技术领域technical field
本发明涉及一种显示装置,尤其涉及一种微型发光元件显示装置。The invention relates to a display device, in particular to a micro light-emitting element display device.
背景技术Background technique
近年来,在有机发光二极管(Organic light-emitting diode,OLED)显示面板的制造成本偏高及其使用寿命无法与现行的主流显示器相抗衡的情况下,微型发光二极管显示器(Micro LED Display)逐渐吸引各科技大厂的投资目光。特别是,微型发光二极管显示器除了具有与有机发光二极管显示器相当的光学表现,例如高色彩饱和度、应答速度快及高对比,还具有低耗能以及材料使用寿命长的优势。因此,有望成为下一世代的主流显示技术。In recent years, under the condition that the manufacturing cost of Organic light-emitting diode (OLED) display panels is relatively high and its service life cannot compete with the current mainstream displays, Micro LED Displays have gradually attracted The investment vision of major technology companies. In particular, besides the optical performance comparable to OLED displays, such as high color saturation, fast response speed and high contrast, micro-LED displays also have the advantages of low power consumption and long service life of materials. Therefore, it is expected to become the mainstream display technology of the next generation.
然而,以目前的制造技术而言,微型发光二极管显示器的制造良率仍有待提升。主因在于微型发光二极管显示器的制造过程包含晶粒转置的步骤,例如将暂存基板上预先制作完成的微型发光二极管晶粒转移至显示器的电路背板上。由于发光二极管在微型化的同时,两电极接垫之间的距离也势必缩短。当微型发光二极管被转移并接合至电路背板上的连接垫时,连接垫(例如导电焊材)需被加热而呈现熔融状态。此时,微型发光二极管的两电极接垫容易因连接垫的溢流而发生短路,造成转移良率的下降。为了降低微型发光二极管显示器的制造成本,解决上述的问题已成为相关厂商的当务之急。However, with the current manufacturing technology, the manufacturing yield of the micro LED display still needs to be improved. The main reason is that the manufacturing process of the micro-LED display includes a die transposition step, such as transferring the pre-fabricated micro-LED die on the temporary substrate to the circuit backplane of the display. As the light emitting diode is being miniaturized, the distance between the two electrode pads must also be shortened. When the micro-LEDs are transferred and bonded to the connection pads on the circuit backboard, the connection pads (such as conductive solder) need to be heated to become molten. At this time, the two electrode pads of the micro light emitting diode are prone to short circuit due to the overflow of the connection pads, resulting in a drop in transfer yield. In order to reduce the manufacturing cost of the micro light-emitting diode display, solving the above problems has become a top priority for related manufacturers.
发明内容Contents of the invention
本发明提供一种微型发光元件显示装置,具有较佳的转移成功率。The invention provides a micro light-emitting element display device with better transfer success rate.
本发明的微型发光元件显示装置,包括基板、多个微型发光元件、隔离层以及空气间隙。多个微型发光元件分散地设置于基板上。隔离层设置于这些微型发光元件之间。空气间隙设置于这些微型发光元件、隔离层与基板之间。The micro light-emitting element display device of the present invention includes a substrate, a plurality of micro light-emitting elements, an isolation layer and an air gap. A plurality of miniature light-emitting elements are dispersedly arranged on the substrate. The isolation layer is arranged between these miniature light-emitting elements. The air gap is arranged between the micro light-emitting elements, the isolation layer and the substrate.
在本发明的一实施例中,上述的微型发光元件显示装置的微型发光元件在第一方向上具有第一宽度。空气间隙位于相邻的两个微型发光元件之间的所占区域在第一方向上具有第二宽度,且第二宽度小于第一宽度。In an embodiment of the present invention, the micro light emitting elements of the above micro light emitting element display device have a first width in a first direction. The area occupied by the air gap between two adjacent micro light-emitting elements has a second width in the first direction, and the second width is smaller than the first width.
在本发明的一实施例中,上述的微型发光元件显示装置的第二宽度与第一宽度的比值大于等于0.5。In an embodiment of the present invention, the ratio of the second width to the first width of the above-mentioned micro light-emitting element display device is greater than or equal to 0.5.
在本发明的一实施例中,上述的微型发光元件显示装置的隔离层连接微型发光元件的部分在基板的法线方向上具有第一高度。微型发光元件在基板的法线方向上具有第二高度,且第一高度小于第二高度。In an embodiment of the present invention, the portion of the isolation layer connected to the micro-light-emitting elements of the above-mentioned micro-light-emitting element display device has a first height in the normal direction of the substrate. The micro light emitting element has a second height in the normal direction of the substrate, and the first height is smaller than the second height.
在本发明的一实施例中,上述的微型发光元件显示装置的第一高度与第二高度的比值大于等于0.5。In an embodiment of the present invention, the ratio of the first height to the second height of the above-mentioned micro light-emitting element display device is greater than or equal to 0.5.
在本发明的一实施例中,上述的微型发光元件显示装置的隔离层位于相邻的两个微型发光元件之间的部分的横截面面积小于微型发光元件的横截面面积。In an embodiment of the present invention, the cross-sectional area of the part of the isolation layer between two adjacent micro-light-emitting elements of the above-mentioned micro-light-emitting element display device is smaller than the cross-sectional area of the micro-light-emitting elements.
在本发明的一实施例中,上述的微型发光元件显示装置的隔离层位于相邻的两个微型发光元件之间的部分的横截面面积与微型发光元件的横截面面积的比值小于1且大于等于0.5。In an embodiment of the present invention, the ratio of the cross-sectional area of the part of the isolation layer between two adjacent micro-light-emitting elements to the cross-sectional area of the micro-light-emitting element is less than 1 and greater than equal to 0.5.
在本发明的一实施例中,上述的微型发光元件显示装置还包括共电极。共电极覆盖隔离层且电性连接多个微型发光元件。共电极与空气间隙分别位于隔离层的相对两侧。In an embodiment of the present invention, the above-mentioned micro light-emitting element display device further includes a common electrode. The common electrode covers the isolation layer and electrically connects a plurality of micro light emitting elements. The common electrode and the air gap are respectively located on opposite sides of the isolation layer.
在本发明的一实施例中,上述的微型发光元件显示装置的微型发光元件具有磊晶结构以及设置于磊晶结构相对两侧的第一型电极与第二型电极。共电极包括第一型共电极层与第二型共电极层。第一型共电极层覆盖隔离层与多个微型发光元件,且直接接触各微型发光元件的第一型电极。第二型共电极层设置于这些微型发光元件之间,且位于第一型共电极层与隔离层之间。第二型共电极电性连接这些微型发光元件与第一型共电极层。In an embodiment of the present invention, the micro-light-emitting element of the above-mentioned micro-light-emitting element display device has an epitaxial structure and a first-type electrode and a second-type electrode disposed on opposite sides of the epitaxial structure. The common electrode includes a first type common electrode layer and a second type common electrode layer. The first-type common electrode layer covers the isolation layer and the plurality of micro-light-emitting elements, and directly contacts the first-type electrodes of each micro-light-emitting element. The second-type common electrode layer is arranged between the micro light-emitting elements, and is located between the first-type common electrode layer and the isolation layer. The second-type common electrode is electrically connected to the micro light-emitting elements and the first-type common electrode layer.
在本发明的一实施例中,上述的微型发光元件显示装置的第二型共电极层连接第一型共电极层的表面与基板之间具有第一高度。第一型电极连接第一型共电极层的表面与基板之间具有第二高度,且第一高度大于第二高度。In an embodiment of the present invention, there is a first height between the surface of the second-type common electrode layer connected to the first-type common electrode layer and the substrate of the above-mentioned micro light-emitting element display device. There is a second height between the surface of the first-type electrode connected to the first-type common electrode layer and the substrate, and the first height is greater than the second height.
在本发明的一实施例中,上述的微型发光元件显示装置还包括设置于第二型共电极层之间的波长转换层。隔离层具有对应地设置于多个微型发光元件上的多个凹槽,且波长转换层填入这些凹槽内。In an embodiment of the present invention, the above-mentioned micro-light-emitting element display device further includes a wavelength conversion layer disposed between the second-type common electrode layers. The isolation layer has a plurality of grooves correspondingly arranged on the plurality of micro light-emitting elements, and the wavelength conversion layer fills the grooves.
在本发明的一实施例中,上述的微型发光元件显示装置的微型发光元件在第一方向上的宽度朝远离基板的方向递减,且第一方向平行于基板。In an embodiment of the present invention, the width of the micro-light-emitting element in the above-mentioned micro-light-emitting element display device in the first direction decreases gradually toward the direction away from the substrate, and the first direction is parallel to the substrate.
在本发明的一实施例中,上述的微型发光元件显示装置的微型发光元件在第一方向上具有最小宽度与最大宽度,而微型发光元件的最小宽度与最大宽度的比值小于等于0.5且大于等于0.05。In an embodiment of the present invention, the micro-light-emitting element of the above-mentioned micro-light-emitting element display device has a minimum width and a maximum width in the first direction, and the ratio of the minimum width to the maximum width of the micro-light-emitting element is less than or equal to 0.5 and greater than or equal to 0.05.
在本发明的一实施例中,上述的微型发光元件显示装置的微型发光元件在第一方向上具有最大宽度,相邻的两个微型发光元件之间在第一方向上具有最大间距,且最大间距小于微型发光元件的最大宽度。In an embodiment of the present invention, the micro light emitting element of the above micro light emitting element display device has the largest width in the first direction, the distance between two adjacent micro light emitting elements in the first direction is the largest, and the largest The pitch is smaller than the maximum width of the micro light emitting element.
在本发明的一实施例中,上述的微型发光元件显示装置的隔离层定义空气间隙的表面为朝向隔离层内凹的曲面。In an embodiment of the present invention, the surface of the isolation layer defining the air gap of the above-mentioned micro light-emitting element display device is a curved surface concave toward the isolation layer.
在本发明的一实施例中,上述的微型发光元件显示装置的隔离层包含反射材料、散射材料或是光遮挡材料。In an embodiment of the present invention, the isolation layer of the above-mentioned micro-light-emitting device display device includes reflective materials, scattering materials or light-shielding materials.
在本发明的一实施例中,上述的微型发光元件显示装置的各微型发光元件包括磊晶结构、第一型电极以及第二型电极。第一型电极与第二型电极设置于磊晶结构的相对两侧。第一型电极电性连接共电极。第二型电极具有朝向基板的表面。隔离层覆盖第二型电极的表面,且基板的连接垫通过隔离层的开口与第二型电极的表面电性接合。In an embodiment of the present invention, each micro-light-emitting element of the above-mentioned micro-light-emitting element display device includes an epitaxial structure, a first-type electrode, and a second-type electrode. The first-type electrode and the second-type electrode are disposed on opposite sides of the epitaxial structure. The first type electrode is electrically connected to the common electrode. The second type electrode has a surface facing the substrate. The isolation layer covers the surface of the second-type electrode, and the connection pad of the substrate is electrically connected to the surface of the second-type electrode through the opening of the isolation layer.
在本发明的一实施例中,上述的微型发光元件显示装置的隔离层具有对应地设置于多个微型发光元件上的多个凹槽。In an embodiment of the present invention, the isolation layer of the micro-light-emitting element display device has a plurality of grooves correspondingly disposed on the plurality of micro-light-emitting elements.
在本发明的一实施例中,上述的微型发光元件显示装置还包括波长转换层。波长转换层设置于隔离层之间,且填入隔离层的多个凹槽内。In an embodiment of the present invention, the above-mentioned micro light-emitting element display device further includes a wavelength conversion layer. The wavelength conversion layer is arranged between the isolation layers and fills in the grooves of the isolation layers.
基于上述,在本发明的一实施例的微型发光元件显示装置中,通过设置在多个微型发光元件之间的隔离层,可增加这些微型发光元件的转移成功率。另一方面,在这些微型发光元件接合至基板的过程中,基板上的连接垫被加热而呈现熔融状态。此时,位于隔离层与基板之间的空气间隙可作为连接垫溢流时的缓冲空间,有助于提升这些微型发光元件的接合良率与平整度。Based on the above, in the micro-light-emitting element display device according to an embodiment of the present invention, the transfer success rate of these micro-light-emitting elements can be increased by providing an isolation layer between a plurality of micro-light-emitting elements. On the other hand, during the process of bonding these micro-light-emitting elements to the substrate, the connection pads on the substrate are heated to a molten state. At this time, the air gap between the isolation layer and the substrate can be used as a buffer space when the connection pad overflows, which helps to improve the bonding yield and flatness of these micro light-emitting elements.
附图说明Description of drawings
图1是本发明的第一实施例的微型发光元件显示装置的俯视示意图;FIG. 1 is a schematic top view of a micro light-emitting element display device according to a first embodiment of the present invention;
图2是图1的微型发光元件显示装置的剖面示意图;Fig. 2 is a schematic cross-sectional view of the micro light-emitting element display device of Fig. 1;
图3是本发明的第二实施例的微型发光元件显示装置的剖面示意图;3 is a schematic cross-sectional view of a micro light-emitting element display device according to a second embodiment of the present invention;
图4A及图4B是图3的微型发光元件显示装置的制造流程的剖面示意图;4A and 4B are schematic cross-sectional views of the manufacturing process of the micro-light-emitting element display device of FIG. 3;
图5是本发明的另一实施例的微型发光元件载板结构的剖面示意图;Fig. 5 is a schematic cross-sectional view of a micro light-emitting element carrier structure according to another embodiment of the present invention;
图6是本发明的第三实施例的微型发光元件显示装置的剖面示意图;6 is a schematic cross-sectional view of a micro light-emitting element display device according to a third embodiment of the present invention;
图7是本发明的第四实施例的微型发光元件显示装置的剖面示意图;7 is a schematic cross-sectional view of a micro light-emitting element display device according to a fourth embodiment of the present invention;
图8是本发明的第五实施例的微型发光元件显示装置的剖面示意图;8 is a schematic cross-sectional view of a micro light-emitting element display device according to a fifth embodiment of the present invention;
图9是本发明的第六实施例的微型发光元件显示装置的剖面示意图;9 is a schematic cross-sectional view of a micro light-emitting element display device according to a sixth embodiment of the present invention;
图10是本发明的第七实施例的微型发光元件显示装置的剖面示意图。FIG. 10 is a schematic cross-sectional view of a micro light-emitting device display device according to a seventh embodiment of the present invention.
附图标记说明Explanation of reference signs
10、11、12、13、14、15、16:微型发光元件显示装置10, 11, 12, 13, 14, 15, 16: micro light-emitting element display devices
50、51:微型发光元件载板结构50, 51: Substrate structure of micro-light-emitting elements
100、101:基板100, 101: substrate
110、110A:连接垫110, 110A: Connection pads
120、120-1、120-2、120-3、120A:微型发光元件120, 120-1, 120-2, 120-3, 120A: miniature light-emitting components
121:第一型电极121: first type electrode
121s、122s、132s、140s、140s-1、140s-2:表面121s, 122s, 132s, 140s, 140s-1, 140s-2: surface
122:第二型电极122: Second type electrode
123:第一型半导体层123: first type semiconductor layer
124:发光层124: Luminous layer
125:第二型半导体层125: Second-type semiconductor layer
130、130A、130B、130C:共电极130, 130A, 130B, 130C: common electrode
131、131C:第一型共电极层131, 131C: first type common electrode layer
132、132C:第二型共电极层132, 132C: second type common electrode layer
132a:第一直线段132a: First straight line segment
132b:第二直线段132b: Second straight line segment
140、140A、140B、140C、140D、140E:隔离层140, 140A, 140B, 140C, 140D, 140E: isolation layer
140Cr、140Er:凹槽140Cr, 140Er: groove
141:开口141: opening
145:反射粒子145: Reflection Particles
150:第一驱动电路150: The first driving circuit
160:第二驱动电路160: Second drive circuit
170:驱动电路板170: Driver circuit board
180:绝缘层180: insulating layer
190:波长转换层190: wavelength conversion layer
DR:显示区DR: display area
ESL:磊晶结构ESL: epitaxial structure
G、G’、G1、G2:空气间隙G, G’, G1, G2: Air gap
H1、H2、H1’、H2’、H1”、H2”、H3:高度H1, H2, H1’, H2’, H1”, H2”, H3: Height
S:间距S: Spacing
SL:最大间距SL : Maximum spacing
W1、W2、W2’:宽度W1, W2, W2': Width
WL:最大宽度WL : maximum width
WS:最小宽度WS : minimum width
X、Y、Z:方向X, Y, Z: direction
A-A’:剖线A-A': section line
具体实施方式Detailed ways
在附图中,为了清楚起见,放大了层、膜、面板、区域等的厚度。应当理解,当诸如层、膜、区域或基板的元件被称为在另一元件“上”或“连接到”另一元件时,其可以直接在另一元件上或与另一元件连接,或者中间元件可以也存在。相反,当元件被称为“直接在另一元件上”或“直接连接到”另一元件时,不存在中间元件。如本文所使用的,“连接”可以指物理和/或电性连接。再者,“电性连接”可为二元件间存在其它元件。In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being "on" or "connected to" another element, it can be directly on or connected to the other element, or Intermediate elements may also be present. In contrast, when an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements present. As used herein, "connected" may refer to physical and/or electrical connection. Furthermore, "electrically connected" may mean that other elements exist between the two elements.
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于所附附图中。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used in the drawings and description to refer to the same or like parts.
图1是本发明的第一实施例的微型发光元件显示装置的俯视示意图。图2是图1的微型发光元件显示装置的剖面示意图。图2对应于图1的剖线A-A’。特别说明的是,为清楚呈现起见,图1省略了图2的连接垫110与共电极130的示出。FIG. 1 is a schematic top view of a micro light-emitting device display device according to a first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the micro light-emitting element display device in FIG. 1 . Fig. 2 corresponds to the section line A-A' of Fig. 1 . In particular, for the sake of clarity, FIG. 1 omits the illustration of the connection pad 110 and the common electrode 130 in FIG. 2 .
请参照图1及图2,微型发光元件显示装置10包括基板100、多个微型发光元件120、共电极130以及隔离层140。这些微型发光元件120分散地设置于基板100上。隔离层140设置于基板100上且位于这些微型发光元件120之间。共电极130覆盖隔离层140且延伸于这些微型发光元件120之间。更具体地说,本实施例的共电极130是整面性地覆盖隔离层140与多个微型发光元件120,以电性连接这些微型发光元件120,但不以此为限。共电极130的材质可包括透明金属氧化物,例如铟锡氧化物(indium tin oxide,ITO)、铟锌氧化物(indiumzinc oxide,IZO)、铝锡氧化物(aluminum tin oxide,ATO)、铝锌氧化物(aluminum zincoxide,AZO)、或其他合适的氧化物、或者是上述至少两者的堆叠层。也可包括银、金、铬、铜、铂、锡、镍、钛、铝或是上述金属的合金。Referring to FIG. 1 and FIG. 2 , the micro light emitting device display device 10 includes a substrate 100 , a plurality of micro light emitting devices 120 , a common electrode 130 and an isolation layer 140 . These miniature light emitting elements 120 are dispersedly disposed on the substrate 100 . The isolation layer 140 is disposed on the substrate 100 and located between the micro light emitting elements 120 . The common electrode 130 covers the isolation layer 140 and extends between the micro light emitting elements 120 . More specifically, the common electrode 130 of this embodiment covers the isolation layer 140 and the plurality of micro-light emitting elements 120 to electrically connect these micro-light-emitting elements 120 , but not limited thereto. The material of the common electrode 130 may include transparent metal oxides, such as indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide oxide (aluminum zinc oxide, AZO), or other suitable oxides, or a stacked layer of at least two of the above. Silver, gold, chromium, copper, platinum, tin, nickel, titanium, aluminum or alloys of the above metals may also be included.
在本实施例中,基板100例如是显示面板的电路背板。也就是说,微型发光元件显示装置10可以是显示面板,但本发明不以此为限。基板100(即电路背板)具有位于显示面板的显示区DR的多个连接垫110,且这些微型发光元件120分别接合(bonding)至基板100的这些连接垫110。也就是说,微型发光元件120是通过连接垫110与基板100电性连接。在本实施例中,多个微型发光元件120(或者是连接垫110)是以等间距的方式沿方向X与方向Y排列于基板100上。亦即,这些微型发光元件120可阵列排列于基板100上,但本发明不以此为限。In this embodiment, the substrate 100 is, for example, a circuit backplane of a display panel. That is to say, the micro light-emitting device display device 10 may be a display panel, but the present invention is not limited thereto. The substrate 100 (ie, the circuit backplane) has a plurality of connection pads 110 located in the display region DR of the display panel, and the micro light emitting elements 120 are respectively bonded to the connection pads 110 of the substrate 100 . That is to say, the micro light-emitting element 120 is electrically connected to the substrate 100 through the connection pad 110 . In this embodiment, a plurality of micro light-emitting elements 120 (or connection pads 110 ) are arranged on the substrate 100 along the direction X and the direction Y at equal intervals. That is, the micro light emitting elements 120 can be arranged in an array on the substrate 100 , but the present invention is not limited thereto.
举例而言,多个微型发光元件120可以是多个第一微型发光元件120-1、多个第二微型发光元件120-2与多个第三微型发光元件120-3,且第一微型发光元件120-1、第二微型发光元件120-2与第三微型发光元件120-3的发光颜色分别为红色、绿色与蓝色。也就是说,本实施例的第一微型发光元件120-1、第二微型发光元件120-2与第三微型发光元件120-3可构成显示面板的显示像素。然而,本发明不限于此,在其他实施例中,多个微型发光元件120也可发出相同波长的光,例如紫外光或蓝光。For example, the plurality of micro light emitting elements 120 can be a plurality of first micro light emitting elements 120-1, a plurality of second micro light emitting elements 120-2 and a plurality of third micro light emitting elements 120-3, and the first micro light emitting elements The light emitting colors of the element 120-1, the second micro light emitting element 120-2 and the third micro light emitting element 120-3 are red, green and blue respectively. That is to say, the first micro light emitting device 120 - 1 , the second micro light emitting device 120 - 2 and the third micro light emitting device 120 - 3 of this embodiment can constitute display pixels of a display panel. However, the present invention is not limited thereto. In other embodiments, the plurality of micro light emitting elements 120 can also emit light of the same wavelength, such as ultraviolet light or blue light.
另一方面,本实施例的基板100可包括驱动电路层,其中驱动电路层包括晶体管元件、电容、扫描线、数据线以及电源线等,且连接垫110例如是数据线的一部分或连接数据线的导电图案。也就是说,驱动电路层可以是主动式的驱动电路层,但本发明不以此为限。根据其他实施例,驱动电路层也可不包含晶体管元件。亦即,驱动电路层也可以是被动式的驱动电路层。On the other hand, the substrate 100 of this embodiment may include a driving circuit layer, wherein the driving circuit layer includes transistor elements, capacitors, scan lines, data lines, and power lines, etc., and the connection pad 110 is, for example, a part of the data line or connected to the data line. conductive pattern. That is to say, the driving circuit layer may be an active driving circuit layer, but the present invention is not limited thereto. According to other embodiments, the driving circuit layer may also not include transistor elements. That is, the driving circuit layer may also be a passive driving circuit layer.
详细而言,微型发光元件120包括磊晶结构ESL、第一型电极121与第二型电极122。第一型电极121与第二型电极122设置于磊晶结构ESL的相对两侧表面上,且分别电性连接共电极130与连接垫110。在本实施例中,第一型电极121可以是光穿透式电极,而光穿透式电极的材质可包括金属氧化物,例如铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、或其他合适的氧化物、或者是上述至少两者的堆叠层。第二型电极122的材质可包括铂、镍、钛、金、银、铬、上述金属的合金、上述合金的组合的一高功函数金属、金属氧化物、或者是导电高分子、石墨、石墨烯或黑磷等非金属导电材料。In detail, the micro-light emitting device 120 includes an epitaxial structure ESL, a first-type electrode 121 and a second-type electrode 122 . The first-type electrode 121 and the second-type electrode 122 are disposed on opposite side surfaces of the epitaxial structure ESL, and are electrically connected to the common electrode 130 and the connection pad 110 respectively. In this embodiment, the first-type electrode 121 may be a light-transmitting electrode, and the material of the light-transmitting electrode may include metal oxides, such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum Zinc oxide, or other suitable oxides, or a stacked layer of at least two of the above. The material of the second type electrode 122 may include platinum, nickel, titanium, gold, silver, chromium, alloys of the above metals, a high work function metal of a combination of the above alloys, metal oxides, or conductive polymers, graphite, graphite Non-metallic conductive materials such as alkene or black phosphorus.
进一步而言,磊晶结构ESL包括第一型半导体层123、发光层124与第二型半导体层125。第一型半导体层123位于第一型电极121与发光层124之间,且第一型半导体层123通过第一型电极121与共电极130电性连接。第二型半导体层125位于第二型电极122与发光层124之间,且第二型半导体层125通过第二型电极122与连接垫110电性连接。更具体地说,本实施例的第二型电极122、磊晶结构ESL以及第一型电极121是依序地堆叠于基板100上。亦即,本实施例的微型发光元件120为垂直式微型发光二极管(vertical type micro lightemitting diode)。Further, the epitaxial structure ESL includes a first-type semiconductor layer 123 , a light-emitting layer 124 and a second-type semiconductor layer 125 . The first type semiconductor layer 123 is located between the first type electrode 121 and the light emitting layer 124 , and the first type semiconductor layer 123 is electrically connected to the common electrode 130 through the first type electrode 121 . The second-type semiconductor layer 125 is located between the second-type electrode 122 and the light emitting layer 124 , and the second-type semiconductor layer 125 is electrically connected to the connection pad 110 through the second-type electrode 122 . More specifically, the second-type electrode 122 , the epitaxial structure ESL, and the first-type electrode 121 of this embodiment are sequentially stacked on the substrate 100 . That is to say, the micro light emitting element 120 of this embodiment is a vertical type micro light emitting diode (vertical type micro light emitting diode).
另一方面,本实施例的第一型半导体层123例如是P型半导体层,第二型半导体层125例如是N型半导体层。然而,本发明不限于此,根据其他实施例,第一型半导体层123也可以是N型半导体层,而第二型半导体层125也可以是P型半导体层。举例而言,第一型半导体层123的厚度可介于0.05微米至0.5微米之间,发光层124的厚度可介于0.1微米至1微米之间,而第二型半导体层125的厚度可介于1微米至5微米之间。据此,磊晶结构ESL的整体厚度可控制在1微米至6微米之间,有助于确保后续制程的良率与终端产品的特性。On the other hand, the first-type semiconductor layer 123 in this embodiment is, for example, a P-type semiconductor layer, and the second-type semiconductor layer 125 is, for example, an N-type semiconductor layer. However, the present invention is not limited thereto. According to other embodiments, the first-type semiconductor layer 123 may also be an N-type semiconductor layer, and the second-type semiconductor layer 125 may also be a P-type semiconductor layer. For example, the thickness of the first-type semiconductor layer 123 can be between 0.05 micron and 0.5 micron, the thickness of the light-emitting layer 124 can be between 0.1 micron and 1 micron, and the thickness of the second-type semiconductor layer 125 can be between Between 1 micron and 5 microns. Accordingly, the overall thickness of the epitaxial structure ESL can be controlled between 1 micron and 6 microns, which helps to ensure the yield rate of subsequent processes and the characteristics of end products.
在本实施例中,位于多个微型发光元件120之间的隔离层140是直接配置于微型发光元件120的磊晶结构ESL的两侧壁,以连接这些微型发光元件120,但本发明不以此为限。特别说明的是,此隔离层140是形成在这些微型发光元件120被转移至基板100之前,例如:当这些微型发光元件120转移至暂时基板上时,可于暂时基板上形成连接这些微型发光元件120的隔离层140。据此,通过此隔离层140的配置,可避免这些微型发光元件120在转移中产生偏移,增加转移成功率,有助于提升微型发光元件显示装置10(或显示面板)的整体良率。In this embodiment, the isolation layer 140 between the plurality of micro-light-emitting elements 120 is directly arranged on the two side walls of the epitaxial structure ESL of the micro-light-emitting elements 120 to connect these micro-light-emitting elements 120, but the present invention does not This is the limit. It is particularly noted that the isolation layer 140 is formed before these micro light emitting elements 120 are transferred to the substrate 100, for example: when these micro light emitting elements 120 are transferred to a temporary substrate, these micro light emitting elements can be formed and connected on the temporary substrate. 120 of the isolation layer 140 . Accordingly, the configuration of the isolation layer 140 can prevent the micro-light-emitting elements 120 from shifting during transfer, increase the transfer success rate, and help improve the overall yield of the micro-light-emitting element display device 10 (or display panel).
举例而言,隔离层140连接微型发光元件120的部分在基板100的法线方向(例如方向Z)上具有高度H1,微型发光元件120在方向Z上具有高度H2,且隔离层140的高度H1小于微型发光元件120的高度H2。在本实施例中,隔离层140的高度H1与微型发光元件120的高度H2的比值大于等于0.5。据此,可确保隔离层140与多个微型发光元件120之间能产生足够的连接力,以提升这些微型发光元件120的转移成功率。在本实施例中,隔离层140的材质可包括光感材料(例如光致抗蚀剂)、热感材料(例如高分子胶材)、氧化硅(SiOx)、氧化铝(Al2O3)、氮化铝(AlN)或氮化硅(SiNx)等的绝缘材料,但不以此为限。For example, the portion of the isolation layer 140 connected to the micro light emitting element 120 has a height H1 in the normal direction of the substrate 100 (for example, the direction Z), the micro light emitting element 120 has a height H2 in the direction Z, and the height H1 of the isolation layer 140 smaller than the height H2 of the micro-light emitting element 120 . In this embodiment, the ratio of the height H1 of the isolation layer 140 to the height H2 of the micro light emitting element 120 is greater than or equal to 0.5. Accordingly, sufficient connection force can be generated between the isolation layer 140 and the plurality of micro light emitting elements 120 to increase the transfer success rate of these micro light emitting elements 120 . In this embodiment, the material of the isolation layer 140 may include photosensitive materials (such as photoresist), thermal materials (such as polymer glue), silicon oxide (SiOx ), aluminum oxide (Al2 O3 ), aluminum nitride (AlN) or silicon nitride (SiNx ) and other insulating materials, but not limited thereto.
从另一观点来说,隔离层140位于相邻的两个微型发光元件120之间的部分的横截面面积(例如在XZ平面上的垂直投影面积)小于微型发光元件120的横截面面积(例如在XZ平面上的垂直投影面积)。在本实施例中,隔离层140位于相邻的两个微型发光元件120之间的部分的横截面面积与微型发光元件120的横截面面积的比值小于1且大于等于0.5。据此,可确保隔离层140与多个微型发光元件120之间能产生足够的连接力,以提升这些微型发光元件120的转移成功率。From another point of view, the cross-sectional area of the part of the isolation layer 140 between two adjacent micro-light emitting elements 120 (for example, the vertical projected area on the XZ plane) is smaller than the cross-sectional area of the micro-light-emitting elements 120 (for example, Vertical projected area on the XZ plane). In this embodiment, the ratio of the cross-sectional area of the part of the isolation layer 140 located between two adjacent micro-light-emitting elements 120 to the cross-sectional area of the micro-light-emitting elements 120 is less than 1 and greater than or equal to 0.5. Accordingly, sufficient connection force can be generated between the isolation layer 140 and the plurality of micro light emitting elements 120 to increase the transfer success rate of these micro light emitting elements 120 .
进一步而言,微型发光元件120在方向X上具有最大宽度WL与最小宽度WS,而微型发光元件120的最小宽度WS与最大宽度WL的比值小于等于0.5且大于等于0.05,但不以此为限。在本实施例中,磊晶结构ESL(或第一型半导体层123)与第一型电极121的连接面可定义出微型发光元件120的最小宽度WS,而磊晶结构ESL(或第二型半导体层125)与第二型电极122的连接面可定义出微型发光元件120的最大宽度WL。更具体的是,微型发光元件120的磊晶结构ESL在方向X上的宽度可由第二型电极122往第一型电极121的方向(即朝远离基板100的方向)缩减,而使磊晶结构ESL的横截面轮廓呈现上窄下宽的正梯形,有助于增加共电极130于后制程中的制程裕度。Further, the micro-light-emitting element 120 has a maximum width WL and a minimum widthWS in the direction X, and the ratio of the minimum widthWS to the maximum width WL of the micro-light-emitting element 120 is less than or equal to 0.5 and greater than or equal to 0.05, but not This is the limit. In this embodiment, the connection surface between the epitaxial structure ESL (or the first-type semiconductor layer 123) and the first-type electrode 121 can define the minimum widthWS of the micro-light emitting element 120, and the epitaxial structure ESL (or the second The connection surface between the type semiconductor layer 125) and the second type electrode 122 can define the maximum width WL of the micro light emitting device 120 . More specifically, the width of the epitaxial structure ESL of the micro light-emitting element 120 in the direction X can be reduced from the second-type electrode 122 to the direction of the first-type electrode 121 (ie, away from the substrate 100), so that the epitaxial structure The cross-sectional profile of the ESL presents a positive trapezoid with a narrow top and a wide bottom, which helps to increase the process margin of the common electrode 130 in subsequent processes.
另一方面,在方向X上排列且相邻的两个微型发光元件120之间在方向X上具有最大间距SL,且此最大间距SL可小于微型发光元件120的最大宽度WL。据此,微型发光元件显示装置10可具有较高像素解析度。然而,本发明不限于此,根据其他实施例,相邻的两个微型发光元件120的最大间距SL也可大于等于微型发光元件120的最大宽度WL。On the other hand, there is a maximum distanceSL between two adjacent micro light emitting devices 120 arranged in the direction X, and the maximum distanceSL may be smaller than the maximum width WL of the micro light emitting devices 120 . Accordingly, the micro light-emitting device display device 10 can have higher pixel resolution. However, the present invention is not limited thereto. According to other embodiments, the maximum distanceSL between two adjacent micro light emitting elements 120 may also be greater than or equal to the maximum width WL of the micro light emitting elements 120 .
在本实施例中,微型发光元件120的最大宽度WL可以介于1微米到100微米之间,优选地是介于1微米到30微米之间。在一较佳的实施例中,微型发光元件120的最大宽度WL小于10微米。在另一较佳的实施例中,微型发光元件120的最大宽度WL小于5微米。值得一提的是,当微型发光元件120的最大宽度WL小于10微米时,微型发光元件120在经由转移头(transfer head;未示出)的转移过程中易产生偏移。因此,通过隔离层140与这些微型发光元件120的连接关系,可降低对载板结构上的多个转移头与多个微型发光元件120之间的粘着力(或吸附力)的均匀性需求。换句话说,可增加微型发光元件120在转移时的制程裕度,并避免微型发光元件120产生偏移。In this embodiment, the maximum width WL of the micro light-emitting element 120 may be between 1 micron and 100 microns, preferably between 1 micron and 30 microns. In a preferred embodiment, the maximum width WL of the micro light emitting element 120 is less than 10 microns. In another preferred embodiment, the maximum width WL of the micro light emitting element 120 is less than 5 microns. It is worth mentioning that when the maximum width WL of the micro-light emitting device 120 is less than 10 micrometers, the micro-light-emitting device 120 is prone to misalignment during transfer via a transfer head (not shown). Therefore, through the connection relationship between the isolation layer 140 and the micro light emitting elements 120 , the requirements for the uniformity of the adhesive force (or adsorption force) between the multiple transfer heads and the multiple micro light emitting elements 120 on the carrier structure can be reduced. In other words, the process margin of the transfer of the micro light emitting device 120 can be increased, and the deviation of the micro light emitting device 120 can be avoided.
进一步而言,微型发光元件显示装置10还包括设置在基板100、多个微型发光元件120与隔离层140之间的空气间隙G。特别说明的是,在这些微型发光元件120接合至基板100的过程中,基板100上的连接垫110被加热而呈现熔融状态。此时,基板100与隔离层140之间具有的空气间隙G可作为连接垫110溢流的缓冲空间,有助于提升这些微型发光元件120的接合良率与平整度。在本实施例中,隔离层140具有定义空气间隙G的表面140s,且此表面140s可以是朝向隔离层140内凹的曲面,以定义出较大的缓冲空间,但本发明不以此为限。在其他实施例中,隔离层定义空气间隙的表面也可以是凸面,且此凸面可作为缓冲空间中的阻挡结构。Furthermore, the micro-light-emitting element display device 10 further includes an air gap G disposed between the substrate 100 , the plurality of micro-light-emitting elements 120 and the isolation layer 140 . It is particularly noted that, during the process of bonding the micro light-emitting elements 120 to the substrate 100 , the connection pads 110 on the substrate 100 are heated and present a molten state. At this time, the air gap G between the substrate 100 and the isolation layer 140 can be used as a buffer space for the connection pad 110 to overflow, which is helpful to improve the bonding yield and flatness of the micro light emitting elements 120 . In this embodiment, the isolation layer 140 has a surface 140s defining the air gap G, and the surface 140s may be a curved surface concave toward the isolation layer 140 to define a larger buffer space, but the present invention is not limited thereto . In other embodiments, the surface of the isolation layer defining the air gap may also be convex, and the convex surface may serve as a barrier structure in the buffer space.
另一方面,微型发光元件120在平行于排列方向(例如方向X)上具有宽度W1,空气间隙G位于相邻的两个微型发光元件120之间的所占区域在方向X上具有宽度W2,且空气间隙G的宽度W2小于微型发光元件120的宽度W1。在本实施例中,空气间隙G的宽度W2与微型发光元件120的宽度W1的比值大于0.5,但本发明不以此为限。在其他实施例中,空气间隙G的宽度W2与微型发光元件120的宽度W1的比值也可实质上等于0.5。据此,可确保隔离层140与多个微型发光元件120之间能产生足够的连接力,以提升这些微型发光元件120的转移成功率。同时,还可避免连接垫110的溢流造成相邻的两个微型发光元件120的第二型电极122的电性短路。On the other hand, the micro light emitting elements 120 have a width W1 parallel to the arrangement direction (for example, the direction X), and the area occupied by the air gap G between two adjacent micro light emitting elements 120 has a width W2 in the direction X, Moreover, the width W2 of the air gap G is smaller than the width W1 of the micro-light emitting device 120 . In this embodiment, the ratio of the width W2 of the air gap G to the width W1 of the micro light emitting device 120 is greater than 0.5, but the present invention is not limited thereto. In other embodiments, the ratio of the width W2 of the air gap G to the width W1 of the micro light emitting device 120 may also be substantially equal to 0.5. Accordingly, sufficient connection force can be generated between the isolation layer 140 and the plurality of micro light emitting elements 120 to increase the transfer success rate of these micro light emitting elements 120 . At the same time, the overflow of the connection pad 110 can also prevent the electrical short circuit of the second-type electrodes 122 of two adjacent micro light-emitting elements 120 .
在本实施例中,基板100可以是一电路基板,例如是显示基板、发光基板、具薄膜晶体管或集成电路(ICs)等功能元件的基板或其他类型的电路基板,但本发明不以此为限。微型发光元件显示装置10还可包括分别设置在基板100上的第一驱动电路150与第二驱动电路160。举例来说,用以控制显示像素(即微型发光元件120)的晶体管元件是通过扫描线(scan line)与数据线(data line)而分别电性连接至第一驱动电路150(例如是一栅极驱动电路)与第二驱动电路160(例如是一源极驱动电路)。另一方面,微型发光元件显示装置10还可包括驱动电路板170,且此驱动电路板170可电性接合至基板100的一侧以电性连接第一驱动电路150与第二驱动电路160。举例而言,驱动电路板170可通过软性电路板(flexible printed circuit board,FPCB;未示出)而电性连接基板100,但本发明不以此为限。In this embodiment, the substrate 100 may be a circuit substrate, such as a display substrate, a light-emitting substrate, a substrate with functional elements such as thin film transistors or integrated circuits (ICs), or other types of circuit substrates, but the present invention does not take this as a limit. The micro light-emitting device display device 10 may further include a first driving circuit 150 and a second driving circuit 160 respectively disposed on the substrate 100 . For example, the transistor elements used to control the display pixels (that is, the micro light-emitting elements 120) are respectively electrically connected to the first driving circuit 150 (such as a gate) through scan lines and data lines. pole driving circuit) and the second driving circuit 160 (such as a source driving circuit). On the other hand, the micro light emitting device display device 10 may further include a driving circuit board 170 , and the driving circuit board 170 may be electrically bonded to one side of the substrate 100 to electrically connect the first driving circuit 150 and the second driving circuit 160 . For example, the driving circuit board 170 can be electrically connected to the substrate 100 through a flexible printed circuit board (FPCB; not shown), but the invention is not limited thereto.
需说明的是,在本实施例中,驱动电路的数量是以两个为例进行示范性地说明,并不表示本发明以附图揭示内容为限制。在其他实施例中,微型发光元件显示装置还可进一步包括电源控制电路、或其他适于驱动显示像素的电路(例如回馈电路、补偿电路等)。应可理解的是,微型发光元件显示装置还可包括与上述驱动电路电性连接的讯号线。It should be noted that, in this embodiment, the number of driving circuits is described by taking two as an example, which does not mean that the present invention is limited by the contents disclosed in the drawings. In other embodiments, the micro light-emitting element display device may further include a power control circuit, or other circuits suitable for driving display pixels (such as a feedback circuit, a compensation circuit, etc.). It should be understood that the micro-light-emitting device display device may also include a signal line electrically connected to the driving circuit.
以下将列举另一些实施例以详细说明本揭露,其中相同的构件将标示相同的符号,并且省略相同技术内容的说明,省略部分请参考前述实施例,以下不再赘述。Some other embodiments will be listed below to describe the present disclosure in detail, wherein the same components will be marked with the same symbols, and the description of the same technical content will be omitted.
图3是本发明的第二实施例的微型发光元件显示装置的剖面示意图。图4A及图4B是图3的微型发光元件显示装置的制造流程的剖面示意图。图5是本发明的另一实施例的微型发光元件载板结构的剖面示意图。请参照图2及图3,本实施例的微型发光元件显示装置11与图2的微型发光元件显示装置10的主要差异在于:共电极的构型不同。具体而言,相较于微型发光元件显示装置10的共电极130,微型发光元件显示装置11的共电极130A位于多个微型发光元件120之间的部分在方向Z上具有较大的厚度。据此,可进一步提升微型发光元件显示装置11的共电极130A的电流传导效率。另一方面,在本实施例中,在方向X上排列且相邻的两个微型发光元件120之间的最大间距SL大于微型发光元件120的最大宽度WL,但本发明不以此为限。FIG. 3 is a schematic cross-sectional view of a micro light-emitting device display device according to a second embodiment of the present invention. 4A and 4B are schematic cross-sectional views of the manufacturing process of the micro light-emitting element display device of FIG. 3 . FIG. 5 is a schematic cross-sectional view of a micro light-emitting device carrier structure according to another embodiment of the present invention. Referring to FIG. 2 and FIG. 3 , the main difference between the micro light emitting device display device 11 of this embodiment and the micro light emitting device display device 10 of FIG. 2 lies in the configuration of the common electrodes. Specifically, compared with the common electrode 130 of the micro light emitting device display device 10 , the part of the common electrode 130A of the micro light emitting device display device 11 between the plurality of micro light emitting device 120 has a larger thickness in the direction Z. Accordingly, the current conduction efficiency of the common electrode 130A of the micro light emitting device display device 11 can be further improved. On the other hand, in this embodiment, the maximum distanceSL between two adjacent micro-light-emitting elements 120 arranged in the direction X is greater than the maximum width WL of the micro-light-emitting elements 120, but the present invention is not based on this limit.
值得一提的是,本实施例的共电极130A是形成在多个微型发光元件120转移至基板100之前。请参照图4A及图4B,举例来说,形成微型发光元件显示装置11的步骤可包括:提供微型发光元件载板结构50(如图4A所示)以及令微型发光元件载板结构50翻转并靠近基板100,使多个微型发光元件120接合于基板100的多个连接垫110(如图4B所示)。也就是说,此处的微型发光元件载板结构50可作为形成微型发光元件显示装置10的载板结构。以下将针对上述的步骤进行示例性地说明。It is worth mentioning that the common electrode 130A in this embodiment is formed before the plurality of micro light emitting elements 120 are transferred to the substrate 100 . 4A and FIG. 4B, for example, the steps of forming the micro-light-emitting element display device 11 may include: providing a micro-light-emitting element carrier structure 50 (as shown in FIG. 4A ) and turning the micro-light-emitting element carrier structure 50 over and Close to the substrate 100 , a plurality of micro light emitting devices 120 are bonded to a plurality of connection pads 110 of the substrate 100 (as shown in FIG. 4B ). That is to say, the micro light emitting device carrier structure 50 here can be used as the carrier structure for forming the micro light emitting device display device 10 . The above steps will be exemplarily described below.
首先,请参照图4A,形成微型发光元件载板结构50的步骤包括提供暂时基板101、将多个微型发光元件120转移至暂时基板101上、于暂时基板101与多个微型发光元件120之间形成共电极130A以及于多个微型发光元件120之间形成隔离层140。暂时基板101可为一塑胶基板、一玻璃基板或一蓝宝石基板等的暂时载板,可不具有电路配置于上,后续使微型发光元件120易转移到基板101。举例而言,在本实施例中,共电极130A是形成在微型发光元件120的转移步骤前,但本发明不以此为限。在一实施例中,共电极也可形成在微型发光元件120转移至暂时基板101后。在另一实施例中,微型发光元件120转移至暂时基板101上的载板结构也可不具有共电极,如图5所示。也就是说,共电极是形成在多个微型发光元件120转移至基板100后。值得注意的是,由于微型发光元件载板结构51并未形成共电极,隔离层140、微型发光元件120的第一型电极121与暂时基板101之间具有空气间隙G’,且此空气间隙G’可作为微型发光元件120被转移至暂时基板101时时的缓冲空间。First, please refer to FIG. 4A , the step of forming the micro light emitting element carrier structure 50 includes providing a temporary substrate 101 , transferring a plurality of micro light emitting elements 120 onto the temporary substrate 101 , between the temporary substrate 101 and the plurality of micro light emitting elements 120 A common electrode 130A is formed and an isolation layer 140 is formed between the plurality of micro light emitting elements 120 . The temporary substrate 101 can be a temporary carrier such as a plastic substrate, a glass substrate or a sapphire substrate, and may not have a circuit disposed thereon, so that the micro light-emitting elements 120 can be easily transferred to the substrate 101 later. For example, in this embodiment, the common electrode 130A is formed before the transfer step of the micro-light-emitting element 120 , but the invention is not limited thereto. In an embodiment, the common electrode may also be formed after the micro light emitting elements 120 are transferred to the temporary substrate 101 . In another embodiment, the carrier structure in which the micro light-emitting elements 120 are transferred to the temporary substrate 101 may not have a common electrode, as shown in FIG. 5 . That is to say, the common electrode is formed after the plurality of micro light emitting elements 120 are transferred to the substrate 100 . It is worth noting that since the micro-light-emitting element carrier structure 51 does not form a common electrode, there is an air gap G' between the isolation layer 140, the first-type electrode 121 of the micro-light-emitting element 120 and the temporary substrate 101, and the air gap G 'can be used as a buffer space when the micro light-emitting elements 120 are transferred to the temporary substrate 101.
请继续参照图4A,在形成共电极130A后,于多个微型发光元件120之间形成隔离层140,其中共电极130A位于暂时基板101与隔离层140之间。隔离层140覆盖共电极130A与磊晶结构ESL的相对两侧壁。值得注意的是,本实施例的隔离层140在远离暂时基板101的一侧表面140s可以是朝隔离层140内凹的曲面。然而,本发明不限于此,根据其他实施例,隔离层140的表面140s也可对应不同的材料选用或制程条件而呈现不同的面形。Please continue to refer to FIG. 4A , after forming the common electrode 130A, an isolation layer 140 is formed between the plurality of micro light-emitting devices 120 , wherein the common electrode 130A is located between the temporary substrate 101 and the isolation layer 140 . The isolation layer 140 covers opposite sidewalls of the common electrode 130A and the epitaxial structure ESL. It should be noted that the surface 140 s of the isolation layer 140 in this embodiment away from the temporary substrate 101 may be a curved surface concave toward the isolation layer 140 . However, the present invention is not limited thereto. According to other embodiments, the surface 140s of the isolation layer 140 may also present different surface shapes corresponding to different material selections or process conditions.
请参照图4B,在微型发光元件载板结构50接合于基板100上的连接垫110的过程中,多个微型发光元件120、隔离层140与基板100之间所形成的空气间隙G(如图3所示)可作为连接垫110被加热而溢流时的缓冲空间,有助于提升这些微型发光元件120的接合良率与平整度。由于隔离层140定义此空气间隙G的表面140s为朝向隔离层140内凹的曲面,因此可为连接垫110的溢流提供更大的缓冲空间。另一方面,通过隔离层140与这些微型发光元件120的连接关系,可有效增加这些微型发光元件120的转移成功率。Please refer to FIG. 4B , during the process of bonding the micro-light-emitting element carrier structure 50 to the connection pad 110 on the substrate 100, the air gap G formed between the plurality of micro-light-emitting elements 120, the isolation layer 140 and the substrate 100 (as shown in FIG. 3 ) can be used as a buffer space when the connection pads 110 are heated and overflow, which helps to improve the bonding yield and flatness of these micro light-emitting elements 120 . Since the surface 140 s of the isolation layer 140 defining the air gap G is a curved surface concave toward the isolation layer 140 , a larger buffer space can be provided for the overflow of the connection pad 110 . On the other hand, the transfer success rate of these micro light emitting elements 120 can be effectively increased through the connection relationship between the isolation layer 140 and these micro light emitting elements 120 .
图6是本发明的第三实施例的微型发光元件显示装置的剖面示意图。请参照图6,本实施例的微型发光元件显示装置12与图2的微型发光元件显示装置10的主要差异在于:隔离层的组成不同。具体而言,微型发光元件显示装置12的隔离层140A具有反射材料、散射材料或是光遮挡材料。在本实施例中,隔离层140A例如是二氧化硅或是氮化铝等绝缘材料,其中包含有反射粒子145。反射粒子145的材料可包括是金属粒子。FIG. 6 is a schematic cross-sectional view of a micro light-emitting device display device according to a third embodiment of the present invention. Please refer to FIG. 6 , the main difference between the micro light emitting element display device 12 of this embodiment and the micro light emitting element display device 10 in FIG. 2 lies in that the composition of the isolation layer is different. Specifically, the isolation layer 140A of the micro-light-emitting device display device 12 has reflective materials, scattering materials or light-shielding materials. In this embodiment, the isolation layer 140A is, for example, an insulating material such as silicon dioxide or aluminum nitride, and contains reflective particles 145 therein. The material of the reflective particles 145 may include metal particles.
举例而言,当微型发光元件显示装置12被致能时,微型发光元件120的磊晶结构ESL(或发光层124)发出的部分光束在入射隔离层140A后,可通过分散于隔离层140A内的反射粒子145的反射而传递回磊晶结构ESL,有助于提升微型发光元件120的正向出光量。然而,本发明不限于此,在其他实施例中,隔离层的材质也可以是吸光材料,例如黑色树脂材料。据此,可避免相邻的多个微型发光元件120的出光范围相互重叠,有助于实现高解析度的显示效果。For example, when the micro-light-emitting element display device 12 is enabled, part of the light beam emitted by the epitaxial structure ESL (or the light-emitting layer 124 ) of the micro-light-emitting element 120 can pass through and be dispersed in the isolation layer 140A after entering the isolation layer 140A. The reflection of the reflective particles 145 is transmitted back to the epitaxial structure ESL, which helps to increase the forward light output of the micro light emitting element 120 . However, the present invention is not limited thereto. In other embodiments, the material of the isolation layer may also be a light-absorbing material, such as a black resin material. According to this, it is possible to avoid overlapping light emission ranges of adjacent multiple micro-light-emitting elements 120 , which helps to realize high-resolution display effect.
图7是本发明的第四实施例的微型发光元件显示装置的剖面示意图。请参照图7,本实施例的微型发光元件显示装置13与图2的微型发光元件显示装置10的主要差异在于:隔离层与连接垫的构型不同。具体而言,微型发光元件显示装置13的隔离层140B还覆盖微型发光元件120的第二型电极122朝向基板100的表面122s,且具有重叠于连接垫110A的开口141。连接垫110A通过隔离层140B的此开口141电性连接微型发光元件120的第二型电极122的表面122s。值得一提的是,在本实施例中,由于隔离层140B与微型发光元件120的接触面积更大,可使多个微型发光元件120与隔离层140B的连接关系更为稳固,有助于进一步提升这些微型发光元件120的转移成功率。通过开口的设计也可以使第二型电极122与连接垫110A的接合处位于微型发光元件120的中央区域。若于转移过程中因加热加压而使连接垫110A融化溢流,也不会流到第二型电极122的侧面,以避免侧漏电的问题。FIG. 7 is a schematic cross-sectional view of a micro light-emitting device display device according to a fourth embodiment of the present invention. Referring to FIG. 7 , the main difference between the micro light emitting device display device 13 of this embodiment and the micro light emitting device display device 10 of FIG. 2 lies in that the configurations of the isolation layer and the connection pad are different. Specifically, the isolation layer 140B of the micro light emitting element display device 13 also covers the surface 122s of the second type electrode 122 of the micro light emitting element 120 facing the substrate 100 , and has an opening 141 overlapping the connection pad 110A. The connection pad 110A is electrically connected to the surface 122s of the second-type electrode 122 of the micro light emitting device 120 through the opening 141 of the isolation layer 140B. It is worth mentioning that in this embodiment, since the contact area between the isolation layer 140B and the micro light emitting element 120 is larger, the connection relationship between the plurality of micro light emitting elements 120 and the isolation layer 140B can be made more stable, which is helpful for further The transfer success rate of these miniature light-emitting elements 120 is improved. Through the design of the opening, the junction of the second-type electrode 122 and the connection pad 110A can also be located in the central area of the micro light emitting element 120 . If the connection pad 110A melts and overflows due to heat and pressure during the transfer process, it will not flow to the side of the second-type electrode 122 to avoid the problem of side leakage.
另一方面,本实施例的连接垫110A相较于图2的连接垫110在平行于基板100的方向(例如方向X)上具有较小的宽度。换句话说,在方向X上排列且相邻的两个连接垫110A之间具有较大的间距S,可避免相邻的两个连接垫110A溢流时所造成的电性短路。另一方面,位于隔离层140B与基板100之间的空气间隙G1可作为连接垫110A溢流时的缓冲空间,有助于提升这些微型发光元件120的接合良率与平整度。On the other hand, compared with the connection pad 110 of FIG. 2 , the connection pad 110A of this embodiment has a smaller width in a direction parallel to the substrate 100 (eg, the direction X). In other words, the two adjacent connection pads 110A arranged in the direction X and having a larger distance S between them can avoid the electrical short circuit caused by the overflow of the two adjacent connection pads 110A. On the other hand, the air gap G1 between the isolation layer 140B and the substrate 100 can be used as a buffer space when the connection pad 110A overflows, which helps to improve the bonding yield and flatness of the micro light-emitting devices 120 .
图8是本发明的第五实施例的微型发光元件显示装置的剖面示意图。请参照图8,本实施例的微型发光元件显示装置14与图2的微型发光元件显示装置10的主要差异在于:隔离层的构型、微型发光元件的组成、共电极的组成以及微型发光元件显示装置的组成不同。在本实施例中,隔离层140C具有多个凹槽140Cr,这些凹槽140Cr在方向Z上重叠于多个微型发光元件120A。共电极130B包括彼此电性连接的第一型共电极层131与第二型共电极层132。第一型共电极层131设置于隔离层140C上并延伸至这些凹槽140Cr内以电性连接微型发光元件120A的第一型电极121。第二型共电极层132设置于这些微型发光元件120A之间,且夹设于第一型共电极层131与隔离层140C之间。FIG. 8 is a schematic cross-sectional view of a micro light-emitting device display device according to a fifth embodiment of the present invention. Please refer to FIG. 8, the main differences between the micro light emitting element display device 14 of this embodiment and the micro light emitting element display device 10 in FIG. The composition of the display device is different. In this embodiment, the isolation layer 140C has a plurality of grooves 140Cr, and these grooves 140Cr overlap the plurality of micro light emitting elements 120A in the direction Z. The common electrode 130B includes a first-type common electrode layer 131 and a second-type common electrode layer 132 electrically connected to each other. The first-type common electrode layer 131 is disposed on the isolation layer 140C and extends into the grooves 140Cr to electrically connect the first-type electrodes 121 of the micro light-emitting device 120A. The second-type common electrode layer 132 is disposed between the micro light-emitting elements 120A, and interposed between the first-type common electrode layer 131 and the isolation layer 140C.
特别说明的是,在本实施例中,第二型共电极层132的导电率可高于第一型共电极层131的导电率。举例来说,第一型共电极层131的材质可包括透明金属氧化物,例如铟锡氧化物(indium tin oxide,ITO)、铟锌氧化物(indium zinc oxide,IZO)、铝锡氧化物(aluminum tinoxide,ATO)、铝锌氧化物(aluminum zinc oxide,AZO)、或其他合适的氧化物、或者是上述至少两者的堆叠层。第二型共电极层132的材质可包括银、金、铬、铜、铂、锡、镍、钛、铝或是上述金属的合金。由于共电极130B的第二型共电极层132是由金属材质制作而成,其导电率与第一型共电极层131的导电率的比值可介于10至100的范围。据此,可有效降低共电极130B的整体电阻值,有助于提升共电极130B的电流传导效率。In particular, in this embodiment, the conductivity of the second-type common electrode layer 132 may be higher than that of the first-type common electrode layer 131 . For example, the material of the first-type common electrode layer 131 may include transparent metal oxides, such as indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide ( aluminum tinoxide, ATO), aluminum zinc oxide (aluminum zinc oxide, AZO), or other suitable oxides, or a stacked layer of at least two of the above. The material of the second-type common electrode layer 132 may include silver, gold, chromium, copper, platinum, tin, nickel, titanium, aluminum or alloys of the above metals. Since the second-type common electrode layer 132 of the common electrode 130B is made of metal material, the ratio of its electrical conductivity to that of the first-type common electrode layer 131 can range from 10 to 100. Accordingly, the overall resistance of the common electrode 130B can be effectively reduced, which helps to improve the current conduction efficiency of the common electrode 130B.
在本实施例中,第二型共电极层132连接第一型共电极层131的表面132s与基板100之间具有高度H1’,微型发光元件120A的第一型电极121连接第一型共电极层131的表面121s与基板100之间具有高度H2’,且第二型共电极层132的高度H1’大于微型发光元件120A的第一型电极121的高度H2’,但本发明不以此为限。通过第二型共电极层132的高度H1’大于第一型电极121的高度H2’,可遮挡微型发光元件120A的大角度出光,进而避免相邻的多个微型发光元件120A的出光范围相互重叠,有助于实现高解析度的显示效果。In this embodiment, the surface 132s of the second-type common electrode layer 132 connected to the first-type common electrode layer 131 has a height H1' from the substrate 100, and the first-type electrode 121 of the micro light-emitting element 120A is connected to the first-type common electrode. There is a height H2' between the surface 121s of the layer 131 and the substrate 100, and the height H1' of the second-type common electrode layer 132 is greater than the height H2' of the first-type electrode 121 of the micro light-emitting element 120A, but the present invention does not take this as a limit. The height H1' of the second-type common electrode layer 132 is greater than the height H2' of the first-type electrode 121, which can block the large-angle light emission of the micro-light-emitting element 120A, thereby preventing the light-emitting ranges of adjacent multiple micro-light-emitting elements 120A from overlapping with each other. , which helps to achieve high-resolution display effects.
另一方面,微型发光元件显示装置14还包括填入多个凹槽140Cr内的波长转换层190,且第一型共电极层131位于隔离层140C与波长转换层190之间。举例来说,本实施例的微型发光元件120A用以发出单一波段的激发光(例如蓝光或紫外光),而此激发光照射在波长转换层190上以激发出红光、绿光、或其他颜色的可见光。然而,本发明不限于此,根据其他实施例,隔离层140C的这些凹槽140Cr内也可设有彩色滤光层,以将微型发光元件120A发出的可见光滤成所需的颜色光。On the other hand, the micro-light emitting element display device 14 further includes a wavelength conversion layer 190 filled in the plurality of grooves 140Cr, and the first-type common electrode layer 131 is located between the isolation layer 140C and the wavelength conversion layer 190 . For example, the micro light-emitting element 120A of this embodiment is used to emit excitation light of a single band (such as blue light or ultraviolet light), and the excitation light is irradiated on the wavelength conversion layer 190 to excite red light, green light, or other The color of visible light. However, the present invention is not limited thereto. According to other embodiments, the grooves 140Cr of the isolation layer 140C may also be provided with a color filter layer to filter the visible light emitted by the micro light emitting element 120A into desired color light.
在本实施例中,相邻的两个微型发光元件120A之间在方向X上的最大间距SL可小于微型发光元件120B在方向X上的最大宽度WL。换句话说,本实施例的微型发光元件显示装置14可以是具有较高像素解析度的微型发光二极管显示面板。另一方面,微型发光元件120A还可包括设置于隔离层140C与磊晶结构ESL之间的绝缘层180。绝缘层180可直接覆盖磊晶结构ESL以及部分第一型电极121的侧壁。据此,可避免在磊晶结构ESL与隔离层140C的连接面产生漏电流。更具体地说,可确保任两相邻的微型发光元件120A的磊晶结构ESL彼此电性独立。于未示出出的实施例中,绝缘层也可以仅覆盖磊晶结构ESL以使第一型电极121与共电极130B有更大的电性连接面积。In this embodiment, the maximum distanceSL in the direction X between two adjacent micro light emitting elements 120A may be smaller than the maximum width WL in the direction X of the micro light emitting elements 120B. In other words, the micro-LED display device 14 of this embodiment may be a micro-LED display panel with a relatively high pixel resolution. On the other hand, the micro light emitting device 120A may further include an insulating layer 180 disposed between the isolation layer 140C and the epitaxial structure ESL. The insulating layer 180 may directly cover the epitaxial structure ESL and part of the sidewalls of the first-type electrode 121 . Accordingly, leakage current can be avoided at the connection surface between the epitaxial structure ESL and the isolation layer 140C. More specifically, it can ensure that the epitaxial structures ESL of any two adjacent micro light emitting elements 120A are electrically independent from each other. In an embodiment not shown, the insulating layer may also only cover the epitaxial structure ESL so that the first-type electrode 121 and the common electrode 130B have a larger electrical connection area.
图9是本发明的第六实施例的微型发光元件显示装置的剖面示意图。请参照图9,本实施例的微型发光元件显示装置15与图1及图2的微型发光元件显示装置10的主要差异在于:共电极的组成与配置方式不同以及隔离层定义空气间隙的表面的面形不同。在本实施例中,共电极130C包括彼此电性连接的第一型共电极层131C与第二型共电极层132C。第一型共电极层131C直接覆盖隔离层140D与微型发光元件120的第一型电极121,以电性连接微型发光元件120。第二型共电极层132C设置于这些微型发光元件120之间,且夹设于第一型共电极层131C与隔离层140D之间。FIG. 9 is a schematic cross-sectional view of a micro light-emitting device display device according to a sixth embodiment of the present invention. Please refer to FIG. 9, the main difference between the micro light emitting element display device 15 of this embodiment and the micro light emitting element display device 10 shown in FIGS. Face shape is different. In this embodiment, the common electrode 130C includes a first-type common electrode layer 131C and a second-type common electrode layer 132C electrically connected to each other. The first type common electrode layer 131C directly covers the isolation layer 140D and the first type electrode 121 of the micro light emitting device 120 to electrically connect the micro light emitting device 120 . The second-type common electrode layer 132C is disposed between the micro light-emitting elements 120 and interposed between the first-type common electrode layer 131C and the isolation layer 140D.
在本实施例中,第二型共电极层132C连接第一型共电极层131C的表面132s与基板100之间具有高度H1”,微型发光元件120的第一型电极121连接第一型共电极层131C的表面121s与基板100之间具有高度H2”,且第二型共电极层132C的高度H1”小于微型发光元件120的第一型电极121的高度H2”,但本发明不以此为限。In this embodiment, the surface 132s of the second-type common electrode layer 132C connected to the first-type common electrode layer 131C has a height H1" from the substrate 100, and the first-type electrode 121 of the micro light-emitting element 120 is connected to the first-type common electrode. There is a height H2" between the surface 121s of the layer 131C and the substrate 100, and the height H1" of the second-type common electrode layer 132C is smaller than the height H2" of the first-type electrode 121 of the micro light-emitting element 120, but the present invention does not take this as a limit.
另一方面,隔离层140D还可覆盖微型发光元件120的第一型电极121的部分侧壁,且隔离层140D定义空气间隙G2的表面140s-1可以是平面,但本发明不以此为限。值得注意的是,相较于图2的空气间隙G,本实施例的空气间隙G2在方向X上具有较大的宽度W2’,其中宽度W2’可以大于相邻的两个连接垫110之间的间距。空气间隙G2的容积也可以分别大于基板100的连接垫110和每一微型发光元件120的第二型电极122的体积。据此,在微型发光元件120与基板100的连接垫110的接合过程中,可为连接垫110的溢流提供更大的缓冲空间。On the other hand, the isolation layer 140D can also cover part of the sidewall of the first-type electrode 121 of the micro light emitting element 120, and the surface 140s-1 of the isolation layer 140D defining the air gap G2 can be a plane, but the present invention is not limited thereto . It is worth noting that, compared with the air gap G in FIG. 2 , the air gap G2 of this embodiment has a larger width W2' in the direction X, wherein the width W2' can be greater than that between two adjacent connection pads 110 Pitch. The volume of the air gap G2 can also be larger than the volume of the connection pad 110 of the substrate 100 and the second-type electrode 122 of each micro light emitting element 120 . Accordingly, during the bonding process of the micro light-emitting element 120 and the connection pad 110 of the substrate 100 , a larger buffer space can be provided for the overflow of the connection pad 110 .
图10是本发明的第七实施例的微型发光元件显示装置的剖面示意图。请参照图10,本实施例的微型发光元件显示装置16与图8的微型发光元件显示装置14的主要差异在于:隔离层的材质与构型以及微型发光元件显示装置的组成不同。在本实施例中,隔离层140E具有多个凹槽140Er,且这些凹槽140Er在方向Z上重叠于多个微型发光元件120A。特别说明的是,隔离层140E的材质可以是具有反射和导电特性的材料,例如包括银、金、铬、铜、铂、锡、镍、钛、铝或是上述金属的合金。因此,可以避免相邻的两微型发光元件120A的出光互相干扰,且隔离层140E还可作为具有良好导电效率的共电极。FIG. 10 is a schematic cross-sectional view of a micro light-emitting device display device according to a seventh embodiment of the present invention. Please refer to FIG. 10 , the main difference between the micro light emitting device display device 16 of this embodiment and the micro light emitting device display device 14 in FIG. 8 lies in the material and configuration of the isolation layer and the composition of the micro light emitting device display device. In this embodiment, the isolation layer 140E has a plurality of grooves 140Er, and these grooves 140Er overlap the plurality of micro light emitting elements 120A in the direction Z. In particular, the isolation layer 140E can be made of reflective and conductive materials, such as silver, gold, chromium, copper, platinum, tin, nickel, titanium, aluminum or alloys of the above metals. Therefore, it is possible to prevent the emitted light from two adjacent micro-light-emitting elements 120A from interfering with each other, and the isolation layer 140E can also serve as a common electrode with good conduction efficiency.
另一方面,通过位于多个微型发光元件120A之间的隔离层140E电性连接这些微型发光元件120A的第一型电极121,可以避免共电极设置于出光面(例如第一电极121的表面121s)造成正向出光量的降低。然而,本发明不限于此,在未示出出的一实施例中,亦可通过一第二型共电极层(未示出)设置于隔离层140E上并延伸至这些凹槽140Er内以电性连接微型发光元件120A的第一型电极121。On the other hand, the first-type electrodes 121 of these micro-light-emitting elements 120A are electrically connected through the isolation layer 140E between the plurality of micro-light-emitting elements 120A, so that the common electrode can be avoided from being arranged on the light-emitting surface (for example, the surface 121s of the first electrode 121 ) results in a decrease in the amount of forward light emitted. However, the present invention is not limited thereto. In an embodiment not shown, a second-type common electrode layer (not shown) may also be disposed on the isolation layer 140E and extend into these grooves 140Er to electrically connected to the first-type electrode 121 of the micro light-emitting element 120A.
在本实施例中,隔离层140E的表面140s-2与基板100之间具有高度H3,且通过隔离层140E的高度H3大于第一型电极121的高度H2’,可遮挡微型发光元件120A的大角度出光,进而避免相邻的多个微型发光元件120A的出光范围相互重叠,有助于实现高解析度的显示效果。In this embodiment, there is a height H3 between the surface 140s-2 of the isolation layer 140E and the substrate 100, and the height H3 of the isolation layer 140E is greater than the height H2' of the first-type electrode 121, which can block the size of the micro light-emitting element 120A. The light is emitted at an angle, thereby avoiding that the light emitting ranges of adjacent multiple micro light-emitting elements 120A overlap with each other, which helps to achieve a high-resolution display effect.
另一方面,微型发光元件显示装置16的波长转换层190填入多个凹槽140Er内。举例来说,本实施例的微型发光元件120A用以发出单一波段的激发光(例如蓝光或紫外光),而此激发光照射在波长转换层190上以激发出红光、绿光、或其他颜色的可见光。然而,本发明不限于此,根据其他实施例,隔离层140E的这些凹槽140Er内也可设有彩色滤光层,以将微型发光元件120A发出的可见光滤成所需的颜色光。On the other hand, the wavelength conversion layer 190 of the micro-light emitting device display device 16 fills in the plurality of grooves 140Er. For example, the micro light-emitting element 120A of this embodiment is used to emit excitation light of a single band (such as blue light or ultraviolet light), and the excitation light is irradiated on the wavelength conversion layer 190 to excite red light, green light, or other The color of visible light. However, the present invention is not limited thereto. According to other embodiments, color filter layers may also be provided in the grooves 140Er of the isolation layer 140E, so as to filter the visible light emitted by the micro light-emitting elements 120A into desired color light.
综上所述,在本发明的一实施例的微型发光元件显示装置中,通过设置在多个微型发光元件之间的隔离层,可增加这些微型发光元件的转移成功率。另一方面,在这些微型发光元件接合至基板的过程中,基板上的连接垫被加热而呈现熔融状态。此时,位于隔离层与基板之间的空气间隙可作为连接垫溢流时的缓冲空间,有助于提升这些微型发光元件的接合良率与平整度。To sum up, in the micro-light-emitting element display device according to an embodiment of the present invention, the transfer success rate of these micro-light-emitting elements can be increased through an isolation layer disposed between a plurality of micro-light-emitting elements. On the other hand, during the process of bonding these micro-light-emitting elements to the substrate, the connection pads on the substrate are heated to a molten state. At this time, the air gap between the isolation layer and the substrate can be used as a buffer space when the connection pad overflows, which helps to improve the bonding yield and flatness of these micro light-emitting elements.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911393715.7ACN110957342B (en) | 2019-12-30 | 2019-12-30 | Micro light-emitting element display device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911393715.7ACN110957342B (en) | 2019-12-30 | 2019-12-30 | Micro light-emitting element display device |
| Publication Number | Publication Date |
|---|---|
| CN110957342A CN110957342A (en) | 2020-04-03 |
| CN110957342Btrue CN110957342B (en) | 2023-08-29 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911393715.7AActiveCN110957342B (en) | 2019-12-30 | 2019-12-30 | Micro light-emitting element display device |
| Country | Link |
|---|---|
| CN (1) | CN110957342B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW202105671A (en) | 2019-02-22 | 2021-02-01 | 加拿大商弗瑞爾公司 | Microdevice cartridge structure |
| TWI811680B (en) | 2021-05-20 | 2023-08-11 | 錼創顯示科技股份有限公司 | Light-emitting diode micro display device |
| CN119896069A (en)* | 2023-09-01 | 2025-04-25 | 上海显耀显示科技有限公司 | Micro LED display panel and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20040105423A (en)* | 2003-06-09 | 2004-12-16 | 한국전자통신연구원 | Fabrication method using a temporary substrate of micro structures |
| WO2008045207A2 (en)* | 2006-10-06 | 2008-04-17 | Qualcomm Mems Technologies, Inc. | Light guide |
| JP2008098148A (en)* | 2006-09-14 | 2008-04-24 | Canon Inc | Organic light emitting device |
| CN109671821A (en)* | 2017-10-13 | 2019-04-23 | 英属开曼群岛商錼创科技股份有限公司 | Miniature light-emitting component and display device |
| CN109671732A (en)* | 2017-10-13 | 2019-04-23 | 英属开曼群岛商錼创科技股份有限公司 | Display device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20040105423A (en)* | 2003-06-09 | 2004-12-16 | 한국전자통신연구원 | Fabrication method using a temporary substrate of micro structures |
| JP2008098148A (en)* | 2006-09-14 | 2008-04-24 | Canon Inc | Organic light emitting device |
| WO2008045207A2 (en)* | 2006-10-06 | 2008-04-17 | Qualcomm Mems Technologies, Inc. | Light guide |
| CN109671821A (en)* | 2017-10-13 | 2019-04-23 | 英属开曼群岛商錼创科技股份有限公司 | Miniature light-emitting component and display device |
| CN109671732A (en)* | 2017-10-13 | 2019-04-23 | 英属开曼群岛商錼创科技股份有限公司 | Display device |
| Publication number | Publication date |
|---|---|
| CN110957342A (en) | 2020-04-03 |
| Publication | Publication Date | Title |
|---|---|---|
| US11367713B2 (en) | Micro light emitting device display apparatus | |
| TWI725691B (en) | Micro light emitting device display apparatus | |
| EP3550937B1 (en) | Display device using semiconductor light-emitting diode | |
| CN111063270B (en) | Micro light-emitting element display device | |
| US11387387B2 (en) | Micro light emitting device display apparatus | |
| CN112928196B (en) | Display panel, manufacturing method thereof and display device | |
| CN110211987A (en) | Light-emitting-diode panel | |
| TWI709222B (en) | Micro light emitting device display apparatus | |
| CN110957342B (en) | Micro light-emitting element display device | |
| CN111599908B (en) | Light-emitting device and method of manufacturing the same | |
| CN110323212A (en) | Electronic device | |
| CN108922884A (en) | light emitting diode display | |
| US20230074731A1 (en) | Pixel unit and manufacturing method thereof | |
| TW202118081A (en) | Micro light-emitting diode device | |
| CN112310142A (en) | Display device, display panel and manufacturing method thereof | |
| US12237458B2 (en) | Micro light emitting device display apparatus | |
| CN110491974B (en) | Micro light emitting element and micro light emitting diode element substrate | |
| TWI779242B (en) | Micro light-emitting diode device | |
| US20240113150A1 (en) | Light emitting device and light emitting module having the same | |
| CN118943134A (en) | Light emitting element package and display device using the same | |
| WO2021189491A1 (en) | Display module and display device | |
| CN110752228B (en) | Micro light-emitting diode device | |
| KR20230102354A (en) | Display device | |
| TW202314670A (en) | Display apparatus | |
| US20240290911A1 (en) | Cover glass and display device |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |