



技术领域technical field
本发明涉及一种适用于耐高温可拆卸防热塞结构,特别是用于飞行器高温区域,具备可重复拆卸的热防护设计方案。The invention relates to a detachable heat-proof plug structure suitable for high temperature resistance, especially for high-temperature areas of aircraft, and has a heat protection design scheme that can be detached repeatedly.
背景技术Background technique
高超声速飞行器项目所研制的飞行器热环境具有“焓值高、时间长、总热载大”等特点。热防护系统覆盖整个飞行器的外表面,需要具备两项基本功能:一方面是防热,通过选取合适的材料体系,飞行器的外表面在能够抵抗高温的侵袭的同时,具有非烧蚀和重复使用性;另一方面是隔热,通过合理的热防护结构设计,阻止较多的热量进入冷结构,保障飞行器的各个部位能够在适宜的温度条件下工作。为了满足高超声速飞行器热防护系统的性能和轻质化设计要求,同时兼顾目前国内的材料水平,必须通过合理的设计,得到满足设计要求的方案。The thermal environment of the aircraft developed by the hypersonic vehicle project has the characteristics of "high enthalpy value, long time, and large total heat load". The thermal protection system covers the entire outer surface of the aircraft, and needs to have two basic functions: on the one hand, heat protection. By selecting a suitable material system, the outer surface of the aircraft can resist the invasion of high temperature while being non-ablative and reusable. On the other hand, it is heat insulation. Through reasonable thermal protection structure design, more heat can be prevented from entering the cold structure, ensuring that all parts of the aircraft can work under suitable temperature conditions. In order to meet the performance and lightweight design requirements of the thermal protection system of hypersonic aircraft, and at the same time take into account the current domestic material level, it is necessary to obtain a solution that meets the design requirements through reasonable design.
高超声速飞行器再入过程中高热流区域结构外表面温度达到上千度以上,一般的常规材料难以承受,需要寻求耐高温的防隔热材料。考虑满足功能需求,在可重复拆卸区域,如果选用单一的防热材料,存在密度大、热导率高,隔热性能差的特点;选用单一的隔热材料,存在承载能力差、抗高温能力限制的特点。因此,需要开展防隔热承载一体化方案设计。目前,较理想的可重复拆卸热防护设计方案是采用多层结构的热防护方案,外层采用抗高温、承载能力强的材料,中间层为具备隔热承载能力的材料,内部采用隔热性能好的材料,各个组件之间通过胶粘和机械连接形成一个整体。During the re-entry process of the hypersonic vehicle, the temperature of the outer surface of the structure in the high heat flow area reaches more than 1,000 degrees, which is unbearable for ordinary conventional materials. Considering to meet the functional requirements, in the area of repeated disassembly, if a single heat-proof material is selected, it has the characteristics of high density, high thermal conductivity, and poor heat insulation performance; if a single heat-insulating material is selected, it has poor bearing capacity and high temperature resistance. restricted features. Therefore, it is necessary to carry out the design of an integrated solution for thermal insulation and load bearing. At present, the ideal design scheme for reproducible thermal protection is a multi-layer thermal protection scheme. The outer layer is made of materials with high temperature resistance and strong bearing capacity, the middle layer is made of materials with thermal insulation bearing capacity, and the interior adopts thermal insulation performance. Good material, each component is formed as a whole by gluing and mechanical connection.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是:本发明一种适用于耐高温可拆卸防热塞结构,满足高超声速飞行器飞行过程中防隔热以及返回后的可重复拆卸设计要求。具备长时间耐1500度以上高温环境,具有良好的隔热效果,保证飞行器内部结构满足使用要求。具有快速可重复拆卸功能,保证冷结构能够快速开启,满足舱内设备的维修和检测性能要求。The technical problem to be solved by the present invention is as follows: the present invention is a detachable heat-resistant plug structure suitable for high temperature, which meets the design requirements of anti-heat insulation during the flight of the hypersonic aircraft and repeated disassembly after returning. It has a long-term resistance to a high temperature environment of more than 1500 degrees, and has a good thermal insulation effect, ensuring that the internal structure of the aircraft meets the requirements of use. It has the function of quick and repeatable disassembly, which ensures that the cold structure can be opened quickly and meets the maintenance and inspection performance requirements of the equipment in the cabin.
本发明所采用的技术方案是:一种适用于耐高温可拆卸防热塞结构,包括刚性隔热材料、柔性缓冲层、冷结构金属材料、耐高温防热材料、隔热承载材料、隔热材料、耐高温螺钉和耐中温螺钉;The technical scheme adopted in the present invention is: a detachable heat-proof plug structure suitable for high temperature resistance, comprising rigid heat insulating material, flexible buffer layer, cold structure metal material, high temperature resistant heat-proof material, heat-insulating bearing material, heat-insulating material Materials, high temperature resistant screws and medium temperature resistant screws;
刚性隔热材料、柔性缓冲层、冷结构金属材料从上到下通过耐高温胶粘接方式依次相连;隔热承载材料与刚性隔热材料通过耐高温胶粘接方式相连;耐高温防热材料和隔热承载材料通过耐高温螺钉机械连接;耐高温防热材料与隔热材料通过耐高温胶粘接方式相连;飞行器返回后将耐高温螺钉拧下,取出耐高温防热材料和隔热材料的组合件,留出耐中温螺钉拆卸通道,实现耐中温螺钉与内部结构的可拆卸功能。Rigid thermal insulation material, flexible buffer layer, and cold structure metal material are connected in sequence from top to bottom by high temperature resistant adhesive bonding; thermal insulation bearing material and rigid thermal insulating material are connected by high temperature resistant adhesive bonding; high temperature and heat resistant material It is mechanically connected with the heat-insulating bearing material by means of high-temperature-resistant screws; the high-temperature heat-resistant and heat-resistant material is connected with the heat-insulating material by means of high-temperature-resistant glue; after the aircraft returns, unscrew the high-temperature-resistant screws, and take out the high-temperature heat-resistant and heat-resistant material and the heat-insulating material The assembly of the medium temperature resistant screw is reserved, and the disassembly function of the medium temperature resistant screw and the internal structure is realized.
所述刚性隔热材料、耐高温防热材料和耐高温螺钉耐受温度≥1500℃;保证内部冷结构金属和耐中温螺钉温度≤120℃。The rigid heat-insulating material, the high-temperature-resistant heat-resistant material and the high-temperature-resistant screw can withstand a temperature of ≥1500°C; the temperature of the internal cold-structure metal and the medium-temperature-resistant screw is guaranteed to be ≤120°C.
所述刚性隔热材料材料为陶瓷瓦;所述柔性缓冲层材料为芳纶纤维;所述冷结构金属材料材料铝合金;所述耐高温防热材料材料为CC复合材料或CSiC复合材料;所述隔热承载材料材料为石英石英复合材料;所述隔热材料材料为陶瓷瓦;所述耐高温螺钉材料为CC复合材料或CSiC复合材料;所述耐中温螺钉材料为铝合金。The rigid heat insulating material is ceramic tile; the flexible buffer layer material is aramid fiber; the cold structure metal material is aluminum alloy; the high temperature resistant and heat resistant material is CC composite material or CSiC composite material; The heat-insulating bearing material is a quartz-quartz composite material; the heat-insulating material is a ceramic tile; the high-temperature-resistant screw material is a CC composite material or a CSiC composite material; the medium-temperature-resistant screw material is an aluminum alloy.
在刚性隔热材料中心位置上开设用于与隔热承载材料相连接的圆形台阶孔。A circular stepped hole for connecting with the heat-insulating bearing material is provided at the central position of the rigid heat-insulating material.
在柔性缓冲层中心位置上开设通孔用于预留拆卸耐中温螺钉的通道。A through hole is opened at the center of the flexible buffer layer to reserve a channel for removing the medium temperature resistant screw.
在冷结构金属材料中心位置上开设通孔用于将预耐中温螺钉与外部承载结构连接。A through hole is opened at the center of the cold structure metal material for connecting the pre-medium temperature resistant screw with the external bearing structure.
刚性隔热材料形状为方形,柔性缓冲层形状为方形,冷结构金属材料形状为方形。The shape of the rigid insulating material is square, the shape of the flexible buffer layer is square, and the shape of the cold structure metal material is square.
刚性隔热材料厚度为20~40mm,柔性缓冲层厚度为2~4mm,冷结构金属材料厚度为2~4mm。The thickness of the rigid thermal insulation material is 20-40mm, the thickness of the flexible buffer layer is 2-4mm, and the thickness of the cold structure metal material is 2-4mm.
在耐高温防热材料上开设沉头孔,同时在隔热承载材料上开设粗牙螺纹孔,通过耐高温螺钉将耐高温防热材料和隔热承载材料连接。Countersunk holes are provided on the high temperature and heat resistant material, and coarse thread threaded holes are provided on the heat insulating bearing material, and the high temperature and heat resistant material and the heat insulating bearing material are connected by high temperature resistant screws.
耐高温防热材料形状为圆形,厚度为2~4mm,半径为20~25mm。The shape of the heat-resistant and heat-resistant material is circular, with a thickness of 2 to 4 mm and a radius of 20 to 25 mm.
所述沉头孔、粗牙螺纹孔数量为2~4个,均匀排布。The number of the countersunk holes and the coarse thread holes is 2 to 4, which are evenly arranged.
在隔热承载材料中间开设通孔,将隔热材料的一端与耐高温防热材料通过高温胶粘接方式相连,另一端塞入隔热承载材料的通孔内。A through hole is opened in the middle of the heat insulating bearing material, one end of the insulating material is connected with the high temperature and heat resistant material by high temperature adhesive bonding, and the other end is inserted into the through hole of the heat insulating bearing material.
隔热承载材料中间开设通孔为圆形孔,半径为6~8mm;隔热材料为圆柱型,半径为5~7mm。The through holes opened in the middle of the heat-insulating bearing material are circular holes with a radius of 6-8 mm; the heat-insulating material is cylindrical with a radius of 5-7 mm.
在耐高温防热材料与刚性隔热材料外表面涂覆高辐射率抗氧化涂层。A high emissivity anti-oxidation coating is applied to the outer surfaces of the high-temperature heat-resistant heat-resistant material and the rigid heat-insulating material.
一种飞行器的热防护结构,采用所述的耐高温可拆卸防热塞结构。A thermal protection structure for an aircraft adopts the high-temperature-resistant detachable heat-protective plug structure.
本发明与现有技术相比的优点在于:The advantages of the present invention compared with the prior art are:
(1)本发明设计的一种适用于耐高温可拆卸防热塞结构,采用防热、隔热、承载的多层结构设计思路,包括依次连接的耐高温防热材料、隔热承载材料、隔热材料、耐高温螺钉,既解决耐受外部1500度以上的高温环境,又能阻止过多热量进入飞行器内部,保证冷结构温度低于120度,同时具备可重复拆卸功能,保证飞行器舱内设备的可检测和维修性。(1) A detachable heat-resistant plug structure suitable for high temperature resistance designed by the present invention adopts a multi-layer structure design idea of heat protection, heat insulation and load-bearing, including high-temperature heat-resistant heat-resistant materials, heat-insulating load-bearing materials, Insulation materials and high-temperature-resistant screws can not only withstand the high temperature environment above 1500 degrees outside, but also prevent excessive heat from entering the interior of the aircraft, ensuring that the temperature of the cold structure is lower than 120 degrees, and at the same time, it has the function of repeatable disassembly to ensure that the interior of the aircraft cabin is guaranteed. Detectability and serviceability of equipment.
(2)本发明通过对多层结构中各个功能层材料的合理选取和各个功能层尺寸的优化设计,使得热防护结构具有优异的热防护性能,保证热防护材料在高温环境条件下均能满足耐高温使用要求,且具备非烧蚀和可重复性拆卸使用。(2) The present invention makes the thermal protection structure have excellent thermal protection performance through the rational selection of the material of each functional layer in the multi-layer structure and the optimized design of the size of each functional layer, ensuring that the thermal protection material can meet the requirements of the high temperature environment. High temperature resistance requirements, and non-ablative and repeatable disassembly.
(3)本发明热防护结构设计时,选用多层结构设计方案,既能够充分发挥不同材料的使用特性,又可以有效的减少结构重量,达到减重的目的。(3) When designing the thermal protection structure of the present invention, a multi-layer structure design scheme is selected, which can not only give full play to the use characteristics of different materials, but also effectively reduce the weight of the structure to achieve the purpose of weight reduction.
(4)本发明在热防护结构设计时,选用内外螺钉和连接件方式相连,将防热塞热防护结构牢固连接为一个整体,同时可以减少高热导率材料的传热截面,有效地避免了热短路的影响。(4) In the design of the thermal protection structure of the present invention, the internal and external screws are connected with the connecting piece, and the thermal protection structure of the heat plug is firmly connected as a whole. Effects of thermal short circuits.
(5)本发明在热防护组件与冷结构之间填充柔性缓冲层,在使用过程中能够有效减少不同材料之间的热匹配性,防止在装配和使用过程中由于刚度不匹配致使应力过大发生结构破坏。(5) The present invention fills a flexible buffer layer between the thermal protection component and the cold structure, which can effectively reduce the thermal matching between different materials during use and prevent excessive stress due to stiffness mismatch during assembly and use. Structural damage occurs.
(6)本发明采用可重复拆卸防热塞结构设计方案,能够满足飞行器的防热、隔热、承载及可重复拆卸等多功能设计需求。(6) The present invention adopts the structural design scheme of the heat-resistant plug that can be disassembled repeatedly, which can meet the multi-functional design requirements of the aircraft such as heat protection, heat insulation, load bearing, and repeatable disassembly.
(7)本发明的可重复拆卸防热塞设计方案能够满足长时间、耐高温、非烧蚀、防隔热以及承载要求,设计方案整体性好,连接可靠。(7) The design scheme of the reusable detachable heat plug of the present invention can meet the requirements of long time, high temperature resistance, non-ablation, heat insulation and load bearing, and the design scheme has good integrity and reliable connection.
附图说明Description of drawings
图1为耐高温可拆卸防热塞结构设计方案;Figure 1 shows the structural design scheme of the high temperature detachable heat protection plug;
图2为耐高温可拆卸防热塞方案分解图;Figure 2 is an exploded view of the high temperature detachable heat plug solution;
图3(a)~(d)为耐高温可拆卸防热塞详细设计方案和连接方式;Figure 3(a)~(d) are the detailed design scheme and connection method of high temperature detachable heat plug;
图4为冷结构可拆卸通道俯视图;Figure 4 is a top view of a detachable channel of a cold structure;
具体实施方式Detailed ways
下面就结合附图对本发明做进一步介绍。The present invention will be further introduced below with reference to the accompanying drawings.
如图1所示为本发明具备耐高温可拆卸防热塞结构示意图,根据高超声速飞行器高温区域的特点,满足防热、隔热、承载和可重复拆卸的设计要求,选用不同材料体系的多层组合式设计方案。可知本发明热防护多层结构包括依次连接的刚性隔热材料1、柔性缓冲层2、冷结构金属材料3、耐高温防热材料4、隔热承载材料5、隔热材料6、耐高温螺钉7和耐中温螺钉8。其中刚性隔热材料1、柔性缓冲层2和冷结构金属材料3从上到下通过耐高温胶粘接方式依次相连;隔热承载材料5与刚性隔热材料1通过耐高温胶粘接方式相连;耐高温防热材料4和隔热承载材料5通过耐高温螺钉7机械连接;耐高温防热材料4与隔热材料6通过耐高温胶粘接方式相连;飞行器返回后将耐高温螺钉7拧下,取出耐高温防热材料4和隔热材料6的组合件,留出耐中温螺钉8拆卸通道,实现耐中温螺钉8与内部结构的可拆卸功能。Figure 1 is a schematic diagram of the structure of the present invention with a high temperature detachable heat plug, according to the characteristics of the high temperature area of the hypersonic aircraft, to meet the design requirements of heat protection, heat insulation, load bearing and repeatable disassembly, select a variety of materials from different material systems. Layer combination design. It can be seen that the thermal protection multi-layer structure of the present invention includes a rigid heat insulating material 1, a
具体的,本发明实施例中,所述刚性隔热材料1,材料为陶瓷瓦;所述柔性缓冲层2,材料为芳纶纤维;所述冷结构金属材料3,材料铝合金;所述耐高温防热材料4,材料为CC复合材料或CSiC复合材料;所述隔热承载材料5,材料为石英石英复合材料;所述隔热材料6,材料为陶瓷瓦;所述耐高温螺钉7,材料为CC复合材料或CSiC复合材料;所述耐中温螺钉8,材料为铝合金。Specifically, in the embodiment of the present invention, the rigid heat insulating material 1 is made of ceramic tile; the
如图2所示为本发明耐高温可拆卸防热塞结构分解图,在耐高温防热材料4和隔热承载材料5中间开设螺纹孔与耐高温螺钉7实现机械连接。在刚性隔热材料1开设台阶孔与隔热承载材料5。在柔性缓冲层2开设通孔用于预留拆卸耐中温螺钉8的通道。在冷结构金属材料3开设通孔用于预耐中温螺钉8与内部承载结构连接。在耐高温防热材料上开设3个沉头孔、在隔热承载材料5上开设粗牙螺纹孔,用于与耐高温螺钉7连接。Figure 2 is an exploded view of the structure of the high-temperature-resistant detachable heat-resistant plug of the present invention. A threaded hole is provided between the high-temperature-resistant heat-
具体的,在本发明实施例中,刚性隔热材料1形状为方形,柔性缓冲层2形状为方形,冷结构金属材料3形状为方形;刚性隔热材料1厚度为20~40mm,柔性缓冲层2厚度为2~4mm,冷结构金属材料3厚度为2~4mm;耐高温防热材料4形状为圆形,厚度为2~4mm,半径为20~25mm;耐高温防热材料4上开设的沉头孔数量为2~4个,均匀排布;隔热承载材料5上开设的粗牙螺纹孔数量为2~4个,均匀排布;隔热承载材料(5)中间开设通孔为圆形孔,半径为6~8mm;隔热材料(6)为圆柱型,半径为5~7mm。Specifically, in the embodiment of the present invention, the shape of the rigid heat insulating material 1 is square, the shape of the
如图3所示为本发明耐高温可拆卸防热塞详细设计方案和连接方式,图3(a)中刚性隔热材料1、柔性缓冲层2、冷结构金属材料3通过选用耐高温胶粘接方式相连;图3(b)隔热承载材料5与刚性隔热材料1通过选用耐高温胶粘接方式相连;图3(c)耐高温防热材料4和隔热承载材料5通过耐高温螺钉7机械连接。图3(d)耐高温防热材料4与隔热材料6通过高温胶粘接方式相连;在耐高温防热材料4与刚性隔热材料1外表面涂覆高辐射率涂层,增加热量辐射。Figure 3 shows the detailed design scheme and connection method of the high-temperature detachable heat-resistant plug of the present invention. In Figure 3(a), the rigid heat-insulating material 1, the
具体的,本发明实施例中,外部刚性隔热材料1、耐高温防热材料4和耐高温螺钉7耐受温度≥1500℃;保证内部冷结构金属3和耐中温螺钉8温度≤120℃Specifically, in the embodiment of the present invention, the external rigid heat insulation material 1, the high temperature and heat
如图4所示,飞行器返回后将耐高温螺钉7拧下,取出耐高温防热材料4和耐高温防热材料4组合件,留出耐中温螺钉8拆卸通道,实现耐中温螺钉8与内部结构的拆卸功能。As shown in Figure 4, after the aircraft returns, unscrew the high temperature
本发明为耐高温可拆卸防热塞热防护结构,采用多层热防护结构设计方案,既能满足外部的耐受高温环境,又可以阻止过多的热量传递到冷结构,同时能够具备可重复快速拆卸功能。详细设计方案如下:The invention is a high-temperature-resistant and detachable heat-resistant plug thermal protection structure, and adopts a multi-layer thermal protection structure design scheme. Quick disassembly function. The detailed design scheme is as follows:
(1)可重复拆卸防热塞结构选用多层结构设计方案,外层为长时间耐受1000度以上高温的防热材料,中间层为具备隔热承载能力的复合材料,内部为热导率低的多孔陶瓷隔热材料。(1) The multi-layer structure design is adopted for the reusable and dismountable heat-proof plug structure. The outer layer is a heat-proof material that can withstand high temperatures above 1000 degrees for a long time. Low porous ceramic insulation.
(2)外部防热面板和中间层隔热承载材料之间通过机械连接方式相连。在外部面板上开设钉孔,中间层隔热承载材料上开设螺纹孔,通过耐高温的连接件相连。(2) The outer heat-proof panel and the heat-insulating bearing material of the intermediate layer are connected by mechanical connection. Nail holes are provided on the outer panel, and threaded holes are provided on the heat-insulating bearing material of the intermediate layer, which are connected by high-temperature-resistant connectors.
(3)在外部面板与内部隔热层,中间层隔热承载材料与周围刚性材料之间,通过高温胶粘接方式相连。(3) Between the outer panel and the inner heat insulation layer, the heat insulation bearing material of the intermediate layer and the surrounding rigid material are connected by high temperature glue.
(4)热防护设计方案中零件的连接分为粘接和机械连接两种,粘接选用耐高温的硅胶粘接,机械连接选用非金属螺钉和开设螺纹孔连接件实现组件之间的连接。(4) The connection of parts in the thermal protection design scheme is divided into two types: bonding and mechanical connection. The bonding adopts high temperature resistant silica gel bonding, and the mechanical connection adopts non-metallic screws and threaded hole connectors to realize the connection between components.
(5)在外部耐高温防热面板带有超高温高辐射抗氧化涂层,保证结构抗氧化非烧蚀性能。(5) The external high temperature and heat resistant panel is provided with an ultra-high temperature and high radiation anti-oxidation coating to ensure the anti-oxidation and non-ablation performance of the structure.
(6)在防热塞周围刚性隔热材料与冷结构之间通过填加柔性缓冲层缓解装配、受热载荷和力载荷过程中由于变形带来的不匹配性。(6) A flexible buffer layer is filled between the rigid thermal insulation material around the heat plug and the cold structure to alleviate the mismatch caused by deformation during assembly, thermal load and force load.
(7)机械连接包括外连接螺钉和带螺纹连接件,其中外连接螺钉选用耐高温非金属材料,连接件为隔热承载材料。(7) The mechanical connection includes external connecting screws and threaded connectors, of which the external connecting screws are made of high temperature resistant non-metallic materials, and the connecting parts are heat-insulating bearing materials.
实施例1Example 1
如图1所示,本发明根据高超声速飞行器高温区域的特点,满足防热、隔热、承载和可重复拆卸的设计要求,选用不同材料体系的多层组合式设计方案。多层结构主要包括刚性隔热材料1、柔性缓冲层2、冷结构金属材料3、耐高温防热材料4、隔热承载材料5、隔热材料6、耐高温螺钉7和耐中温螺钉8。As shown in FIG. 1 , according to the characteristics of the high temperature region of the hypersonic aircraft, the present invention meets the design requirements of heat protection, heat insulation, load bearing and repeatable disassembly, and selects a multi-layer combined design scheme of different material systems. The multi-layer structure mainly includes rigid heat insulating material 1,
如图2所示,在耐高温防热材料4和隔热承载材料5中间开设3个螺纹孔与耐高温螺钉7实现机械连接。在刚性隔热材料1开设台阶孔与隔热承载材料5。在柔性缓冲层2开设通孔用于预留拆卸耐中温螺钉8的通道。在冷结构金属材料3开设通孔用于预耐中温螺钉8与内部承载结构连接。在耐高温防热材料上开设3个沉头孔、在隔热承载材料5上开设粗牙螺纹孔3个,用于与耐高温螺钉7连接。As shown in FIG. 2 , three threaded holes are opened in the middle of the high temperature resistant and heat
如图3所示,图3(a)为刚性隔热材料1、柔性缓冲层2、冷结构金属材料3通过选用高温胶粘接方式相连。图3(b)为隔热承载材料5与刚性隔热材料1通过选用高温胶粘接方式相连。图3(c)为耐高温防热材料4和隔热承载材料5通过耐高温螺钉7机械连接。图3(d)为耐高温防热材料4与隔热材料6通过高温胶粘接方式相连。在耐高温防热材料4与刚性隔热材料1外表面涂覆高辐射率涂层,增加热量辐射。As shown in FIG. 3 , FIG. 3( a ) shows that the rigid heat insulating material 1 , the
如图4所示,飞行器返回后将耐高温螺钉7拧下,取出耐高温防热材料4和耐高温防热材料4组合件,留出耐中温螺钉8拆卸通道,实现耐中温螺钉8与内部结构的拆卸功能。As shown in Figure 4, after the aircraft returns, unscrew the high temperature
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above is only the best specific embodiment of the present invention, but the protection scope of the present invention is not limited to this. Substitutions should be covered within the protection scope of the present invention.
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。Contents that are not described in detail in the specification of the present invention belong to the well-known technology of those skilled in the art.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910989557.5ACN110834712B (en) | 2019-10-17 | 2019-10-17 | A detachable heat plug structure suitable for high temperature resistance |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910989557.5ACN110834712B (en) | 2019-10-17 | 2019-10-17 | A detachable heat plug structure suitable for high temperature resistance |
| Publication Number | Publication Date |
|---|---|
| CN110834712Atrue CN110834712A (en) | 2020-02-25 |
| CN110834712B CN110834712B (en) | 2021-03-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910989557.5AActiveCN110834712B (en) | 2019-10-17 | 2019-10-17 | A detachable heat plug structure suitable for high temperature resistance |
| Country | Link |
|---|---|
| CN (1) | CN110834712B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116946354A (en)* | 2023-06-25 | 2023-10-27 | 上海机电工程研究所 | Ablation-resistant and scouring-resistant multi-material interlayer heat-proof structure |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103538732A (en)* | 2013-09-30 | 2014-01-29 | 中国人民解放军国防科学技术大学 | Circumferential thermal protection device of axial-symmetry hypersonic aircraft |
| US8844877B1 (en)* | 2010-09-02 | 2014-09-30 | The Boeing Company | Stay sharp, fail safe leading edge configuration for hypersonic and space access vehicles |
| CN104329331A (en)* | 2014-08-29 | 2015-02-04 | 中国运载火箭技术研究院 | Cold and hot connection structure suitable for high-temperature service environment |
| CN107719631A (en)* | 2017-09-12 | 2018-02-23 | 江西洪都航空工业集团有限责任公司 | It is a kind of to collect thermal protection and the attachment structure of member installation one |
| CN109131821A (en)* | 2018-08-16 | 2019-01-04 | 北京空天技术研究所 | A kind of slidable connection structure |
| CN109367758A (en)* | 2018-11-27 | 2019-02-22 | 北京空间技术研制试验中心 | A kind of thermal protection component and thermal protection system |
| CN109596010A (en)* | 2018-11-23 | 2019-04-09 | 中国运载火箭技术研究院 | A kind of removable multi-clove type bay section docking thermal protection struc ture |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8844877B1 (en)* | 2010-09-02 | 2014-09-30 | The Boeing Company | Stay sharp, fail safe leading edge configuration for hypersonic and space access vehicles |
| CN103538732A (en)* | 2013-09-30 | 2014-01-29 | 中国人民解放军国防科学技术大学 | Circumferential thermal protection device of axial-symmetry hypersonic aircraft |
| CN104329331A (en)* | 2014-08-29 | 2015-02-04 | 中国运载火箭技术研究院 | Cold and hot connection structure suitable for high-temperature service environment |
| CN107719631A (en)* | 2017-09-12 | 2018-02-23 | 江西洪都航空工业集团有限责任公司 | It is a kind of to collect thermal protection and the attachment structure of member installation one |
| CN109131821A (en)* | 2018-08-16 | 2019-01-04 | 北京空天技术研究所 | A kind of slidable connection structure |
| CN109596010A (en)* | 2018-11-23 | 2019-04-09 | 中国运载火箭技术研究院 | A kind of removable multi-clove type bay section docking thermal protection struc ture |
| CN109367758A (en)* | 2018-11-27 | 2019-02-22 | 北京空间技术研制试验中心 | A kind of thermal protection component and thermal protection system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116946354A (en)* | 2023-06-25 | 2023-10-27 | 上海机电工程研究所 | Ablation-resistant and scouring-resistant multi-material interlayer heat-proof structure |
| Publication number | Publication date |
|---|---|
| CN110834712B (en) | 2021-03-26 |
| Publication | Publication Date | Title |
|---|---|---|
| CN110626011B (en) | A kind of thermal protection board | |
| US6676077B1 (en) | High temperature resistant airfoil apparatus for a hypersonic space vehicle | |
| RU2655194C2 (en) | Assembly with the self-locking under temperature effect connection | |
| US4520364A (en) | Attachment method-ceramic radome to metal body | |
| CN105324584B (en) | Assembly with temperature-dependent self-tightening connection | |
| CN108058809B (en) | A non-thermal short-circuit reusable non-ablative thermal protection structure and processing method | |
| RU2536360C1 (en) | Antenna dome | |
| CN106428642B (en) | A kind of spacecraft thruster open round table heat insulation device | |
| CN105015759B (en) | A kind of high-speed aircraft function division combined type wave transparent cover | |
| CN110834712A (en) | Be applicable to high temperature resistant thermal plug structure of dismantling | |
| CN106568354B (en) | A kind of heat-preservation cylinder with temperature control function | |
| CN105277227B (en) | The anti-heat-insulated integrated double-decker infrared protection cover of carrying of one kind | |
| CN109707539B (en) | Integrated composite spray pipe based on gradient material | |
| RU2464679C1 (en) | Antenna dome | |
| CN207748009U (en) | A kind of reusable non-ablative thermal protection structure of non-heat short circuit | |
| US4967599A (en) | Mechanical and insulating connection between a nozzle and the filament-wound casing of the combustion chamber of a solid propellant rocket motor | |
| CN110030044B (en) | Thermal protection system and method for gas turbine components | |
| CN116946354A (en) | Ablation-resistant and scouring-resistant multi-material interlayer heat-proof structure | |
| RU2536339C1 (en) | Antenna dome | |
| CN103890366B (en) | Devices for attaching hollow parts | |
| CN117262200A (en) | Light heat-insulating bearing composite structure for wings and rudder wings | |
| JP2016173189A (en) | Missile radome | |
| RU2536361C1 (en) | Antenna dome | |
| US20020096601A1 (en) | Large thermal protection system panel | |
| CN109026924A (en) | Cold and hot slidable connection structure |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |