




技术领域technical field
本发明属于微波原子钟及微波量子频率标准技术领域,涉及一种应用窄线宽激光光抽运和轴对称多级磁铁(包括四级、六级)束光学系统对从铯炉中发散的铯原子束在进入微波谐振腔前进行两维空间聚焦集聚作用的小型铯原子钟。The invention belongs to the technical field of microwave atomic clocks and microwave quantum frequency standards, and relates to a laser light pumping with a narrow line width and an axis-symmetric multi-stage magnet (including four-stage and six-stage) beam optical systems for cesium atoms emitted from a cesium furnace. A small cesium atomic clock in which the beam is focused and concentrated in two-dimensional space before entering the microwave resonator.
背景技术Background technique
作为一级频率标准,铯原子微波钟已经被广泛应用于国防和民用方面,其在量子频率标准技术领域具有举足轻重的地位。目前商用磁选态铯原子微波钟采用的方法是使从铯炉中泻流的铯原子使用二级磁铁对铯原子选态,由于磁选态对于铯原子的浪费和铯炉中泻流出的铯原子空间上的发散,因此铯原子利用率很低,限制了铯钟信噪比和稳定度的提升。As a first-level frequency standard, cesium atomic microwave clocks have been widely used in national defense and civil applications, and play a pivotal role in the field of quantum frequency standard technology. At present, the method used in commercial magnetically-selected cesium atomic microwave clocks is to use a secondary magnet to select the cesium atoms from the cesium atoms flowing from the cesium furnace. The spatial dispersion of atoms, so the utilization rate of cesium atoms is very low, which limits the improvement of the signal-to-noise ratio and stability of cesium clocks.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术的不足,本发明提供应用轴对称多级磁铁束光学系统的小型光抽运铯原子钟及实现方法,通过窄线宽激光光抽运,再采用轴对称多级磁铁(四级,六级)束光学系统通过对铯原子进行两维空间聚焦,使得原子能够发生精准的能级跃迁,同时减少磁选态对于铯原子的浪费和空间上的发散,实现对铯原子钟钟跃迁谱线信噪比和稳定度的提升。In order to overcome the deficiencies of the prior art, the present invention provides a small optically pumped cesium atomic clock using an axis-symmetrical multi-stage magnet beam optical system and a realization method. , six-level) beam optical system focuses the cesium atoms in two-dimensional space, so that the atoms can undergo precise energy level transitions, and at the same time reduce the waste of magnetically selected states for cesium atoms and the divergence in space, and realize the transition spectrum of cesium atomic clocks. Line signal-to-noise ratio and stability improvements.
本发明具体实施时,可采用单激光抽运(第一种方案)或双频激光抽运(第二种方案);在本发明中第一种方案中,通过轴对称多级磁铁束光学系统的设计,将铯原子利用率相比于传统光抽运铯原子微波钟提升7倍左右。在第二种方案中,通过轴对称多级磁铁束光学系统结合双频激光光抽运方案,可将铯原子利用率相比于传统光抽运铯原子微波钟提升70倍左右,进而提升铯原子钟钟跃迁谱线的信噪比和稳定度近一个量级。经计算表明,相较于商用铯钟,第一种方案有望提高原子利用率约7倍,在第二种方案中可将铯原子利用率相比与传统光抽运铯原子微波钟提升70倍左右。In the specific implementation of the present invention, single laser pumping (the first solution) or dual-frequency laser pumping (the second solution) can be adopted; Compared with the traditional optically pumped cesium atomic microwave clock, the utilization rate of cesium atoms is improved by about 7 times. In the second scheme, the utilization of cesium atoms can be increased by about 70 times compared with the traditional optically pumped cesium atomic microwave clock by using an axisymmetric multi-stage magnet beam optical system combined with a dual-frequency laser optical pumping scheme, thereby improving the cesium atomic frequency. The signal-to-noise ratio and stability of atomic clock transition lines are close to an order of magnitude. Calculations show that compared with commercial cesium clocks, the first scheme is expected to increase the atomic utilization rate by about 7 times, and in the second scheme, the utilization rate of cesium atoms can be increased by 70 times compared with traditional optically pumped cesium atomic microwave clocks. about.
本发明的技术方案是:The technical scheme of the present invention is:
一种应用轴对称多级磁铁束光学系统的光抽运小型铯原子钟,包括:窄线宽激光器(包含激光频率稳定系统)、半波片、偏振分光棱镜、频率调制器、铯炉、轴对称多级磁铁束光学系统(四级,六级)、微波谐振腔、光电探测器、晶振频综、反馈控制电路;窄线宽激光器(包含激光频率稳定系统)依次连接半波片、偏振分光棱镜后分为两路光,一路经过频率调制器作为探测光,另一路作为抽运光。从铯炉中泻流的铯原子束通过抽运光进行抽运,随后先连接轴对称多级磁铁束光学系统(四级、六级),而后连接微波谐振腔。探测光与出射铯原子作用,而后连接反馈控制电路后连接晶振频综,最后晶振频综连接到微波谐振腔。通过光电探测器检测铯原子与探测光作用的谱线,通过晶振频综及控制电路对得到的谱线进行调制解调并反馈控制晶振,得到高稳定度的钟跃迁信号输出,并通过晶振频综反馈控制微波腔频率,从而实现一种应用多级磁铁束光学系统的光抽运小型铯原子钟。An optically pumped small cesium atomic clock using an axis-symmetric multi-stage magnet beam optical system, comprising: a narrow linewidth laser (including a laser frequency stabilization system), a half-wave plate, a polarization beam splitter prism, a frequency modulator, a cesium furnace, axisymmetric Multi-stage magnet beam optical system (four-stage, six-stage), microwave resonant cavity, photodetector, crystal oscillator frequency synthesis, feedback control circuit; narrow linewidth laser (including laser frequency stabilization system) is connected with half-wave plate and polarization beam splitting prism in turn It is then divided into two paths of light, one of which passes through the frequency modulator as probe light and the other as pumping light. The cesium atom beam escaping from the cesium furnace is pumped by pumping light, and then firstly connected to the axisymmetric multi-stage magnet beam optical system (fourth and sixth stage), and then connected to the microwave resonator. The probe light interacts with the outgoing cesium atoms, and then the feedback control circuit is connected to the crystal oscillator frequency synthesizer, and finally the crystal oscillator frequency synthesizer is connected to the microwave resonant cavity. The spectral line of the interaction between cesium atoms and the detection light is detected by the photodetector, and the obtained spectral line is modulated and demodulated by the crystal oscillator frequency synthesis and control circuit, and the crystal oscillator is fed back to control the crystal oscillator to obtain a high-stability clock transition signal output. Synthetic feedback controls the frequency of the microwave cavity, thereby realizing a small optically pumped cesium atomic clock using a multi-level magnet beam optical system.
上述应用轴对称多级磁铁束光学系统的光抽运小型铯原子钟,具体实施时,可采用两种实施方案。两种方案的区别在于方案一采用单激光抽运,经过单激光抽运,将铯原子抽运至6S1/2F=4态;而方案二采用双频激光抽运,经过双频激光抽运,将铯原子抽运至6S1/2F=4磁子能级mF=0。The above-mentioned optical pumping of the small cesium atomic clock using the axisymmetric multi-stage magnet beam optical system can be implemented in two ways. The difference between the two schemes is that the first scheme uses single laser pumping, and after single laser pumping, the cesium atoms are pumped to the 6S1/2 F=4 state; while the second scheme uses dual-frequency laser pumping, after double-frequency laser pumping. In this case, the cesium atoms are pumped to the 6S1/2 F=4 magneton level mF =0.
方案一:由窄线宽激光器发出的852nm窄线宽激光,经半波片和偏振分光棱镜分为两束光,一束作为抽运光,另一束经移频后作为探测光。铯原子经过抽运光作用后至6S1/2F=4态(除m=-4态外),铯原子在经过多级磁铁(四级,六级)束光学系统后受到向心力作用,使得原本发散的原子束集聚聚焦进入到铯束管中与微波信号发生共振作用,获得钟跃迁谱线。Scheme 1: The 852nm narrow linewidth laser emitted by the narrow linewidth laser is divided into two beams by a half-wave plate and a polarizing beam splitter prism, one beam is used as pumping light, and the other is frequency-shifted as probe light. After the cesium atom is pumped to the 6S1/2 F=4 state (except for the m=-4 state), the cesium atom is subjected to the centripetal force after passing through the multi-level magnet (four-level, six-level) beam optical system, so that The originally divergent atomic beam is concentrated and focused into the cesium beam tube to resonate with the microwave signal to obtain the clock transition line.
随后经过频率调制器移频后的探测光(对应铯原子6S1/2F=3–6P3/2F=2跃迁;或者对应铯原子6S1/2F=4–6P3/2F=5)打到从微波谐振腔中射出的6S1/2F=3或者F=4态铯原子上。Then the probe light after frequency shifting by the frequency modulator (corresponding to the cesium atom 6S1/2 F=3–6P3/2 F=2 transition; or corresponding to the cesium atom 6S1/2 F=4–6P3/2 F= 5) Hit the 6S1/2 F=3 or F=4 cesium atoms emitted from the microwave resonator.
方案二:所涉及装置在方案一基础上添加第二半波片、第二偏振分光棱镜及第二频率调制器。Scheme 2: The involved device adds a second half-wave plate, a second polarization beam splitter prism and a second frequency modulator on the basis of
由窄线宽激光器发出852nm窄线宽激光,经第二半波片和第二偏振分光棱镜分为两束,其中一束经过第二频率调制器调制后作为第一束抽运光(对应铯原子6S1/2F=4–6P3/2F=4跃迁),另一束则经过半波片和偏振分光棱镜分为两束,一束用作第二抽运光(对应铯原子6S1/2F=3–6P3/2F=4跃迁),另一束经频率调制器移频后用于探测光(对应铯原子6S1/2F=3–6P3/2F=2跃迁;或者对应铯原子6S1/2F=4–6P3/2F=5)。经过调制的和未经调制的抽运光打在从铯炉中泻流的铯原子上,铯原子经过抽运光的作用后至6S1/2F=4mF=0态,此态铯原子经过轴对称多级磁铁束光学系统后受向心力作用,并通过光电探测器检测铯原子与探测光作用形成的谱线。The 852nm narrow linewidth laser is emitted by the narrow linewidth laser, which is divided into two beams by the second half-wave plate and the second polarizing beam splitting prism, one of which is modulated by the second frequency modulator as the first beam of pumping light (corresponding to cesium). Atomic 6S1/2 F=4–6P3/2 F=4 transition), the other beam is divided into two beams through a half-wave plate and a polarizing beam splitter prism, and one beam is used as the second pumping light (corresponding to the cesium atom 6S1/2 F=3–6P3/2 F=4 transitions), and the other beam is frequency-shifted by the frequency modulator for detection light (corresponding to cesium atom 6S1/2 F=3–6P3/2 F=2 transition; or corresponding to the cesium atom 6S1/2 F=4–6P3/2 F=5). The modulated and unmodulated pump light hits the cesium atoms flowing from the cesium furnace, and the cesium atoms are in the state of 6S1/2 F=4mF = 0 after the action of the pump light. This state of the cesium atoms After passing through the axisymmetric multi-stage magnet beam optical system, it is subjected to the centripetal force, and the photodetector detects the spectral line formed by the interaction between the cesium atom and the probe light.
相比较于方案一采取双频激光抽运能增加有效铯原子数,进一步提升铯原子利用效率,进而提升铯原子钟钟跃迁谱线的信噪比和稳定度。Compared with
其中在方案一或方案二中:Among them, in
窄线宽激光器可以是窄线宽干涉滤光片外腔半导体激光器,也可以是其他窄线宽激光器。The narrow linewidth laser can be a narrow linewidth interference filter external cavity semiconductor laser, or other narrow linewidth lasers.
频率调制器可以为声光调制器或电光调制器。The frequency modulator may be an acousto-optic modulator or an electro-optic modulator.
轴对称多级磁铁束光学系统,可以是轴对称六级磁铁束光学系统或轴对称四级磁铁束光学系统,这两种束光学系统对于原子的聚焦作用强度,改变原子在整个系统中的运动轨迹。The axisymmetric multi-stage magnet beam optical system can be an axisymmetric six-stage magnet beam optical system or an axisymmetric four-stage magnet beam optical system. The two beam optical systems have a focusing effect on the atoms and change the movement of the atoms in the whole system. trajectory.
本发明还提出一种应用轴对称多级磁铁束光学系统的光抽运小型铯钟的制备方法,包括以下步骤:The present invention also proposes a method for preparing a small optically pumped cesium clock using an axisymmetric multi-stage magnet beam optical system, comprising the following steps:
1)由窄线宽激光器发出的窄线宽激光,经半波片和偏振分光棱镜分为两束光,一束作为抽运光,另一束经移频后作为探测光。1) The narrow-line-width laser emitted by the narrow-line-width laser is divided into two beams by a half-wave plate and a polarizing beam splitting prism, one beam is used as pumping light, and the other is frequency-shifted as probe light.
2)随后抽运光打在从铯炉中泻流的铯原子上,铯原子经过抽运光的作用后至高能态,使得原本发散的铯原子束聚焦进入到铯束管中与微波信号发生共振作用,获得钟跃迁谱线。2) Then the pump light hits the cesium atoms flowing from the cesium furnace, and the cesium atoms are brought to a high energy state after the action of the pump light, so that the originally divergent cesium atom beam is focused into the cesium beam tube and the microwave signal is generated. Resonance action to obtain clock transition lines.
3)一束经频率调制器调制后的探测光打到从铯束管中射出的铯原子上,通过光电探测器检测铯原子与探测光作用形成的信号。3) A beam of detection light modulated by the frequency modulator hits the cesium atoms emitted from the cesium beam tube, and the photodetector detects the signal formed by the interaction between the cesium atoms and the detection light.
4)最后通过反馈控制电路对得到的谱线进行调制解调并反馈控制晶振,得到高稳定度的钟跃迁信号输出,并通过晶振频综部分反馈控制微波腔频率,从而实现一种高稳定度高性能的应用轴对称多级磁铁束光学系统的光抽运小型铯钟。4) Finally, the obtained spectrum line is modulated and demodulated by the feedback control circuit, and the crystal oscillator is feedback controlled to obtain a high-stability clock transition signal output, and the frequency of the microwave cavity is controlled by feedback through the crystal oscillator frequency synthesis part, so as to achieve a high-stability High-performance optically pumped compact cesium clock for axisymmetric multistage magnet beam optical systems.
在步骤1)中,激光器可以是窄线宽干涉滤光片外腔半导体激光器,也可以是其他窄线宽激光器。In step 1), the laser may be a narrow linewidth interference filter external cavity semiconductor laser, or may be other narrow linewidth lasers.
在步骤2)中,轴对称多级磁铁束光学系统,可以是轴对称六级磁铁束光学系统或轴对称四级磁铁束光学系统,这两种束光学系统对于原子的聚焦作用强度都可以改变原子在整个系统中的运动轨迹。In step 2), the axis-symmetric multi-stage magnet beam optical system can be an axis-symmetric six-stage magnet beam optical system or an axis-symmetric four-stage magnet beam optical system, both of which can change the focusing strength of the atoms. The trajectories of atoms throughout the system.
在步骤2)中,其中微波谐振腔长约为20-30cm,轴对称六级磁铁长度为2-2.5cm,磁场强度为0.5T-0.8T,炉口至磁铁的距离约为1cm。In step 2), the length of the microwave resonant cavity is about 20-30cm, the length of the axisymmetric six-stage magnet is 2-2.5cm, the magnetic field strength is 0.5T-0.8T, and the distance from the furnace mouth to the magnet is about 1cm.
其中光抽运部分可以通过两个方案实现:The optical pumping part can be realized by two schemes:
方案一:Option One:
在步骤1)中为由窄线宽激光器发出的窄线宽激光,经半波片和偏振分光棱镜分为两束光,一束作为抽运光,另一束经移频后作为探测光。In step 1), the narrow-line-width laser emitted by the narrow-line-width laser is divided into two beams by a half-wave plate and a polarization beam splitting prism, one beam is used as pumping light, and the other is frequency-shifted as probe light.
在步骤2)中为随后抽运光打在从铯炉中泻流的铯原子上,铯原子经过抽运光的作用后至6S1/2F=4态,此态除m=-4外铯原子经过轴对称多级束光学系统受向心力作用,使得原本发散的原子束聚焦进入到微波腔中与微波信号发生共振作用,获得钟跃迁谱线。随后一束经频率调制器调制后的探测光打到从铯束管中射出的铯原子上,通过光电探测器检测铯原子与探测光作用形成的谱线。In step 2), the pumping light hits the cesium atoms flowing from the cesium furnace, and the cesium atoms are in the 6S1/2 F=4 state after the pumping light, except for m=-4. The cesium atoms are subjected to the centripetal force through the axisymmetric multi-level beam optical system, so that the originally divergent atom beams are focused into the microwave cavity to resonate with the microwave signal, and the clock transition line is obtained. Then a beam of probe light modulated by the frequency modulator hits the cesium atoms emitted from the cesium beam tube, and the spectral lines formed by the interaction between the cesium atoms and the probe light are detected by a photodetector.
方案二:Option II:
在步骤1)中为由窄线宽激光器发出窄线宽激光,由第二半波片和第二偏振分光棱镜分为两束光其中一束经过第二频率调制器移频后作为第一抽运光,另一束则经过半波片和偏振分光棱镜分为两束光,一束用于第二抽运光,另一束进一步移频后用于探测光。In step 1), the narrow-line-width laser is emitted by the narrow-line-width laser, and the second half-wave plate and the second polarizing beam splitting prism are divided into two beams of light, one of which is frequency-shifted by the second frequency modulator and used as the first pump The other beam is divided into two beams by a half-wave plate and a polarizing beam splitter prism, one beam is used for the second pumping light, and the other beam is further frequency-shifted and used for the detection light.
在步骤2)中为经过调制和未经调制的抽运光打在从铯炉中泻流的铯原子上,铯原子经过抽运光的作用后至6S1/2F=4mF=0态,此态铯原子经过轴对称多级磁铁束光学系统受向心力作用,使得原本发散的原子束聚焦进入到微波腔中与微波信号发生共振作用,获得钟跃迁谱线。随后一束经频率调制器调制后的探测光打到从铯束管中射出的铯原子上,通过光电探测器检测铯原子与探测光作用形成的谱线。In step 2), the modulated and unmodulated pump light is hit on the cesium atoms flowing from the cesium furnace, and the cesium atoms are in the state of 6S1/2 F=4mF =0 after the action of the pump light. , the cesium atoms in this state are subjected to the centripetal force through the axisymmetric multi-stage magnet beam optical system, so that the originally divergent atomic beams are focused into the microwave cavity to resonate with the microwave signal, and the clock transition line is obtained. Then a beam of probe light modulated by the frequency modulator hits the cesium atoms emitted from the cesium beam tube, and the spectral lines formed by the interaction between the cesium atoms and the probe light are detected by a photodetector.
其中方案一为采用单激光抽运,方案二采用双频激光抽运。相比较于方案一,方案二采取双频激光抽运能有效增加铯原子数量,进一步提升铯原子利用效率,进而提升铯原子钟钟跃迁谱线的信噪比和稳定度。Among them, the first scheme adopts single laser pumping, and the second scheme adopts dual-frequency laser pumping. Compared with
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明提供应用轴对称多级磁铁束光学系统的小型光抽运铯原子钟及实现方法,创新地将轴对称多级磁铁(四级,六级)束光学系统应用到光抽运小型铯原子钟中,能够把经过光抽运铯原子束集聚,减少由于商用铯钟中磁铁选态所造成的铯原子浪费,以提高铯原子的利用效率,进而提升钟跃迁谱线的信噪比和铯钟的稳定度。本发明能够突破在铯原子钟中铯原子的利用效率的瓶颈,提高铯原子钟中铯原子利用率,提高钟跃迁信号的信噪比和铯钟的稳定度指标。在本发明中第一种方案中,通过轴对称多级磁铁束光学系统的设计,将铯原子利用率相比于传统光抽运铯原子微波钟提升7倍左右。在第二种方案中,通过轴对称多级磁铁束光学系统结合双频激光光抽运方案,可将铯原子利用率相比于传统光抽运铯原子微波钟提升70倍左右,进而提升铯原子钟钟跃迁谱线的信噪比和稳定度近一个量级。The invention provides a small optical pumping cesium atomic clock using an axis-symmetric multi-stage magnet beam optical system and a realization method, and innovatively applies the axial-symmetric multi-stage magnet (four-stage, six-stage) beam optical system to the optical pumping small cesium atomic clock , which can concentrate the optically pumped cesium atom beam, reduce the waste of cesium atoms caused by the state selection of the magnet in commercial cesium clocks, improve the utilization efficiency of cesium atoms, and then improve the signal-to-noise ratio of the clock transition spectral line and the cesium clock. stability. The invention can break through the bottleneck of the utilization efficiency of cesium atoms in the cesium atomic clock, improve the utilization rate of the cesium atoms in the cesium atomic clock, and improve the signal-to-noise ratio of the clock transition signal and the stability index of the cesium clock. In the first solution of the present invention, the utilization rate of cesium atoms is improved by about 7 times compared with the traditional optically pumped cesium atomic microwave clock through the design of the axis-symmetric multi-stage magnet beam optical system. In the second scheme, the utilization of cesium atoms can be increased by about 70 times compared with the traditional optically pumped cesium atomic microwave clock by using an axisymmetric multi-stage magnet beam optical system combined with a dual-frequency laser optical pumping scheme, thereby improving the cesium atomic frequency. The signal-to-noise ratio and stability of atomic clock transition lines are close to an order of magnitude.
附图说明Description of drawings
图1为本发明应用轴对称多级磁铁束光学系统的光抽运小型铯原子钟实施方案一的结构示意图;1 is a schematic structural diagram of
其中:1-窄线宽激光器(包含激光频率稳定系统)、2-半波片、3-偏振分光棱镜、4-频率调制器、5-铯炉、6-轴对称六级磁铁束光学系统、7-微波谐振腔、8-光电探测器、9-反馈控制电路、10-晶振频综。Among them: 1-Narrow linewidth laser (including laser frequency stabilization system), 2-Half-wave plate, 3-Polarization beam splitter prism, 4-Frequency modulator, 5-Cesium furnace, 6-Axisymmetric six-stage magnet beam optical system, 7-Microwave resonant cavity, 8-Photodetector, 9-Feedback control circuit, 10-Crystal oscillator frequency synthesis.
图2为方案一中单激光光抽运铯原子的能级跃迁示意图,其中62P3/2,62S1/2为铯原子能级名称,F’=5,F’=4,F’=3,F’=2为62P3/2下的精细能级;F=4,F=3为62S1/2下的精细能级;λ=852.355nm表示为此波长激光能使铯原子从62S1/2能级被抽运到62P3/2能级;H=9192631770Hz表示为62S1/2F=4与62S1/2F=3两个精细能级间的频率差。图中实线表示其被激光抽运,波浪线表示为原子自发辐射。Fig. 2 is a schematic diagram of the energy level transition of cesium atom pumped by single laser light in
图3为本发明应用轴对称多级磁铁束光学系统的光抽运小型铯原子钟实施例方案二的结构示意图。FIG. 3 is a schematic structural diagram of
其中:1-窄线宽激光器(包含激光频率稳定系统)、2-半波片、3-偏振分光棱镜、4-频率调制器、5-铯炉、6-轴对称六级磁铁束光学系统、7-微波谐振腔、8-光电探测器、9-反馈控制电路、10-晶振频综、11-第二半波片、12-第二偏振分光棱镜、13-第二频率调制器。Among them: 1-Narrow linewidth laser (including laser frequency stabilization system), 2-Half-wave plate, 3-Polarization beam splitter prism, 4-Frequency modulator, 5-Cesium furnace, 6-Axisymmetric six-stage magnet beam optical system, 7-Microwave resonant cavity, 8-Photodetector, 9-Feedback control circuit, 10-Crystal oscillator frequency synthesis, 11-Second half-wave plate, 12-Second polarizing beam splitter prism, 13-Second frequency modulator.
图4为方案二中双频激光光抽运铯原子的能级跃迁示意图,62P3/2和62S1/2表示为铯原子能级名称,F=4,F=3表示其能级下的精细能级,mF表示其精细能级下的超精细能级。图中实线表示其被激光抽运,虚线表示为原子自发辐射。Figure 4 is a schematic diagram of the energy level transition of cesium atom pumped by dual-frequency laser light in
图5为六级磁铁磁极截面示意图,其中N,S表示为磁铁磁极。FIG. 5 is a schematic cross-sectional view of the magnetic poles of a six-stage magnet, wherein N and S represent the magnetic poles of the magnet.
具体实施方式Detailed ways
下面结合附图,通过具体实施例,进一步阐述本发明。Below in conjunction with the accompanying drawings, the present invention will be further described through specific embodiments.
如图1,本实施例的应用轴对称六级磁铁束光学系统的光抽运小型铯原子钟方案一包括:窄线宽激光器(包含激光频率稳定系统)1、半波片2、偏振分光棱镜3、频率调制器4、铯炉5、轴对称六级磁铁束光学系统6、微波谐振腔7、光电探测器8、反馈控制电路9、晶振频综10。其中所述窄线宽激光器1发出窄线宽激光,由半波片2和偏振分光棱镜3分为两束光分别用作抽运光和探测光。随后抽运光打在从铯炉5中泻流出的铯原子上,铯原子经过抽运光的作用后至6S1/2F=4态(如图2所示经过单激光抽运后的铯原子都会在此态),随后除m=-4态铯原子经过轴对称六级磁铁束光学系统6受到向心力作用,使得原本发散的原子束聚焦进入到微波谐振腔7中与微波信号发生共振作用,获得钟跃迁谱线,之后一束经频率调制器4移频后的探测光打到从铯束管中射出的6S1/2F=3或F=4铯原子上,通过光电探测器8检测6S1/2F=3或6S1/2F=4态铯原子与探测光作用形成的谱线,最后通过反馈控制电路9对得到的谱线进行调制解调并反馈控制晶振,得到高稳定度的钟跃迁信号输出,并通过晶振频综10反馈控制微波谐振腔频率,从而实现一种高稳定度高性能的应用轴对称六级束光学系统的光抽运小型铯原子钟。As shown in FIG. 1 , the
如图3,本实施例的应用轴对称六级磁铁束光学系统的光抽运小型铯原子钟方案二包括:As shown in FIG. 3 , the second scheme of the optical pumping of a small cesium atomic clock using an axisymmetric six-stage magnet beam optical system in this embodiment includes:
窄线宽激光器(包含激光频率稳定系统)1、半波片2、偏振分光棱镜3、频率调制器4、铯炉5、轴对称六级磁铁束光学系统6、微波谐振腔7、光电探测器8、反馈控制电路9、晶振频综10、第二半波片11、第二偏振分光棱镜12、第二频率调制器13。Narrow linewidth laser (including laser frequency stabilization system) 1, half-
其中所述窄线宽激光器(包含激光频率稳定系统)1发出窄线宽激光,由第二半波片11和第二偏振分光棱镜12分为两束光其中一束经过频率调制器13调制后的激光作为第一抽运光,另一束则经过半波片2和偏振分光棱镜3分为两束光一束用于第二抽运光,另一束使用频率调制器4移频后用于探测光。随后经过调制的和未经调制的抽运光打在从铯炉5中泻流出的铯原子上,铯原子经过抽运光的作用后至6S1/2F=4mF=0态(如图4所示经过此种双频激光抽运后的铯原子都会落在此态),随后此态铯原子经过轴对称六级磁铁束光学系统6受到向心力作用,使得原本发散的原子束集聚进入到微波谐振腔7中并与微波信号发生共振作用,获得钟跃迁谱线,之后探测光打到从微波谐振腔中射出的6S1/2F=3或者F=4态铯原子上,通过光电探测器8检测铯原子与探测光作用形成的谱线,最后通过反馈控制电路9对得到的谱线进行调制解调并反馈控制晶振,得到高稳定度的钟跃迁信号输出,并通过晶振频综10反馈控制微波谐振腔频率,从而实现一种高稳定度高性能的应用轴对称六级磁铁束光学系统的双频激光光抽运铯钟。The narrow linewidth laser (including the laser frequency stabilization system) 1 emits a narrow linewidth laser, which is divided into two beams by the second half-
具体地,在本发明实施例中的应用轴对称六级磁铁束光学系统的光抽运小型铯原子钟的特征是首先采用单频激光或双频激光光抽运将铯原子抽运至高能态,随后使用轴对称多级磁铁束光学系统对铯原子束进行聚焦作用,以增加铯原子利用效率,进而提升钟跃迁谱线信噪比和稳定度。本发明在此情形下与已有的商用磁选态铯钟,以及光抽运铯原子钟有本质的区别。Specifically, in the embodiment of the present invention, the optical pumping of a small cesium atomic clock using an axis-symmetric six-stage magnet beam optical system is characterized in that the cesium atoms are first pumped to a high-energy state by single-frequency laser or dual-frequency laser optical pumping, Then, the cesium atom beam is focused by an axisymmetric multi-stage magnet beam optical system to increase the utilization efficiency of cesium atoms, thereby improving the signal-to-noise ratio and stability of the clock transition spectral line. In this case, the present invention is substantially different from the existing commercial magnetically-selected state cesium clocks and optically pumped cesium atomic clocks.
最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的,比如:本发明中的轴对称六级磁铁束光学系统可以使用轴对称四级磁铁束光学系统;单激光抽运可以用双频激光抽运;激光探测也可以改用磁选态探测。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。Finally, it should be noted that the purpose of publishing the embodiments is to help further understanding of the present invention, but those skilled in the art can understand that various replacements and modifications can be made without departing from the spirit and scope of the present invention and the appended claims. It is possible, for example: the axis-symmetric six-level magnet beam optical system in the present invention can use the axis-symmetric four-level magnet beam optical system; single laser pumping can be pumped by dual-frequency laser; laser detection can also be changed to magnetic state selection probe. Therefore, the present invention should not be limited to the contents disclosed in the embodiments, and the scope of protection of the present invention shall be subject to the scope defined by the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910961652.4ACN110780585B (en) | 2019-10-11 | 2019-10-11 | Optical pumping cesium atomic clock applying axisymmetric multistage magnets and implementation method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910961652.4ACN110780585B (en) | 2019-10-11 | 2019-10-11 | Optical pumping cesium atomic clock applying axisymmetric multistage magnets and implementation method |
| Publication Number | Publication Date |
|---|---|
| CN110780585Atrue CN110780585A (en) | 2020-02-11 |
| CN110780585B CN110780585B (en) | 2021-01-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910961652.4AActiveCN110780585B (en) | 2019-10-11 | 2019-10-11 | Optical pumping cesium atomic clock applying axisymmetric multistage magnets and implementation method |
| Country | Link |
|---|---|
| CN (1) | CN110780585B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112130444A (en)* | 2020-10-12 | 2020-12-25 | 成都天奥电子股份有限公司 | Fountain type cold atomic clock |
| CN114153135A (en)* | 2021-12-22 | 2022-03-08 | 北京大学 | Locking method of cesium beam atomic clock |
| CN115474323A (en)* | 2022-09-15 | 2022-12-13 | 兰州空间技术物理研究所 | Small single-beam magnetic separation cesium-beam tube with magnetic focusing function |
| CN117790042A (en)* | 2024-02-27 | 2024-03-29 | 中国科学院国家授时中心 | An optical pumping atomic beam device based on bent four conductors |
| CN120128169A (en)* | 2025-02-19 | 2025-06-10 | 成都天奥电子股份有限公司 | A method and device for stabilizing static magnetic field of atomic beam clock based on double atoms |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101846965A (en)* | 2010-04-28 | 2010-09-29 | 北京大学 | Method for pumping rubidium bubble for outputting standard frequency by lamp pump rubidium gas laser and rubidium atomic clock |
| CN102111154A (en)* | 2010-12-31 | 2011-06-29 | 中国科学院国家授时中心 | Laser frequency stabilizing device for atomic clock |
| WO2013043842A1 (en)* | 2011-09-23 | 2013-03-28 | Kla-Tencor Corporation | Solid-state laser and inspection system using 193nm laser |
| CN103885324A (en)* | 2014-03-03 | 2014-06-25 | 北京大学 | Optical clock based on full-optical frequency stabilization and manufacturing method of optical clock |
| CN104384925A (en)* | 2014-10-10 | 2015-03-04 | 兰州空间技术物理研究所 | Magnetic separation-state cesium-beam tube state-selection magnet component assembly system and assembly detection method |
| CN106597323A (en)* | 2017-01-23 | 2017-04-26 | 浙江大学 | Magnetic survey probe and portable cesium atom laser optical pump magnetometer |
| US9673588B1 (en)* | 2012-10-26 | 2017-06-06 | University Of New Hampshire | Techniques and apparatus for managing lasing gas concentrations |
| CN106888546A (en)* | 2015-12-16 | 2017-06-23 | 中国计量科学研究院 | Zeeman decelerator based on annular permanent magnet |
| CN107065502A (en)* | 2016-12-12 | 2017-08-18 | 兰州空间技术物理研究所 | A kind of method and magnetic separation state cesium-beam atomic clock for extending the magnetic separation state cesium beam tube life-span |
| CN107561916A (en)* | 2017-10-10 | 2018-01-09 | 兰州空间技术物理研究所 | A kind of rubidium atom microwave clock based on faraday's laser pumping |
| CN110018631A (en)* | 2019-04-10 | 2019-07-16 | 温州激光与光电子协同创新中心 | The Cs atom microwave frequency standard and its implementation detected using faraday's laser pumping |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101846965A (en)* | 2010-04-28 | 2010-09-29 | 北京大学 | Method for pumping rubidium bubble for outputting standard frequency by lamp pump rubidium gas laser and rubidium atomic clock |
| CN102111154A (en)* | 2010-12-31 | 2011-06-29 | 中国科学院国家授时中心 | Laser frequency stabilizing device for atomic clock |
| WO2013043842A1 (en)* | 2011-09-23 | 2013-03-28 | Kla-Tencor Corporation | Solid-state laser and inspection system using 193nm laser |
| US9673588B1 (en)* | 2012-10-26 | 2017-06-06 | University Of New Hampshire | Techniques and apparatus for managing lasing gas concentrations |
| CN103885324A (en)* | 2014-03-03 | 2014-06-25 | 北京大学 | Optical clock based on full-optical frequency stabilization and manufacturing method of optical clock |
| CN104384925A (en)* | 2014-10-10 | 2015-03-04 | 兰州空间技术物理研究所 | Magnetic separation-state cesium-beam tube state-selection magnet component assembly system and assembly detection method |
| CN106888546A (en)* | 2015-12-16 | 2017-06-23 | 中国计量科学研究院 | Zeeman decelerator based on annular permanent magnet |
| CN107065502A (en)* | 2016-12-12 | 2017-08-18 | 兰州空间技术物理研究所 | A kind of method and magnetic separation state cesium-beam atomic clock for extending the magnetic separation state cesium beam tube life-span |
| CN106597323A (en)* | 2017-01-23 | 2017-04-26 | 浙江大学 | Magnetic survey probe and portable cesium atom laser optical pump magnetometer |
| CN107561916A (en)* | 2017-10-10 | 2018-01-09 | 兰州空间技术物理研究所 | A kind of rubidium atom microwave clock based on faraday's laser pumping |
| CN110018631A (en)* | 2019-04-10 | 2019-07-16 | 温州激光与光电子协同创新中心 | The Cs atom microwave frequency standard and its implementation detected using faraday's laser pumping |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112130444A (en)* | 2020-10-12 | 2020-12-25 | 成都天奥电子股份有限公司 | Fountain type cold atomic clock |
| CN114153135A (en)* | 2021-12-22 | 2022-03-08 | 北京大学 | Locking method of cesium beam atomic clock |
| CN114153135B (en)* | 2021-12-22 | 2022-08-09 | 北京大学 | Locking method of cesium beam atomic clock |
| CN115474323A (en)* | 2022-09-15 | 2022-12-13 | 兰州空间技术物理研究所 | Small single-beam magnetic separation cesium-beam tube with magnetic focusing function |
| CN117790042A (en)* | 2024-02-27 | 2024-03-29 | 中国科学院国家授时中心 | An optical pumping atomic beam device based on bent four conductors |
| CN117790042B (en)* | 2024-02-27 | 2024-05-28 | 中国科学院国家授时中心 | Optical pumping atomic beam device based on curved four conductors |
| CN120128169A (en)* | 2025-02-19 | 2025-06-10 | 成都天奥电子股份有限公司 | A method and device for stabilizing static magnetic field of atomic beam clock based on double atoms |
| Publication number | Publication date |
|---|---|
| CN110780585B (en) | 2021-01-26 |
| Publication | Publication Date | Title |
|---|---|---|
| CN110780585A (en) | Optical pumping cesium atomic clock applying axisymmetric multistage magnets and implementation method | |
| Boiron et al. | Three-dimensional cooling of cesium atoms in four-beam gray optical molasses | |
| CN103825184B (en) | A kind of ultra-narrow band excited state faraday anomalous dispersion atomic light filter of communication band | |
| CN110850703B (en) | High-stability optical frequency atomic clock based on dual-frequency Faraday semiconductor laser | |
| CN102778839B (en) | A passive CPT atomic clock physical system device | |
| CN108649413B (en) | Photoelectric Oscillator Based on Parity-Time Symmetry | |
| US20090289728A1 (en) | Atomic frequency standard based on phase detection | |
| CN103454902B (en) | A kind of atomic clock | |
| CN102377431B (en) | Coherent population trapping atomic clock and realization method thereof | |
| CN101488753A (en) | Atomic clock reference frequency obtaining method and atomic clock | |
| CN102709802B (en) | Excited state atom filter receiving device for pumping laser atom frequency stabilization | |
| CN111208724B (en) | Chip active optical clock based on miniature atomic gas chamber and its realization method | |
| Sung et al. | Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection | |
| CN109039476B (en) | Vector Microwave Signal Generation System Based on Photoelectric Oscillator | |
| CN109491231A (en) | A kind of left-right rotary circularly polarized light CPT atomic clock physical system device | |
| CN103825193A (en) | Excited state Faraday anomalous dispersion atomic filtering method for ultra narrow band of communication waveband | |
| CN115064926B (en) | Dual-cavity self-injection integrated photogenerated microwave source system based on microcavity structure | |
| WO2022000221A1 (en) | Ratio-adjustable single photon beam splitter based on cold atom storage | |
| CN116643478A (en) | Small rubidium atomic light frequency scale based on small-sized narrow linewidth laser | |
| JP2010147967A (en) | Atomic oscillator and method of stabilizing frequency thereof | |
| CN114284862A (en) | Faraday laser based on modulation transfer spectrum frequency stabilization and implementation method thereof | |
| Zeng et al. | Wideband and high-dimensional chaos generation using optically pumped spin-VCSELs | |
| CN114498292A (en) | Bad-cavity double-frequency Faraday laser | |
| CN109932851A (en) | A device for generating arbitrary frequency doubling signals based on coupled photoelectric oscillation optical frequency comb | |
| CN110750044A (en) | Integrated CPT atomic clock physical system device |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |