Movatterモバイル変換


[0]ホーム

URL:


CN110914710B - Position detection system - Google Patents

Position detection system
Download PDF

Info

Publication number
CN110914710B
CN110914710BCN201880035663.3ACN201880035663ACN110914710BCN 110914710 BCN110914710 BCN 110914710BCN 201880035663 ACN201880035663 ACN 201880035663ACN 110914710 BCN110914710 BCN 110914710B
Authority
CN
China
Prior art keywords
gnss
vehicle
information
unit
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880035663.3A
Other languages
Chinese (zh)
Other versions
CN110914710A (en
Inventor
浅野晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co LtdfiledCriticalKyosan Electric Manufacturing Co Ltd
Publication of CN110914710ApublicationCriticalpatent/CN110914710A/en
Application grantedgrantedCritical
Publication of CN110914710BpublicationCriticalpatent/CN110914710B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

The present invention provides a position detection device and a position detection system, which provide a technology for accurately and precisely detecting the position of a train by using GNSS. The on-board device (20) performs GNSS verification when performing train position calculation based on GNSS information of the 1 st GNSS unit (15) and the 2 nd GNSS unit (16), and performs absolute position detection processing using GNSS speed information when the verification is qualified. When the vehicle (10) is located within a predetermined distance from the above-ground device (60), the on-vehicle device (20) obtains GNSS error information from the above-ground device (60) and reflects the GNSS error information in the position information detected by the 1 st GNSS (15) and the 2 nd GNSS (16).

Description

Translated fromChinese
位置检测系统position detection system

技术领域technical field

本发明涉及基于GNSS信号检测列车(车辆)的行驶位置的位置检测系统。The present invention relates to a position detection system for detecting the running position of a train (vehicle) based on GNSS signals.

背景技术Background technique

作为把握列车的行驶位置的技术,例如有利用从测速发电机(以下称为“TG”。)获得的信号,将列车行驶的距离累计,来检测列车的行驶位置的技术。另外,也有使用了GNSS(Global Navigation Satellite System,全球卫星导航系统)的技术。对于使用了GNSS的技术,例如有:由设在列车的GNSS接收装置获得来自GNSS卫星的电波,来检测列车的当前位置,或对列车速度进行控制的技术(参照专利文献1)。As a technique for grasping the running position of the train, for example, there is a technique of detecting the running position of the train by integrating the distance traveled by the train using a signal obtained from a tachogenerator (hereinafter referred to as "TG"). In addition, there is also a technique using GNSS (Global Navigation Satellite System, Global Navigation Satellite System). As for the technology using GNSS, for example, there is a technology of detecting the current position of the train or controlling the speed of the train by obtaining radio waves from GNSS satellites with a GNSS receiving device installed on the train (see Patent Document 1).

现有技术文献prior art literature

专利文献patent documents

专利文献1:日本特开2016-194497号公报Patent Document 1: Japanese Patent Laid-Open No. 2016-194497

发明内容Contents of the invention

发明所要解决的问题The problem to be solved by the invention

可是,在专利文献1公开的技术中,在使用运行用的数据,检测出弯道或隧道等特征性的位置时,对行驶位置进行修正,但是,存在以下问题:若从这样的特征性的位置远离,则由于误差的积累,使得行驶位置的检测精度降低。However, in the technology disclosed in Patent Document 1, when a characteristic position such as a curve or a tunnel is detected using driving data, the traveling position is corrected. If the position is far away, the detection accuracy of the driving position will decrease due to the accumulation of errors.

本发明是鉴于以上那样的状况而完成的,其目的在于,提供解决上述问题的技术。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for solving the above-mentioned problems.

用于解决问题的手段means of solving problems

本发明的位置检测装置,具备:第1GNSS天线及第2GNSS天线,其在一个车辆的前后方向隔开规定距离而设置,接收来自GNSS卫星的GNSS信号;第1GNSS接收部,其与所述第1GNSS天线连接;第2GNSS接收部,其与所述第2GNSS天线连接;位置计算部,其利用所述第1GNSS接收部及所述第2GNSS接收部基于所述GNSS信号计算所述车辆的位置;以及误差信息获得部,其从地上侧的设备获得GNSS误差信息,在距所述地上侧的设备而位于一定区域内的情况下,所述位置计算部反映所述GNSS误差信息来计算所述车辆的位置。The position detection device of the present invention includes: a first GNSS antenna and a second GNSS antenna, which are provided at a predetermined distance in the front-rear direction of one vehicle, and receive GNSS signals from GNSS satellites; an antenna connection; a second GNSS receiving unit connected to the second GNSS antenna; a position calculation unit using the first GNSS receiving unit and the second GNSS receiving unit to calculate the position of the vehicle based on the GNSS signal; and an error an information obtaining unit that obtains GNSS error information from a device on the ground, and when located within a certain area from the device on the ground, the position calculation unit calculates the position of the vehicle by reflecting the GNSS error information .

另外,也可以,具备:所述车辆行驶的路线的数据库;以及检定部,其检定是否是处于能够执行基于所述数据库和所述GNSS信号的所述车辆的位置的计算处理的状态,所述位置计算部在所述检定部判断为处于能够执行所述车辆的位置的确定处理的状态的情况下,执行基于所述GNSS信号的所述车辆的位置的计算处理,在判断为未处于能够执行所述车辆的位置的计算处理的状态的情况下,基于测速发电机执行所述车辆的位置的确定处理。In addition, it is also possible to include: a database of the route traveled by the vehicle; and a testing unit that checks whether it is in a state where the calculation process of the position of the vehicle based on the database and the GNSS signal can be performed, and the The position calculation unit executes the calculation process of the position of the vehicle based on the GNSS signal when the verification unit determines that the process of specifying the position of the vehicle can be performed, and when it determines that the process of specifying the position of the vehicle cannot be performed. In the case of the status of the calculation process of the position of the vehicle, the determination process of the position of the vehicle is performed based on a tachogenerator.

另外,也可以,所述位置计算部在执行基于所述GNSS信号的所述车辆的位置的计算处理的情况下,对所述第1GNSS接收部计算的速度向量和所述第2GNSS接收部计算的速度向量的推移的特征点、与所述数据库进行比较,计算所述车辆的位置。In addition, when the position calculation unit executes the calculation process of the position of the vehicle based on the GNSS signal, the speed vector calculated by the first GNSS reception unit and the velocity vector calculated by the second GNSS reception unit may be The characteristic points of the transition of the velocity vector are compared with the database to calculate the position of the vehicle.

本发明的位置检测系统,其是利用搭载于车辆的车上装置、和设置于地上侧的地上装置,计算所述车辆的位置,其中,所述车上装置具备:第1GNSS天线及第2GNSS天线,其在一个车辆的前后方向隔开规定距离而设置,接收来自GNSS卫星的GNSS信号;第1GNSS接收部,其与所述第1GNSS天线连接;第2GNSS接收部,其与所述第2GNSS天线连接;位置计算部,其利用所述第1GNSS接收部及所述第2GNSS接收部基于所述GNSS信号计算所述车辆的位置;误差信息获得部,其从地上侧的设备获得GNSS误差信息;以及车上侧通信部,其与所述地上装置通信,所述地上装置具备:第3GNSS天线,其从所述GNSS卫星接收GNSS信号;第3GNSS接收部,其与所述第3GNSS天线连接;地上侧控制部,其保持所述第3GNSS天线的位置信息,根据保持的所述第3GNSS天线的位置信息和基于所述第3GNSS天线接收到的GNSS信号计算的位置信息,计算所述GNSS误差信息;以及地上侧通信部,其将所述GNSS误差信息向所述车上装置发送,所述车上装置的所述位置计算部在计算所述车辆的位置的情况下,反映所述GNSS误差信息。The position detection system of the present invention calculates the position of the vehicle by using an on-vehicle device mounted on the vehicle and an on-ground device installed on the ground side, wherein the on-vehicle device includes: a first GNSS antenna and a second GNSS antenna , which are arranged at a predetermined distance in the front-rear direction of a vehicle, and receive GNSS signals from GNSS satellites; a first GNSS receiving unit, which is connected to the first GNSS antenna; and a second GNSS receiving unit, which is connected to the second GNSS antenna a position calculating unit that uses the first GNSS receiving unit and the second GNSS receiving unit to calculate the position of the vehicle based on the GNSS signal; an error information obtaining unit that obtains GNSS error information from a device on the ground; and the vehicle an upper side communication part, which communicates with the ground device, and the ground device is provided with: a third GNSS antenna, which receives GNSS signals from the GNSS satellite; a third GNSS receiving part, which is connected to the third GNSS antenna; a part, which holds the position information of the 3rd GNSS antenna, and calculates the GNSS error information based on the held position information of the 3rd GNSS antenna and the position information calculated based on the GNSS signal received by the 3rd GNSS antenna; and on the ground A side communication unit that transmits the GNSS error information to the on-vehicle device, and the position calculation unit of the on-vehicle device reflects the GNSS error information when calculating the position of the vehicle.

本发明的位置检测系统,其是利用搭载于车辆的车上装置、设置于地上侧的地上装置及指令中心,计算所述车辆的位置,其中,所述车上装置具备:第1GNSS天线及第2GNSS天线,其在一个车辆的前后方向隔开规定距离而设置,接收来自GNSS卫星的GNSS信号;第1GNSS接收部,其与所述第1GNSS天线连接;第2GNSS接收部,其与所述第2GNSS天线连接;位置计算部,其将所述第1GNSS接收部及所述第2GNSS接收部的基于所述GNSS信号的位置信息向所述指令中心通知,并且,基于所述位置信息计算所述车辆的位置;误差信息获得部,其从所述指令中心获得所述车辆的所述位置的修正信息;以及车上侧通信部,其与所述地上装置及所述指令中心进行通信,所述地上装置具备:第3GNSS天线,其从所述GNSS卫星接收GNSS信号;第3GNSS接收部,其与所述第3GNSS天线连接;地上侧控制部,其保持所述第3GNSS天线的位置信息,根据保持的所述第3GNSS天线的位置信息和基于所述第3GNSS天线接收到的GNSS信号计算的位置信息,计算所述GNSS误差信息,并向所述指令中心通知;以及地上侧通信部,其与所述车上装置和所述指令中心进行通信,所述指令中心与所述车上装置和所述地上装置进行通信,基于从所述车上装置获得的所述第1GNSS接收部及所述第2GNSS接收部的基于所述GNSS信号的所述位置信息、和从所述地上装置获得的所述GNSS误差信息,对所述车辆的位置信息进行修正,基于修正后的位置信息,进行所述车辆的运行管理。The position detection system of the present invention calculates the position of the vehicle by using an on-vehicle device mounted on the vehicle, an on-ground device installed on the ground side, and a command center, wherein the on-vehicle device includes: a first GNSS antenna and a first GNSS antenna. 2GNSS antennas, which are installed at a predetermined distance in the front-rear direction of one vehicle, and receive GNSS signals from GNSS satellites; a first GNSS receiving unit, which is connected to the first GNSS antenna; and a second GNSS receiving unit, which is connected to the second GNSS Antenna connection; a position calculation unit that notifies the command center of the position information of the first GNSS receiving unit and the second GNSS receiving unit based on the GNSS signal, and calculates the position of the vehicle based on the position information. position; an error information obtaining unit that obtains correction information of the position of the vehicle from the command center; and an on-vehicle communication unit that communicates with the ground device and the command center, the ground device It includes: a third GNSS antenna that receives GNSS signals from the GNSS satellites; a third GNSS receiving unit that is connected to the third GNSS antenna; the position information of the 3rd GNSS antenna and the position information calculated based on the GNSS signal received by the 3rd GNSS antenna, calculate the GNSS error information, and notify the command center; and the ground side communication unit, which communicates with the vehicle The upper device communicates with the command center, the command center communicates with the on-vehicle device and the ground device, based on the first GNSS receiving unit and the second GNSS receiving unit obtained from the on-vehicle device Correct the position information of the vehicle based on the position information of the GNSS signal and the GNSS error information obtained from the ground device, and perform operation management of the vehicle based on the corrected position information .

发明效果Invention effect

根据本发明,能够实现利用GNSS精度更好地检测列车(车辆)的位置的技术。According to the present invention, it is possible to achieve a technique for better detecting the position of a train (vehicle) using GNSS accuracy.

附图说明Description of drawings

图1是表示本实施方式涉及的、具备基于GNSS信号的行驶位置检测功能的列车的构成的功能框图。FIG. 1 is a functional block diagram showing the configuration of a train having a running position detection function based on GNSS signals according to the present embodiment.

图2是对本实施方式涉及的、执行基于GNSS信号的行驶位置检测功能时的检定处理原理进行说明的图。FIG. 2 is a diagram illustrating the principle of verification processing when the function of detecting the traveling position based on the GNSS signal is executed according to the present embodiment.

图3是对本实施方式涉及的、基于GNSS信号的行驶位置检测功能进行说明的图。FIG. 3 is a diagram illustrating a traveling position detection function based on a GNSS signal according to the present embodiment.

图4是对本实施方式涉及的、基于GNSS信号的行驶位置检测功能进行说明的图。FIG. 4 is a diagram illustrating a traveling position detection function based on a GNSS signal according to the present embodiment.

图5是表示本实施方式涉及的、搭载于前头的车辆的车上装置的构成的功能框图。FIG. 5 is a functional block diagram showing the configuration of an on-vehicle device mounted on a leading vehicle according to the present embodiment.

图6是对本实施方式涉及的、GNSS误差修正的概念进行说明的图。FIG. 6 is a diagram illustrating the concept of GNSS error correction according to the present embodiment.

图7是本实施方式涉及的、基于GNSS信号的位置计算处理的流程图。FIG. 7 is a flowchart of position calculation processing based on GNSS signals according to the present embodiment.

具体实施方式Detailed ways

下面,参照附图对用于实施本发明的方式(以下简称为“实施方式”)具体地进行说明。Hereinafter, modes for implementing the present invention (hereinafter simply referred to as "embodiments") will be specifically described with reference to the drawings.

图1是表示本实施方式涉及的、列车运行系统1的概要的图。图2是列车运行系统1的框图。在图1中,示出向图示右方向进入的车辆10的前头进入了月台88的状态。FIG. 1 is a diagram showing an overview of a train operating system 1 according to the present embodiment. FIG. 2 is a block diagram of the train operating system 1 . In FIG. 1 , a state in which the front end of thevehicle 10 entering in the right direction of the drawing has entered theplatform 88 is shown.

如图1所示,列车运行系统1中,作为车辆侧的装置而在前头的车辆10中具备第1GNSS部15、第2GNSS部16及车上装置20,作为地上侧的装置而在车站的月台88具备地上装置60及第3GNSS部61。进而,列车运行系统1中,作为地上侧的装置还具备对车辆10和车上装置20进行控制,总体地进行运行管理的指令中心70。As shown in Fig. 1, in the train operation system 1, as the device on the vehicle side, thefirst GNSS unit 15, thesecond GNSS unit 16, and the on-board device 20 are provided in thevehicle 10 at the front, and as the device on the ground side, the monthly Thestand 88 includes theground device 60 and thethird GNSS unit 61 . Furthermore, the train operating system 1 is further provided with acommand center 70 for controlling thevehicle 10 and the on-vehicle device 20 as an apparatus on the ground side, and performing overall operation management.

在本实施方式中,使用车辆侧的第1GNSS部15、第2GNSS部16和地上侧的第3GNSS部61,提高车站(月台88)附近地域的车辆位置的计算精度。In this embodiment, the calculation accuracy of the vehicle position in the vicinity of the station (platform 88 ) is improved by using thefirst GNSS unit 15 and thesecond GNSS unit 16 on the vehicle side and thethird GNSS unit 61 on the ground side.

若列车进入了规定的通信区域,则地上装置60将第3GNSS部61所获得的GNSS信息向车上装置20发送。已经知道第3GNSS部61的第3GNSS接收部61a的绝对位置,例如将所获得的GNSS信息与绝对值之差(以下称为“GNSS误差”。)向车上装置20通知。在存在于月台88附近的车辆10(第1GNSS部15、第2GNSS部16)中,基于来自与第3GNSS部61相同的GNSS卫星98的GNSS信息计算位置信息。When the train enters a predetermined communication area, theground device 60 transmits the GNSS information obtained by thethird GNSS unit 61 to the on-board device 20 . The absolute position of the thirdGNSS receiving unit 61 a of thethird GNSS unit 61 is already known, and the difference between the obtained GNSS information and the absolute value (hereinafter referred to as “GNSS error”) is notified to the on-vehicle device 20 , for example. In the vehicles 10 (the first GNSSunit 15 and the second GNSS unit 16 ) existing near theplatform 88 , position information is calculated based on GNSS information from the same GNSSsatellite 98 as thethird GNSS unit 61 .

另外,也可以,车辆10的车上装置20将基于第1GNSS部15及第2GNSS部16的位置信息向地上侧的指令中心70发送,地上装置60将第3GNSS部61的GNSS误差信息向地上侧的指令中心70发送。在该情况下,指令中心70能够准确地进行车辆10的位置修正,能够基于该列车位置(车辆10的修正后的位置)进行联动控制或信号控制。Alternatively, the on-vehicle device 20 of thevehicle 10 may transmit the position information based on thefirst GNSS unit 15 and thesecond GNSS unit 16 to thecommand center 70 on the ground side, and theground device 60 may transmit the GNSS error information of thethird GNSS unit 61 to the ground side. Theinstruction center 70 sends. In this case, thecommand center 70 can accurately correct the position of thevehicle 10, and can perform interlocking control or signal control based on the train position (the corrected position of the vehicle 10).

计算出的位置信息包含由第3GNSS部61计算出的GNSS误差的可能性较高。因此,在车上装置20中,当基于第1GNSS部15及第2GNSS部16的GNSS信息计算位置信息的情况下,获得由第3GNSS部61计算出的GNSS误差作为GNSS误差信息,并将其反映,进行将GNSS误差排除的处理。此外,如上述那样,也可以,在指令中心70从车辆10或地上装置60获得位置信息的情况下,指令中心70进行将GNSS误差排除的处理。在下面,主要对由车辆10和地上装置60进行GNSS误差的排除处理的实例进行说明。It is highly likely that the calculated position information includes the GNSS error calculated by thethird GNSS unit 61 . Therefore, in the on-vehicle device 20, when the position information is calculated based on the GNSS information of thefirst GNSS unit 15 and thesecond GNSS unit 16, the GNSS error calculated by thethird GNSS unit 61 is obtained as GNSS error information and reflected , and perform processing to exclude GNSS errors. In addition, as described above, when thecommand center 70 acquires positional information from thevehicle 10 or theground device 60 , thecommand center 70 may perform processing for eliminating GNSS errors. Hereinafter, an example in which GNSS error elimination processing is mainly performed by thevehicle 10 and theground device 60 will be described.

对于车辆10侧的构成,第1GNSS部15具备第1GNSS天线15a及第1GNSS接收部15b。第2GNSS部16具备第2GNSS天线16a和第2GNSS接收部16b。Regarding the configuration on thevehicle 10 side, thefirst GNSS unit 15 includes afirst GNSS antenna 15a and a firstGNSS receiving unit 15b. The 2nd GNSSpart 16 is equipped with the2nd GNSS antenna 16a and the 2ndGNSS receiving part 16b.

第1GNSS天线15a设置于车辆10的上部前端附近。第2GNSS天线16a设置于车辆10的上部后端附近。第1GNSS天线15a和第2GNSS天线16a隔开规定的距离(以下称为“设置距离a”)而设置。例如,在车辆10的长度为20m的情况下,设置距离a为17m左右。Thefirst GNSS antenna 15 a is installed near the upper front end of thevehicle 10 . Thesecond GNSS antenna 16a is installed near the upper rear end of thevehicle 10 . Thefirst GNSS antenna 15a and thesecond GNSS antenna 16a are installed at a predetermined distance (hereinafter referred to as "installation distance a"). For example, when the length of thevehicle 10 is 20 m, the installation distance a is about 17 m.

第1GNSS接收部15b基于第1GNSS天线15a接收到的GNSS信号计算第1GNSS天线15a的位置信息,并且,计算第1GNSS天线15a的位置处的速度向量,将各计算结果向车上装置20输出。The firstGNSS receiving unit 15b calculates the position information of thefirst GNSS antenna 15a based on the GNSS signal received by thefirst GNSS antenna 15a, calculates the velocity vector at the position of thefirst GNSS antenna 15a, and outputs each calculation result to the on-vehicle device 20.

第2GNSS接收部16b基于第2GNSS天线16a接收到的GNSS信号计算第2GNSS天线16a的位置信息,并且,计算第2GNSS天线16a的位置处的速度向量,将各计算结果向车上装置20输出。The secondGNSS receiving unit 16b calculates the position information of thesecond GNSS antenna 16a based on the GNSS signal received by thesecond GNSS antenna 16a, and calculates the velocity vector at the position of thesecond GNSS antenna 16a, and outputs each calculation result to the on-vehicle device 20.

车上装置20在检测出速度向量的特征点时,与预先准备的系统固有的信息进行比较,来确定车辆10的位置。另外,车上装置20在从地上装置60获得了第3GNSS部61的位置信息的情况下,将该位置信息反映到第1GNSS部15及第2GNSS部16的计算结果中,对位置信息进行修正。When the on-vehicle device 20 detects the characteristic point of the velocity vector, it compares it with pre-prepared system-specific information to identify the position of thevehicle 10 . Also, when the on-vehicle device 20 acquires the position information of thethird GNSS unit 61 from theground unit 60 , the position information is reflected in the calculation results of thefirst GNSS unit 15 and thesecond GNSS unit 16 to correct the position information.

在此,参照图3~图5,对基于GNSS信号的行驶位置检测的原理及位置信息的修正处理进行说明。在本实施方式中,如上述那样,车上装置20在检测出速度向量变化的规定的特征点时,与预先准备的系统固有的信息(运行用数据部31的信息)进行比较,在判断为与预想的特征点一致的情况下,判断为“处于在数据库中记录的位置”。在此,所谓特征点,例如,是轨道99转弯时的其起点或终点等。此外,在特征点的检测处理之前,执行是否是处于也可以执行基于GNSS信号的位置信息的计算处理的状态的GNSS检定。另外,在车站(月台88)等那样的需要精度较高的位置信息的区域,基于地上侧的位置信息及该地点的GNSS信息,修正GNSS误差。Here, the principle of the traveling position detection based on the GNSS signal and the correction process of the position information will be described with reference to FIGS. 3 to 5 . In the present embodiment, as described above, when the on-vehicle device 20 detects a predetermined characteristic point of the velocity vector change, it compares it with the pre-prepared system-specific information (information of the operation data unit 31), and determines that When it matches the expected feature point, it is judged to be "at the position recorded in the database". Here, the feature point is, for example, the start point or end point when thetrack 99 turns. In addition, prior to the detection process of the feature point, a GNSS test is performed to determine whether the calculation process of the position information based on the GNSS signal can also be performed. In addition, in an area where highly accurate positional information is required, such as a station (platform 88 ), GNSS errors are corrected based on the positional information on the ground side and the GNSS information at that point.

<基本技术><Basic Technology>

1.GNSS检定1. GNSS verification

GNSS检定是为了提高GNSS信息的可靠性而进行的。只在GNSS检定合格时,将基于该GNSS信息的位置信息使用于车辆10的位置确定中。在GNSS检定中,使用车辆10的2台的GNSS接收机(第1GNSS接收部15b、第2GNSS接收部16b)。GNSS verification is performed to improve the reliability of GNSS information. Only when the GNSS certification is passed, the position information based on the GNSS information is used to determine the position of thevehicle 10 . In the GNSS test, two GNSS receivers (the firstGNSS receiving unit 15b and the secondGNSS receiving unit 16b) of thevehicle 10 are used.

如上述那样,第1GNSS天线15a和第2GNSS天线16a以无相关性的设置距离a而设置。具体地,在车辆10的前后端(例如前头的车辆10的前头侧和连结侧的两个地方)设置有第1GNSS天线15a和第2GNSS天线16a。这时,不只是设置距离a,也构建了基于车辆10的顶棚的、电波环境的非相关环境。即,对第1及第2GNSS天线15a、16a,构建了不同的衰落环境。由此,两个GNSS接收机(第1及第2GNSS接收部15b、16b)构成为,不会由于相同的衰落的影响而输出错误信息。As mentioned above, the1st GNSS antenna 15a and the2nd GNSS antenna 16a are installed at the installation distance a which has no correlation. Specifically, thefirst GNSS antenna 15 a and thesecond GNSS antenna 16 a are provided at the front and rear ends of the vehicle 10 (for example, at two places on the front side and the connection side of the front vehicle 10 ). In this case, not only the distance a is set, but also an environment irrelevant to the radio wave environment based on the roof of thevehicle 10 is constructed. That is, different fading environments are constructed for the first andsecond GNSS antennas 15a and 16a. Accordingly, the two GNSS receivers (first andsecond GNSS receivers 15b, 16b) are configured so as not to output erroneous information due to the influence of the same fading.

在GNSS检定的逻辑中,将来自GNSS卫星98的信息与系统固有的信息进行比较,只在检定合格时使用GNSS信息。In the logic of the GNSS verification, the information from theGNSS satellites 98 is compared with the information inherent in the system, and the GNSS information is only used when the verification is passed.

2.使用了GNSS信息的速度信息的基于行驶距离累计进行的位置检测2. Position detection based on cumulative travel distance using speed information from GNSS information

通过在确定了绝对位置后,对速度信息进行积分计算行驶距离,来进行基于GNSS信息的速度信息的累计的位置检测。Position detection based on accumulation of speed information of GNSS information is performed by integrating the speed information to calculate the traveling distance after the absolute position is determined.

在GNSS检定逻辑中,使用了图3中(a)的“轨迹”检定、图3中(b)的“位置”检定、图3中(c)的“方位(Dp)”检定。只在检定合格的情况下,利用基于GNSS信息的速度信息。在检定不合格的情况下,利用来自TG32(参照图5)等其他速度检测单元的速度信息。此外,在检定时,参照运行用数据部31,与所记录的数据进行比较。In the GNSS verification logic, the "trajectory" verification of (a) in Figure 3, the "position" verification of (b) in Figure 3, and the "orientation (Dp)" verification of (c) in Figure 3 are used. Use speed information based on GNSS information only if certified. When the test fails, speed information from other speed detection means such as TG32 (see FIG. 5 ) is used. In addition, at the time of testing, theoperation data unit 31 is referred to and compared with the recorded data.

所谓“轨迹”检定,是判断是否在预定的行驶路径行驶。所谓“位置”检定,是判断根据GNSS信号得到的第1及第2GNSS天线15a、16a的间隔(后述的图4的“实测距离D”)是否与实际的设置距离a一致。所谓“方位”检定,是判断是否与预定的方位(轨道方位)一致。The so-called "trajectory" test is to judge whether the vehicle is traveling on a predetermined driving route. The so-called "position" verification is to judge whether the distance between the first andsecond GNSS antennas 15a, 16a obtained from the GNSS signal (the "measured distance D" in FIG. 4 described later) is consistent with the actual installation distance a. The so-called "orientation" test is to judge whether it is consistent with the predetermined orientation (orbital orientation).

3.使用了GNSS的速度信息的绝对位置检测3. Absolute position detection using GNSS speed information

在使用了GNSS的速度信息的绝对位置检测中,利用了由2台GNSS接收机(第1GNSS接收部15b、第2GNSS接收部16b)计算的速度向量在轨道99的弯道处时时刻刻变化这一情况。对于该轨道的弯道处的速度向量的变化,如果满足以下所示的条件(a)~(c),则成为由GNSS的故障、接收机的故障、衰落的影响而产生的变化和识别不能的概率极低。In absolute position detection using GNSS speed information, the fact that the speed vector calculated by two GNSS receivers (thefirst GNSS receiver 15b and thesecond GNSS receiver 16b) changes momentarily at the curve of thetrack 99 is utilized. One situation. If the change in the velocity vector at the curve of the track satisfies the conditions (a) to (c) shown below, it will become a change caused by a GNSS failure, a receiver failure, or the influence of fading and identification will not be possible. very low probability.

(a)在弯道起点前通过TG等预计了弯道的起点到来这一情况。(a) The arrival of the start of the curve is predicted by the TG or the like before the start of the curve.

(b)从弯道起点前到弯道终点后GNSS检定合格。(b) Pass the GNSS verification from before the start of the curve to after the end of the curve.

(c)在路线数据库(运行用数据部31)中登记有绝对位置检测信息。(c) Absolute position detection information is registered in the route database (operation data part 31).

(1)基于轨道的曲率进行的位置检测(1) Position detection based on the curvature of the track

参照图4对基于轨道99的曲率的位置检测处理进行说明。在此,代替曲率而使用了曲率半径R。对于从2台GNSS接收机(第1GNSS接收部15b、第2GNSS接收部16b)得到的速度向量V(V1、V2),若车辆10从直线99a进入了弯道99b,则与轨道99(弯道99b)的曲率半径R相应地,角度θ发生变化。在此,将第1GNSS天线15a的速度向量V1和第2GNSS天线16a的速度向量V2所成的角设为角度θ。The position detection processing based on the curvature of therail 99 will be described with reference to FIG. 4 . Here, the radius of curvature R is used instead of the curvature. For the velocity vector V (V1, V2) obtained from two GNSS receivers (the firstGNSS receiving part 15b, the secondGNSS receiving part 16b), if thevehicle 10 enters thecurve 99b from thestraight line 99a, it will be consistent with the track 99 (the curve The radius of curvature R of 99b) changes accordingly with respect to the angle θ. Here, let the angle formed by the velocity vector V1 of thefirst GNSS antenna 15a and the velocity vector V2 of thesecond GNSS antenna 16a be an angle θ.

根据该角度θ利用下面的式计算轨道99(弯道99b)的曲率半径R,并与路线数据库(运行用数据部31)中登记的轨道99的曲率(曲率半径)进行比较,从而来确定弯道位置(起点C1和终点C2),在终点C2成为θ=0度的地点,设为检测出绝对位置。Calculate the radius of curvature R of the track 99 (curve 99b) according to the angle θ using the following formula, and compare it with the curvature (radius of curvature) of thetrack 99 registered in the route database (operation data section 31), thereby determining the curve. The track position (the start point C1 and the end point C2 ) is the detected absolute position at the point where the end point C2 becomes θ=0 degrees.

Sin(θ/2)=(D/2)/RSin(θ/2)=(D/2)/R

R=(D/2)/Sin(θ/2)R=(D/2)/Sin(θ/2)

D:基于GNSS信号计算的第1GNSS天线15a和第2GNSS天线16a之间的实测距离。D: The measured distance between thefirst GNSS antenna 15a and thesecond GNSS antenna 16a calculated based on the GNSS signal.

(2)基于轨道的弯道行驶距离进行的位置检测(2) Position detection based on the curve travel distance of the track

在上述的基于轨道99的曲率(曲率半径R)进行的位置检测的情况下,若曲率较大,则角度θ的绝对值变小,因此,由于误差,有时不能确定弯道位置。因此,在曲率比规定大的情况下,进行基于轨道99的弯道行驶距离LR的位置检测。即,计算从轨道99成为弯道99b的起点C1到终点C2的弯道行驶距离LR,并与路线数据库(运行用数据部31)中登记的弯道99b的距离进行比较,从而,来确定弯道位置,在弯道终点成为θ=0度的地点,设为检测出绝对位置。In the above-mentioned position detection based on the curvature (curvature radius R) of therail 99, if the curvature is large, the absolute value of the angle θ becomes small, so the curve position may not be specified due to errors. Therefore, when the curvature is greater than a predetermined value, position detection based on the curve travel distance LR of therail 99 is performed. That is, the curve travel distance LR from the starting point C1 to the end point C2 of thecurve 99b on thetrack 99 is calculated, and compared with the distance of thecurve 99b registered in the route database (operation data section 31), thereby determining the curve. The track position is a point at which θ=0 degrees at the end point of the curve, and is taken as the detected absolute position.

(3)基于轨道的弯道变化点进行的位置检测(3) Position detection based on the curve change point of the track

如图5所示那样,对于从第1GNSS天线15a、第2GNSS天线16a得到的速度向量差,在轨道99从右弯道99d向左弯道99e、从左弯道向右弯道变化的情况下,若取速度向量V1和V2之差,则符号(正负)反转。根据在该轨道的弯道变化点C3的前后GNSS检定合格,满足上述的条件(a)和(b),从而确定弯道变化点C3,在弯道变化点C3处设为检测出绝对位置。As shown in FIG. 5, regarding the speed vector difference obtained from thefirst GNSS antenna 15a and thesecond GNSS antenna 16a, when thetrack 99 changes from aright curve 99d to aleft curve 99e, and from a left curve to a right curve , if the difference between the velocity vectors V1 and V2 is taken, the sign (positive and negative) is reversed. According to passing the GNSS verification before and after the curve change point C3 of the track, the above-mentioned conditions (a) and (b) are met, thereby determining the curve change point C3, and setting the detected absolute position at the curve change point C3.

(4)向系统的适用(4) Application to the system

此外,对于上述的(1)~(3)的位置检测的方式,配合适用路线区间进行选择组合。In addition, for the above-mentioned position detection methods (1) to (3), select and combine them according to the applicable route section.

4.使用了地上侧的GNSS信息的位置修正4. Position correction using GNSS information on the ground side

在车站(月台88)等那样的需要精度较高的位置信息的区域,基于地上侧的位置信息及该地点的GNSS信息,修正GNSS误差。图6是对GNSS误差修正的概念进行说明的图。In areas where highly accurate positional information is required, such as a station (platform 88 ), GNSS errors are corrected based on the positional information on the ground side and the GNSS information at that point. FIG. 6 is a diagram illustrating the concept of GNSS error correction.

在第3GNSS接收部61a中,记录有第3GNSS天线61b的测量完成的固定位置信息P3(X3_0、Y3_0)。位置信息P3是固定值,例如由经度、纬度表示。第3GNSS接收部61a计算基于GNSS卫星98得到的位置信息P3_G(X3_g、Y3_g)和固定位置信息P3(X3_0、Y3_0)之差即GNSS误差信息ΔP3(Δx、Δy)。In the 3rdGNSS receiving part 61a, the fixed position information P3 (X3_0, Y3_0) which the measurement of the3rd GNSS antenna 61b completed is recorded. The positional information P3 is a fixed value, represented by longitude and latitude, for example. The thirdGNSS receiving unit 61 a calculates GNSS error information ΔP3 (Δx, Δy) which is a difference between position information P3_G (X3_g, Y3_g) obtained by theGNSS satellite 98 and fixed position information P3 (X3_0, Y3_0).

ΔP3(Δx、Δy)=(X3_g、Y3_g)-(X3_0、Y3_0)ΔP3(Δx, Δy)=(X3_g, Y3_g)-(X3_0, Y3_0)

=(X3_g-X3_0、Y3_g-Y3_0)=(X3_g-X3_0, Y3_g-Y3_0)

第3GNSS接收部61a将该GNSS误差ΔP3(Δx、Δy)作为GNSS误差信息向车上装置20发送。The thirdGNSS receiving unit 61 a transmits the GNSS error ΔP3 (Δx, Δy) to the on-vehicle device 20 as GNSS error information.

车上装置20中,在第1GNSS部15及第2GNSS部16的GNSS信息P1_G(X1_g、Y1_g)、P2_G(X2_g、Y2_g)中反映GNSS误差ΔP3(Δx、Δy),计算修正后GNSS信息P1_0(X1_0、Y1_0)、P2_G(X2_0、Y2_0)。In the on-vehicle device 20, the GNSS error ΔP3 (Δx, Δy) is reflected in the GNSS information P1_G (X1_g, Y1_g) and P2_G (X2_g, Y2_g) of thefirst GNSS unit 15 and thesecond GNSS unit 16, and the corrected GNSS information P1_0 ( X1_0, Y1_0), P2_G (X2_0, Y2_0).

P1_0(X1_0、Y1_0)=(X1_g-Δx、Y1_g-Δy)P1_0(X1_0, Y1_0)=(X1_g-Δx, Y1_g-Δy)

P2_0(X2_0、Y2_0)=(X2_g-Δx、Y2_g-Δy)P2_0(X2_0, Y2_0)=(X2_g-Δx, Y2_g-Δy)

在此,通过将适用GNSS误差信息时的车辆10(车上装置20)与地上装置60之间的距离设为使用相同的GNSS卫星98的充分近的范围内,从而能够实质上消除第1GNSS部15及第2GNSS部16中的测量误差,能够提高使用第1GNSS部15及第2GNSS部16计算的车辆10的列车位置的精度。Here, by setting the distance between the vehicle 10 (on-vehicle device 20 ) and theground device 60 to be within a sufficiently short range using thesame GNSS satellite 98 when GNSS error information is applied, the first GNSS portion can be substantially eliminated. 15 and the measurement errors in thesecond GNSS unit 16 can improve the accuracy of the train position of thevehicle 10 calculated using thefirst GNSS unit 15 and thesecond GNSS unit 16 .

<具体的技术><specific technique>

参照图2对用于执行上述的绝对位置检测处理及GNSS误差修正处理的构成进行说明。A configuration for executing the above-mentioned absolute position detection processing and GNSS error correction processing will be described with reference to FIG. 2 .

地上装置60具备:地上侧运行控制部62、和地上通信部63。地上侧运行控制部62保持第3GNSS天线61b的设置位置的位置信息,并且,获得第3GNSS部61接收到的GNSS信号,计算设置位置的位置信息与根据GNSS信号计算的位置信息之差(GNSS误差信息),并通过地上通信部63向车上装置20发送。地上通信部63与车上装置20(车上通信部33)进行通信。Theground device 60 includes a ground-sideoperation control unit 62 and aground communication unit 63 . The ground sideoperation control part 62 holds the position information of the installation position of the3rd GNSS antenna 61b, and obtains the GNSS signal received by the3rd GNSS part 61, and calculates the difference between the position information of the installation position and the position information calculated based on the GNSS signal (GNSS error information), and send it to the on-vehicle device 20 through theground communication unit 63. Theground communication unit 63 communicates with the on-vehicle device 20 (the on-vehicle communication unit 33 ).

车上装置20设置于设置有第1GNSS部15及第2GNSS部16的车辆10中,对列车(车辆10)的运行进行控制。具体地,车上装置20对列车速度进行控制、对列车位置进行推断、或对列车朝向进行推断,从而来把握列车(车辆10)的运行状态,执行适当的列车运行。另外,车上装置20与地上装置60进行通信,直接或间接地进行线路封闭等的处理。The on-vehicle device 20 is installed in thevehicle 10 provided with thefirst GNSS unit 15 and thesecond GNSS unit 16 , and controls the operation of the train (vehicle 10 ). Specifically, the on-vehicle device 20 controls the speed of the train, estimates the position of the train, or estimates the orientation of the train to grasp the running state of the train (vehicle 10 ) and execute appropriate train operation. In addition, the on-vehicle device 20 communicates with theground device 60 to directly or indirectly perform processing such as line closure.

车上装置20具备:车上侧运行控制部30、列车状态确定部40、运行用数据部31、TG32、车上通信部33、和行驶履历部34。The on-vehicle device 20 includes an on-boardoperation control unit 30 , a trainstate specifying unit 40 , anoperation data unit 31 , aTG 32 , an on-board communication unit 33 , and atravel history unit 34 .

运行用数据部31记录有列车(车辆10)运行的路线的信息(运行信息)。作为运行信息,有列车(车辆10)行驶的路径信息、地点信息、各地点处的列车行进方向的方位Dp、弯道信息(起点、终点、曲率半径)及每个速度限制区间的限制速度信息等。Theoperation data unit 31 records information (operation information) on the route on which the train (vehicle 10 ) operates. As the operation information, there are route information on which the train (vehicle 10) travels, location information, azimuth Dp in the direction of travel of the train at each location, curve information (start point, end point, radius of curvature), and speed limit information for each speed limit section. wait.

行驶履历部34记录车辆10的行驶履历。TG32是以往使用的基于车轮旋转测量速度的速度测量装置。车上通信部33通过无线与地上装置60的地上通信部63及其他外部装置(例如运行司令部等)收发信息。Thetravel history unit 34 records the travel history of thevehicle 10 . The TG32 is a conventionally used speed measurement device that measures speed based on wheel rotation. The on-vehicle communication unit 33 transmits and receives information to and from theground communication unit 63 of theground device 60 and other external devices (for example, the operation headquarters, etc.) by wireless.

车上侧运行控制部30使用列车状态确定部40或TG32、运行用数据部31进行列车运行控制。所谓列车运行控制,例如,对列车(车辆10)的位置进行确定,或对速度进行计算,将计算结果等显示在规定的显示装置。对于速度显示,可以显示其中任意一者的速度,也可以显示两者的速度。The on-boardoperation control unit 30 performs train operation control using the trainstate identification unit 40 or theTG 32 and theoperation data unit 31 . In the train operation control, for example, the position of the train (vehicle 10 ) is identified, the speed is calculated, and the calculation result is displayed on a predetermined display device. For the speed display, the speed of either one or both can be displayed.

列车状态确定部40具备:列车位置计算部42、列车方位计算部44、GNSS检定部46、和特定位置检测部48。The trainstate identification unit 40 includes a trainposition calculation unit 42 , a trainorientation calculation unit 44 , aGNSS verification unit 46 , and a specificposition detection unit 48 .

列车位置计算部42从第1GNSS部15及第2GNSS部16获得各自检测出的位置信息。另外,列车位置计算部42基于从第1及第2GNSS部15、16输出的位置信息,计算第1GNSS天线15a、第2GNSS天线16a之间的实测距离D。The trainposition calculation unit 42 obtains position information detected by each of thefirst GNSS unit 15 and thesecond GNSS unit 16 . Also, the trainposition calculation unit 42 calculates the actually measured distance D between thefirst GNSS antenna 15 a and thesecond GNSS antenna 16 a based on the position information output from the first andsecond GNSS units 15 and 16 .

列车方位计算部44基于列车位置计算部42所获得的位置信息,计算车辆10的行进方向(方位)。将所计算的行进方向(方位)向特定位置检测部48输出。The trainorientation calculation unit 44 calculates the traveling direction (orientation) of thevehicle 10 based on the position information obtained by the trainposition calculation unit 42 . The calculated traveling direction (direction) is output to the specificposition detection unit 48 .

GNSS检定部46进行上述的GNSS检定处理。即,GNSS检定部46进行图3中(a)的“轨迹”检定、图3中(b)的“位置”检定、图3中(c)的“方位”检定中所示的处理。这时,GNSS检定部46参照运行用数据部31。TheGNSS verification unit 46 performs the above-mentioned GNSS verification process. That is, theGNSS verification unit 46 performs the processing shown in the "trajectory" verification in Fig. 3(a), the "position" verification in Fig. 3(b), and the "direction" verification in Fig. 3(c). At this time, theGNSS testing unit 46 refers to thedata unit 31 for operation.

在判断为GNSS检定合格的情况下,特定位置检测部48进行上述的使用了GNSS的速度信息的绝对位置检测处理。若进行了绝对位置检测处理,则用于车上侧运行控制部30等进行的列车(车辆10)的各种控制的位置信息被更新为检测到的位置信息。即,例如,即使在由于在执行绝对位置检测处理之前的行驶状态的把握中使用TG32,从而由于车轮的空转或滑行等而产生误差的情况下,也能够适当地消除该误差。此外,车上侧运行控制部30也可以在所产生的误差为规定以上而较大的情况下,判断为有可能列车(车辆10)的车轮等发生故障或存在运行用数据部31的数据的错误等,并向驾驶员发出警报,或通过车上通信部33向运行司令部等通知。When it is determined that the GNSS test is passed, the specificposition detection unit 48 performs the above-mentioned absolute position detection process using the speed information of the GNSS. When the absolute position detection process is performed, the position information used for various controls of the train (vehicle 10 ) by the on-vehicleoperation control unit 30 and the like is updated to the detected position information. That is, for example, even if an error occurs due to wheel spin or skidding due to the use of TG32 in grasping the running state before the execution of the absolute position detection process, the error can be appropriately eliminated. In addition, the on-vehicleoperation control unit 30 may determine that there is a possibility that a wheel or the like of the train (vehicle 10) may be faulty or that there is data in theoperation data unit 31 when the generated error is greater than or equal to a predetermined value. error, etc., and issue an alarm to the driver, or notify the operation headquarters through the on-vehicle communication unit 33.

对于绝对位置检测处理,特定位置检测部48选择性地使用(1)基于轨道的曲率进行的位置检测、(2)基于轨道的弯道行驶距离进行的位置检测、(3)基于轨道的弯道变化点进行的位置检测这3种位置检测方法。也可以根据需要将这些组合。For the absolute position detection process, the specificposition detection unit 48 selectively uses (1) position detection based on the curvature of the track, (2) position detection based on the curve traveling distance of the track, (3) position detection based on the curve of the track There are three position detection methods for position detection by change point. These can also be combined as desired.

另外,特定位置检测部48在车辆10距地上装置60位于规定距离内的情况下,从地上装置60获得GNSS误差信息,并反映到第1GNSS部15及第2GNSS部16检测到的位置信息中。Furthermore, when thevehicle 10 is located within a predetermined distance from theground device 60 , the specificposition detection unit 48 obtains GNSS error information from theground device 60 and reflects it in the position information detected by thefirst GNSS unit 15 and thesecond GNSS unit 16 .

参照图7的流程图,对基于以上的构成的处理进行归纳说明。Processing based on the above configuration will be collectively described with reference to the flowchart of FIG. 7 .

在车上装置20中,列车状态确定部40的列车位置计算部42基于第1GNSS部15及第2GNSS部16接收到的GNSS信号,计算位置信息(S10)。接着,GNSS检定部46进行GNSS检定,判断是否处于能够使用GNSS信息的状况(S12)。In the on-vehicle device 20, the trainposition calculation unit 42 of the trainstate specifying unit 40 calculates position information based on the GNSS signals received by thefirst GNSS unit 15 and the second GNSS unit 16 (S10). Next, theGNSS testing unit 46 performs a GNSS test to determine whether or not the GNSS information can be used ( S12 ).

在GNSS检定不合格的情况下(S14的“否”),车上侧运行控制部30进行使用了TG32的列车位置计算处理,进行基于其的运行控制(S16)。在GNSS检定合格的情况下(S14的“是”),车上侧运行控制部30判断是否是处于与地上装置60有通信且使用地上装置60(第3GNSS部61)的GNSS信息的区域(S18)。在不是使用地上装置60(第3GNSS部61)的GNSS信息的区域的情况下(S18的“否”),即,在是不使用GNSS误差信息的区域的情况下,车上装置20进行使用了车上GNSS数据(第1GNSS部15、第2GNSS部16的GNSS信息)的列车位置计算,进行基于其的运行控制(S20)。When the GNSS test fails (No in S14), the on-vehicleoperation control unit 30 performs train position calculation processing using the TG32, and performs operation control based thereon (S16). In the case of passing the GNSS test ("Yes" in S14), the on-vehicle sideoperation control unit 30 judges whether it is in an area that communicates with theground unit 60 and uses the GNSS information of the ground unit 60 (the third GNSS unit 61) (S18 ). When it is not an area where the GNSS information of the ground device 60 (third GNSS unit 61 ) is used ("No" in S18), that is, when it is an area where the GNSS error information is not used, the on-vehicle device 20 uses The on-board GNSS data (the GNSS information of thefirst GNSS unit 15 and the second GNSS unit 16) calculates the train position, and performs operation control based on it (S20).

在是使用地上装置60(第3GNSS部61)的GNSS信息的区域内的情况下(S18的“是”),车上装置20从地上装置60获得GNSS误差信息(S22),在车上GNSS数据(第1GNSS部15、第2GNSS部16的GNSS信息)中反映GNSS误差信息(S24),计算修正后的列车位置,进行使用了该列车位置的运行控制(S26)。If it is within the area where the GNSS information of the ground device 60 (third GNSS unit 61) is used ("Yes" in S18), the on-vehicle device 20 obtains GNSS error information from the ground device 60 (S22), and the on-vehicle GNSS data GNSS error information is reflected in (the GNSS information of thefirst GNSS unit 15 and the second GNSS unit 16 ) (S24), the corrected train position is calculated, and the operation control using the train position is performed (S26).

以上,根据本实施方式,在车辆10中,基于从第1及第2GNSS接收部15b、16b输出的信息能够高精度地稳定地决定列车(车辆10)的绝对位置,该第1及第2GNSS接收部15b、16b与在前后隔开规定的设置距离a而设置的第1及第2GNSS天线15a、16a连接。特别地,在列车进入车站那样的情况下,例如,为了在信号的切换或道口的动作中,迅速且安全地进行这些,要求精度较高的列车位置检测。更具体地,需要在适当的时刻进行轨道的禁止通行区间的设定、解除。在这样的情况下,将月台88的地上装置60的第3GNSS部61的GNSS误差信息反映到通过车辆10的第1GNSS部15、第2GNSS部16得到的位置信息中,能够排除位置信息的误差,能够迅速、安全地进行使用了该位置信息的运行控制。As described above, according to the present embodiment, in thevehicle 10, the absolute position of the train (vehicle 10) can be determined stably with high precision based on the information output from the first andsecond GNSS receivers 15b, 16b. Theparts 15b and 16b are connected to the first andsecond GNSS antennas 15a and 16a provided at a predetermined distance a from the front and back. In particular, when a train enters a station, for example, in order to quickly and safely perform switching of signals or operation of a crossing, highly accurate train position detection is required. More specifically, it is necessary to set and cancel the no-passing section of the track at an appropriate timing. In such a case, by reflecting the GNSS error information of thethird GNSS unit 61 of theground device 60 of theplatform 88 to the position information obtained by thefirst GNSS unit 15 and thesecond GNSS unit 16 of thevehicle 10, the error of the position information can be eliminated. , the operation control using this position information can be quickly and safely performed.

以上,基于实施方式对本发明进行了说明。该实施方式是示例,本领域技术人员能够理解,通过这些各构成要素的组合能够实现各种各样的变形例,另外,这样的变形例也属于本发明的范围内。As mentioned above, this invention was demonstrated based on embodiment. This embodiment is an example, and it will be understood by those skilled in the art that various modifications can be realized by combinations of these constituent elements, and such modifications also fall within the scope of the present invention.

附图标记说明Explanation of reference signs

1列车运行系统(位置检测系统)1 Train operation system (position detection system)

10车辆10 vehicles

15第1GNSS部15 Part 1 GNSS

15a第1GNSS天线15a 1st GNSS Antenna

15b第1GNSS接收部15b 1st GNSS receiving unit

16第2GNSS部16 Part 2 GNSS

16a第2GNSS天线16a 2nd GNSS Antenna

16b第2GNSS接收部16b 2nd GNSS receiving unit

20车上装置(位置检测装置)20 On-vehicle device (position detection device)

30 车上侧运行控制部30 On-vehicle running control unit

31 运行用数据部31 Data section for operation

32TG32TG

33 车上通信部33 In-vehicle communication department

34 行驶履历部34 Driving History Department

40 列车状态确定部40 Train Status Confirmation Department

42 列车位置计算部42 Train position calculation unit

44 列车方位计算部44 Train direction calculation department

46GNSS检定部46GNSS Testing Department

48 特定位置检测部48 Specific position detection unit

60 地上装置60 above-ground installations

61第3GNSS部61 Part 3 GNSS

61a第3GNSS接收部61a 3rd GNSS receiving unit

61b第3GNSS天线61b 3rd GNSS Antenna

62 地上侧运行控制部62 Ground side operation control department

63 地上通信部63 Ground Communications Department

70 指令中心70 Command Center

88 月台Platform 88

99 轨道99 tracks

Claims (2)

Translated fromChinese
1.一种位置检测系统,其是利用搭载于车辆的车上装置、和设置于地上侧的地上装置,计算所述车辆的位置,该位置检测系统的特征在于,1. A position detection system for calculating the position of the vehicle by using an on-vehicle device mounted on the vehicle and an on-ground device installed on the ground side, wherein the position detection system is characterized in that所述车上装置具备:The on-board device has:第1GNSS天线及第2GNSS天线,其在一个车辆的前后方向隔开规定距离而设置,接收来自GNSS卫星的GNSS信号;The first GNSS antenna and the second GNSS antenna are installed at a predetermined distance in the front-rear direction of one vehicle, and receive GNSS signals from GNSS satellites;第1GNSS接收部,其与所述第1GNSS天线连接;a first GNSS receiving unit connected to the first GNSS antenna;第2GNSS接收部,其与所述第2GNSS天线连接;a 2nd GNSS receiving unit connected to the 2nd GNSS antenna;位置计算部,其利用所述第1GNSS接收部及所述第2GNSS接收部基于所述GNSS信号计算所述车辆的位置;a position calculation unit that uses the first GNSS receiving unit and the second GNSS receiving unit to calculate the position of the vehicle based on the GNSS signal;误差信息获得部,其从地上侧的设备获得GNSS误差信息;an error information obtaining unit, which obtains GNSS error information from the equipment on the ground side;车上侧通信部,其与所述地上装置通信;以及an on-vehicle side communication section that communicates with the ground device; and车上侧运行控制部,其进行所述车辆的运行控制,an on-vehicle operation control unit that performs operation control of the vehicle,所述地上装置设置于车站,其具备:The above-ground device is set at the station, which has:第3GNSS天线,其从所述GNSS卫星接收所述GNSS信号;a third GNSS antenna that receives the GNSS signals from the GNSS satellites;第3GNSS接收部,其与所述第3GNSS天线连接;a 3GNSS receiving unit connected to the 3GNSS antenna;地上侧控制部,其保持所述第3GNSS天线的测量完成的固定位置信息,根据基于所述第3GNSS天线接收到的所述GNSS信号计算的位置信息,计算所述GNSS误差信息;以及a ground-side control unit that maintains fixed position information that has been measured by the third GNSS antenna, and calculates the GNSS error information based on position information calculated based on the GNSS signal received by the third GNSS antenna; and地上侧通信部,其将所述GNSS误差信息向所述车上装置发送,a ground-side communication unit that transmits the GNSS error information to the on-vehicle device,所述地上装置接收所述GNSS信号而计算位置信息,根据该位置信息和所述固定位置信息来计算所述GNSS误差信息,在所述车辆进入了规定的通信区域内的情况下,发送所述GNSS误差信息,The ground device receives the GNSS signal to calculate position information, calculates the GNSS error information based on the position information and the fixed position information, and transmits the GNSS error information when the vehicle enters a predetermined communication area. GNSS error information,在所述车上装置中,所述车上侧运行控制部判断所述车辆是否位于所述规定的通信区域内,In the on-vehicle device, the on-vehicle operation control unit determines whether the vehicle is located within the predetermined communication area,在判定为所述车辆位于该通信区域内的情况下,所述车上装置获得所述GNSS误差信息,所述位置计算部将所述GNSS误差信息反映到所述第1GNSS接收部及所述第2GNSS接收部基于所述GNSS信号计算所述车辆的位置的结果中而作为所述车辆的位置,在判定为所述车辆没有位于该通信区域内的情况下,所述车上装置不使用所述GNSS误差信息,所述位置计算部将所述第1GNSS接收部及所述第2GNSS接收部基于所述GNSS信号计算所述车辆的位置的结果作为所述车辆的位置。When it is determined that the vehicle is located in the communication area, the on-vehicle device obtains the GNSS error information, and the position calculation unit reflects the GNSS error information to the first GNSS receiving unit and the first GNSS receiving unit. 2 The GNSS receiving unit calculates the position of the vehicle based on the GNSS signal as the position of the vehicle, and if it is determined that the vehicle is not located in the communication area, the on-board device In the GNSS error information, the position calculating unit uses, as the position of the vehicle, a result of calculating the position of the vehicle based on the GNSS signal by the first GNSS receiving unit and the second GNSS receiving unit.2.一种位置检测系统,其是利用搭载于车辆的车上装置、设置于地上侧的地上装置及指令中心,计算所述车辆的位置,该位置检测系统的特征在于,2. A position detection system for calculating the position of the vehicle by using an on-vehicle device mounted on the vehicle, a ground device installed on the ground side, and a command center, wherein the position detection system is characterized in that所述车上装置具备:The on-board device has:第1GNSS天线及第2GNSS天线,其在一个车辆的前后方向隔开规定距离而设置,接收来自GNSS卫星的GNSS信号;The first GNSS antenna and the second GNSS antenna are installed at a predetermined distance in the front-rear direction of one vehicle, and receive GNSS signals from GNSS satellites;第1GNSS接收部,其与所述第1GNSS天线连接;a first GNSS receiving unit connected to the first GNSS antenna;第2GNSS接收部,其与所述第2GNSS天线连接;a 2nd GNSS receiving part, which is connected to the 2nd GNSS antenna;位置计算部,其将所述第1GNSS接收部及所述第2GNSS接收部的基于所述GNSS信号的车辆位置信息向所述指令中心通知,并且,基于所述车辆位置信息计算所述车辆的位置;以及a position calculating unit that notifies the command center of vehicle position information based on the GNSS signal of the first GNSS receiving unit and the second GNSS receiving unit, and calculates the position of the vehicle based on the vehicle position information ;as well as车上侧通信部,其与所述地上装置及所述指令中心进行通信,an on-vehicle communication unit that communicates with the ground device and the command center,所述地上装置设置于车站,其具备:The above-ground device is set at the station, which has:第3GNSS天线,其从所述GNSS卫星接收所述GNSS信号;a third GNSS antenna that receives the GNSS signals from the GNSS satellites;第3GNSS接收部,其与所述第3GNSS天线连接;a 3GNSS receiving unit connected to the 3GNSS antenna;地上侧控制部,其保持所述第3GNSS天线的测量完成的固定位置信息,根据基于所述第3GNSS天线接收到的所述GNSS信号计算的位置信息,计算GNSS误差信息,并向所述指令中心通知;以及The ground-side control unit maintains the fixed position information of the completed measurement of the third GNSS antenna, calculates GNSS error information based on the position information calculated based on the GNSS signal received by the third GNSS antenna, and sends the information to the command center notice; and地上侧通信部,其与所述车上装置和所述指令中心进行通信,a ground-side communication unit that communicates with the on-vehicle device and the command center,所述地上装置接收所述GNSS信号而计算位置信息,根据该位置信息和所述固定位置信息来计算所述GNSS误差信息,在所述车辆进入了规定的通信区域内的情况下,发送所述GNSS误差信息,The ground device receives the GNSS signal to calculate position information, calculates the GNSS error information based on the position information and the fixed position information, and transmits the GNSS error information when the vehicle enters a predetermined communication area. GNSS error information,所述指令中心与所述车上装置通信而获得所述车辆位置信息并进行所述车辆的运行管理,从所述地上装置接收所述GNSS误差信息而对所述车辆位置信息进行修正,基于修正后的位置信息,进行所述车辆的运行管理。The command center communicates with the on-vehicle device to obtain the vehicle position information and perform operation management of the vehicle, receives the GNSS error information from the ground device to correct the vehicle position information, and based on the correction After the location information, the operation management of the vehicle is carried out.
CN201880035663.3A2017-06-012018-05-30Position detection systemActiveCN110914710B (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
JP2017108891AJP6534701B2 (en)2017-06-012017-06-01 Position detection system
JP2017-1088912017-06-01
PCT/JP2018/020630WO2018221541A1 (en)2017-06-012018-05-30Position detection device and position detection system

Publications (2)

Publication NumberPublication Date
CN110914710A CN110914710A (en)2020-03-24
CN110914710Btrue CN110914710B (en)2023-06-27

Family

ID=64455795

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201880035663.3AActiveCN110914710B (en)2017-06-012018-05-30Position detection system

Country Status (4)

CountryLink
JP (1)JP6534701B2 (en)
CN (1)CN110914710B (en)
TW (1)TWI775864B (en)
WO (1)WO2018221541A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN112578420B (en)*2020-12-222022-08-30卡斯柯信号有限公司Locomotive running state detection method based on satellite positioning
TWI760261B (en)*2021-07-142022-04-01交通部臺灣鐵路管理局Train speed monitoring system

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2003294825A (en)*2002-03-282003-10-15Railway Technical Res Inst Train own vehicle position detecting method and train own vehicle position detecting system
JP2005247042A (en)*2004-03-022005-09-15Mitsubishi Electric Corp An operation server for train position detection management, an in-vehicle device for train position detection management, a train position detection management method, a train position detection management system, and a train position display device.
CN103625507A (en)*2012-08-242014-03-12河南蓝信科技有限公司Train tracking approaching early warning method for high speed railway and system thereof
CN104220880A (en)*2012-03-302014-12-17日本信号株式会社Speed detection device
JP5973024B1 (en)*2015-04-022016-08-17株式会社京三製作所 Position detection device
CN106662447A (en)*2014-05-072017-05-10大陆-特韦斯股份有限公司Determination of redundant absolute positions using a dynamic driving sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP3753833B2 (en)*1997-03-272006-03-08アジア航測株式会社 Road linear automatic surveying equipment
JP2007284013A (en)*2006-04-202007-11-01Mitsubishi Electric Corp VEHICLE POSITIONING DEVICE AND VEHICLE POSITIONING METHOD
CN101357644B (en)*2008-09-082010-12-15北京交通大学Locomotive wheel diameter automatic calibration system and method based on satellite positioning
JP4926213B2 (en)*2009-07-152012-05-09株式会社京三製作所 Train control device
US10267892B2 (en)*2010-10-042019-04-23Qualcomm IncorporatedLocating a device using a reference point to align location information
DE102013205486A1 (en)*2013-03-272014-10-02Deere & Company Arrangement and method for position detection with a hand-held device
JP6279425B2 (en)*2014-08-052018-02-14公益財団法人鉄道総合技術研究所 Program and data generation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2003294825A (en)*2002-03-282003-10-15Railway Technical Res Inst Train own vehicle position detecting method and train own vehicle position detecting system
JP2005247042A (en)*2004-03-022005-09-15Mitsubishi Electric Corp An operation server for train position detection management, an in-vehicle device for train position detection management, a train position detection management method, a train position detection management system, and a train position display device.
CN104220880A (en)*2012-03-302014-12-17日本信号株式会社Speed detection device
CN103625507A (en)*2012-08-242014-03-12河南蓝信科技有限公司Train tracking approaching early warning method for high speed railway and system thereof
CN106662447A (en)*2014-05-072017-05-10大陆-特韦斯股份有限公司Determination of redundant absolute positions using a dynamic driving sensor
JP5973024B1 (en)*2015-04-022016-08-17株式会社京三製作所 Position detection device

Also Published As

Publication numberPublication date
TW201903433A (en)2019-01-16
CN110914710A (en)2020-03-24
TWI775864B (en)2022-09-01
JP6534701B2 (en)2019-06-26
JP2018205048A (en)2018-12-27
WO2018221541A1 (en)2018-12-06

Similar Documents

PublicationPublication DateTitle
JP5973024B1 (en) Position detection device
JP5249556B2 (en) On-board device for travel route detection
JP5422111B2 (en) On-board device for travel route detection
EP2019287B1 (en)Vehicle positioning information update device
US10928205B2 (en)In-vehicle device and vehicle
US20180328744A1 (en)Travelling road information generation system of vehicle and on-board apparatus based on correction amount
WO2015115405A1 (en)Position measurement method, own position measurement device, and in-vehicle device
JP2008196906A (en) Vehicle position detection system, in-vehicle device, and vehicle position detection method
JP2008014713A (en)Position information utilizing system
US11383725B2 (en)Detecting vehicle environment sensor errors
JP4945286B2 (en) Train position detector
JP2007284013A (en) VEHICLE POSITIONING DEVICE AND VEHICLE POSITIONING METHOD
WO2014132432A1 (en)Device for controlling display of vehicle location and program for identifying vehicle location
CN108931260A (en)Automatic driving vehicle positioning security test macro and method when GPS is cheated
CN110914710B (en)Position detection system
JP2010019588A (en)Vehicle navigation system and correction method of position information in vehicle navigation system, and information distribution server and in-vehicle navigation apparatus
JP2010210435A (en)Method of detecting reverse running in navigation apparatus
JPH04138317A (en) Navigation device using vehicle-to-vehicle communication
JP6511767B2 (en) Reverse run judging device
JP2011125128A (en)Train control unit
JP6173714B2 (en) In-vehicle device, position correction method thereof, and position correction program
JP5446603B2 (en) In-vehicle device and program
KR100518850B1 (en)Global Positioning System and the method of navigate information correcting in time
JP5015021B2 (en) Own vehicle position detection device
JP7497286B2 (en) Surrounding vehicle monitoring system

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp