














技术领域technical field
本申请属于计算机应用技术领域,尤其涉及一种通信方法及装置。The present application belongs to the technical field of computer applications, and in particular, relates to a communication method and device.
背景技术Background technique
海洋是人类生存活动十分重要的领域,随着人类文明的进一步发展,人类对资源的消费急剧增长,要维持人类的进一步发展,就必须了解、开发和利用海洋资源。声波是唯一能在海洋中以辐射形式远距离传播的信号,水声通讯是开发海洋需要解决的重要技术之一。水声通讯的原理是利用水声发射换能器发出携带信息的声波,通过海洋传导至水声接收换能器,水声接收换能器将所述声波转化为电信号,并对所述电信号进行处理,还原信息内容。The ocean is a very important area for human survival activities. With the further development of human civilization, human consumption of resources has increased rapidly. To maintain the further development of human beings, it is necessary to understand, develop and utilize marine resources. Sound waves are the only signals that can propagate long-distance in the form of radiation in the ocean. Underwater acoustic communication is one of the important technologies to be solved in the development of the ocean. The principle of underwater acoustic communication is to use the underwater acoustic transmitting transducer to send out sound waves carrying information, which are conducted through the ocean to the underwater acoustic receiving transducer, and the underwater acoustic receiving transducer converts the sound waves into electrical signals, and then transmits the sound waves to the electrical signals. The signal is processed to restore the information content.
为了提高通讯信号的信道容量,目前普遍采用时分多路复用和频分多路复用的处理方法,其主要原理是基于将信息编码在不同时间段或不同频率范围的载体波中。现有技术中一般通过频率或时间自由度作为编解码的基矢,但是随着信息量的增大,仅使用频率或时间自由度作为编解码的基矢,信道总容量是有限的。此外,若所传输的信号在频率或时间维度发生混叠,将会导致解码后的信号有较大失真。In order to improve the channel capacity of communication signals, the processing methods of time division multiplexing and frequency division multiplexing are commonly used at present. In the prior art, the frequency or time degree of freedom is generally used as the base vector of encoding and decoding, but with the increase of the amount of information, only the frequency or time degree of freedom is used as the base vector of encoding and decoding, and the total channel capacity is limited. In addition, if the transmitted signal is aliased in the frequency or time dimension, the decoded signal will be greatly distorted.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本申请实施例提供了通信方法及装置,可以解决现有技术中的编解码方式在传输过程中容易出现信号失真较大的问题。In view of this, the embodiments of the present application provide a communication method and device, which can solve the problem that the encoding and decoding methods in the prior art are prone to large signal distortion during transmission.
本申请实施例的第一方面提供了一种信号发射方法,包括:A first aspect of the embodiments of the present application provides a signal transmission method, including:
获取待发射的电信号信息;Obtain the electrical signal information to be transmitted;
根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息;determining the emission information corresponding to the electrical signal information according to a preset vortex sound field generation method;
通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号;Converting the electrical signal information into a vortex sound field signal corresponding to the transmitting information by using a preset transmitting transducer array;
发射所述涡旋声场信号。The vortex sound field signal is emitted.
其中,所述根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息,包括:Wherein, determining the emission information corresponding to the electrical signal information according to the preset vortex sound field generation method includes:
根据预设的不同拓扑荷数的涡旋声场的产生方式,确定所述电信号信息对应各个阵元的发射相位和幅度;或Determine the emission phase and amplitude of each array element corresponding to the electrical signal information according to the preset generation methods of vortex sound fields with different topological charges; or
根据预设的任意涡旋声场的产生方式,确定所述电信号信息对应各个阵元的强度和相位。The intensity and phase of each array element corresponding to the electrical signal information are determined according to a preset generation method of any vortex sound field.
其中,所述发射所述涡旋声场信号,包括:Wherein, the transmitting the vortex sound field signal includes:
在预设的频带中加载至少两路彼此独立、互不干扰的涡旋声场信号;Load at least two channels of vortex sound field signals that are independent of each other and do not interfere with each other in the preset frequency band;
将加载所述至少两路涡旋声场信号频带的涡旋声场信号发送至预设的信号接收装置。The vortex sound field signals loaded with the at least two channels of vortex sound field signal frequency bands are sent to a preset signal receiving device.
其中,所述电信号信息对应各个阵元的幅度为预先设定的常数;所述预设的不同拓扑荷数的涡旋声场的产生方式中,所述电信号信息对应各个阵元的发射相位为:Wherein, the amplitude of the electrical signal information corresponding to each array element is a preset constant; in the preset generation method of the vortex sound field with different topological charges, the electrical signal information corresponds to the emission phase of each array element for:
其中,θOAM用于表示每个阵元的发射相位,l用于表示所述阵元对应的涡旋声场的拓扑荷数,和r分别用于表示每个阵元在以涡旋中心为极点的极坐标下的极角和极径,α用于表示涡旋的旋度。Among them, θOAM is used to represent the emission phase of each array element, l is used to represent the topological charge of the vortex sound field corresponding to the array element, and r are used to represent the polar angle and polar radius of each array element in polar coordinates with the center of the vortex as the pole, respectively, and α is used to represent the curl of the vortex.
其中,所述根据预设的任意涡旋声场的产生方式中,电信号信息对应各个阵元的强度为:Wherein, in the generation method of any vortex sound field according to the preset, the intensity of the electrical signal information corresponding to each array element is:
其中,分别用于表示不同拓扑荷数的涡旋场以涡旋中心为极点的极坐标下的极角;I1~I8分别用于表示不同拓扑荷数的涡旋场的强度;in, They are respectively used to represent the polar angles of the vortex fields with different topological charge numbers in polar coordinates with the vortex center as the pole; I1 to I8 are respectively used to represent the intensity of the vortex fields with different topological charge numbers;
所述根据预设的任意涡旋声场的产生方式中,电信号信息对应各个阵元的相位为:In the generation method of the arbitrary vortex sound field according to the preset, the phase of the electrical signal information corresponding to each array element is:
其中,所述发射换能器阵列为由多个发射换能器组成的平面阵列或弧面阵列,其中,所述多个发射换能器的排列为直角坐标排列、极坐标排列或螺旋排列。Wherein, the transmitting transducer array is a plane array or arc surface array composed of multiple transmitting transducers, wherein the multiple transmitting transducers are arranged in a rectangular coordinate arrangement, a polar coordinate arrangement or a spiral arrangement.
本申请实施例的第二方面提供了一种信号接收方法,包括:A second aspect of the embodiments of the present application provides a signal receiving method, including:
接收涡旋声场信号;Receive vortex sound field signals;
将所述涡旋声场信号通过预设的接收换能器阵列转换成对应的发射信息;Converting the vortex sound field signal into corresponding transmission information through a preset receiving transducer array;
根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。According to a preset information decoding and reconstruction method, the transmitted information is decoded and reconstructed to obtain electrical signal information corresponding to the vortex sound field signal.
本申请实施例的第三方面提供了一种信号发射装置,包括:A third aspect of the embodiments of the present application provides a signal transmitting apparatus, including:
生成单元,用于获取待发射的电信号信息;a generating unit, used for acquiring the electrical signal information to be transmitted;
确定单元,用于根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息;a determining unit, configured to determine the emission information corresponding to the electrical signal information according to a preset vortex sound field generation mode;
声场单元,用于通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号;a sound field unit, configured to convert the electrical signal information into a vortex sound field signal corresponding to the transmission information through a preset transmission transducer array;
发送单元,用于发射所述涡旋声场信号。A sending unit, configured to transmit the vortex sound field signal.
本申请实施例的第四方面提供了一种信号发射装置,包括:处理器、输入设备、输出设备和存储器,所述处理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储支持装置执行上述方法的计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行上述第一方面的方法。A fourth aspect of the embodiments of the present application provides a signal transmitting apparatus, including: a processor, an input device, an output device, and a memory, wherein the processor, the input device, the output device, and the memory are connected to each other, wherein the memory uses A computer program for executing the above method in a storage support device, the computer program comprising program instructions, and the processor is configured to invoke the program instructions to execute the method of the first aspect.
本申请实施例的第五方面提供了一种计算机可读存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行上述第一方面的方法。A fifth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer storage medium stores a computer program, the computer program includes program instructions, and the program instructions cause the processing when executed by a processor The device executes the method of the above-mentioned first aspect.
本申请实施例的第六方面提供了一种信号接收装置,包括:A sixth aspect of the embodiments of the present application provides a signal receiving apparatus, including:
接收单元,用于接收涡旋声场信号;a receiving unit for receiving the vortex sound field signal;
环能单元,用于将所述涡旋声场信号通过预设的接收换能器阵列转换成对应的发射信息;an annular energy unit, configured to convert the vortex sound field signal into corresponding transmission information through a preset receiving transducer array;
重构单元,用于根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。The reconstruction unit is configured to decode and reconstruct the transmitted information according to a preset information decoding and reconstruction manner, to obtain electrical signal information corresponding to the vortex sound field signal.
本申请实施例的第七方面提供了一种信号接收装置,包括:处理器、输入设备、输出设备和存储器,所述处理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储支持装置执行上述方法的计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行上述第二方面的方法。A seventh aspect of the embodiments of the present application provides a signal receiving apparatus, including: a processor, an input device, an output device, and a memory, wherein the processor, the input device, the output device, and the memory are connected to each other, wherein the memory uses A computer program for executing the above method in a storage support device, the computer program comprising program instructions, and the processor is configured to invoke the program instructions to execute the method of the second aspect.
本申请实施例的第八方面提供了一种计算机可读存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行上述第二方面的方法。An eighth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer storage medium stores a computer program, the computer program includes program instructions, and the program instructions cause the processing when executed by a processor The controller performs the method of the second aspect above.
本申请实施例的第九方面提供了一种通信方法,包括:A ninth aspect of the embodiments of the present application provides a communication method, including:
获取待发射的电信号信息;Obtain the electrical signal information to be transmitted;
根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息;determining the emission information corresponding to the electrical signal information according to a preset vortex sound field generation method;
通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号;Converting the electrical signal information into a vortex sound field signal corresponding to the transmitting information by using a preset transmitting transducer array;
发射所述涡旋声场信号;transmitting the vortex sound field signal;
接收所述涡旋声场信号;receiving the vortex sound field signal;
将所述涡旋声场信号通过预设的接收换能器阵列转换成对应的发射信息;Converting the vortex sound field signal into corresponding transmission information through a preset receiving transducer array;
根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。According to a preset information decoding and reconstruction method, the transmitted information is decoded and reconstructed to obtain electrical signal information corresponding to the vortex sound field signal.
本申请实施例的第十方面提供了一种通信系统,包括:A tenth aspect of the embodiments of the present application provides a communication system, including:
信号发射装置,用于获取待发射的电信号信息;根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息;通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号;发射所述涡旋声场信号;a signal transmitting device, used for acquiring the electrical signal information to be transmitted; determining the transmitting information corresponding to the electrical signal information according to a preset vortex sound field generating method; converting the electrical signal information through a preset transmitting transducer array is the vortex sound field signal corresponding to the emission information; transmit the vortex sound field signal;
信号接收装置,用于接收所述涡旋声场信号;将所述涡旋声场信号通过预设的接收换能器阵列转换成对应的发射信息;根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。A signal receiving device is used for receiving the vortex sound field signal; converting the vortex sound field signal into corresponding transmission information through a preset receiving transducer array; The transmitted information is decoded and reconstructed to obtain electrical signal information corresponding to the vortex sound field signal.
本申请实施例与现有技术相比存在的有益效果是:The beneficial effects that the embodiments of the present application have compared with the prior art are:
通过获取待发射的电信号信息;根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息;通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号;发射所述涡旋声场信号。通过根据预设的旋涡声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息,通过预设的换能器阵列产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传播,降低了水下传输的信号在编解码过程中的失真。Obtain the electrical signal information to be transmitted; determine the transmission information corresponding to the electrical signal information according to a preset vortex sound field generation method; convert the electrical signal information into a The vortex sound field signal corresponding to the information; the vortex sound field signal is emitted. By determining the emission information of the vortex sound field signal corresponding to the electrical signal information according to the preset vortex sound field generation method, and generating or receiving any vortex sound field through the preset transducer array, the core sound field propagation of the vortex sound communication is realized, The distortion of the signal transmitted underwater during the encoding and decoding process is reduced.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present application. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本申请实施例一提供的信号发射方法的流程图;1 is a flowchart of a signal transmission method provided in
图2是本申请实施例一提供的实验所用换能器阵列;Fig. 2 is the transducer array used in the experiment provided by the first embodiment of the present application;
图3是本申请实施例一提供的不同拓扑荷数涡旋声场的发射相位图;Fig. 3 is the emission phase diagram of different topological charge number vortex sound fields provided by the first embodiment of the present application;
图4是本申请实施例一提供的不同拓扑荷数涡旋声场垂直于传播方向的一截面的幅度和相位示意图;4 is a schematic diagram of the amplitude and phase of a section perpendicular to the propagation direction of the vortex sound field with different topological charge numbers provided in
图5是本申请实施例二提供的信号接收方法的流程图;5 is a flowchart of a signal receiving method provided in
图6是本申请实施例二提供的信号发射装置与信号接收装置在通信的流程图;FIG. 6 is a flow chart of the communication between the signal transmitting device and the signal receiving device provided by the second embodiment of the present application;
图7是本申请实施例二提供的换能器阵列单元排列形状示意图;7 is a schematic diagram of the arrangement shape of the transducer array units provided in the second embodiment of the present application;
图8是本申请实施例二提供的不同阶数涡旋声场的正交性示意图;8 is a schematic diagram of the orthogonality of vortex sound fields of different orders provided by the second embodiment of the present application;
图9是本申请实施例二提供的理论和实验获得的数字0-9的声强幅度分布示意图;9 is a schematic diagram of the sound intensity amplitude distribution of numbers 0-9 obtained theoretically and experimentally provided in
图10是本申请实施例二提供的理论和实验获得的数字0-9的声场相位分布示意图;10 is a schematic diagram of the sound field phase distribution of numbers 0-9 obtained theoretically and experimentally according to
图11是本申请实施例二提供的换能器阵列信号解码示意图;FIG. 11 is a schematic diagram of signal decoding of a transducer array provided in
图12是本申请实施例三提供的信号发射装置的示意图;12 is a schematic diagram of a signal transmitting apparatus provided in
图13是本申请实施例四提供的信号发射装置的示意图;13 is a schematic diagram of a signal transmitting apparatus provided in
图14是本申请实施例五提供的信号接收装置的示意图;14 is a schematic diagram of a signal receiving apparatus provided in
图15是本申请实施例六提供的信号接收装置的示意图。FIG. 15 is a schematic diagram of a signal receiving apparatus provided in
具体实施方式Detailed ways
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。In the following description, for the purpose of illustration rather than limitation, specific details such as a specific system structure and technology are set forth in order to provide a thorough understanding of the embodiments of the present application. However, it will be apparent to those skilled in the art that the present application may be practiced in other embodiments without these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present application with unnecessary detail.
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。In order to illustrate the technical solutions described in the present application, the following specific embodiments are used for description.
参见图1,图1是本申请实施例一提供的一种信号发射方法的流程图。本实施例中信号发射方法的执行主体为具有信号发射功能的装置,如信号发射装置。如图所示的信号发射方法可以包括以下步骤:Referring to FIG. 1, FIG. 1 is a flowchart of a signal transmission method provided in
S101:获取待发射的电信号信息。S101: Acquire electrical signal information to be transmitted.
海洋是人类生存活动十分重要的领域,随着人类文明的进一步发展,人类对资源的消费急剧增长,要维持人类的进一步发展,就必须了解、开发和利用海洋资源。声波是唯一能在海洋中以辐射形式远距离传播的信号,水声通讯是开发海洋需要解决的重要技术之一。水声通讯的原理是利用水声换能器发出携带信息的声波,通过海洋传导至水声接收换能器并将其转化为电信号,经过信号与信息处理,还原信息内容。涡旋声场中的轨道角动量可作为独立于时间和频率的新自由度,成为扩充声学通讯信号传输信道容量的全新选择。本实施例提出一种基于轨道角动量远距离通信的阵列结构及其激励方法,为实现基于涡旋声场的水下通讯提供新的声场实现手段。The ocean is a very important area for human survival activities. With the further development of human civilization, human consumption of resources has increased rapidly. To maintain the further development of human beings, it is necessary to understand, develop and utilize marine resources. Sound waves are the only signals that can propagate long-distance in the form of radiation in the ocean. Underwater acoustic communication is one of the important technologies to be solved in the development of the ocean. The principle of underwater acoustic communication is to use the underwater acoustic transducer to send out sound waves that carry information, conduct it through the ocean to the underwater acoustic receiving transducer and convert it into an electrical signal, and restore the information content through signal and information processing. The orbital angular momentum in the vortex sound field can be used as a new degree of freedom independent of time and frequency, and it becomes a new option for expanding the transmission channel capacity of acoustic communication signals. This embodiment proposes an array structure and an excitation method for long-distance communication based on orbital angular momentum, and provides a new sound field realization method for realizing underwater communication based on vortex sound field.
在水下传输信号时,先获取待发射的电信号信息。由于非电的物理量可以通过各种传感器较容易地转换成电信号,而电信号又容易传送和控制,所以使其成为应用最广的信号。电信号是指随着时间而变化的电压或电流,因此在数学描述上可将它表示为时间的函数,并可画出其波形。本实施例中通过电信号的形式生成要传输的信息。When transmitting signals underwater, first obtain the electrical signal information to be transmitted. Since non-electrical physical quantities can be easily converted into electrical signals by various sensors, and electrical signals are easy to transmit and control, it is the most widely used signal. An electrical signal refers to a voltage or current that changes with time, so it can be expressed as a function of time in mathematical description, and its waveform can be drawn. In this embodiment, the information to be transmitted is generated in the form of electrical signals.
S102:根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息。S102: Determine emission information corresponding to the electrical signal information according to a preset vortex sound field generation method.
现有技术中提出的涡旋声通信都是基于空气中的换能器或声人工结构,无法直接应用到水环境中。本实施例提出的涡旋声场远距离通信的阵列结构及其激励方法,是基于水环境设计的阵列结构,能够直接产生和接收涡旋声场,可以真正实现动态、高效、大容量声信息传输。The vortex acoustic communication proposed in the prior art is all based on transducers or acoustic artificial structures in the air, and cannot be directly applied to the water environment. The array structure and excitation method of the vortex sound field long-distance communication proposed in this embodiment is an array structure designed based on the water environment, which can directly generate and receive the vortex sound field, and can truly realize dynamic, efficient, and large-capacity acoustic information transmission.
本实施例中的涡旋声场是指具有螺旋形相位的声场,数学上可表示为p(r)=p(r,z)e-ikzeiφ,这里用于表示声束的波矢量,p(r,z)用于表示z处的声场径向分布,φ=mθ用于表示螺旋相位,θ用于表示方位角大小,m恒为整数,用于表示拓扑荷数或涡旋场的阶数。本实施例中拓扑荷数用于表示一个波长的传播距离内波阵面发生扭转的次数,|m|取值越大,表示波阵面沿着轴旋转得越快;m取正数或负数,表示其扭转方向是正向或反向。The vortex sound field in this embodiment refers to a sound field with a spiral phase, which can be mathematically expressed as p(r)=p(r,z)e-ikz eiφ , where It is used to represent the wave vector of the sound beam, p(r, z) is used to represent the radial distribution of the sound field at z, φ=mθ is used to represent the helical phase, θ is used to represent the azimuth angle, m is always an integer, used for Represents the topological charge or the order of the vortex field. In this embodiment, the topological charge is used to represent the number of times the wavefront is twisted within the propagation distance of a wavelength. The larger the value of |m| is, the faster the wavefront rotates along the axis; m is a positive or negative number , indicating whether the twist direction is forward or reverse.
进一步的,步骤S102可以具体包括步骤S1021~S1022:Further, step S102 may specifically include steps S1021-S1022:
S1021:根据预设的不同拓扑荷数的涡旋声场的产生方式,确定所述电信号信息对应各个阵元的发射相位和幅度。S1021: Determine, according to the preset generation methods of vortex sound fields with different topological charges, the emission phase and amplitude of each array element corresponding to the electrical signal information.
本实施例中预设有不同拓扑荷数的涡旋声场中各个阵元的产生方式,具体的,步骤S1021可以包括:In this embodiment, the generation methods of each array element in the vortex sound field with different topological charges are preset. Specifically, step S1021 may include:
所述电信号信息对应各个阵元的幅度为预先设定的常数;所述预设的不同拓扑荷数的涡旋声场的产生方式中,所述电信号信息对应各个阵元的发射相位为:The amplitude of the electrical signal information corresponding to each array element is a preset constant; in the preset generation method of the vortex sound field with different topological charges, the emission phase of the electrical signal information corresponding to each array element is:
其中,θOAM用于表示每个阵元的发射相位,l用于表示所述阵元对应的涡旋声场的拓扑荷数,和r分别用于表示每个阵元在以涡旋中心为极点的极坐标下的极角和极径,α用于表示涡旋的旋度。Among them, θOAM is used to represent the emission phase of each array element, l is used to represent the topological charge of the vortex sound field corresponding to the array element, and r are used to represent the polar angle and polar radius of each array element in polar coordinates with the center of the vortex as the pole, respectively, and α is used to represent the curl of the vortex.
本实施例中通过确定当前电信号信息对应的发射相位信息,以根据发射相位信息来生成涡旋声场信号。In this embodiment, the emission phase information corresponding to the current electrical signal information is determined to generate the vortex sound field signal according to the emission phase information.
进一步的,本实施例中还包括:其中,发射换能器阵列为由多个发射换能器组成的平面阵列或弧面阵列,其中,所述多个发射换能器的排列为直角坐标排列、极坐标排列或螺旋排列。所述发射换能器阵列安装在信号发射装置中,用于产生不同拓扑荷数的涡旋声场,以基于所述涡旋声场进行涡旋声通信;与发射换能器对应的,接收换能器阵列安装在信号接收装置中,用于在水下接收任意涡旋声场。Further, this embodiment also includes: wherein the transmitting transducer array is a planar array or arc surface array composed of a plurality of transmitting transducers, wherein the arrangement of the plurality of transmitting transducers is a rectangular coordinate arrangement , polar arrangement or spiral arrangement. The transmitting transducer array is installed in the signal transmitting device, and is used to generate vortex sound fields with different topological charges, so as to perform vortex sound communication based on the vortex sound field; corresponding to the transmitting transducer, the receiving transducer The receiver array is installed in the signal receiving device to receive any vortex sound field underwater.
具体的,请一并参阅图2,图2为本申请实施例一提供的实验所用换能器阵列,其为16*16阵元正方排列的换能器阵列,工作中心频率在1MHz。本实施例中的激励和接收系统选用Verasonics Vantage 256system激励系统,该系统可以实现独立控制每一个阵元的发射相位和幅值。按照如下公式计算每一个阵元的发射相位和幅值:Specifically, please refer to FIG. 2. FIG. 2 is the transducer array used in the experiment provided in the first embodiment of the application, which is a transducer array with 16*16 array elements squarely arranged, and the working center frequency is 1 MHz. The excitation and reception system in this embodiment selects the Verasonics Vantage 256system excitation system, which can independently control the emission phase and amplitude of each array element. Calculate the transmit phase and amplitude of each array element according to the following formulas:
A=constant; A = constant;
其中,θOAM用于表示每个阵元的发射相位,l用于表示所述阵元对应的涡旋声场的拓扑荷数,和r分别用于表示每个阵元在以涡旋中心为极点的极坐标下的极角和极径,α用于表示涡旋的旋度;A代表每个阵元的发射幅值,是一个常数,即所有阵元的发射幅值都是相同的。Among them, θOAM is used to represent the emission phase of each array element, l is used to represent the topological charge of the vortex sound field corresponding to the array element, and r are used to represent the polar angle and polar diameter of each array element in polar coordinates with the vortex center as the pole, α is used to represent the curl of the vortex; A represents the emission amplitude of each array element, which is A constant, that is, the emission amplitudes of all array elements are the same.
请一并参阅图3,图3为本申请实施例一提供的不同拓扑荷数涡旋声场的发射相位图,图3用不同的像素颜色表示了拓扑荷数I=1、-1、4以及-4的情况下,涡旋声场的发射相位,其中,不同像素的颜色深度用于表示不同的相位大小,x和y分别用于表示涡旋声场中不同方向对应的像素位。Please refer to FIG. 3 together. FIG. 3 is the emission phase diagram of the vortex sound field with different topological charge numbers provided by the first embodiment of the application. In the case of -4, the emission phase of the vortex sound field, where the color depth of different pixels is used to represent different phase sizes, and x and y are used to represent the pixel bits corresponding to different directions in the vortex sound field.
请一并参阅图4,图4为本申请实施例一提供的不同拓扑荷数涡旋声场垂直于传播方向的一截面的幅度和相位示意图,图4用不同的像素颜色表示了拓扑荷数I=+1、-1、+2、-2、+3、-3、+4以及-4时,涡旋声场垂直于传播方向的一截面幅度和相位变化情况,其中,不同像素的颜色深度用于表示不同的幅度大小和相位大小。Please also refer to FIG. 4 , FIG. 4 is a schematic diagram of the amplitude and phase of a section of a vortex sound field with different topological charge numbers provided in
S1022:根据预设的任意涡旋声场的产生方式,确定所述电信号信息对应各个阵元的强度和相位。S1022: Determine the intensity and phase of each array element corresponding to the electrical signal information according to a preset generation method of any vortex sound field.
本实施例中预设有任意涡旋声场信号中任意涡旋声场的产生方式,具体的,步骤S1022可以包括:In this embodiment, a method for generating any vortex sound field in any vortex sound field signal is preset. Specifically, step S1022 may include:
所述根据预设的任意涡旋声场的产生方式中,电信号信息对应各个阵元的强度为:In the generation method of the arbitrary vortex sound field according to the preset, the intensity of the electrical signal information corresponding to each array element is:
其中,分别用于表示不同拓扑荷数的涡旋场以涡旋中心为极点的极坐标下的极角;I1~I8分别用于表示不同拓扑荷数的涡旋场的强度;in, are respectively used to represent the polar angle of the vortex field with different topological charge numbers in polar coordinates with the vortex center as the pole; I1 to I8 are respectively used to represent the intensity of the vortex field with different topological charge numbers;
所述根据预设的任意涡旋声场的产生方式中,电信号信息对应各个阵元的相位为:In the generation method of the arbitrary vortex sound field according to the preset, the phase of the electrical signal information corresponding to each array element is:
具体的,由于不同拓扑荷数的涡旋声场之间相互正交,因为因此可以利用不同拓扑荷数的涡旋声场之间的彼此正交性,实现同一频带同时传输多路彼此独立、互不干扰的信号,将极大提升频谱的利用率和通信速率。例如,可以将-4到-1,和1到4的拓扑荷数涡旋声场作为基本模式,计算任意信号的相位为:任意信号的声场强度为:如数字“1”对应的美国信息交换标准代码编码为为00010001,因此其-1模式和4模式涡旋声场叠加后即为数字1对应的声场形态。Specifically, since the vortex sound fields of different topological charges are mutually orthogonal, because Therefore, the mutual orthogonality between the vortex sound fields of different topological charges can be used to realize the simultaneous transmission of multiple independent and non-interfering signals in the same frequency band, which will greatly improve the utilization rate of the spectrum and the communication rate. For example, the topological charge number vortex sound field of -4 to -1, and 1 to 4 can be used as the fundamental mode, and the phase of any signal can be calculated as: The sound field strength of any signal is: For example, the ANSI code corresponding to the number "1" is 00010001, so the superposition of the -1 mode and the 4-mode vortex sound field is the sound field shape corresponding to the
S103:通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号。S103: Convert the electrical signal information into a vortex sound field signal corresponding to the transmission information by using a preset transmission transducer array.
本实施例中采用的预设的发射换能器阵列生成单个或多个不同拓扑荷数涡旋声场,例如采用16*16发射换能器阵列,通过独立控制每一阵元的相位和幅度,产生单个或多个不同拓扑荷数涡旋声场。因此,该换能器阵列也可以作为信号接收装置中的配置原件,接受并检测携带信息的涡旋声场。The preset transmitting transducer array used in this embodiment generates single or multiple vortex sound fields with different topological charge numbers. For example, a 16*16 transmitting transducer array is used to independently control the phase and amplitude of each array element to generate Single or multiple vortex sound fields with different topological charge numbers. Therefore, the transducer array can also be used as a configuration element in a signal receiving device to receive and detect the information-carrying vortex sound field.
S104:发射所述涡旋声场信号。S104: Transmit the vortex sound field signal.
在生成涡旋声场信号之后,将涡旋声场信号通过水下发送至预设的信号接收装置。本实施例的换能器阵列产生或接收的涡旋声场是可以直接用于信号通讯。加州大学提出了一种基于有源换能器阵列的声学轨道角动量通信技术。其原理是通过一个由64个扬声器辐射出复合涡旋态编码的信号组成的相控阵产生包含8个拓扑荷数的声涡旋场,并在接收端用另一个声学相控阵进行接收和解调。然而其换能器是空气中传播的低频微喇叭,该声场的产生方式无法适用于信号通讯。南京大学基于利用声学共振型超构材料实现对声学轨道角动量的加减级联运输,其声源换能器仅使用单个声学麦克风,相关实验是在空气声中完成。但由于其声学特殊结构以及传导声场需要在声学刚性结构中实现,在当前实验条件下,水声系统中很难实现相似功能。本实施例利用换能器阵列产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传播。After the vortex sound field signal is generated, the vortex sound field signal is sent underwater to a preset signal receiving device. The vortex sound field generated or received by the transducer array of this embodiment can be directly used for signal communication. The University of California has proposed an acoustic orbital angular momentum communication technology based on an active transducer array. The principle is to generate an acoustic vortex field containing 8 topological charges through a phased array composed of 64 loudspeakers radiating signals encoded by composite vortex states, and use another acoustic phased array at the receiving end for receiving and summing up. demodulation. However, its transducer is a low-frequency micro-horn propagating in the air, and the sound field is generated in a way that is not suitable for signal communication. Nanjing University is based on the use of acoustic resonance metamaterials to realize the addition and subtraction of acoustic orbital angular momentum cascade transportation. Its sound source transducer only uses a single acoustic microphone, and the related experiments are completed in air sound. However, due to its special acoustic structure and the need to realize the conducted sound field in an acoustically rigid structure, it is difficult to achieve similar functions in the underwater acoustic system under the current experimental conditions. In this embodiment, the transducer array is used to generate or receive any vortex sound field, so as to realize the propagation of the core sound field of the vortex sound communication.
进一步的,步骤S104可以包括:在预设的频带中加载至少两路彼此独立、互不干扰的涡旋声场信号;将加载所述至少两路涡旋声场信号频带的涡旋声场信号发送至预设的信号接收装置。Further, step S104 may include: loading at least two channels of vortex sound field signals independent of each other and not interfering with each other in a preset frequency band; sending the vortex sound field signals loaded with the frequency bands of the at least two channels of vortex sound field signals to a preset frequency band. installed signal receiving device.
具体的,涡旋声场是指具有螺旋形相位的声场,数学上可表示为p(r)=p(r,z)e-ikzeiφ,这里是声束的波矢量,p(r,z)是z处的声场径向分布,φ=mθ是螺旋相位,θ是方位角大小,m恒为整数的拓扑荷数或涡旋场的阶数。拓扑荷数定义为一个波长的传播距离内波阵面发生扭转的次数,|m|取值越大,表示波阵面沿着轴旋转得越快;m取正数或负数,表示其扭转方向是正向或反向。不同拓扑荷数的涡旋声场之间相互正交,因为因此可以利用不同拓扑荷数的涡旋声场之间的彼此正交性,实现同一频带同时传输多路彼此独立、互不干扰的信号,将极大提升频谱的利用率和通信速率,也提高了通讯信号的信道容量。Specifically, the vortex sound field refers to a sound field with a spiral phase, which can be mathematically expressed as p(r)=p(r,z)e-ikz eiφ , where is the wave vector of the sound beam, p(r, z) is the radial distribution of the sound field at z, φ=mθ is the helical phase, θ is the azimuth angle, m is an integer topological charge or the order of the vortex field . The topological charge is defined as the number of times the wavefront is twisted within the propagation distance of a wavelength. The larger the value of |m| is, the faster the wavefront rotates along the axis; the positive or negative value of m indicates the direction of the torsion. is forward or reverse. The vortex sound fields of different topological charges are orthogonal to each other, because Therefore, the mutual orthogonality between the vortex sound fields of different topological charges can be used to realize the simultaneous transmission of multiple independent and non-interfering signals in the same frequency band, which will greatly improve the utilization rate of the spectrum and the communication rate, and also improve the The channel capacity of the communication signal.
上述方案,通过获取待发射的电信号信息;根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息;通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号;发射所述涡旋声场信号。通过根据预设的旋涡声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息,通过预设的换能器阵列产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传播,降低了传输的信号在编解码过程中的失真。In the above scheme, the electrical signal information to be transmitted is acquired; the transmission information corresponding to the electrical signal information is determined according to a preset vortex sound field generation method; the electrical signal information is converted into a The vortex sound field signal corresponding to the emission information; and the vortex sound field signal is emitted. By determining the emission information of the vortex sound field signal corresponding to the electrical signal information according to the preset vortex sound field generation method, and generating or receiving any vortex sound field through the preset transducer array, the core sound field propagation of the vortex sound communication is realized, The distortion of the transmitted signal during the encoding and decoding process is reduced.
参见图5,图5是本申请实施例二提供的一种信号接收方法的流程图。本实施例中信号接收方法的执行主体为具有信号接收功能的装置,如信号接收装置,本实施例中信号接收装置与实施例一中的信号发射装置在信号通信过程中对信号的处理手段一一对应,此处对其功能不做赘述。如图所示的信号接收方法可以包括以下步骤:Referring to FIG. 5, FIG. 5 is a flowchart of a signal receiving method provided in
S501:接收涡旋声场信号。S501: Receive a vortex sound field signal.
本实施例利用水下接收换能器阵列产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传播。本实施例的信号接收装置是把声能转换成电能或电能转换成声能的器件,电声工程中的传声器、扬声器和耳机是最典型的电能、声能之间相互变换的器些器件统称为电声换能器。通过信号接收装置中的接收换能器阵列,可以接收信号发射装置发射的涡旋声场信号。In this embodiment, the underwater receiving transducer array is used to generate or receive any vortex sound field, so as to realize the propagation of the core sound field of the vortex sound communication. The signal receiving device of this embodiment is a device that converts sound energy into electrical energy or electrical energy into sound energy. Microphones, speakers and earphones in electro-acoustic engineering are the most typical devices for mutual conversion between electrical energy and sound energy. These devices are collectively referred to as For the electroacoustic transducer. Through the receiving transducer array in the signal receiving device, the vortex sound field signal transmitted by the signal transmitting device can be received.
请一并参阅图6,图6为本实施例中提供的信号发射装置与信号接收装置在通信的流程图。根据图6中的示例,本实施例中通过在信号发射装置端产生信息电信号,将信息电信号通过预设的换能器得到N个换能器阵元,之后将N个换能器阵元编码为涡旋声场信号并进行发射,将涡旋声场信号传输至接收端。在接收端端通过信号接收装置接收声涡旋编码,得到N各换能器阵元,最后将这些换能器阵元进行解码,得到原来的电信号信息,此为实施例一中的信号发射装置和实施例二中的信号接收装置之间的通信交互方式。Please also refer to FIG. 6 , which is a flowchart of the communication between the signal transmitting apparatus and the signal receiving apparatus provided in this embodiment. According to the example in FIG. 6 , in this embodiment, an information electrical signal is generated at the signal transmitting device end, and the information electrical signal is passed through a preset transducer to obtain N transducer array elements, and then the N transducer array elements are The element is encoded into a vortex sound field signal and transmitted, and the vortex sound field signal is transmitted to the receiving end. At the receiving end, the acoustic vortex code is received by the signal receiving device to obtain N transducer array elements, and finally these transducer array elements are decoded to obtain the original electrical signal information, which is the signal transmission in the first embodiment Communication interaction between the device and the signal receiving device in the second embodiment.
请一并参阅图7,图7为实施例二提供的换能器阵列单元排列形状示意图。本实施例中的换能器阵列包括但不限于发射换能器阵列和接收换能器阵列。如图所示,本实施例的换能器阵列为由多个换能器组成的平面阵列或弧面阵列,其中,多个发射换能器的排列为直角坐标排列、极坐标排列或螺旋排列,本实施例中的发射换能器阵列可以是平面阵,也可以是弧面阵等,此处不做限定。例如图7中的阵元平面圆形排列1、阵元平面圆形排列2以及阵元弧面排列。本实施例的换能器阵列的工作频率为水下声通讯的工作频率10Hz-5MHz。Please also refer to FIG. 7 . FIG. 7 is a schematic diagram of the arrangement shape of the transducer array units provided in the second embodiment. The transducer array in this embodiment includes, but is not limited to, a transmitting transducer array and a receiving transducer array. As shown in the figure, the transducer array of this embodiment is a planar array or arc-surface array composed of multiple transducers, wherein the arrangement of the multiple transmitting transducers is a rectangular coordinate arrangement, a polar coordinate arrangement or a helical arrangement , the transmitting transducer array in this embodiment may be a planar array or a curved surface array, etc., which is not limited here. For example, in FIG. 7, the array element plane
S502:将所述涡旋声场信号通过预设的接收换能器阵列转换成对应的发射信息。S502: Convert the vortex sound field signal into corresponding transmit information through a preset receiving transducer array.
在实施例一中,采用的预设的接收换能器阵列生成单个或多个不同拓扑荷数涡旋声场,例如,可采用16*16接收换能器阵列,通过独立控制每一阵元的相位和幅度,产生单个或多个不同拓扑荷数涡旋声场。因此,该接收换能器阵列安装于信号接收装置中,用于接受并检测携带信息的涡旋声场。在接收到涡旋声场信号之后,将涡旋声场信号通过预设的接收换能器阵列,得到涡旋声场信号的发射信息。In the first embodiment, a preset receiving transducer array is used to generate single or multiple vortex sound fields with different topological charge numbers. For example, a 16*16 receiving transducer array can be used to independently control the phase of each array element. and amplitude to generate single or multiple vortex sound fields with different topological charge numbers. Therefore, the receiving transducer array is installed in the signal receiving device for receiving and detecting the information-carrying vortex sound field. After receiving the vortex sound field signal, the vortex sound field signal is passed through a preset receiving transducer array to obtain the emission information of the vortex sound field signal.
S503:根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。S503: Decode and reconstruct the transmitted information according to a preset information decoding and reconstruction manner, to obtain electrical signal information corresponding to the vortex sound field signal.
利用在接收端的接收换能器阵列直接接收传播声场的强度和相位,并分别与拓扑荷数为-4,-3,-2,-1,1,2,3以及4的涡旋场进行内积运算,实现对对螺旋模式的信息解码重构,获得电信号,实现信息通讯。The intensity and phase of the propagating sound field are directly received by the receiving transducer array at the receiving end, and are respectively correlated with the vortex fields with topological charges of -4, -3, -2, -1, 1, 2, 3 and 4. The product operation is used to decode and reconstruct the information of the spiral pattern, obtain electrical signals, and realize information communication.
本实施例已经经过模拟和实验验证,结果可行。首先我们理论和实验验证了不同阶数涡旋声场的正交性,请一并参阅图8所示,图8为本申请实施例二提供的不同阶数涡旋声场的正交性示意图,其中图8(a)为模拟结果,图8(b)为实验结果。其中,平面轴分别表示不同拓扑荷数对应的涡旋场OAM,竖轴用于表示正交性参数。This embodiment has been verified by simulation and experiment, and the result is feasible. First of all, we have verified the orthogonality of the vortex sound fields of different orders theoretically and experimentally. Please refer to FIG. 8. FIG. 8 is a schematic diagram of the orthogonality of the vortex sound fields of different orders provided in the second embodiment of the present application. Figure 8(a) is the simulation result, and Figure 8(b) is the experimental result. Among them, the plane axis represents the vortex field OAM corresponding to different topological charges, and the vertical axis is used to represent the orthogonality parameter.
进一步理论和实验分别获得的数字0-9的声场强度和相位图,请一并参阅图9-图11。其中,图9为本申请实施例二提供的理论和实验获得的数字0-9的声强幅度分布示意图,图像中的像素颜色深浅用于表示声强幅度的大小;图10为本申请实施例二提供的理论和实验获得的数字0-9的声场相位分布示意图,图像中的像素颜色深浅用于表示声场相位的大小。此外,我们对接收到的涡旋信号进行解码,获得字母“Nature”信息,理论与实验吻合;图11为本申请实施例二提供的接收换能器阵列信号解码示意图,其中(a)为模拟结果,(b)为实验结果,其中平面轴分别表示不同拓扑荷数对应的涡旋场OAM,竖轴用于表示信号强度,利用接收换能器阵列对字母“Nature”信号进行解码过程就是将接受到的声场信号与不同拓扑荷数涡旋声场进行内积,获得各个拓扑荷数涡旋场的信号强度,即可解码信息。For the sound field intensity and phase diagram of numbers 0-9 obtained theoretically and experimentally, please refer to Figure 9-Figure 11 together. Wherein, FIG. 9 is a schematic diagram of the sound intensity amplitude distribution of numbers 0-9 obtained theoretically and experimentally provided in the second embodiment of the application, and the color depth of the pixels in the image is used to indicate the size of the sound intensity amplitude; FIG. 10 is an embodiment of the application Two provides a schematic diagram of the sound field phase distribution of numbers 0-9 obtained theoretically and experimentally. The color depth of the pixels in the image is used to indicate the size of the sound field phase. In addition, we decode the received vortex signal to obtain the letter "Nature" information, and the theory is consistent with the experiment; Figure 11 is a schematic diagram of decoding the signal of the receiving transducer array provided in the second embodiment of the application, wherein (a) is a simulation As a result, (b) is the experimental result, in which the plane axis represents the vortex field OAM corresponding to different topological charges, and the vertical axis represents the signal strength. The decoding process of the letter "Nature" signal using the receiving transducer array is to convert the The received sound field signal is inner product with the vortex sound fields of different topological charge numbers to obtain the signal intensity of each topological charge number vortex field, and then the information can be decoded.
上述方案,通过接收涡旋声场信号;将所述涡旋声场信号通过预设的接收换能器阵列转换成对应的发射信息;根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。本实施例中将旋涡声场信号通过预设的接收换能器阵列转换成对应的发射信息,通过预设的水下接收换能器阵列进行解码重构,得到涡旋声场信号对应的电信号信息,实现涡旋声通讯的核心声场传播,降低了水下传输的信号在编解码过程中的失真。In the above scheme, the vortex sound field signal is received; the vortex sound field signal is converted into corresponding transmission information through a preset receiving transducer array; and the transmission information is decoded according to a preset information decoding and reconstruction method Reconstruction to obtain electrical signal information corresponding to the vortex sound field signal. In this embodiment, the vortex sound field signal is converted into the corresponding transmission information through the preset receiving transducer array, and then decoded and reconstructed through the preset underwater receiving transducer array to obtain the electrical signal information corresponding to the vortex sound field signal , to realize the core sound field propagation of vortex acoustic communication, and reduce the distortion of the signal transmitted underwater during the encoding and decoding process.
参见图12,图12是本发明实施例三提供的一种信号发射装置的示意图。信号发射装置包括的各单元用于执行图1对应的实施例中的各步骤。具体请参阅图1对应的实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。本实施例的信号发射装置1200包括:Referring to FIG. 12, FIG. 12 is a schematic diagram of a signal transmitting apparatus according to
生成单元1201,用于获取待发射的电信号信息;a
确定单元1202,用于根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息;A
声场单元1203,用于通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号;a
发送单元1204,用于发射所述涡旋声场信号。The sending
进一步的,所述确定单元1202包括:Further, the determining
第一确定单元,用于根据预设的不同拓扑荷数的涡旋声场的产生方式,确定所述电信号信息对应各个阵元的发射相位和幅度;或a first determining unit, configured to determine the emission phase and amplitude of the electrical signal information corresponding to each array element according to the preset generation modes of the vortex sound fields with different topological charges; or
第二确定单元,用于根据预设的任意涡旋声场的产生方式,确定所述电信号信息对应各个阵元的强度和相位。The second determining unit is configured to determine the intensity and phase of each array element corresponding to the electrical signal information according to a preset generation method of any vortex sound field.
进一步的,所述发送单元1204包括:Further, the sending
加载单元,用于在预设的频带中加载至少两路彼此独立、互不干扰的涡旋声场信号;a loading unit, used for loading at least two channels of vortex sound field signals that are independent of each other and do not interfere with each other in a preset frequency band;
载波发送单元,用于将加载所述至少两路涡旋声场信号频带的涡旋声场信号发送至预设的信号接收装置。The carrier sending unit is configured to send the vortex sound field signals loaded with the frequency bands of the at least two vortex sound field signals to a preset signal receiving device.
进一步的,所述电信号信息对应各个阵元的幅度为预先设定的常数;所述预设的不同拓扑荷数的涡旋声场的产生方式中,所述电信号信息对应各个阵元的发射相位为:Further, the amplitude of the electrical signal information corresponding to each array element is a preset constant; in the preset generation method of the vortex sound field with different topological charges, the electrical signal information corresponds to the emission of each array element. The phases are:
其中,θOAM用于表示每个阵元的发射相位,l用于表示所述阵元对应的涡旋声场的拓扑荷数,和r分别用于表示每个阵元在以涡旋中心为极点的极坐标下的极角和极径,α用于表示涡旋的旋度。Among them, θOAM is used to represent the emission phase of each array element, l is used to represent the topological charge of the vortex sound field corresponding to the array element, and r are used to represent the polar angle and polar radius of each array element in polar coordinates with the center of the vortex as the pole, respectively, and α is used to represent the curl of the vortex.
进一步的,所述根据预设的任意涡旋声场的产生方式中,电信号信息对应各个阵元的强度为:Further, in the generation method of any vortex sound field according to the preset, the intensity of the electrical signal information corresponding to each array element is:
其中,分别用于表示不同拓扑荷数的涡旋场以涡旋中心为极点的极坐标下的极角;I1~I8分别用于表示不同拓扑荷数的涡旋场的强度;in, are respectively used to represent the polar angle of the vortex field with different topological charge numbers in polar coordinates with the vortex center as the pole; I1 to I8 are respectively used to represent the intensity of the vortex field with different topological charge numbers;
所述根据预设的任意涡旋声场的产生方式中,电信号信息对应各个阵元的相位为:In the generation method of the arbitrary vortex sound field according to the preset, the phase of the electrical signal information corresponding to each array element is:
其中,所述发射换能器阵列为由多个发射换能器组成的平面阵列或弧面阵列,其中,所述多个发射换能器的排列为直角坐标排列、极坐标排列或螺旋排列。Wherein, the transmitting transducer array is a plane array or arc surface array composed of multiple transmitting transducers, wherein the multiple transmitting transducers are arranged in a rectangular coordinate arrangement, a polar coordinate arrangement or a spiral arrangement.
上述方案,通过获取待发射的电信号信息;根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息;通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号;发射所述涡旋声场信号。通过根据预设的旋涡声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息,通过预设的水下换能器阵列产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传播,降低了水下传输的信号在编解码过程中的失真。In the above scheme, the electrical signal information to be transmitted is acquired; the transmission information corresponding to the electrical signal information is determined according to a preset vortex sound field generation method; the electrical signal information is converted into a The vortex sound field signal corresponding to the emission information; and the vortex sound field signal is emitted. By determining the emission information of the vortex sound field signal corresponding to the electrical signal information according to the preset vortex sound field generation method, and generating or receiving any vortex sound field through the preset underwater transducer array, the core sound field of the vortex sound communication is realized. Propagation, reducing the distortion of the signal transmitted underwater during the encoding and decoding process.
图13是本发明实施例四提供的信号发射装置的示意图。如图13所示,该实施例的信号发射装置13包括:处理器1300、存储器1301以及存储在所述处理器1302中并可在所述处理器1301上运行的计算机程序1303。所述处理器1301执行所述计算机程序1303时实现上述各个信号发射方法实施例中的步骤,例如图1所示的步骤101至104。或者,所述处理器1301执行所述计算机程序1303时实现上述各装置实施例中各模块/单元的功能,例如图12所示单元1201至1204的功能。FIG. 13 is a schematic diagram of a signal transmitting apparatus according to
示例性的,所述计算机程序1303可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述处理器1302中,并由所述处理器1301执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序1303在所述信号发射装置13中的执行过程。Exemplarily, the
所述信号发射装置13可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述信号发射装置可包括,但不仅限于,处理器1301、处理器1302。本领域技术人员可以理解,图13仅仅是信号发射装置13的示例,并不构成对信号发射装置13的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述信号发射装置还可以包括输入输出设备、网络接入设备、总线等。The signal transmitting device 13 may be a computing device such as a desktop computer, a notebook computer, a palmtop computer, and a cloud server. The signal transmitting apparatus may include, but is not limited to, the
所称处理器1301可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The so-called
所述处理器1302可以是所述信号发射装置13的内部存储单元,例如信号发射装置13的硬盘或内存。所述处理器1302也可以是所述信号发射装置13的外部存储设备,例如所述信号发射装置13上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card,FC)等。进一步地,所述处理器1302还可以既包括所述信号发射装置13的内部存储单元也包括外部存储设备。所述处理器1302用于存储所述计算机程序以及所述信号发射装置所需的其他程序和数据。所述处理器1302还可以用于暂时地存储已经输出或者将要输出的数据。The
参见图14,图14是本发明实施例五提供的一种信号接收装置的示意图。信号接收装置包括的各单元用于执行图5对应的实施例中的各步骤。具体请参阅图5对应的实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。本实施例的信号接收装置1400包括:Referring to FIG. 14, FIG. 14 is a schematic diagram of a signal receiving apparatus according to
接收单元1401,用于接收涡旋声场信号;a
换能单元1402,用于将所述涡旋声场信号通过预设的接收换能器阵列转换成对应的发射信息;A
重构单元1403,用于根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。The
其中,所述接收换能器阵列为由多个接收换能器组成的平面阵列或弧面阵列,其中,所述多个接收换能器的排列为直角坐标排列、极坐标排列或螺旋排列。Wherein, the receiving transducer array is a plane array or arc surface array composed of a plurality of receiving transducers, wherein the arrangement of the plurality of receiving transducers is a rectangular coordinate arrangement, a polar coordinate arrangement or a helical arrangement.
上述方案,通过接收涡旋声场信号;将所述涡旋声场信号通过预设的接收换能器阵列转换成对应的发射信息;根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。本实施例中将旋涡声场信号通过预设的接收换能器阵列转换成对应的发射信息,通过预设的水下接收换能器阵列进行解码重构,得到涡旋声场信号对应的电信号信息,实现涡旋声通讯的核心声场传播,降低了水下传输的信号在编解码过程中的失真。In the above scheme, the vortex sound field signal is received; the vortex sound field signal is converted into corresponding transmission information through a preset receiving transducer array; and the transmission information is decoded according to a preset information decoding and reconstruction method Reconstruction to obtain electrical signal information corresponding to the vortex sound field signal. In this embodiment, the vortex sound field signal is converted into the corresponding transmission information through the preset receiving transducer array, and then decoded and reconstructed through the preset underwater receiving transducer array to obtain the electrical signal information corresponding to the vortex sound field signal , to realize the core sound field propagation of vortex acoustic communication, and reduce the distortion of the signal transmitted underwater during the encoding and decoding process.
图15是本发明实施例六提供的信号接收装置的示意图。如图15所示,该实施例的信号接收装置15包括:处理器1501、处理器1502以及存储在所述处理器1502中并可在所述处理器1501上运行的计算机程序1503。所述处理器1501执行所述计算机程序1503时实现上述各个信号接收方法实施例中的步骤,例如图5所示的步骤501至503。或者,所述处理器1501执行所述计算机程序1503时实现上述各装置实施例中各模块/单元的功能,例如图14所示单元1401至1403的功能。FIG. 15 is a schematic diagram of a signal receiving apparatus according to
示例性的,所述计算机程序1503可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述处理器1502中,并由所述处理器1501执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序1503在所述信号接收装置15中的执行过程。Exemplarily, the
所述信号接收装置15可以包括,但不仅限于,处理器1501、处理器1502。本领域技术人员可以理解,图15仅仅是信号接收装置15的示例,并不构成对信号发射装置15的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述信号发射装置还可以包括输入输出设备、网络接入设备、总线等。The signal receiving apparatus 15 may include, but is not limited to, a
所称处理器1501可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The so-called
所述处理器1502可以是所述信号接收装置15的内部存储单元,例如信号接收装置15的硬盘或内存。所述处理器1502也可以是所述信号接收装置15的外部存储设备,例如所述信号接收装置15上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card,FC)等。进一步地,所述处理器1502还可以既包括所述信号接收装置15的内部存储单元也包括外部存储设备。所述处理器1502用于存储所述计算机程序以及所述信号接收装置所需的其他程序和数据。所述处理器1502还可以用于暂时地存储已经输出或者将要输出的数据。The processor 1502 may be an internal storage unit of the signal receiving device 15 , such as a hard disk or a memory of the signal receiving device 15 . The processor 1502 may also be an external storage device of the signal receiving device 15, such as a pluggable hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital) equipped on the signal receiving device 15. , SD) card, flash memory card (Flash Card, FC) and so on. Further, the processor 1502 may also include both an internal storage unit of the signal receiving apparatus 15 and an external storage device. The processor 1502 is used to store the computer program and other programs and data required by the signal receiving apparatus. The processor 1502 may also be used to temporarily store data that has been or will be output.
所述计算机可读存储介质可以是前述任一实施例所述的终端的内部存储单元,例如终端的硬盘或内存。所述计算机可读存储介质也可以是所述终端的外部存储设备,例如所述终端上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(SecureDigital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述终端的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序及所述终端所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。The computer-readable storage medium may be an internal storage unit of the terminal described in any of the foregoing embodiments, such as a hard disk or a memory of the terminal. The computer-readable storage medium may also be an external storage device of the terminal, for example, a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card equipped on the terminal, Flash card (Flash Card) and so on. Further, the computer-readable storage medium may also include both an internal storage unit of the terminal and an external storage device. The computer-readable storage medium is used to store the computer program and other programs and data required by the terminal. The computer-readable storage medium can also be used to temporarily store data that has been or will be output.
本申请实施例的还提供了一种通信方法,包括:Embodiments of the present application also provide a communication method, including:
获取待发射的电信号信息;Obtain the electrical signal information to be transmitted;
根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息;determining the emission information corresponding to the electrical signal information according to a preset vortex sound field generation method;
通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号;Converting the electrical signal information into a vortex sound field signal corresponding to the transmitting information by using a preset transmitting transducer array;
发射所述涡旋声场信号;transmitting the vortex sound field signal;
接收所述涡旋声场信号;receiving the vortex sound field signal;
将所述涡旋声场信号通过预设的接收换能器阵列转换成对应的发射信息;Converting the vortex sound field signal into corresponding transmission information through a preset receiving transducer array;
根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。According to a preset information decoding and reconstruction method, the transmitted information is decoded and reconstructed to obtain electrical signal information corresponding to the vortex sound field signal.
具体的,本实施例中的通信方法通过信号发射装置和信号接收装置进行涡旋声场信号的发送和接收,实现通信。信号发射装置生成涡旋声场信号,以在水下将涡旋声场信号发送至信号接收装置,信号接收装置接收涡旋声场信号,并对涡旋声场信号进行解码得到电信号信息。本实施例通过信号发射装置获取待发射的电信号信息,根据预设的旋涡声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息;根据涡旋声场信号的发射信息,将电信号信息通过预设的换能器阵列,产生涡旋声场信号,将涡旋声场信号发送至预设的信号接收装置。信号接收装置通过预设的换能器阵列接收信号发射装置发送的所述涡旋声场信号,根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。其中,具体的通信方法请参考本申请实施例一和实施例二提供的具体实施方式,此处不做赘述。Specifically, the communication method in this embodiment implements communication by sending and receiving vortex sound field signals through a signal transmitting device and a signal receiving device. The signal transmitting device generates a vortex sound field signal to send the vortex sound field signal to a signal receiving device underwater, and the signal receiving device receives the vortex sound field signal and decodes the vortex sound field signal to obtain electrical signal information. In this embodiment, the electrical signal information to be transmitted is acquired by the signal transmitting device, and the transmission information of the vortex sound field signal corresponding to the electrical signal information is determined according to the preset vortex sound field generation method; according to the transmission information of the vortex sound field signal, the electrical signal is The information passes through a preset transducer array, generates a vortex sound field signal, and sends the vortex sound field signal to a preset signal receiving device. The signal receiving device receives the vortex sound field signal sent by the signal transmitting device through a preset transducer array, decodes and reconstructs the transmitted information according to a preset information decoding and reconstruction method, and obtains the vortex sound field The electrical signal information corresponding to the signal. For the specific communication method, please refer to the specific implementation manners provided in
本申请实施例的还提供了一种通信系统,包括:Embodiments of the present application also provide a communication system, including:
信号发射装置,用于获取待发射的电信号信息;根据预设的旋涡声场产生方式,确定所述电信号信息对应的发射信息;通过预设的发射换能器阵列将所述电信号信息转换为与所述发射信息对应的涡旋声场信号;发射所述涡旋声场信号;a signal transmitting device, used for acquiring the electrical signal information to be transmitted; determining the transmitting information corresponding to the electrical signal information according to a preset vortex sound field generating method; converting the electrical signal information through a preset transmitting transducer array is the vortex sound field signal corresponding to the emission information; transmit the vortex sound field signal;
信号接收装置,用于接收所述涡旋声场信号;将所述涡旋声场信号通过预设的接收换能器阵列转换成对应的发射信息;根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。A signal receiving device is used for receiving the vortex sound field signal; converting the vortex sound field signal into corresponding transmission information through a preset receiving transducer array; The transmitted information is decoded and reconstructed to obtain electrical signal information corresponding to the vortex sound field signal.
具体的,本实施例中的通信系统通过信号发射装置和信号接收装置进行涡旋声场信号的发送和接收,实现通信。信号发射装置生成涡旋声场信号,以在水下将涡旋声场信号发送至信号接收装置,信号接收装置接收涡旋声场信号,并对涡旋声场信号进行解码得到电信号信息。本实施例通过信号发射装置获取待发射的电信号信息,根据预设的旋涡声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息;根据涡旋声场信号的发射信息,将电信号信息通过预设的换能器阵列,产生涡旋声场信号,将涡旋声场信号发送至预设的信号接收装置。信号接收装置通过预设的换能器阵列接收所述涡旋声场信号,根据预设的信息解码重构方式,对所述发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。其中,具体的通信系统的功能请参考本申请实施例一和实施例二提供的具体实施方式,此处不做赘述。Specifically, the communication system in this embodiment implements communication by sending and receiving vortex sound field signals through a signal transmitting device and a signal receiving device. The signal transmitting device generates a vortex sound field signal to send the vortex sound field signal to a signal receiving device underwater, and the signal receiving device receives the vortex sound field signal and decodes the vortex sound field signal to obtain electrical signal information. In this embodiment, the electrical signal information to be transmitted is acquired by the signal transmitting device, and the transmission information of the vortex sound field signal corresponding to the electrical signal information is determined according to the preset vortex sound field generation method; according to the transmission information of the vortex sound field signal, the electrical signal is The information passes through a preset transducer array, generates a vortex sound field signal, and sends the vortex sound field signal to a preset signal receiving device. The signal receiving device receives the vortex sound field signal through a preset transducer array, decodes and reconstructs the transmitted information according to a preset information decoding and reconstruction method, and obtains an electrical signal corresponding to the vortex sound field signal information. For the specific functions of the communication system, please refer to the specific implementation manners provided in
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, computer software, or a combination of the two. Interchangeability, the above description has generally described the components and steps of each example in terms of function. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的终端和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, for the specific working process of the terminal and unit described above, reference may be made to the corresponding process in the foregoing method embodiments, which will not be repeated here.
在本申请所提供的几个实施例中,应该理解到,所揭露的终端和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。In the several embodiments provided in this application, it should be understood that the disclosed terminal and method may be implemented in other manners. For example, the apparatus embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented. In addition, the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application. In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware, and can also be implemented in the form of software functional units.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。The integrated unit, if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium. Based on this understanding, the technical solutions of the present application are essentially or part of contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited thereto. Any person skilled in the art can easily think of various equivalents within the technical scope disclosed in the present application. Modifications or substitutions shall be covered by the protection scope of this application. Therefore, the protection scope of the present application shall be subject to the protection scope of the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2019/105430WO2021017111A1 (en) | 2019-07-30 | 2019-09-11 | Communication method and apparatus |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2019106970019 | 2019-07-30 | ||
| PCT/CN2019/098379WO2021016862A1 (en) | 2019-07-30 | 2019-07-30 | Underwater communication method and device |
| CNPCT/CN2019/098379 | 2019-07-30 | ||
| CN201910697001 | 2019-07-30 |
| Publication Number | Publication Date |
|---|---|
| CN110730042A CN110730042A (en) | 2020-01-24 |
| CN110730042Btrue CN110730042B (en) | 2021-02-19 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910828512.XAActiveCN110730042B (en) | 2019-07-30 | 2019-09-03 | Communication method and device |
| Country | Link |
|---|---|
| CN (1) | CN110730042B (en) |
| WO (1) | WO2021017111A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112911464B (en)* | 2021-01-18 | 2021-10-19 | 中国科学院成都生物研究所 | Method and device for generating super-mode number synthetic vortex sound field |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105890637A (en)* | 2009-05-27 | 2016-08-24 | 希里克萨有限公司 | Method and apparatus for optical sensing |
| US9582470B2 (en)* | 2014-01-10 | 2017-02-28 | Christopher Sterling | Antenna apparatus and software for emulating same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2537540C3 (en)* | 1975-08-22 | 1978-05-18 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Static ultrasonic generator |
| US10835767B2 (en)* | 2013-03-08 | 2020-11-17 | Board Of Regents, The University Of Texas System | Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments |
| US9951761B2 (en)* | 2014-01-16 | 2018-04-24 | Ingersoll-Rand Company | Aerodynamic pressure pulsation dampener |
| CN105577323A (en)* | 2015-12-18 | 2016-05-11 | 嘉兴科崎光电科技有限公司 | Underwater transmission information coding method based on whirlpool sound field |
| CN107050630B (en)* | 2017-04-01 | 2020-12-08 | 深圳先进技术研究院 | A system and method for manipulating particles based on time reversal technology |
| CN108011981A (en)* | 2018-01-11 | 2018-05-08 | 河海大学常州校区 | High Availabitity method of data capture based on more AUV in underwater sensor network |
| CN108599871B (en)* | 2018-05-07 | 2020-05-05 | 中国科学院声学研究所 | An underwater acoustic communication method and system based on orbital angular momentum multiplexing technology |
| CN109261472B (en)* | 2018-08-30 | 2019-11-08 | 西安交通大学 | Device and method for generating space focusing vortex sound field |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105890637A (en)* | 2009-05-27 | 2016-08-24 | 希里克萨有限公司 | Method and apparatus for optical sensing |
| US9582470B2 (en)* | 2014-01-10 | 2017-02-28 | Christopher Sterling | Antenna apparatus and software for emulating same |
| Publication number | Publication date |
|---|---|
| WO2021017111A1 (en) | 2021-02-04 |
| CN110730042A (en) | 2020-01-24 |
| Publication | Publication Date | Title |
|---|---|---|
| CN108599871B (en) | An underwater acoustic communication method and system based on orbital angular momentum multiplexing technology | |
| TWI502584B (en) | Computer-implemented, beamforming method, beamforming system and related non-transitory computer-readable media | |
| US20190342656A1 (en) | Audio signal processing apparatus and a sound emission apparatus | |
| Poletti | Robust two-dimensional surround sound reproduction for nonuniform loudspeaker layouts | |
| US20150110288A1 (en) | Augmented elliptical microphone array | |
| US8831248B2 (en) | Apparatus with directivity pattern | |
| US20180351656A1 (en) | Methods, systems, and devices for high throughput acoustic transmission | |
| CN111769885A (en) | Ultrasonic data transmission method, device, system, terminal equipment and medium | |
| KR102492100B1 (en) | Apparatus and method for wave synthesis based on superposition | |
| CN110730042B (en) | Communication method and device | |
| JP2017153018A (en) | Wireless communication system and communication method for wireless communication system | |
| US11041946B2 (en) | Model-based protection algorithms | |
| CN113170255A (en) | Compensation for binaural loudspeaker directivity | |
| Liu et al. | An active control strategy for the scattered sound field control of a rigid sphere | |
| JP7487408B2 (en) | Method and apparatus for generating a synthetic vortex sound field with an ultra-high mode number | |
| Tang et al. | Hyperuniform disordered parametric loudspeaker array | |
| Poletti et al. | Generation of half-space sound fields with application to personal sound systems | |
| WO2021016862A1 (en) | Underwater communication method and device | |
| JP2019050492A (en) | Filter coefficient determining device, filter coefficient determining method, program, and acoustic system | |
| Favrot et al. | Mixed-order Ambisonics recording and playback for improving horizontal directionality | |
| Kolundžija et al. | Baffled circular loudspeaker array with broadband high directivity | |
| JP6345634B2 (en) | Sound field reproducing apparatus and method | |
| Nakagawa et al. | Beam steering of portable parametric array loudspeaker | |
| Ye et al. | Actively created quiet zones by parametric loudspeaker as control sources in the sound field | |
| Alon et al. | Spatial aliasing-cancellation for circular microphone arrays |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right | Effective date of registration:20240910 Address after:No. 2915, Gate 1, Building 4, Jinmao Plaza, Qingshan Street, Heping District, Tianjin, China 300041 Patentee after:Bao Zilu Country or region after:China Patentee after:Che Shurui Address before:1068 No. 518055 Guangdong city in Shenzhen Province, Nanshan District City Xili University School Avenue Patentee before:SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY Country or region before:China | |
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right | Effective date of registration:20241025 Address after:No. 958, Room 101, 9th Floor, Building 19, Zone 16, No. 188 South Fourth Ring West Road, Fengtai District, Beijing 100073 Patentee after:Beijing Guangrui Baotong Electric Power Engineering Co.,Ltd. Country or region after:China Address before:No. 2915, Gate 1, Building 4, Jinmao Plaza, Qingshan Street, Heping District, Tianjin, China 300041 Patentee before:Bao Zilu Country or region before:China Patentee before:Che Shurui |