候选运动矢量列表。Exemplarily, the affine motion model used by the current block is a 6-parameter affine motion model (i.e., MotionModelIdc is 2), and the motion vectors of the upper left vertex, the upper right vertex, and the lower left vertex of the current block are determined using the motion information of the adjacent coded blocks around the current block. Specifically, the constructed control point motion vector prediction method 1 or the constructed control point motion vector prediction method 2 can be used to obtain the candidate control point motion vectors of the current block, and then added to the candidate motion vector list corresponding to the AMVP mode.
需要说明的是,采用其他控制点来表示相邻块和当前块的运动模型的方法也可以适用于本发明,在此不做赘述。It should be noted that the method of using other control points to represent the motion models of the adjacent blocks and the current block can also be applied to the present invention, which will not be described in detail here.
本发明可能实施例中,还可将候选运动矢量二元组/三元组/四元组列表根据特定的规则进行剪枝和排序,并可将其截断或填充至特定的个数。In a possible embodiment of the present invention, the candidate motion vector binary/triplet/quadruple list may be pruned and sorted according to specific rules, and may be truncated or padded to a specific number.
S603a:解析码流,确定最优的控制点运动矢量预测值。S603a: Analyze the bitstream and determine the optimal control point motion vector prediction value.
具体的,通过解析码流获得候选运动矢量列表的索引号,根据候选运动矢量列表的索引号从上述S602a构建的候选运动矢量列表中确定最优的控制点运动矢量预测值(control point motion vectors predictor,CPMVP)。Specifically, the index number of the candidate motion vector list is obtained by parsing the bitstream, and the optimal control point motion vectors predictor (CPMVP) is determined from the candidate motion vector list constructed in the above S602a according to the index number of the candidate motion vector list.
例如,若当前块采用的仿射运动模型是4参数仿射运动模型(MotionModelIdc为1),则解析获得候选运动矢量列表的索引号,示例性的,索引号为mvp_l0_flag或mvp_l1_flag,根据该索引号从候选运动矢量列表中确定2个控制点的最优运动矢量预测值。For example, if the affine motion model used by the current block is a 4-parameter affine motion model (MotionModelIdc is 1), the index number of the candidate motion vector list is parsed and obtained. For example, the index number is mvp_l0_flag or mvp_l1_flag. The optimal motion vector prediction value of the two control points is determined from the candidate motion vector list according to the index number.
又例如,若当前块采用的仿射运动模型是6参数仿射运动模型(MotionModelIdc为2),则解析获得候选运动矢量列表的索引号,根据该索引号从候选运动矢量列表中确定3个控制点的最优运动矢量预测值。For another example, if the affine motion model used by the current block is a 6-parameter affine motion model (MotionModelIdc is 2), the index number of the candidate motion vector list is obtained by parsing, and the optimal motion vector prediction values of the three control points are determined from the candidate motion vector list according to the index number.
S604a:解析码流,确定控制点的运动矢量。S604a: Analyze the code stream and determine the motion vector of the control point.
具体的,通过解析码流获得控制点的运动矢量差值(control point motionvectors differences,CPMVD),然后根据控制点的运动矢量差值以及上述S803a所确定的最优的控制点运动矢量预测值(CPMVP),得到控制点的运动矢量。Specifically, the control point motion vector differences (CPMVD) are obtained by parsing the bit stream, and then the motion vector of the control point is obtained according to the control point motion vector differences and the optimal control point motion vector prediction value (CPMVP) determined by S803a.
例如,当前块采用的仿射运动模型是4参数仿射运动模型(MotionModelIdc为1),以前向预测为例,2个控制点的运动矢量差值别为mvd_coding(x0,y0,0,0)和mvd_coding(x0,y0,0,1)。从码流中解码得到当前块的2个控制点的运动矢量差值,示例性的,可从码流中解码得到左上位置控制点和右上位置控制点的运动矢量差值。然后分别使用各控制点的运动矢量差值和运动矢量预测值相加,获得控制点的运动矢量值,即得到当前块左上位置控制点和右上位置控制点的运动矢量值。For example, the affine motion model used by the current block is a 4-parameter affine motion model (MotionModelIdc is 1). Taking forward prediction as an example, the motion vector differences of the two control points are mvd_coding(x0, y0, 0, 0) and mvd_coding(x0, y0, 0, 1). The motion vector difference of the two control points of the current block is obtained by decoding from the bitstream. For example, the motion vector difference of the upper left control point and the upper right control point can be obtained from the bitstream. Then, the motion vector difference of each control point is added to the motion vector prediction value to obtain the motion vector value of the control point, that is, the motion vector value of the upper left control point and the upper right control point of the current block is obtained.
又例如,当前块采用的仿射运动模型是6参数仿射运动模型(MotionModelIdc为2),以前向预测为例,3个控制点的运动矢量差分别为mvd_coding(x0,y0,0,0)和mvd_coding(x0,y0,0,1)、mvd_coding(x0,y0,0,2)。从码流中解码得到当前块的3个控制点的运动矢量差,示例性的,从码流中解码得到左上控制点、右上控制点和左下控制点的运动矢量差值。然后,分别使用各控制点的运动矢量差值和运动矢量预测值相加,获得控制点的运动矢量值,即得到当前块左上控制点、右上控制点和左下控制点的运动矢量值。For another example, the affine motion model used by the current block is a 6-parameter affine motion model (MotionModelIdc is 2). Taking forward prediction as an example, the motion vector differences of the three control points are mvd_coding(x0, y0, 0, 0), mvd_coding(x0, y0, 0, 1), and mvd_coding(x0, y0, 0, 2). The motion vector differences of the three control points of the current block are decoded from the bitstream. For example, the motion vector differences of the upper left control point, the upper right control point, and the lower left control point are decoded from the bitstream. Then, the motion vector difference of each control point is added to the motion vector prediction value to obtain the motion vector value of the control point, that is, the motion vector values of the upper left control point, the upper right control point, and the lower left control point of the current block are obtained.
需要说明的是,本发明实施例还可以是其他仿射运动模型和其他控制点位置,在此不做赘述。It should be noted that the embodiment of the present invention may also be other affine motion models and other control point positions, which will not be described in detail here.
S605a:根据控制点的运动信息以及当前块采用的仿射运动模型,获得当前块中每个子块的运动矢量值。S605a: Obtain the motion vector value of each sub-block in the current block according to the motion information of the control point and the affine motion model adopted by the current block.
对于当前仿射解码块的每一个子块(一个子块也可以等效为一个运动补偿单元,子块的宽和高小于当前块的宽和高),可采用运动补偿单元中预设位置像素点的运动信息来表示该运动补偿单元内所有像素点的运动信息。假设运动补偿单元的尺寸为MxN,则预设位置像素点可以为运动补偿单元中心点(M/2,N/2)、左上像素点(0,0),右上像素点(M-1,0),或其他位置的像素点。以下以运动补偿单元中心点为例说明,参见图12所示。图12中V0表示左上控制点的运动矢量,V1表示右上控制点的运动矢量。每个小方框表示一个运动补偿单元。For each sub-block of the current affine decoding block (a sub-block can also be equivalent to a motion compensation unit, and the width and height of the sub-block are smaller than the width and height of the current block), the motion information of the preset position pixel in the motion compensation unit can be used to represent the motion information of all pixels in the motion compensation unit. Assuming that the size of the motion compensation unit is MxN, the preset position pixel can be the center point of the motion compensation unit (M/2, N/2), the upper left pixel (0, 0), the upper right pixel (M-1, 0), or a pixel at another position. The following takes the center point of the motion compensation unit as an example, as shown in Figure 12. In Figure 12, V0 represents the motion vector of the upper left control point, and V1 represents the motion vector of the upper right control point. Each small box represents a motion compensation unit.
运动补偿单元中心点相对于当前仿射解码块左上顶点像素的坐标使用如下公式(33)计算得到,其中i为水平方向第i个运动补偿单元(从左到右),j为竖直方向第j个运动补偿单元(从上到下),(x(i,j),y(i,j))表示第(i,j)个运动补偿单元中心点相对于当前仿射解码块左上控制点像素的坐标。The coordinates of the center point of the motion compensation unit relative to the upper left vertex pixel of the current affine decoding block are calculated using the following formula (33), where i is the i-th motion compensation unit in the horizontal direction (from left to right), j is the j-th motion compensation unit in the vertical direction (from top to bottom), and (x(i, j) , y(i, j) ) represents the coordinates of the center point of the (i, j)-th motion compensation unit relative to the upper left control point pixel of the current affine decoding block.
例如,若当前仿射解码块采用的仿射运动模型为6参数仿射运动模型,将(x(i,j),y(i,j))代入6参数仿射运动模型公式(34),获得每个运动补偿单元中心点的运动矢量,作为该运动补偿单元内所有像素点的运动矢量(vx(i,j),vy(i,j))。For example, if the affine motion model used by the current affine decoding block is a 6-parameter affine motion model, substitute (x(i, j) , y(i, j) ) into the 6-parameter affine motion model formula (34) to obtain the motion vector of the center point of each motion compensation unit, which is used as the motion vector (vx(i, j) , vy(i, j) ) of all pixels in the motion compensation unit.
例如,若当前仿射解码块采用的仿射运动模型为4仿射运动模型,将(x(i,j),y(i,j))代入4参数仿射运动模型公式(35),获得每个运动补偿单元中心点的运动矢量,作为该运动补偿单元内所有像素点的运动矢量(vx(i,j),vy(i,j))。For example, if the affine motion model adopted by the current affine decoding block is a 4-parameter affine motion model, substitute (x(i, j) , y(i, j) ) into the 4-parameter affine motion model formula (35) to obtain the motion vector of the center point of each motion compensation unit, which is used as the motion vector (vx(i, j) , vy(i, j) ) of all pixels in the motion compensation unit.
S606a:解析码流获得当前块的GBi索引号和参考帧索引,根据当前块的GBi索引号和参考帧索引和各子块的运动矢量值,获得各子块的像素预测值。S606a: Parse the code stream to obtain the GBi index number and reference frame index of the current block, and obtain the pixel prediction value of each sub-block according to the GBi index number and reference frame index of the current block and the motion vector value of each sub-block.
举例来说,在双向预测中,当前块获得GBi索引号和参考帧索引后,可根据参考帧索引从第一参考图像帧集合和第二参考图像帧集合(例如,List0和List1)中获得第一方向参考帧和第二方向参考帧,根据S605a所获得的子块的运动矢量值在第一方向参考帧和第二方向参考帧中分别确定子块的参考块(预测块);确定GBi索引号对应的一组权重值组合,然后根据所述一组权重值组合对所述参考块进行加权预测和运动补偿,从而获得当前块的各子块的像素预测值。详细实现过程还可参考前文11)中的详细描述,为了说明书的简洁,这里不再赘述。For example, in bidirectional prediction, after the current block obtains the GBi index number and the reference frame index, the first direction reference frame and the second direction reference frame can be obtained from the first reference image frame set and the second reference image frame set (for example, List0 and List1) according to the reference frame index, and the reference block (prediction block) of the sub-block is determined in the first direction reference frame and the second direction reference frame according to the motion vector value of the sub-block obtained in S605a; a set of weight value combinations corresponding to the GBi index number are determined, and then the reference block is weighted predicted and motion compensated according to the set of weight value combinations, so as to obtain the pixel prediction value of each sub-block of the current block. The detailed implementation process can also refer to the detailed description in the previous 11), which will not be repeated here for the sake of brevity.
S602b:构建基于仿射运动模型的merge模式的运动信息候选列表。S602b: Construct a motion information candidate list of merge mode based on an affine motion model.
具体的,可以利用继承的控制点运动矢量预测方法和/或构造的控制点运动矢量预测方法,构建基于仿射运动模型的merge模式的运动信息候选列表,候选运动信息列表中的运动信息包含:候选的控制点运动矢量预测值(候选运动矢量组合)、预测方向、GBi索引号、参考帧索引。在可能的实施例中,该运动信息还可以包括其他的信息。相关实现可参考前文9)的详细描述,为了说明书的简洁,这里不再赘述。Specifically, the inherited control point motion vector prediction method and/or the constructed control point motion vector prediction method can be used to construct a motion information candidate list of merge mode based on the affine motion model, and the motion information in the candidate motion information list includes: candidate control point motion vector prediction value (candidate motion vector combination), prediction direction, GBi index number, reference frame index. In a possible embodiment, the motion information may also include other information. For related implementations, please refer to the detailed description of 9) above. For the sake of brevity of the specification, it will not be repeated here.
在可能的实施例中,还可以利用ATMVP方法,和/或,继承的控制点运动矢量预测方法,和/或,构造的控制点运动矢量预测方法,和/或,PLANAR方法,构建基于子块的融合候选列表(sub-block based merging candidate list)。相关实现可参考前文6)、7)、9)、10)的详细描述,这里不再赘述。In a possible embodiment, the ATMVP method, and/or the inherited control point motion vector prediction method, and/or the constructed control point motion vector prediction method, and/or the PLANAR method can also be used to construct a sub-block based merging candidate list. For related implementations, please refer to the detailed description of 6), 7), 9), and 10) above, which will not be repeated here.
关于继承的控制点运动矢量预测方法和/或构造的控制点运动矢量预测方法的具体实现可参考前文3)、4)、5)的详细描述,这里不再赘述。For the specific implementation of the inherited control point motion vector prediction method and/or the constructed control point motion vector prediction method, please refer to the detailed description of 3), 4), and 5) above, which will not be repeated here.
举例来说,利用构造的控制点运动矢量预测方法获得控制点的候选运动矢量组合后,若此时候选列表的长度小于最大列表长度MaxAffineNumMrgCand,则按照预置的顺序遍历这些组合,得到合法的组合作为候选的控制点运动信息,如果此时候选运动矢量列表为空,则将该候选的控制点运动信息加入候选运动矢量列表;否则依次遍历候选运动矢量列表中的运动信息,检查候选运动矢量列表中是否存在与该候选的控制点运动信息相同的运动信息。如果候选运动矢量列表中不存在与该候选的控制点运动信息相同的运动信息,则将该候选的控制点运动信息加入候选运动矢量列表。For example, after obtaining the candidate motion vector combinations of the control points using the constructed control point motion vector prediction method, if the length of the candidate list is less than the maximum list length MaxAffineNumMrgCand, then traverse these combinations in a preset order to obtain legal combinations as candidate control point motion information. If the candidate motion vector list is empty at this time, then add the candidate control point motion information to the candidate motion vector list; otherwise, traverse the motion information in the candidate motion vector list in turn to check whether there is motion information in the candidate motion vector list that is the same as the candidate control point motion information. If there is no motion information in the candidate motion vector list that is the same as the candidate control point motion information, then add the candidate control point motion information to the candidate motion vector list.
示例性地,一种预置的顺序如下:Affine(CP1,CP2,CP3)->Affine(CP1,CP2,CP4)->Affine(CP1,CP3,CP4)->Affine(CP2,CP3,CP4)->Affine(CP1,CP2)->Affine(CP1,CP3)->Affine(CP2,CP3)->Affine(CP1,CP4)->Affine(CP2,CP4)->Affine(CP3,CP4),总共10种组合。Exemplarily, a preset order is as follows: Affine(CP1,CP2,CP3)->Affine(CP1,CP2,CP4)->Affine(CP1,CP3,CP4)->Affine(CP2,CP3,CP4)->Affine(CP1,CP2)->Affine(CP1,CP3)->Affine(CP2,CP3)->Affine(CP1,CP4)->Affine(CP2,CP4)->Affine(CP3,CP4), a total of 10 combinations.
若组合对应的控制点运动信息不可得,则认为该组合不可得。若组合可得,确定该组合的参考帧索引(两个控制点时,选择参考帧索引最小的作为该组合的参考帧索引;大于两个控制点时,先选择出现次数最多的参考帧索引,若有多个参考帧索引的出现次数一样多,则选择参考帧索引最小的作为该组合的参考帧索引),并将控制点的运动矢量进行缩放。若缩放后的所有控制点的运动信息一致,则该组合不合法。If the motion information of the control points corresponding to the combination is not available, the combination is considered unavailable. If the combination is available, determine the reference frame index of the combination (when there are two control points, select the reference frame index with the smallest index as the reference frame index of the combination; when there are more than two control points, first select the reference frame index with the largest number of occurrences. If there are multiple reference frame indexes with the same number of occurrences, select the reference frame index with the smallest index as the reference frame index of the combination), and scale the motion vector of the control point. If the motion information of all control points after scaling is consistent, the combination is illegal.
若组合对应的控制点运动信息可得,确定该组合对应的GBi索引号。由于当前待处理图像块的控制点的运动矢量来自不同的相邻已解码块,由于不同的相邻已解码块的GBi索引号可能不同,那么可利用前文所描述的一种或多种实施方案对所述不同的相邻已解码块的GBi索引号进行处理,从而获得该组合对应的GBi索引号。If the control point motion information corresponding to the combination is available, the GBi index number corresponding to the combination is determined. Since the motion vectors of the control points of the current image block to be processed come from different adjacent decoded blocks, and since the GBi index numbers of different adjacent decoded blocks may be different, the GBi index numbers of the different adjacent decoded blocks may be processed using one or more of the above-described implementations to obtain the GBi index number corresponding to the combination.
又举例来说,如果是通过继承的控制点运动矢量预测方法获得控制点的候选运动矢量,那么各个控制点的候选运动矢量对应的GBi索引号来自于相邻已解码块。后续可将控制点的候选运动矢量和对应的GBi索引号加入到候选运动信息列表。For another example, if the candidate motion vector of the control point is obtained by the inherited control point motion vector prediction method, then the GBi index number corresponding to the candidate motion vector of each control point comes from the adjacent decoded block. The candidate motion vector of the control point and the corresponding GBi index number can be added to the candidate motion information list later.
可选地,本发明实施例还可以针对候选运动矢量列表进行填充,比如,经过上述遍历过程后,此时候选运动矢量列表的长度小于最大列表长度MaxAffineNumMrgCand,则可以对候选运动矢量列表进行填充,直到列表的长度等于MaxAffineNumMrgCand。Optionally, an embodiment of the present invention may also fill the candidate motion vector list. For example, after the above-mentioned traversal process, if the length of the candidate motion vector list is less than the maximum list length MaxAffineNumMrgCand, the candidate motion vector list may be filled until the length of the list is equal to MaxAffineNumMrgCand.
此外,在可能实施例中,还可将运动信息候选列表根据特定的规则进行剪枝和排序,并可将其截断或填充至特定的个数。例如可以通过补充零运动矢量的方法进行填充,或者通过将现有列表中已存在的候选的运动信息进行组合、加权平均的方法进行填充。需要说明的是,其他获得候选运动矢量列表填充的方法也可适用于本发明,在此不做赘述。In addition, in a possible embodiment, the motion information candidate list may be pruned and sorted according to specific rules, and may be truncated or filled to a specific number. For example, it may be filled by adding a zero motion vector, or by combining the candidate motion information already in the existing list and weighted averaging. It should be noted that other methods for obtaining the candidate motion vector list filling may also be applicable to the present invention, which will not be described in detail here.
S603b:解析码流,确定最优的控制点运动信息。S603b: Analyze the bitstream and determine the optimal control point motion information.
具体的,通过解析码流获得候选运动矢量列表的索引号,根据该候选运动矢量列表的索引号从上述S602b构建的候选运动矢量列表中确定最优的控制点运动信息。可以理解的,该最优的控制点运动信息包括最优的候选运动矢量组合、预测方向、GBi索引号、参考帧索引。在可能的实施例中,该最优的控制点运动信息还可以包括其他的信息。Specifically, the index number of the candidate motion vector list is obtained by parsing the bitstream, and the optimal control point motion information is determined from the candidate motion vector list constructed in the above S602b according to the index number of the candidate motion vector list. It can be understood that the optimal control point motion information includes the optimal candidate motion vector combination, prediction direction, GBi index number, and reference frame index. In a possible embodiment, the optimal control point motion information may also include other information.
S604b:根据最优的控制点运动信息以及当前解码块采用的仿射运动模型,获得当前块中每个子块的运动矢量值。具体实现过程可参考前述S605a中的描述,这里不再赘述。S604b: According to the optimal control point motion information and the affine motion model used by the current decoding block, obtain the motion vector value of each sub-block in the current block. The specific implementation process can be referred to the description in the above S605a, which will not be repeated here.
S605b:根据当前块的GBi索引号和参考帧索引和各子块的运动矢量值,获得各子块的像素预测值。S605b: Obtain pixel prediction values of each sub-block according to the GBi index number and reference frame index of the current block and the motion vector value of each sub-block.
具体的,通过S603b获得了最优的候选运动矢量组合对应的GBi索引号和参考帧索引,该GBi索引号即可作为当前块的GBi索引号。Specifically, the GBi index number and the reference frame index corresponding to the best candidate motion vector combination are obtained through S603b, and the GBi index number can be used as the GBi index number of the current block.
在双向预测中,当前块可根据参考帧索引从第一参考图像帧集合和第二参考图像帧集合(例如,List0和List1)中获得第一方向参考帧和第二方向参考帧,根据S604b所获得的子块的运动矢量值在第一方向参考帧和第二方向参考帧中分别确定子块的参考块(预测块);确定GBi索引号对应的一组权重值组合,然后根据所述一组权重值组合对所述参考块进行加权预测和运动补偿,从而获得当前块的各子块的像素预测值。详细实现过程还可参考前文11)中的详细描述,为了说明书的简洁,这里不再赘述。In bidirectional prediction, the current block can obtain the first direction reference frame and the second direction reference frame from the first reference image frame set and the second reference image frame set (for example, List0 and List1) according to the reference frame index, and determine the reference block (prediction block) of the sub-block in the first direction reference frame and the second direction reference frame respectively according to the motion vector value of the sub-block obtained in S604b; determine a set of weight value combinations corresponding to the GBi index number, and then perform weighted prediction and motion compensation on the reference block according to the set of weight value combinations, so as to obtain the pixel prediction value of each sub-block of the current block. The detailed implementation process can also refer to the detailed description in the previous 11), which will not be repeated here for the sake of brevity.
可以看到,本发明实施例中在帧间预测过程中,解码端可采用GBi的方法结合基于仿射运动模型的AMVP模式或merge模式进行双向预测。若当前块采用仿射运动模型,帧间预测过程采用构造的控制点运动矢量预测方法,那么当前块的GBi索引号可从码流中直接获得(AMVP模式)或者根据控制点的相邻已解码块的GBi索引号进行处理而得到。保证了解码过程的顺利进行,当前块的GBi索引号又可以继续用于后续待解码块的解码过程,提高了编码效率和预测准确性。It can be seen that in the inter-frame prediction process in the embodiment of the present invention, the decoding end can use the GBi method in combination with the AMVP mode or merge mode based on the affine motion model for bidirectional prediction. If the current block adopts the affine motion model and the inter-frame prediction process adopts the constructed control point motion vector prediction method, then the GBi index number of the current block can be directly obtained from the bitstream (AMVP mode) or processed according to the GBi index number of the adjacent decoded block of the control point. The smooth progress of the decoding process is guaranteed, and the GBi index number of the current block can continue to be used in the decoding process of the subsequent block to be decoded, thereby improving the coding efficiency and prediction accuracy.
基于前文的描述,下面进一步描述本发明实施例提供的帧间预测方法,从编码端的角度进行描述,参见图11B,该方法包括但不限于以下步骤:Based on the above description, the inter-frame prediction method provided by the embodiment of the present invention is further described below, and is described from the perspective of the encoding end. Referring to FIG. 11B , the method includes but is not limited to the following steps:
S701:确定当前块的帧间预测模式。S701: Determine the inter-frame prediction mode of the current block.
在一具体实现中,对于编码端的帧间预测中,也可预设多种帧间预测模式,所述多种帧内预测模式中例如包括上文所描述的基于仿射运动模型的AMVP模式以及基于仿射运动模型的merge模式,编码端遍历所述多种帧间预测模式,从而确定对当前块的预测最优的帧间预测模式。In a specific implementation, for the inter-frame prediction at the encoding end, multiple inter-frame prediction modes can also be preset. The multiple intra-frame prediction modes include, for example, the AMVP mode based on the affine motion model and the merge mode based on the affine motion model described above. The encoding end traverses the multiple inter-frame prediction modes to determine the inter-frame prediction mode that is optimal for predicting the current block.
在又一具体实现中,对于编码端的帧间预测中,也可只预设一种帧间预测模式,即在这种情况下编码端直接确定当前采用的是默认的帧间预测模式,该默认的帧间预测模式为基于仿射运动模型的AMVP模式或者基于仿射运动模型的merge模式。In another specific implementation, for the inter-frame prediction at the encoding end, only one inter-frame prediction mode can be preset. That is, in this case, the encoding end directly determines that the default inter-frame prediction mode is currently used, and the default inter-frame prediction mode is the AMVP mode based on the affine motion model or the merge mode based on the affine motion model.
本发明实施例中,如果确定当前块的帧间预测模式为基于仿射运动模型的AMVP模式,则后续执行S702a-S705a。In the embodiment of the present invention, if it is determined that the inter-frame prediction mode of the current block is the AMVP mode based on the affine motion model, S702a-S705a is subsequently performed.
本发明实施例中,如果确定当前块的帧间预测模式为基于仿射运动模型的merge模式,则后续执行S702b-S704b。In the embodiment of the present invention, if it is determined that the inter-frame prediction mode of the current block is the merge mode based on the affine motion model, S702b-S704b is subsequently executed.
S702a:构建基于仿射运动模型的AMVP模式对应的候选运动矢量列表。S702a: Construct a candidate motion vector list corresponding to the AMVP mode based on the affine motion model.
本发明实施例中,利用继承的控制点运动矢量预测方法和/或构造的控制点运动矢量预测方法,推导得到当前块的候选的控制点运动矢量,来加入AMVP模式对应的候选运动矢量列表,候选运动矢量列表中的运动信息包含:候选的控制点运动矢量预测值(候选运动矢量组合)、预测方向。S702a的具体实施可参考前述S602a的描述,这里不再赘述。In the embodiment of the present invention, the inherited control point motion vector prediction method and/or the constructed control point motion vector prediction method are used to derive the candidate control point motion vector of the current block to add it to the candidate motion vector list corresponding to the AMVP mode. The motion information in the candidate motion vector list includes: candidate control point motion vector prediction value (candidate motion vector combination) and prediction direction. The specific implementation of S702a can refer to the description of S602a above, which will not be repeated here.
关于继承的控制点运动矢量预测方法和/或构造的控制点运动矢量预测方法的具体实现可参考前文3)、4)、5)的详细描述,这里不再赘述。For the specific implementation of the inherited control point motion vector prediction method and/or the constructed control point motion vector prediction method, please refer to the detailed description of 3), 4), and 5) above, which will not be repeated here.
S703a:根据率失真代价,确定最优的控制点运动矢量预测值。S703a: Determine the optimal control point motion vector prediction value according to the rate-distortion cost.
在一实例中,编码端可利用候选运动矢量列表中的控制点运动矢量预测值(如候选运动矢量二元组/三元组/四元组),通过公式(3)或(5)或(7)获得当前块中每个子运动补偿单元的运动矢量,进而得到每个子运动补偿单元的运动矢量所指向的参考帧中对应位置的像素值,作为其预测值,进行采用仿射运动模型的运动补偿。计算当前编码块中每个像素点的原始值和预测值之间差值的平均值,选择最小平均值对应的控制点运动矢量预测值为最优的控制点运动矢量预测值,并作为当前块2个或3个或4个控制点的运动矢量预测值。In one example, the encoder can use the control point motion vector prediction value in the candidate motion vector list (such as the candidate motion vector binary/triplet/quadruplet) to obtain the motion vector of each sub-motion compensation unit in the current block through formula (3) or (5) or (7), and then obtain the pixel value of the corresponding position in the reference frame pointed to by the motion vector of each sub-motion compensation unit as its prediction value, and perform motion compensation using the affine motion model. Calculate the average value of the difference between the original value and the prediction value of each pixel point in the current coding block, select the control point motion vector prediction value corresponding to the minimum average value as the optimal control point motion vector prediction value, and use it as the motion vector prediction value of 2, 3 or 4 control points in the current block.
S704a:确定最优的控制点运动矢量预测值对应的GBi索引号。S704a: Determine the GBi index number corresponding to the optimal control point motion vector prediction value.
举例来说,若最优的控制点运动矢量预测值为采用继承的控制点运动矢量预测方法得到,即该最优的控制点运动矢量预测值为利用相邻已编码的仿射编码块(简称相邻已编码块)的运动模型而得到,那么可利用该相邻已编码的仿射编码块的GBi索引号作为所述最优的控制点运动矢量预测值对应的GBi索引号(即作为当前块的GBi索引号)。For example, if the optimal control point motion vector prediction value is obtained by adopting the inherited control point motion vector prediction method, that is, the optimal control point motion vector prediction value is obtained by using the motion model of the adjacent encoded affine coding block (referred to as the adjacent encoded block), then the GBi index number of the adjacent encoded affine coding block can be used as the GBi index number corresponding to the optimal control point motion vector prediction value (that is, as the GBi index number of the current block).
又举例来说,若最优的控制点运动矢量预测值(组合)为采用构造的控制点运动矢量预测方法而得到,那么所述最优的控制点运动矢量预测值中,不同的控制点的运动矢量预测值来自不同的相邻已编码块,由于不同的相邻已编码块的GBi索引号可能不同,那么可利用前文所描述的一种或多种实施方案对所述不同的相邻已编码块的GBi索引号进行处理,从而获得该最优的控制点运动矢量预测值对应的GBi索引号(即作为当前块的GBi索引号)。For another example, if the optimal control point motion vector prediction value (combination) is obtained by adopting the constructed control point motion vector prediction method, then among the optimal control point motion vector prediction values, the motion vector prediction values of different control points come from different adjacent encoded blocks. Since the GBi index numbers of different adjacent encoded blocks may be different, the GBi index numbers of the different adjacent encoded blocks can be processed using one or more of the implementation schemes described above to obtain the GBi index number corresponding to the optimal control point motion vector prediction value (i.e., the GBi index number of the current block).
S705a:将最优的控制点运动矢量预测值在候选运动矢量列表中的索引号、控制点的运动矢量差值(control point motion vectors differences,CPMVD)、GBi索引号、参考帧索引以及帧间预测模式的指示信息编入码流。S705a: Encode the index number of the optimal control point motion vector prediction value in the candidate motion vector list, the control point motion vector differences (CPMVD), the GBi index number, the reference frame index and the indication information of the inter-frame prediction mode into the bitstream.
在一实例中,解码端可使用最优的控制点运动矢量预测值作为搜索起始点在一定搜索范围内进行运动搜索获得控制点运动矢量(control point motion vectors,CPMV),并计算控制点运动矢量与控制点运动矢量预测值之间的差值(control point motionvectors differences,CPMVD)。编码端将最优的控制点运动矢量预测值在候选运动矢量列表中的索引号、CPMVD、GBi索引号、参考帧索引以及帧间预测模式的指示信息编入码流,以便于后续传递到解码端。In one example, the decoder can use the optimal control point motion vector prediction value as the search starting point to perform motion search within a certain search range to obtain the control point motion vectors (CPMV), and calculate the difference between the control point motion vector and the control point motion vector prediction value (CPMVD). The encoder encodes the index number of the optimal control point motion vector prediction value in the candidate motion vector list, CPMVD, GBi index number, reference frame index, and indication information of the inter-frame prediction mode into the bitstream for subsequent transmission to the decoder.
具体实现中,编入码流的语法元素还可参考前述表1和表2的描述,这里不再赘述。In a specific implementation, the syntax elements encoded into the bitstream may also refer to the descriptions of the aforementioned Tables 1 and 2, which will not be repeated here.
S702b:构建基于仿射运动模型的Merge模式对应的候选运动矢量列表。S702b: Construct a candidate motion vector list corresponding to the Merge mode based on the affine motion model.
具体的,可以利用继承的控制点运动矢量预测方法和/或构造的控制点运动矢量预测方法,构建基于仿射运动模型的merge模式的运动信息候选列表,候选运动信息列表中的运动信息包含:候选的控制点运动矢量预测值(候选运动矢量组合)、预测方向、GBi索引号、参考帧索引。相关实现还可参考前文9)的详细描述。Specifically, the inherited control point motion vector prediction method and/or the constructed control point motion vector prediction method can be used to construct a motion information candidate list of merge mode based on the affine motion model, and the motion information in the candidate motion information list includes: candidate control point motion vector prediction value (candidate motion vector combination), prediction direction, GBi index number, reference frame index. For related implementations, please refer to the detailed description of 9) above.
对于候选运动信息列表中,各个候选的控制点运动矢量预测值对应的GBi索引号,举例来说,若候选的控制点运动矢量预测值为采用继承的控制点运动矢量预测方法得到,即该候选的控制点运动矢量预测值为利用相邻已编码块的运动模型而得到,那么可利用该相邻已编码块的GBi索引号作为所述候选的控制点运动矢量预测值对应的GBi索引号。For the GBi index number corresponding to each candidate control point motion vector prediction value in the candidate motion information list, for example, if the candidate control point motion vector prediction value is obtained by adopting the inherited control point motion vector prediction method, that is, the candidate control point motion vector prediction value is obtained by using the motion model of the adjacent encoded block, then the GBi index number of the adjacent encoded block can be used as the GBi index number corresponding to the candidate control point motion vector prediction value.
又举例来说,若候选的控制点运动矢量预测值为采用构造的控制点运动矢量预测方法而得到,那么所述候选的控制点运动矢量预测值中,不同的控制点的运动矢量预测值来自不同的相邻已编码块,由于不同的相邻已编码块的GBi索引号可能不同,那么可利用前文所描述的一种或多种实施方案对所述不同的相邻已编码块的GBi索引号进行处理,从而获得该候选的控制点运动矢量预测值对应的GBi索引号。For another example, if the candidate control point motion vector prediction value is obtained using the constructed control point motion vector prediction method, then among the candidate control point motion vector prediction values, the motion vector prediction values of different control points come from different adjacent encoded blocks. Since the GBi index numbers of different adjacent encoded blocks may be different, the GBi index numbers of the different adjacent encoded blocks can be processed using one or more of the implementation schemes described above to obtain the GBi index number corresponding to the candidate control point motion vector prediction value.
在可能的实施例中,还可以利用ATMVP方法,和/或,继承的控制点运动矢量预测方法,和/或,构造的控制点运动矢量预测方法,和/或,PLANAR方法,构建基于子块的融合候选列表(sub-block based merging candidate list)。相关实现可参考前文6)、7)、9)、10)的详细描述,这里不再赘述。In a possible embodiment, the ATMVP method, and/or the inherited control point motion vector prediction method, and/or the constructed control point motion vector prediction method, and/or the PLANAR method can also be used to construct a sub-block based merging candidate list. For related implementations, please refer to the detailed description of 6), 7), 9), and 10) above, which will not be repeated here.
关于继承的控制点运动矢量预测方法和/或构造的控制点运动矢量预测方法的具体实现可参考前文3)、4)、5)的详细描述。S702b的具体实施还可参考前述S602b的描述,这里不再赘述。For the specific implementation of the inherited control point motion vector prediction method and/or the constructed control point motion vector prediction method, please refer to the detailed description of 3), 4), and 5). The specific implementation of S702b can also refer to the description of S602b above, which will not be repeated here.
S703b:根据率失真代价,确定最优的控制点运动信息。S703b: Determine optimal control point motion information according to the rate-distortion cost.
在一实例中,编码端可利用候选运动矢量列表中的控制点运动矢量(如候选运动矢量二元组/三元组/四元组),通过公式(3)或(5)或(7)获得当前编码块中每个子运动补偿单元的运动矢量,进而得到每个子运动补偿单元的运动矢量所指向的参考帧中位置的像素值,作为其预测值,进行仿射运动补偿。计算当前编码块中每个像素点的原始值和预测值之间差值的平均值,选择差值的平均值最小对应的控制点运动矢量为最优的控制点运动矢量,该最优的控制点运动矢量即作为当前编码块2个或3个或4个控制点的运动矢量。In one example, the encoder can use the control point motion vectors in the candidate motion vector list (such as a candidate motion vector binary/triplet/quadruplet) to obtain the motion vector of each sub-motion compensation unit in the current coding block through formula (3) or (5) or (7), and then obtain the pixel value of the position in the reference frame pointed to by the motion vector of each sub-motion compensation unit as its prediction value to perform affine motion compensation. The average value of the difference between the original value and the prediction value of each pixel point in the current coding block is calculated, and the control point motion vector corresponding to the minimum average value of the difference is selected as the optimal control point motion vector. The optimal control point motion vector is used as the motion vector of 2, 3 or 4 control points of the current coding block.
在又一实例中,若通过S702b构建的是子块的融合候选列表,遍历该融合候选列表中的每个候选运动信息,若候选为ATMVP或PLANAR模式,则按照6)或7)的方法得到每个子块的运动信息;若候选为仿射运动模式,则根据每个控制点运动矢量,通过公式(3)/(5)/(7)获得当前块中每个子块的运动矢量,进而得到每个子块的运动矢量所指向的参考帧中位置的像素值,作为其预测值,进行仿射运动补偿。计算当前块中每个像素点的原始值和预测值之间差值的平均值,选择差值的平均值最小对应的候选作为当前块的最优的控制点运动信息。In another example, if the fusion candidate list of sub-blocks is constructed by S702b, each candidate motion information in the fusion candidate list is traversed, and if the candidate is in ATMVP or PLANAR mode, the motion information of each sub-block is obtained according to method 6) or 7); if the candidate is in affine motion mode, the motion vector of each sub-block in the current block is obtained according to formula (3)/(5)/(7) based on each control point motion vector, and then the pixel value of the position in the reference frame pointed to by the motion vector of each sub-block is obtained as its predicted value, and affine motion compensation is performed. The average value of the difference between the original value and the predicted value of each pixel point in the current block is calculated, and the candidate corresponding to the smallest average value of the difference is selected as the optimal control point motion information of the current block.
S704b:将最优的控制点运动信息在候选运动矢量列表中的索引号,以及帧间预测模式的指示信息编入码流,以便于后续传递到解码端。S704b: Encode the index number of the optimal control point motion information in the candidate motion vector list and the indication information of the inter-frame prediction mode into the bitstream, so as to facilitate subsequent transmission to the decoding end.
具体实现中,编入码流的语法元素还可参考前述表1和表2的描述,这里不再赘述。In a specific implementation, the syntax elements encoded into the bitstream may also refer to the descriptions of the aforementioned Tables 1 and 2, which will not be repeated here.
需要说明的是,上述实施例仅仅描述了编码端实现编码和码流发送的过程,根据前文的描述,本领域技术人员理解编码端还可以在其他环节实施本发明实施例所描述的其他方法。例如在编码端在对当前块的预测中,对当前块的重构过程的具体实现可参考前文在解码端描述的相关方法(如图11A实施例),在这里不再赘述。It should be noted that the above embodiment only describes the process of implementing encoding and code stream transmission at the encoding end. According to the above description, those skilled in the art understand that the encoding end can also implement other methods described in the embodiments of the present invention in other links. For example, in the prediction of the current block at the encoding end, the specific implementation of the reconstruction process of the current block can refer to the related method described above at the decoding end (such as the embodiment of FIG. 11A), which will not be repeated here.
可以看到,本发明实施例中在帧间预测过程中,编码端可采用GBi的方法结合基于仿射运动模型的AMVP模式或merge模式进行编码。若当前块采用仿射运动模型,帧间预测过程采用构造的控制点运动矢量预测方法,那么当前块的候选运动矢量信息对应的GBi索引号可根据控制点的相邻已编码块的GBi索引号进行处理而得到。保证了编码过程的顺利进行,当前块的GBi索引号又可以继续用于后续待编码块的编码过程,提高了编码效率和预测准确性。It can be seen that in the inter-frame prediction process in the embodiment of the present invention, the encoding end can use the GBi method in combination with the AMVP mode or merge mode based on the affine motion model for encoding. If the current block adopts the affine motion model, and the inter-frame prediction process adopts the constructed control point motion vector prediction method, then the GBi index number corresponding to the candidate motion vector information of the current block can be obtained by processing the GBi index number of the adjacent coded block of the control point. The smooth progress of the encoding process is guaranteed, and the GBi index number of the current block can continue to be used in the encoding process of the subsequent block to be encoded, thereby improving the encoding efficiency and prediction accuracy.
参见图13,基于与上述方法相同的发明构思,本发明实施例还提供了一种设备1000,该设备1000包括获取模块1001、权重确定模块1002、预测模块1003,其中:Referring to FIG. 13 , based on the same inventive concept as the above method, an embodiment of the present invention further provides a device 1000, the device 1000 includes an acquisition module 1001, a weight determination module 1002, and a prediction module 1003, wherein:
获取模块1001,用于获取待处理图像块的多个控制点的GBi索引号(theGeneralization Bi-prediction weight index);所述多个控制点的GBi索引号来源于不同的已处理图像块,所述GBi索引号用于在广义双向预测(Generalized Bi-prediction)中确定所述已处理图像块的参考帧的权重值;The acquisition module 1001 is used to acquire GBi index numbers (the Generalization Bi-prediction weight index) of multiple control points of the image block to be processed; the GBi index numbers of the multiple control points are derived from different processed image blocks, and the GBi index numbers are used to determine the weight value of the reference frame of the processed image block in the generalized bi-prediction (Generalized Bi-prediction);
权重确定模块1002,用于根据所述多个控制点的GBi索引号,确定在所述广义双向预测中所述待处理图像块的参考帧对应的权重值;A weight determination module 1002, configured to determine a weight value corresponding to a reference frame of the image block to be processed in the generalized bidirectional prediction according to the GBi index numbers of the multiple control points;
预测模块1003,用于根据所述待处理图像块的参考帧的权重值进行加权预测,获得所述待处理图像块的预测值。The prediction module 1003 is used to perform weighted prediction according to the weight value of the reference frame of the image block to be processed to obtain a prediction value of the image block to be processed.
在一些可能的实施例中,所述权重确定模块1002具体用于:根据所述多个控制点的GBi索引号,确定所述待处理图像块的GBi索引号;将所述待处理图像块的GBi索引号对应的权重值作为所述待处理图像块的参考帧对应的权重值。In some possible embodiments, the weight determination module 1002 is specifically used to: determine the GBi index number of the image block to be processed based on the GBi index numbers of the multiple control points; and use the weight value corresponding to the GBi index number of the image block to be processed as the weight value corresponding to the reference frame of the image block to be processed.
在一些可能的实施例中,所述权重确定模块1002具体用于:在所述多个控制点的GBi索引号均相同的情况下,将所述相同的GBi索引号作为所述待处理图像块的GBi索引号。In some possible embodiments, the weight determination module 1002 is specifically configured to: when the GBi index numbers of the multiple control points are all the same, use the same GBi index number as the GBi index number of the image block to be processed.
在一些可能的实施例中,所述权重确定模块1002具体用于:在所述多个控制点的GBi索引号中存在不相同的GBi索引号的情况下,将预设值对应的GBi索引号作为所述待处理图像块的GBi索引号。In some possible embodiments, the weight determination module 1002 is specifically used to: when there are different GBi index numbers among the GBi index numbers of the multiple control points, use the GBi index number corresponding to the preset value as the GBi index number of the image block to be processed.
在一些可能的实施例中,所述权重确定模块1002具体用于:在所述多个控制点的GBi索引号中存在相同的GBi索引号的情况下,将所述多个控制点的GBi索引号中数量最多的GBi索引号作为所述待处理图像块的GBi索引号。In some possible embodiments, the weight determination module 1002 is specifically used to: when there are identical GBi index numbers among the GBi index numbers of the multiple control points, use the GBi index number with the largest number among the GBi index numbers of the multiple control points as the GBi index number of the image block to be processed.
在一些可能的实施例中,所述权重确定模块1002具体用于:在所述多个控制点的GBi索引号互不相同的情况下,将预设值对应的GBi索引号作为所述待处理图像块的GBi索引号。In some possible embodiments, the weight determination module 1002 is specifically configured to: when the GBi index numbers of the multiple control points are different from each other, use the GBi index number corresponding to the preset value as the GBi index number of the image block to be processed.
在一些可能的实施例中,所述权重确定模块1002具体用于:在所述多个控制点的GBi索引号中的至少一个对应的权重值等于预设值的情况下,将所述预设值对应的GBi索引号作为所述待处理图像块的GBi索引号。In some possible embodiments, the weight determination module 1002 is specifically used to: when at least one weight value corresponding to the GBi index numbers of the multiple control points is equal to a preset value, use the GBi index number corresponding to the preset value as the GBi index number of the image block to be processed.
在一些可能的实施例中,所述权重确定模块1002具体用于:在所述多个控制点的GBi索引号对应的多个权重值均与预设值不同的情况下,将所述多个权重值中与所述预设值的差值最小的权重值对应的GBi索引号作为所述待处理图像块的GBi索引号。In some possible embodiments, the weight determination module 1002 is specifically used to: when multiple weight values corresponding to the GBi index numbers of the multiple control points are different from preset values, use the GBi index number corresponding to the weight value with the smallest difference from the preset value among the multiple weight values as the GBi index number of the image block to be processed.
在一些可能的实施例中,所述权重确定模块1002具体用于:在所述多个控制点的GBi索引号对应的多个权重值的平均值等于预设值的情况下,将所述预设值对应的GBi索引号作为所述待处理图像块的GBi索引号。In some possible embodiments, the weight determination module 1002 is specifically used to: when the average value of multiple weight values corresponding to the GBi index numbers of the multiple control points is equal to a preset value, use the GBi index number corresponding to the preset value as the GBi index number of the image block to be processed.
在一些可能的实施例中,所述权重确定模块1002具体用于:在所述多个控制点的GBi索引号对应的多个权重值均与所述预设值不同,且所述多个权重值的平均值不等于所述预设值的情况下,将所述多个权重值中与所述预设值的差值最小的权重值对应的GBi索引号作为所述待处理图像块的GBi索引号。In some possible embodiments, the weight determination module 1002 is specifically used to: when the multiple weight values corresponding to the GBi index numbers of the multiple control points are different from the preset value, and the average value of the multiple weight values is not equal to the preset value, use the GBi index number corresponding to the weight value with the smallest difference from the preset value among the multiple weight values as the GBi index number of the image block to be processed.
在一些可能的实施例中,所述权重确定模块1002具体用于:在所述多个控制点的GBi索引号对应的多个权重值均与预设值不同,且所述多个权重值中存在至少两个权重值的平均值等于所述预设值的情况下,将所述预设值对应的GBi索引号作为所述待处理图像块的GBi索引号。In some possible embodiments, the weight determination module 1002 is specifically used to: when the multiple weight values corresponding to the GBi index numbers of the multiple control points are different from the preset values, and there are at least two weight values among the multiple weight values whose average value is equal to the preset value, use the GBi index number corresponding to the preset value as the GBi index number of the image block to be processed.
在一些可能的实施例中,上述实施例中的预设值例如为1/2。In some possible embodiments, the preset value in the above embodiment is, for example, 1/2.
在一些可能的实施例中,所述待处理图像包括多个子块:所述预测模块1003还用于:根据所述多个控制点的运动矢量,获得所述待处理图像块中每个子块的运动矢量;所述预测模块1003具体用于:根据所述待处理图像块中每个子块的至少两个运动矢量和所述至少两个运动矢量分别对应的至少两个参考帧,获得所述每个子块的至少两个运动补偿块;根据所述至少两个参考帧分别对应的权重值对所述至少两个运动补偿块的像素值进行加权,以获得所述每个子块的预测值。In some possible embodiments, the image to be processed includes multiple sub-blocks: the prediction module 1003 is also used to: obtain the motion vector of each sub-block in the image block to be processed according to the motion vectors of the multiple control points; the prediction module 1003 is specifically used to: obtain at least two motion compensation blocks of each sub-block according to at least two motion vectors of each sub-block in the image block to be processed and at least two reference frames corresponding to the at least two motion vectors; weight the pixel values of the at least two motion compensation blocks according to the weight values corresponding to the at least two reference frames to obtain the prediction value of each sub-block.
还需要说明的是,获取模块1001、权重确定模块1002、预测模块1003的具体实现可参考图11A、图11B以及前文实施例的相关描述,为了说明书的简洁,这里不再赘述。It should also be noted that the specific implementation of the acquisition module 1001, the weight determination module 1002, and the prediction module 1003 can refer to Figures 11A, 11B and the relevant description of the previous embodiments. For the sake of brevity of the specification, they will not be repeated here.
参见图14,基于与上述方法相同的发明构思,本发明实施例还提供了一种设备2000,该设备2000包括权重确定模块2002、预测模块2003,其中:Referring to FIG. 14 , based on the same inventive concept as the above method, an embodiment of the present invention further provides a device 2000, the device 2000 includes a weight determination module 2002 and a prediction module 2003, wherein:
权重确定模块2002,用于将预设的GBi索引号作为待处理图像块的GBi索引号,其中,所述待处理图像块的多个控制点的运动矢量分别根据多个已处理图像块的运动矢量获得;将所述待处理图像块的GBi索引号对应的权重值作为所述待处理图像块的参考帧对应的权重值;The weight determination module 2002 is used to use a preset GBi index number as the GBi index number of the image block to be processed, wherein the motion vectors of multiple control points of the image block to be processed are respectively obtained according to the motion vectors of multiple processed image blocks; and use the weight value corresponding to the GBi index number of the image block to be processed as the weight value corresponding to the reference frame of the image block to be processed;
预测模块2003,用于根据所述权重值进行加权预测,以获得所述待处理图像块的预测值。The prediction module 2003 is used to perform weighted prediction according to the weight value to obtain a prediction value of the image block to be processed.
在一些可能的实施例中,所述待处理图像包括多个子块:In some possible embodiments, the image to be processed includes a plurality of sub-blocks:
所述预测模块2003还用于:根据所述多个控制点的运动矢量,获得所述待处理图像块中每个子块的运动矢量;所述预测模块2003具体用于:根据所述待处理图像块中每个子块的至少两个运动矢量和所述至少两个运动矢量分别对应的至少两个参考帧,获得所述每个子块的至少两个运动补偿块;根据所述至少两个参考帧分别对应的权重值对所述至少两个运动补偿块的像素值进行加权,以获得所述每个子块的预测值。The prediction module 2003 is also used to: obtain the motion vector of each sub-block in the image block to be processed according to the motion vectors of the multiple control points; the prediction module 2003 is specifically used to: obtain at least two motion compensation blocks of each sub-block according to at least two motion vectors of each sub-block in the image block to be processed and at least two reference frames corresponding to the at least two motion vectors; weight the pixel values of the at least two motion compensation blocks according to the weight values corresponding to the at least two reference frames to obtain the prediction value of each sub-block.
在一些可能的实施例中,所述待处理图像块的GBi索引号对应的权重值例如为1/2。In some possible embodiments, the weight value corresponding to the GBi index number of the image block to be processed is, for example, 1/2.
在一些可能的实施例中,所述预设的GBi索引号例如为0。In some possible embodiments, the preset GBi index number is, for example, 0.
同理,权重确定模块2002、预测模块2003的具体实现可参考图11A、图11B以及前文实施例的相关描述,为了说明书的简洁,这里不再赘述。Similarly, the specific implementation of the weight determination module 2002 and the prediction module 2003 can refer to Figures 11A, 11B and the relevant description of the previous embodiments. For the sake of brevity of the specification, they will not be repeated here.
本领域技术人员能够领会,结合本文公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本发明中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。Those skilled in the art will appreciate that the functions described in conjunction with the various illustrative logic blocks, modules, and algorithm steps disclosed herein can be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions described in the various illustrative logic blocks, modules, and steps can be stored or transmitted as one or more instructions or codes on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include computer-readable storage media, which corresponds to tangible media, such as data storage media, or includes any media that facilitates the transfer of computer programs from one place to another (e.g., according to a communication protocol). In this manner, computer-readable media may generally correspond to (1) non-temporary tangible computer-readable storage media, or (2) communication media, such as signals or carrier waves. Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, codes, and/or data structures for implementing the techniques described in the present invention. A computer program product may include computer-readable media.
作为实例而非限制,此类计算机可读存储媒体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来存储指令或数据结构的形式的所要程序代码并且可由计算机存取的任何其它媒体。并且,任何连接被恰当地称作计算机可读媒体。举例来说,如果使用同轴缆线、光纤缆线、双绞线、数字订户线(DSL)或例如红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,那么同轴缆线、光纤缆线、双绞线、DSL或例如红外线、无线电和微波等无线技术包含在媒体的定义中。但是,应理解,所述计算机可读存储媒体和数据存储媒体并不包括连接、载波、信号或其它暂时媒体,而是实际上针对于非暂时性有形存储媒体。如本文中所使用,磁盘和光盘包含压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包含在计算机可读媒体的范围内。As an example and not limitation, such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage, flash memory, or any other medium that can be used to store the desired program code in the form of instructions or data structures and can be accessed by a computer. Also, any connection is properly referred to as a computer-readable medium. For example, if instructions are transmitted from a website, server or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio and microwave are included in the definition of media. However, it should be understood that the computer-readable storage media and data storage media do not include connections, carrier waves, signals or other temporary media, but are actually directed to non-temporary tangible storage media. As used herein, disks and optical disks include compact disks (CDs), laser optical disks, optical optical disks, digital versatile disks (DVDs), and Blu-ray disks, where disks typically reproduce data magnetically, while optical disks reproduce data optically using lasers. Combinations of the above should also be included within the scope of computer-readable media.
可通过例如一或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指前述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,在一些方面中,本文中所描述的各种说明性逻辑框、模块、和步骤所描述的功能可以提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,所述技术可完全实施于一或多个电路或逻辑元件中。Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuits. Thus, the term "processor" as used herein may refer to any of the aforementioned structures or any other structures suitable for implementing the techniques described herein. Additionally, in some aspects, the functions described by the various illustrative logic blocks, modules, and steps described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec. Moreover, the techniques may be fully implemented in one or more circuits or logic elements.
本发明的技术可在各种各样的装置或设备中实施,包含无线手持机、集成电路(IC)或一组IC(例如,芯片组)。本发明中描述各种组件、模块或单元是为了强调用于执行所揭示的技术的装置的功能方面,但未必需要由不同硬件单元实现。实际上,如上文所描述,各种单元可结合合适的软件和/或固件组合在编码解码器硬件单元中,或者通过互操作硬件单元(包含如上文所描述的一或多个处理器)来提供。The techniques of this disclosure may be implemented in a wide variety of devices or apparatuses, including a wireless handset, an integrated circuit (IC), or a set of ICs (e.g., a chipset). Various components, modules, or units are described in this disclosure to emphasize functional aspects of devices for performing the disclosed techniques, but do not necessarily require implementation by different hardware units. In fact, as described above, the various units may be combined in a codec hardware unit in conjunction with appropriate software and/or firmware, or provided by interoperating hardware units (including one or more processors as described above).
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above embodiments, the description of each embodiment has different emphases. For parts that are not described in detail in a certain embodiment, reference can be made to the relevant descriptions of other embodiments.
以上所述,仅为本发明示例性的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only an exemplary embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any changes or substitutions that can be easily thought of by a person skilled in the art within the technical scope disclosed by the present invention should be included in the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2019/114142WO2020088482A1 (en) | 2018-10-29 | 2019-10-29 | Affine prediction mode-based inter-frame prediction method and related apparatus |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811267963 | 2018-10-29 | ||
| CN2018112679632 | 2018-10-29 |
| Publication Number | Publication Date |
|---|---|
| CN111107373A CN111107373A (en) | 2020-05-05 |
| CN111107373Btrue CN111107373B (en) | 2023-11-03 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910154692.8AActiveCN111107373B (en) | 2018-10-29 | 2019-02-28 | Inter-frame prediction method and related devices based on affine prediction mode |
| Country | Link |
|---|---|
| CN (1) | CN111107373B (en) |
| WO (1) | WO2020088482A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114208171B (en) | 2019-06-14 | 2025-09-23 | Lg电子株式会社 | Image decoding method and apparatus for deriving weight index information for generating prediction samples |
| CN114982228B (en)* | 2020-10-16 | 2025-05-13 | Oppo广东移动通信有限公司 | Inter-frame prediction method, encoder, decoder and computer storage medium |
| CN113965753B (en)* | 2021-12-20 | 2022-05-17 | 康达洲际医疗器械有限公司 | Inter-frame image motion estimation method and system based on code rate control |
| CN117579839B (en)* | 2024-01-15 | 2024-03-22 | 电子科技大学 | An image compression method based on rate-distortion optimized color space conversion matrix |
| CN119273694B (en)* | 2024-12-11 | 2025-03-25 | 国网安徽省电力有限公司电力科学研究院 | A method and system for multi-substation equipment defect identification based on federated learning |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9245026B1 (en)* | 2013-06-26 | 2016-01-26 | Amazon Technologies, Inc. | Increasing the relevancy of search results across categories |
| WO2017054630A1 (en)* | 2015-09-29 | 2017-04-06 | 华为技术有限公司 | Image prediction method and device |
| WO2017086738A1 (en)* | 2015-11-19 | 2017-05-26 | 한국전자통신연구원 | Method and apparatus for image encoding/decoding |
| WO2017118409A1 (en)* | 2016-01-07 | 2017-07-13 | Mediatek Inc. | Method and apparatus for affine merge mode prediction for video coding system |
| WO2017130696A1 (en)* | 2016-01-29 | 2017-08-03 | シャープ株式会社 | Prediction image generation device, moving image decoding device, and moving image encoding device |
| WO2017197146A1 (en)* | 2016-05-13 | 2017-11-16 | Vid Scale, Inc. | Systems and methods for generalized multi-hypothesis prediction for video coding |
| CN107465921A (en)* | 2011-11-08 | 2017-12-12 | 株式会社Kt | The method decoded using decoding apparatus to vision signal |
| WO2018062892A1 (en)* | 2016-09-28 | 2018-04-05 | 엘지전자(주) | Method and apparatus for performing optimal prediction on basis of weight index |
| CN108605137A (en)* | 2016-03-01 | 2018-09-28 | 联发科技股份有限公司 | Video coding method and device using affine motion compensation |
| CN109076214A (en)* | 2016-05-28 | 2018-12-21 | 联发科技股份有限公司 | Method and apparatus for current image reference for video coding using affine motion compensation |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130272409A1 (en)* | 2012-04-12 | 2013-10-17 | Qualcomm Incorporated | Bandwidth reduction in video coding through applying the same reference index |
| WO2018037919A1 (en)* | 2016-08-26 | 2018-03-01 | シャープ株式会社 | Image decoding device, image coding device, image decoding method, and image coding method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107465921A (en)* | 2011-11-08 | 2017-12-12 | 株式会社Kt | The method decoded using decoding apparatus to vision signal |
| US9245026B1 (en)* | 2013-06-26 | 2016-01-26 | Amazon Technologies, Inc. | Increasing the relevancy of search results across categories |
| WO2017054630A1 (en)* | 2015-09-29 | 2017-04-06 | 华为技术有限公司 | Image prediction method and device |
| WO2017086738A1 (en)* | 2015-11-19 | 2017-05-26 | 한국전자통신연구원 | Method and apparatus for image encoding/decoding |
| WO2017118409A1 (en)* | 2016-01-07 | 2017-07-13 | Mediatek Inc. | Method and apparatus for affine merge mode prediction for video coding system |
| WO2017130696A1 (en)* | 2016-01-29 | 2017-08-03 | シャープ株式会社 | Prediction image generation device, moving image decoding device, and moving image encoding device |
| CN108605137A (en)* | 2016-03-01 | 2018-09-28 | 联发科技股份有限公司 | Video coding method and device using affine motion compensation |
| WO2017197146A1 (en)* | 2016-05-13 | 2017-11-16 | Vid Scale, Inc. | Systems and methods for generalized multi-hypothesis prediction for video coding |
| CN109076214A (en)* | 2016-05-28 | 2018-12-21 | 联发科技股份有限公司 | Method and apparatus for current image reference for video coding using affine motion compensation |
| WO2018062892A1 (en)* | 2016-09-28 | 2018-04-05 | 엘지전자(주) | Method and apparatus for performing optimal prediction on basis of weight index |
| Publication number | Publication date |
|---|---|
| CN111107373A (en) | 2020-05-05 |
| WO2020088482A1 (en) | 2020-05-07 |
| Publication | Publication Date | Title |
|---|---|---|
| CN113545040B (en) | Weighted prediction method and device for multi-hypothesis coding | |
| CN115243039B (en) | Video image prediction method and device | |
| KR102620024B1 (en) | Motion vector prediction method and device based on affine motion model | |
| CN111953997B (en) | Method, device and codec for obtaining candidate motion vector list | |
| CN116248891A (en) | Inter-frame prediction method and related device | |
| CN111107373B (en) | Inter-frame prediction method and related devices based on affine prediction mode | |
| CN111698515B (en) | Inter prediction method and related device | |
| CN111953995A (en) | A method and apparatus for inter-frame prediction | |
| US20250254320A1 (en) | Inter prediction method and apparatus, and corresponding encoder and decoder that reduce redundancy in video coding | |
| CN112153389B (en) | Method and device for inter-frame prediction | |
| CN114270847B (en) | Method, device and codec for constructing fusion candidate motion information list | |
| CN112088534B (en) | Method, device and equipment for inter-frame prediction and storage medium | |
| CN111432219B (en) | Inter-frame prediction method and device | |
| CN111372086B (en) | Video image decoding method and device | |
| CN112135137B (en) | Video encoder, video decoder and corresponding method | |
| CN111355961B (en) | Inter-frame prediction method and device | |
| WO2020135368A1 (en) | Inter-frame prediction method and apparatus | |
| CN118317105A (en) | Processing method and device based on triangular prediction unit mode |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |