


技术领域technical field
本发明属于对接试验技术领域,特别是涉及一种基于多自由度并联机构的广义对接试验系统。The invention belongs to the technical field of docking test, in particular to a generalized docking test system based on a multi-degree-of-freedom parallel mechanism.
背景技术Background technique
装配技术是航空制造过程中的一门关键技术,装配质量的好坏直接影响飞机的性能。目前,我国的飞机装配基本上还采用整体托架式对接这一传统方法,大量使用专用型架夹紧和定位。飞机生产线在进行大部件对接装配时,各对接部件分别放在托架或拖车平台上,人工或机器推动某一部件缓慢靠近另一部件,同时观察并调整连接销和连接孔,直到对准后将连接销插入连接孔中。Assembly technology is a key technology in the aviation manufacturing process, and the quality of assembly directly affects the performance of the aircraft. At present, my country's aircraft assembly basically still adopts the traditional method of integral bracket docking, and a large number of special frames are used for clamping and positioning. When docking and assembling large parts in the aircraft production line, each docking part is placed on the bracket or trailer platform, and one part is pushed slowly by manual or machine to approach another part, and the connecting pins and connecting holes are observed and adjusted at the same time until they are aligned. Insert the connecting pin into the connecting hole.
但是,上述传统的装配方式仍存在明显的缺陷,其需要多人配合安装,而且对接部件的姿态不易调节,并且手工操作很难保证部件对接面上的孔和销能够准确配合,容易造成强行挤压装配;再有,当对接部件需要调整时,人工或机械往往无法精确的调整对接构件的姿态,导致对接精度差,同时造成装配效率的低下,最终使飞机的产品质量难以得到有效保证,而且生产成本也会被迫增加。However, the above-mentioned traditional assembly method still has obvious defects. It requires multiple people to cooperate in installation, and the posture of the butt parts is not easy to adjust, and it is difficult to ensure that the holes and pins on the butt surfaces of the parts can be accurately matched by manual operation, which is easy to cause forced extrusion. Press assembly; Furthermore, when the docking parts need to be adjusted, manual or mechanical adjustment of the posture of the docking components is often impossible, resulting in poor docking accuracy and low assembly efficiency, which ultimately makes it difficult to effectively guarantee the product quality of the aircraft, and Production costs will also be forced to increase.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供一种基于多自由度并联机构的广义对接试验系统,可以用于进行多自由度的飞机部件对接试验,为飞机部件的对接装配提供技术支撑,能够有效提高飞机部件对接精度和一致性,能够大幅度提高飞机的装配效率和装配质量,同时具有控制精度高、响应速度快、通用性好的特点,对飞机生产具有重要意义。Aiming at the problems existing in the prior art, the present invention provides a generalized docking test system based on a multi-degree-of-freedom parallel mechanism, which can be used for multi-degree-of-freedom aircraft component docking tests, provides technical support for the docking assembly of aircraft components, and can effectively Improving the docking accuracy and consistency of aircraft components can greatly improve the assembly efficiency and assembly quality of the aircraft. At the same time, it has the characteristics of high control accuracy, fast response speed and good versatility, which is of great significance to aircraft production.
为了实现上述目的,本发明采用如下技术方案:一种基于多自由度并联机构的广义对接试验系统,包括支撑框架、固定平台、电动伺服线性执行器、第一活动平台、弹簧阻尼器、第二活动平台及托架;所述支撑框架固装在地面上或固定平面上,在支撑框架顶部固装有静态对接部件;所述固定平台固装在地面上或固定平面上,所述第一活动平台位于固定平台上方,在第一活动平台与固定平台之间并联有若干电动伺服线性执行器,电动伺服线性执行器上下两端均通过关节铰链与第一活动平台和固定平台相连,由固定平台、电动伺服线性执行器及第一活动平台构成多自由度并联机构;所述第二活动平台位于第一活动平台上方,在第一活动平台与第二活动平台之间并联有若干弹簧阻尼器;所述托架固装在第二活动平台上表面,在托架上固装有动态对接部件。In order to achieve the above purpose, the present invention adopts the following technical scheme: a generalized docking test system based on a multi-degree-of-freedom parallel mechanism, comprising a support frame, a fixed platform, an electric servo linear actuator, a first movable platform, a spring damper, a second A movable platform and a bracket; the support frame is fixed on the ground or a fixed plane, and a static docking component is fixed on the top of the support frame; the fixed platform is fixed on the ground or a fixed plane, and the first movable The platform is located above the fixed platform, and a number of electric servo linear actuators are connected in parallel between the first movable platform and the fixed platform. The upper and lower ends of the electric servo linear actuator are connected with the first movable platform and the fixed platform through joint hinges. , the electric servo linear actuator and the first movable platform form a multi-degree-of-freedom parallel mechanism; the second movable platform is located above the first movable platform, and a number of spring dampers are connected in parallel between the first movable platform and the second movable platform; The bracket is fixedly mounted on the upper surface of the second movable platform, and the dynamic docking component is fixedly mounted on the bracket.
所述电动伺服线性执行器及弹簧阻尼器的数量均为2~6个,所述第一活动平台、第二活动平台、托架及动态对接部件共同具有2~6个移动自由度。The number of the electric servo linear actuators and the spring dampers are both 2-6, and the first movable platform, the second movable platform, the bracket and the dynamic butt joint have 2-6 degrees of freedom of movement in common.
本发明的有益效果:Beneficial effects of the present invention:
本发明的基于多自由度并联机构的广义对接试验系统,可以用于进行多自由度的飞机部件对接试验,为飞机部件的对接装配提供技术支撑,能够有效提高飞机部件对接精度和一致性,能够大幅度提高飞机的装配效率和装配质量,同时具有控制精度高、响应速度快、通用性好的特点,对飞机生产具有重要意义。同时,本发明还可以广泛用于空中对接综合试验,适用各类结构形式部件的对接装配工作,对推动高性能的自动对接系统、智能装配系统等装备的研制具有重要的实际价值,也对工业生产、国民经济、国防军事建设等领域起到重要作用。The generalized docking test system based on the multi-degree-of-freedom parallel mechanism of the present invention can be used for the multi-degree-of-freedom docking test of aircraft parts, provides technical support for the docking assembly of aircraft parts, can effectively improve the docking accuracy and consistency of aircraft parts, and can It greatly improves the assembly efficiency and assembly quality of the aircraft, and at the same time has the characteristics of high control accuracy, fast response speed and good versatility, which is of great significance to aircraft production. At the same time, the invention can also be widely used in the comprehensive test of aerial docking, and is suitable for the docking and assembling work of various structural components. It plays an important role in the fields of production, national economy, national defense and military construction.
附图说明Description of drawings
图1为本发明的一种基于多自由度并联机构的广义对接试验系统(静态对接部件与动态对接部件处于未对接状态)的结构示意图;1 is a schematic structural diagram of a generalized docking test system based on a multi-degree-of-freedom parallel mechanism of the present invention (static docking components and dynamic docking components are in an undocked state);
图2为本发明的一种基于多自由度并联机构的广义对接试验系统(静态对接部件与动态对接部件处于对接状态)的结构示意图;2 is a schematic structural diagram of a generalized docking test system based on a multi-degree-of-freedom parallel mechanism (static docking components and dynamic docking components are in a docking state) of the present invention;
图3为本发明的多自由度并联机构、弹簧阻尼器、第二活动平台、托架及动态对接部件的装配示意图;3 is a schematic diagram of the assembly of the multi-degree-of-freedom parallel mechanism, the spring damper, the second movable platform, the bracket and the dynamic docking component of the present invention;
图中,1—支撑框架,2—固定平台,3—电动伺服线性执行器,4—第一活动平台,5—弹簧阻尼器,6—第二活动平台,7—托架,8—静态对接部件,9—关节铰链,10—动态对接部件。In the figure, 1-support frame, 2-fixed platform, 3-electric servo linear actuator, 4-first movable platform, 5-spring damper, 6-second movable platform, 7-bracket, 8-static docking Parts, 9—joint hinges, 10—dynamic docking parts.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明做进一步的详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
如图1~3所示,一种基于多自由度并联机构的广义对接试验系统,包括支撑框架1、固定平台2、电动伺服线性执行器3、第一活动平台4、弹簧阻尼器5、第二活动平台6及托架7;所述支撑框架1固装在地面上或固定平面上,在支撑框架1顶部固装有静态对接部件8;所述固定平台2固装在地面上或固定平面上,所述第一活动平台4位于固定平台2上方,在第一活动平台4与固定平台2之间并联有若干电动伺服线性执行器3,电动伺服线性执行器3上下两端均通过关节铰链9与第一活动平台4和固定平台2相连,由固定平台2、电动伺服线性执行器3及第一活动平台4构成多自由度并联机构;所述第二活动平台6位于第一活动平台4上方,在第一活动平台4与第二活动平台6之间并联有若干弹簧阻尼器5;所述托架7固装在第二活动平台6上表面,在托架7上固装有动态对接部件10。As shown in Figures 1 to 3, a generalized docking test system based on a multi-degree-of-freedom parallel mechanism includes a support frame 1, a
所述电动伺服线性执行器3及弹簧阻尼器5的数量均为2~6个,所述第一活动平台4、第二活动平台6、托架7及动态对接部件10共同具有2~6个移动自由度。The number of the electric servo
本实施例中,电动伺服线性执行器3及弹簧阻尼器5的数量均为6个,通过6个并联的电动伺服线性执行器3使多自由度并联机构形成六自由度并联机构,该六自由度并联机构能够提供沿X、Y、Z轴进行三向平动的能力,以及提供绕X、Y、Z轴进行三向转动的能力。电动伺服线性执行器3具备高精度伺服控制能力,是为动态对接部件10提供六自由度姿态调整的核心部件,通过对动态对接部件10的六自由度高精度的姿态调整,可使动态对接部件10高精度的对接在静态对接部件8上,最终实现动态对接部件10与静态对接部件8的装配工作。In this embodiment, the number of electric servo
在实际对接试验时,需要将静态对接部件8吊装到支撑框架1上,此时的静态对接部件8相对应地面或是固定平面静止的,同时将动态对接部件10吊装到托架7上。In the actual docking test, the
对六自由度并联机构中的6个并联的电动伺服线性执行器3进行高精度姿态调整,姿态调整过程中实时通过弹簧阻尼器5对移动的动态对接部件10进行缓冲,而六个并联的弹簧阻尼器5会实时将缓冲后的广义力传递给第二活动平台6。另外,在第二活动平台6上还安装有姿态传感器,在姿态调整过程中,动态对接部件10、托架7、弹簧阻尼器5及第二活动平台6将精确跟随六自由度并联机构的第一活动平台4运动,并通过姿态传感器实现动态对接部件10的动态同步定位。High-precision attitude adjustment is performed on the six parallel electric servo
再有,并联安装的6个电动伺服线性执行器3完全根据给定信号进行自主运动,同时第二活动平台6通过6个并联的弹簧阻尼器5精确跟随第一活动平台4运动,同时输出广义力,并进行广义同步对接。Furthermore, the 6 electric servo
本发明的先进之处在于,运用了六自由度并联机构进行姿态输出,有效提高了姿态输出的精确性,同时有效降低了对接过程中部件见的碰撞冲击,最大限度的减少了对部件造成的对接冲击力,从而达到了对接过程平顺性的苛刻要求。The advanced point of the present invention is that the six-degree-of-freedom parallel mechanism is used for attitude output, which effectively improves the accuracy of attitude output, and at the same time effectively reduces the collision impact of the parts during the docking process, and minimizes the damage caused to the parts. Butt impact force, so as to meet the strict requirements of the smoothness of the butt process.
实施例中的方案并非用以限制本发明的专利保护范围,凡未脱离本发明所为的等效实施或变更,均包含于本案的专利范围中。The solutions in the examples are not intended to limit the scope of the patent protection of the present invention, and any equivalent implementation or modification that does not depart from the present invention is included in the scope of the patent of this case.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911110361.0ACN110844117A (en) | 2019-11-14 | 2019-11-14 | A Generalized Docking Test System Based on Multi-DOF Parallel Mechanism |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911110361.0ACN110844117A (en) | 2019-11-14 | 2019-11-14 | A Generalized Docking Test System Based on Multi-DOF Parallel Mechanism |
| Publication Number | Publication Date |
|---|---|
| CN110844117Atrue CN110844117A (en) | 2020-02-28 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911110361.0APendingCN110844117A (en) | 2019-11-14 | 2019-11-14 | A Generalized Docking Test System Based on Multi-DOF Parallel Mechanism |
| Country | Link |
|---|---|
| CN (1) | CN110844117A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113358337A (en)* | 2021-05-27 | 2021-09-07 | 燕山大学 | Loading method and loading device for aircraft wing static strength experiment |
| CN116573159A (en)* | 2023-05-16 | 2023-08-11 | 哈尔滨工业大学 | Simulation test device for automatic docking of cabin section of simple aircraft |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5947740A (en)* | 1997-06-30 | 1999-09-07 | Daewoo Electronics Co., Ltd. | Simulator having a weight supporting actuator |
| CN1546875A (en)* | 2003-11-29 | 2004-11-17 | 浙江大学 | Generalized Loading System Based on Parallel Six Degrees of Freedom Platform |
| CN1546876A (en)* | 2003-11-29 | 2004-11-17 | 浙江大学 | Generalized Loading Test System Based on Parallel Multi-DOF Mechanism |
| CN101016971A (en)* | 2006-12-30 | 2007-08-15 | 浙江大学 | Master-slave mode two-in-parallel twelve degree of freedom generalized force adjustment loading mechanism |
| CN102001451A (en)* | 2010-11-12 | 2011-04-06 | 浙江大学 | Airplane component attitude adjusting and butting system based on four numeric control positioners, attitude adjusting platform and mobile bracket and corresponding method |
| CN104229158A (en)* | 2014-09-03 | 2014-12-24 | 上海交通大学 | Six-degree-of-freedom positioning gesture adjusting equipment used for automatic assembling of large barrel-shaped thin-wall construction member |
| CN105015800A (en)* | 2015-05-19 | 2015-11-04 | 北京星航机电装备有限公司 | Automatic Assembly System of Spacecraft Modules on the Ground |
| US20160075451A1 (en)* | 2014-09-17 | 2016-03-17 | The Boeing Company | Fuselage Manufacturing System |
| CN107009351A (en)* | 2017-05-23 | 2017-08-04 | 大连四达高技术发展有限公司 | A parallel robot system for digital assembly of large parts of aircraft with six degrees of freedom |
| CN107139165A (en)* | 2017-06-23 | 2017-09-08 | 中国科学院上海光学精密机械研究所 | The Six-freedom-degree space docking mechanism of series-parallel connection |
| CN107985627A (en)* | 2017-12-13 | 2018-05-04 | 大连四达高技术发展有限公司 | Assembling a Parallel Docking System |
| CN108372935A (en)* | 2016-12-21 | 2018-08-07 | 中国航空工业集团公司北京航空制造工程研究所 | A kind of the posture adjustment docking system and method for a wide range of movement and self-navigation |
| CN109318210A (en)* | 2018-11-26 | 2019-02-12 | 燕山大学 | Thirteen degrees of freedom active and passive flexible attitude adjustment docking platform and flexible docking method |
| RU2695017C1 (en)* | 2018-05-22 | 2019-07-18 | Акционерное общество "АВИАСТАР-СП" | Method for dynamic assembly of aircraft gliders aggregate units and device for its implementation |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5947740A (en)* | 1997-06-30 | 1999-09-07 | Daewoo Electronics Co., Ltd. | Simulator having a weight supporting actuator |
| CN1546875A (en)* | 2003-11-29 | 2004-11-17 | 浙江大学 | Generalized Loading System Based on Parallel Six Degrees of Freedom Platform |
| CN1546876A (en)* | 2003-11-29 | 2004-11-17 | 浙江大学 | Generalized Loading Test System Based on Parallel Multi-DOF Mechanism |
| CN101016971A (en)* | 2006-12-30 | 2007-08-15 | 浙江大学 | Master-slave mode two-in-parallel twelve degree of freedom generalized force adjustment loading mechanism |
| CN102001451A (en)* | 2010-11-12 | 2011-04-06 | 浙江大学 | Airplane component attitude adjusting and butting system based on four numeric control positioners, attitude adjusting platform and mobile bracket and corresponding method |
| CN104229158A (en)* | 2014-09-03 | 2014-12-24 | 上海交通大学 | Six-degree-of-freedom positioning gesture adjusting equipment used for automatic assembling of large barrel-shaped thin-wall construction member |
| US20160075451A1 (en)* | 2014-09-17 | 2016-03-17 | The Boeing Company | Fuselage Manufacturing System |
| CN105015800A (en)* | 2015-05-19 | 2015-11-04 | 北京星航机电装备有限公司 | Automatic Assembly System of Spacecraft Modules on the Ground |
| CN108372935A (en)* | 2016-12-21 | 2018-08-07 | 中国航空工业集团公司北京航空制造工程研究所 | A kind of the posture adjustment docking system and method for a wide range of movement and self-navigation |
| CN107009351A (en)* | 2017-05-23 | 2017-08-04 | 大连四达高技术发展有限公司 | A parallel robot system for digital assembly of large parts of aircraft with six degrees of freedom |
| CN107139165A (en)* | 2017-06-23 | 2017-09-08 | 中国科学院上海光学精密机械研究所 | The Six-freedom-degree space docking mechanism of series-parallel connection |
| CN107985627A (en)* | 2017-12-13 | 2018-05-04 | 大连四达高技术发展有限公司 | Assembling a Parallel Docking System |
| RU2695017C1 (en)* | 2018-05-22 | 2019-07-18 | Акционерное общество "АВИАСТАР-СП" | Method for dynamic assembly of aircraft gliders aggregate units and device for its implementation |
| CN109318210A (en)* | 2018-11-26 | 2019-02-12 | 燕山大学 | Thirteen degrees of freedom active and passive flexible attitude adjustment docking platform and flexible docking method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113358337A (en)* | 2021-05-27 | 2021-09-07 | 燕山大学 | Loading method and loading device for aircraft wing static strength experiment |
| CN113358337B (en)* | 2021-05-27 | 2022-05-10 | 燕山大学 | Loading method and loading device for aircraft wing static strength experiment |
| CN116573159A (en)* | 2023-05-16 | 2023-08-11 | 哈尔滨工业大学 | Simulation test device for automatic docking of cabin section of simple aircraft |
| Publication | Publication Date | Title |
|---|---|---|
| CN106041799B (en) | Six degree of freedom positioning posture adjustment equipment for big part automatic assembling | |
| CN105436882B (en) | Automobile front end module assembly auxiliary tool | |
| CN201988822U (en) | Floating location tool on self-adaption car roof | |
| CN103381601B (en) | Six degree of freedom 3-3 orthogonal type parallel robot | |
| CN115649479B (en) | Low-cost test device and test method for unmanned aerial vehicle flap system | |
| CN110920927A (en) | Flexible wallboard assembly fixture | |
| CN110216235B (en) | Flexible fuselage wall plate assembly tool and assembly method based on measured data | |
| CN102745340A (en) | Digital positioning device of main intersection box of airplane and installation method | |
| CN102745338A (en) | Digitalized assembly system for bodies of large planes | |
| CN110844117A (en) | A Generalized Docking Test System Based on Multi-DOF Parallel Mechanism | |
| CN101497167B (en) | Parallel type three-shaft mainshaft head structure without accompanied movement | |
| CN102975866B (en) | Self-adaptive flexible airplane assembly device and method | |
| CN113071721B (en) | A gravity compensation system for three-dimensional motion of space manipulator | |
| CN104091485B (en) | A kind of load simulator of Dual-motors Driving | |
| CN107775565A (en) | A kind of aircraft target ship vacuum cap type flexible assembly fixture system | |
| CN103950552B (en) | Based on the digitalisation calibrating method of the aircraft target ship assembly deflections of six Shaft and NC Machining Test steady arms | |
| CN205271384U (en) | Automotive front-end module assembly assembly auxiliary tooling | |
| CN107414711B (en) | Novel assembly jig for cementing of rear machine body | |
| CN110261152A (en) | A kind of superposition adjustment type multichannel Rudder Loading System | |
| CN113092000A (en) | Calibration method of sheet type hinge moment balance with external bridge correction | |
| CN107117329B (en) | Positioning and supporting device for trailing edge assembly of outer wing box | |
| CN202070885U (en) | Multi-point flexible positioning tool for wallboard automatic drilling and riveting assembly | |
| CN107677176B (en) | A kind of combined type torsion beam locating and detecting device | |
| CN105643606A (en) | Novel three-degree-of-freedom parallel robot | |
| CN110793839B (en) | Method for testing damage tolerance strength of full-size composite spoiler of airplane |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20200228 |