Movatterモバイル変換


[0]ホーム

URL:


CN110717595A - Quantum algorithm-based key value storage system and method - Google Patents

Quantum algorithm-based key value storage system and method
Download PDF

Info

Publication number
CN110717595A
CN110717595ACN201910944384.5ACN201910944384ACN110717595ACN 110717595 ACN110717595 ACN 110717595ACN 201910944384 ACN201910944384 ACN 201910944384ACN 110717595 ACN110717595 ACN 110717595A
Authority
CN
China
Prior art keywords
quantum
data
quantum processor
address information
storage address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910944384.5A
Other languages
Chinese (zh)
Inventor
郑琳琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WeBank Co Ltd
Original Assignee
WeBank Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WeBank Co LtdfiledCriticalWeBank Co Ltd
Priority to CN201910944384.5ApriorityCriticalpatent/CN110717595A/en
Publication of CN110717595ApublicationCriticalpatent/CN110717595A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

Translated fromChinese

本申请公开了一种基于量子算法的键值存储系统和方法,用于提高数据检索请求处理效率。该系统中,非量子处理器用于发送第一数据的数据检索请求;FPGA用于将数据检索请求转化为量子处理器可识别的第一处理信息;量子处理器用于使用量子算法在与量子处理器对应的存储器中基于不同量子比特和第一处理信息并发检索第一数据的第一存储地址信息,并将第一存储地址信息发送给FPGA;FPGA用于将第一存储地址信息转化为非量子处理器可识别的第二存储地址信息,并将第二存储地址信息发送给非量子处理器;非量子存储器用于接收FPGA或非量子处理器发送至少包括第二存储地址信息的数据获取请求,并根据数据获取请求向非量子处理器发送第一数据。

Figure 201910944384

The present application discloses a key-value storage system and method based on a quantum algorithm, which is used to improve the processing efficiency of data retrieval requests. In this system, the non-quantum processor is used to send a data retrieval request for the first data; the FPGA is used to convert the data retrieval request into the first processing information identifiable by the quantum processor; the quantum processor is used to use quantum algorithms to communicate with the quantum processor. The corresponding memory concurrently retrieves the first storage address information of the first data based on different quantum bits and the first processing information, and sends the first storage address information to the FPGA; the FPGA is used to convert the first storage address information into non-quantum processing The second storage address information identifiable by the FPGA, and the second storage address information is sent to the non-quantum processor; the non-quantum memory is used to receive the data acquisition request sent by the FPGA or the non-quantum processor including at least the second storage address information, and The first data is sent to the non-quantum processor according to the data acquisition request.

Figure 201910944384

Description

Translated fromChinese
一种基于量子算法的键值存储系统和方法A key-value storage system and method based on quantum algorithm

技术领域technical field

本发明涉及计算机技术领域,尤其涉及一种基于量子算法的键值存储系统和方法。The invention relates to the field of computer technology, in particular to a key-value storage system and method based on a quantum algorithm.

背景技术Background technique

目前,传统的键值存储系统中仅包括经典处理器和经典存储器,在经典的键值存储系统中,当使用部署在经典处理器上的在使用经典算法进行数据检索时,由于经典存储器中存储的是海量的无序数据,可能需要遍历无序数据库中的所有数据,不仅复杂度较高,且需要耗费较多的时间。At present, the traditional key-value storage system only includes the classical processor and the classical memory. In the classical key-value storage system, when the classical algorithm deployed on the classical processor is used for data retrieval, due to the storage in the classical memory It is a massive amount of disordered data, and it may be necessary to traverse all the data in the disordered database, which is not only complicated, but also takes a lot of time.

可见,现有技术中的键值存储系统存在对数据检索请求处理效率较低的技术问题。It can be seen that the key-value storage system in the prior art has the technical problem of low processing efficiency for data retrieval requests.

发明内容SUMMARY OF THE INVENTION

本申请实施例提供一种基于量子算法的键值存储系统和方法,用于解决现有技术中对于无序数据库检索数据效率较低的技术问题。The embodiments of the present application provide a key-value storage system and method based on a quantum algorithm, which are used to solve the technical problem of low data retrieval efficiency for disordered databases in the prior art.

第一方面,提供一种基于量子算法的键值存储系统,所述系统包括非量子处理器、非量子存储器、现场可编程门阵列FPGA以及量子处理器,所述非量子处理器、所述非量子存储器以及所述量子处理器均与所述FPGA连接,所述非量子存储器与所述非量子处理器连接,其中:In a first aspect, a key-value storage system based on a quantum algorithm is provided, the system includes a non-quantum processor, a non-quantum memory, a field programmable gate array FPGA and a quantum processor, the non-quantum processor, the non-quantum Both the quantum memory and the quantum processor are connected to the FPGA, and the non-quantum memory is connected to the non-quantum processor, wherein:

所述非量子处理器,用于发送获取第一数据的数据检索请求以及接收所述FPGA反馈的所述第一数据的第二存储地址信息;the non-quantum processor, configured to send a data retrieval request for acquiring the first data and receive second storage address information of the first data fed back by the FPGA;

所述FPGA,用于将所述数据检索请求转化为所述量子处理器可识别的第一处理信息,并将所述第一处理信息发送给所述量子处理器;the FPGA, configured to convert the data retrieval request into first processing information identifiable by the quantum processor, and send the first processing information to the quantum processor;

所述量子处理器,用于使用量子算法在与所述量子处理器对应的存储器中,基于不同量子比特和所述第一处理信息并发检索所述第一数据的第一存储地址信息,并将所述第一存储地址信息发送给所述FPGA;The quantum processor is used for concurrently retrieving the first storage address information of the first data based on different quantum bits and the first processing information in the memory corresponding to the quantum processor using a quantum algorithm, and storing the The first storage address information is sent to the FPGA;

所述FPGA还用于将所述第一存储地址信息转化为所述非量子处理器可识别的第二存储地址信息,并将所述第二存储地址信息发送给所述非量子处理器;The FPGA is further configured to convert the first storage address information into second storage address information identifiable by the non-quantum processor, and send the second storage address information to the non-quantum processor;

所述非量子存储器,用于接收所述FPGA或所述非量子处理器发送的至少包括所述第二存储地址信息的数据获取请求,并根据所述数据获取请求向所述非量子处理器发送所述第一数据。The non-quantum memory is configured to receive a data acquisition request including at least the second storage address information sent by the FPGA or the non-quantum processor, and send the data acquisition request to the non-quantum processor according to the data acquisition request the first data.

在一种可能的实施方式中,所述FPGA,还用于:In a possible implementation manner, the FPGA is also used for:

确定所述系统当前所处环境的温度;determining the temperature of the environment in which the system is currently located;

若所述温度处于第一预设温度范围内,则将所述数据检索请求转化为所述量子处理器可识别的第一处理信息。If the temperature is within a first preset temperature range, converting the data retrieval request into first processing information identifiable by the quantum processor.

在一种可能的实施方式中,所述FPGA至少包括量子编码模块、数模转换模块,其中:In a possible implementation manner, the FPGA includes at least a quantum encoding module and a digital-to-analog conversion module, wherein:

所述量子编码模块用于对所述第一数据的数据检索请求进行量子编码处理,获得所述量子处理器可识别的数字化控制信号;The quantum encoding module is configured to perform quantum encoding processing on the data retrieval request of the first data to obtain a digital control signal identifiable by the quantum processor;

所述数模转换模块用于对所述数字化控制信号进行数模转换处理,获得所述第一处理信息。The digital-to-analog conversion module is configured to perform digital-to-analog conversion processing on the digitized control signal to obtain the first processing information.

在一种可能的实施方式中,所述FPGA还包括模数转换模块以及量子译码模块,其中:In a possible implementation manner, the FPGA further includes an analog-to-digital conversion module and a quantum decoding module, wherein:

所述模数转换模块用于对所述第一存储地址信息的模拟信号进行模数转换处理,获得所述第一存储地址信息的数字信号;The analog-to-digital conversion module is configured to perform analog-to-digital conversion processing on the analog signal of the first storage address information to obtain the digital signal of the first storage address information;

所述量子译码模块用于对所述第一存储地址信息的数字信号进行译码处理,获得所述第二存储地址信息。The quantum decoding module is used for decoding the digital signal of the first storage address information to obtain the second storage address information.

在一种可能的实施方式中,所述量子编码模块根据所述量子处理器的类型,对应调整对所述第一数据的数据检索请求进行处理的编码方式。In a possible implementation manner, the quantum encoding module correspondingly adjusts the encoding method for processing the data retrieval request of the first data according to the type of the quantum processor.

第二方面,提供一种数据检索方法,应用于基于量子算法的键值存储系统,所述键值存储系统包括非量子处理器、非量子存储器、现场可编程门阵列FPGA以及量子处理器,所述方法包括:In a second aspect, a data retrieval method is provided, which is applied to a key-value storage system based on a quantum algorithm. The key-value storage system includes a non-quantum processor, a non-quantum memory, a field programmable gate array FPGA, and a quantum processor. The methods described include:

所述FPGA接收所述非量子处理器发送的第一数据的数据检索请求;receiving, by the FPGA, a data retrieval request for the first data sent by the non-quantum processor;

所述FPGA将所述数据检索请求转化为量子处理器可识别的第一处理信息,并将所述第一处理信息发送给所述量子处理器;The FPGA converts the data retrieval request into first processing information identifiable by a quantum processor, and sends the first processing information to the quantum processor;

所述FPGA接收所述量子处理器使用量子算法在与所述量子处理器对应的存储器中,基于量子比特和所述第一处理信息并发检索所述第一数据的第一存储地址信息;The FPGA receives the quantum processor and uses a quantum algorithm to concurrently retrieve the first storage address information of the first data in the memory corresponding to the quantum processor based on the qubit and the first processing information;

所述FPGA将所述第一存储地址信息转化为非量子处理器可识别的第二存储地址信息,并将所述第二存储地址信息发送给所述非量子处理器,以使所述非量子处理器根据所述第二存储地址信息从所述非量子存储器处获得所述第一数据。The FPGA converts the first storage address information into second storage address information identifiable by a non-quantum processor, and sends the second storage address information to the non-quantum processor, so that the non-quantum processor The processor obtains the first data from the non-quantum memory according to the second storage address information.

在一种可能的实施方式中,在获取第一数据的数据检索请求之后,所述方法还包括:In a possible implementation manner, after obtaining the data retrieval request for the first data, the method further includes:

确定所述系统当前所处环境的温度;determining the temperature of the environment in which the system is currently located;

若所述温度处于第一预设温度范围内,则将所述数据检索请求转化为所述量子处理器可识别的第一处理信息。If the temperature is within a first preset temperature range, converting the data retrieval request into first processing information identifiable by the quantum processor.

在一种可能的实施方式中,所述将所述数据检索请求转化为量子处理器可识别的第一处理信息,包括:In a possible implementation manner, the converting the data retrieval request into first processing information identifiable by the quantum processor includes:

块对所述第一数据的数据检索请求进行量子编码处理,获得所述量子处理器可识别的数字化控制信号;The block performs quantum encoding processing on the data retrieval request of the first data to obtain a digital control signal identifiable by the quantum processor;

对所述数字化控制信号进行数模转换处理,获得所述第一处理信息。Perform digital-to-analog conversion processing on the digitized control signal to obtain the first processing information.

在一种可能的实施方式中,所述将所述第一存储地址信息转化为非量子处理器可识别的第二存储地址信息,包括:In a possible implementation manner, the converting the first storage address information into second storage address information identifiable by a non-quantum processor includes:

对所述第一存储地址信息的模拟信号进行模数转换处理,获得所述第一存储地址信息的数字信号;performing analog-to-digital conversion processing on the analog signal of the first storage address information to obtain the digital signal of the first storage address information;

对所述第一存储地址信息的数字信号进行译码处理,获得所述第二存储地址信息。Decoding the digital signal of the first storage address information to obtain the second storage address information.

在一种可能的实施方式中,所述方法还包括:In a possible implementation, the method further includes:

根据所述量子处理器的类型,对应调整对所述第一数据的数据检索请求进行处理的编码方式。According to the type of the quantum processor, the encoding method for processing the data retrieval request of the first data is correspondingly adjusted.

本申请实施例提供的技术方案至少带来以下有益效果:The technical solutions provided in the embodiments of the present application bring at least the following beneficial effects:

在本申请实施例中,采用非量子处理器、非量子存储器、现场可编程门阵列FPGA以及量子处理器组成键值存储系统,且非量子处理器、非量子存储器以及量子处理器均与现场可编程门阵列FPGA连接,非量子存储器与非量子处理器连接,也就是说,本申请提出了一种新架构的键值存储系统,即使用量子算法在与量子处理器对应的存储器中基于不同量子比特并发检索所述第一数据的第一存储地址信息,且通过FPGA快速的将非量子处理器和量子处理器之间的信息进行转化,也就是说,通过部署在量子处理器中的量子算法,可以对海量的无序数据实现快速检索。进一步的,通过FPGA可以将量子处理器快速检索到的数据存储地址发送给非量子处理器,从而使得键值存储系统可以迅速对数据检索请求进行处理。In the embodiment of this application, a non-quantum processor, non-quantum memory, field programmable gate array FPGA and quantum processor are used to form a key-value storage system, and the non-quantum processor, non-quantum memory and quantum processor are all compatible with the field-available The programming gate array FPGA is connected, and the non-quantum memory is connected with the non-quantum processor, that is to say, this application proposes a key-value storage system with a new architecture, that is, using quantum algorithms in the memory corresponding to the quantum processor based on different quantum Bit concurrently retrieves the first storage address information of the first data, and quickly converts the information between the non-quantum processor and the quantum processor through the FPGA, that is, through the quantum algorithm deployed in the quantum processor , which can quickly retrieve massive unordered data. Further, the data storage address quickly retrieved by the quantum processor can be sent to the non-quantum processor through the FPGA, so that the key-value storage system can quickly process the data retrieval request.

具体的,对数据检索请求的处理过程为:非量子处理器发送获取第一数据的数据检索请求;然后FPGA,将数据检索请求转化为量子处理器可识别的第一处理信息,并将第一处理信息发送给量子处理器;以及量子处理器,用于使用量子算法在与量子处理器对应的存储器中基于不同量子比特和第一处理信息并发检索第一数据的第一存储地址信息,并将第一存储地址信息发送给FPGA;从而FPGA还用于将第一存储地址信息转化为非量子处理器可识别的第二存储地址信息,并将第二存储地址信息发送给非量子处理器;进一步地,非量子存储器,用于接收现场可编程门阵列FPGA或非量子处理器发送的至少包括第二存储地址信息的数据获取请求,并根据数据获取请求向非量子处理器发送第一数据。Specifically, the processing process of the data retrieval request is as follows: the non-quantum processor sends a data retrieval request to obtain the first data; then the FPGA converts the data retrieval request into first processing information identifiable by the quantum processor, and converts the first data The processing information is sent to the quantum processor; and the quantum processor is used for concurrently retrieving the first storage address information of the first data based on the different qubits and the first processing information in the memory corresponding to the quantum processor using a quantum algorithm, and storing the The first storage address information is sent to the FPGA; thus the FPGA is also used to convert the first storage address information into second storage address information identifiable by the non-quantum processor, and send the second storage address information to the non-quantum processor; further and a non-quantum memory, configured to receive a data acquisition request including at least second storage address information sent by the field programmable gate array FPGA or the non-quantum processor, and send the first data to the non-quantum processor according to the data acquisition request.

也就是说,在本申请实施例中,仅用量子处理器来索引键值存储的地址信息,用非量子存储器来保存键值存储的完整数据,这样的话,可以使得在基于量子处理器快速对数据检索请求中KEY进行处理的基础上,还可以考虑到尽可能的保存数据量较大的value值数据,即可以实现对一个键对应的多个值的完整存储且快速检索,从而提升用户的使用体验。That is to say, in this embodiment of the present application, only the quantum processor is used to index the address information of the key-value store, and the non-quantum memory is used to store the complete data of the key-value store. On the basis of processing the KEY in the data retrieval request, it is also possible to save the value data with a large amount of data as much as possible, that is, the complete storage and fast retrieval of multiple values corresponding to a key can be realized, thereby improving the user's experience. Use experience.

附图说明Description of drawings

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理,并不构成对本申请的不当限定。The accompanying drawings are incorporated into and constitute a part of the specification, illustrate embodiments consistent with the present application, and together with the description, serve to explain the principles of the present application, and do not constitute an improper limitation of the present application.

图1是现有技术中键值存储系统的示意图;1 is a schematic diagram of a key-value storage system in the prior art;

图2是本申请实施例示出的键值存储系统的示意图;2 is a schematic diagram of a key-value storage system shown in an embodiment of the present application;

图3为本申请实施例示出的现场可编程门阵列FPGA的结构框图示意图;3 is a schematic structural block diagram of a field programmable gate array FPGA shown in an embodiment of the application;

图4为本申请实施例示出的Grover算符的量子线路图的示意图;4 is a schematic diagram of a quantum circuit diagram of a Grover operator shown in an embodiment of the application;

图5为本申请实施例示出的量子算法的示意图;5 is a schematic diagram of a quantum algorithm shown in an embodiment of the present application;

图6是本申请实施例示出的一种数据检索方法的流程示意图。FIG. 6 is a schematic flowchart of a data retrieval method according to an embodiment of the present application.

具体实施方式Detailed ways

为使本申请的目的、技术方案和优点更加清楚明白,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。In order to make the purpose, technical solutions and advantages of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only It is a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application. The embodiments in the present application and the features in the embodiments may be arbitrarily combined with each other if there is no conflict. Also, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that herein.

本申请的说明书和权利要求书及上述附图中的术语“包括”以及它们任何变形,意图在于覆盖不排他的保护。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。The term "comprising" and any variations thereof in the description and claims of this application and the above-mentioned drawings are intended to cover non-exclusive protection. For example, a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes unlisted steps or units, or optionally also includes For other steps or units inherent to these processes, methods, products or devices.

如前所述,对于无序数据库,在使用经典处理器采用经典算法进行数据检索时,需要遍历数据库中的所有数据,从而导致需要的时间多,即检索复杂度较高。具体,可以参见图1所示,当经典处理器确定出数据检索请求之后,通过经典算法来对数据检索请求进行处理,然后再从经典存储器中获取数据。此外,当需要处理多个数据检索请求时,经典处理器需要逐个进行处理。因此,现有技术中存在对数据检索处理效率较低的技术问题。As mentioned above, for an unordered database, when a classical processor is used for data retrieval using a classical algorithm, it is necessary to traverse all the data in the database, which results in more time required, that is, higher retrieval complexity. Specifically, as shown in FIG. 1 , after the classical processor determines the data retrieval request, the data retrieval request is processed by the classical algorithm, and then the data is obtained from the classical memory. In addition, when multiple data retrieval requests need to be processed, the classic processor needs to process them one by one. Therefore, there is a technical problem that the data retrieval processing efficiency is low in the prior art.

鉴于此,本申请提出一种基于量子算法的键值存储系统,通过该系统可以采用量子算法快速的对数据检索请求处理,从而提高对检索请求处理的效率。In view of this, the present application proposes a key-value storage system based on a quantum algorithm, through which a quantum algorithm can be used to process data retrieval requests quickly, thereby improving the efficiency of processing retrieval requests.

下面结合说明书附图介绍本申请实施例提供的技术方案。The technical solutions provided by the embodiments of the present application are described below with reference to the accompanying drawings in the description.

请参见图2,本申请实施例提供一种基于量子算法的键值存储系统,该系统的结构框图如图2所示。Referring to FIG. 2 , an embodiment of the present application provides a key-value storage system based on a quantum algorithm, and a structural block diagram of the system is shown in FIG. 2 .

请参见图2,该键值存储系统包括非量子处理器、非量子存储器、现场可编程门阵列FPGA以及量子处理器。需要说明的是,在本申请实施例中,为了更清楚的描述技术方案,可以将非量子处理器理解为经典处理器,以及将非量子存储器理解为经典存储器。Referring to Figure 2, the key-value storage system includes a non-quantum processor, a non-quantum memory, a field programmable gate array FPGA, and a quantum processor. It should be noted that, in the embodiments of the present application, in order to describe the technical solution more clearly, a non-quantum processor may be understood as a classical processor, and a non-quantum memory may be understood as a classical memory.

在本申请实施例中,非量子处理器用于发送获取第一数据的数据检索请求以及接收现场可编程门阵列FPGA反馈的第一数据的第二存储地址信息;现场可编程门阵列FPGA,用于将数据检索请求转化为量子处理器可识别的第一处理信息,并将第一处理信息发送给量子处理器;量子处理器,用于使用量子算法在与量子处理器对应的存储器中基于不同量子比特和第一处理信息并发检索第一数据的第一存储地址信息,并将第一存储地址信息发送给现场可编程门阵列FPGA;现场可编程门阵列FPGA还用于将第一存储地址信息转化为非量子处理器可识别的第二存储地址信息,并将第二存储地址信息发送给非量子处理器;非量子存储器,用于接收现场可编程门阵列FPGA或非量子处理器发送的至少包括第二存储地址信息的数据获取请求,并根据数据获取请求向非量子处理器发送第一数据。In the embodiment of the present application, the non-quantum processor is used to send a data retrieval request for acquiring the first data and receive the second storage address information of the first data fed back by the field programmable gate array FPGA; the field programmable gate array FPGA is used for Converting the data retrieval request into first processing information recognizable by the quantum processor, and sending the first processing information to the quantum processor; the quantum processor for using quantum algorithms in memory corresponding to the quantum processor based on different quantum The bit and the first processing information concurrently retrieve the first storage address information of the first data, and send the first storage address information to the field programmable gate array FPGA; the field programmable gate array FPGA is also used to convert the first storage address information The second storage address information identifiable by the non-quantum processor, and the second storage address information is sent to the non-quantum processor; the non-quantum memory is used for receiving the field programmable gate array FPGA or the non-quantum processor. The second data acquisition request of the address information is stored, and the first data is sent to the non-quantum processor according to the data acquisition request.

在具体实施过程中,本申请实施例中的键值存储系统可以采用仅量子处理器构成的键值存储系统,但考虑到量子处理器的成本比较高昂,且环境要求比较苛刻,因此本申请实施例中的键值存储系统可以采用量子处理器、经典处理器以及经典存储器结合的方式来实现对数据检索请求的处理,进一步地,为了将量子处理器和经典处理器以及经典存储器结合起来,可以利用FPGA作为连接桥梁,从而构成本申请实施例中的键值存储系统。In the specific implementation process, the key-value storage system in the embodiments of the present application may adopt a key-value storage system composed of only quantum processors, but considering that the cost of quantum processors is relatively high and the environmental requirements are relatively harsh, this application implements The key-value storage system in the example can use the combination of quantum processor, classical processor and classical memory to realize the processing of data retrieval request. Further, in order to combine quantum processor with classical processor and classical memory, it can be The key-value storage system in the embodiment of the present application is constituted by using the FPGA as a connection bridge.

进一步地,本申请中利用量子处理器采用量子算法可以对海量的无序数据实现快速检索的特性,也就是说,利用量子处理器上部署的量子算法,来实现在无序数据库中对数据检索请求的处理,从而快速的获得数据检索请求对应的数据的存储地址信息,并且,还可以结合经典存储来保存键值存储的完整数据,这样的话,可以通过量子处理器获得的存储地址信息,从而经典存储器中获得数据检索请求对应的数据,也就是说,在提高对数据检索请求处理速率的基础上,还可以尽量降低使用成本,从而可以提升用户的使用体验。Further, in this application, the quantum processor and quantum algorithm can be used to realize fast retrieval of massive disordered data, that is to say, the quantum algorithm deployed on the quantum processor is used to realize the retrieval of data in the disordered database. The processing of the request, so as to quickly obtain the storage address information of the data corresponding to the data retrieval request, and can also combine the classical storage to save the complete data of the key-value storage. In this case, the storage address information obtained by the quantum processor can be used. The data corresponding to the data retrieval request is obtained in the classic memory, that is, on the basis of improving the processing rate of the data retrieval request, the use cost can be reduced as much as possible, thereby improving the user experience.

在本申请实施例中,请继续参考图2,非量子处理器可以将获取第一数据的数据检索请求发送给接收现场可编程门阵列FPGA,在本申请实施例中,第一数据可以理解为无序数据库中的任一数据,也就是说,可以是获取无序数据库中的某一个数据的数据检索请求,此外,第一数据还可以理解为获取无序数据库中多个数据的数据检索请求,例如两个数据的数据检索请求或八个数据的数据检索请求,本申请实施例中不做限制。In the embodiment of the present application, please continue to refer to FIG. 2 , the non-quantum processor can send a data retrieval request for obtaining the first data to the receiving field programmable gate array FPGA. In the embodiment of the present application, the first data can be understood as Any data in the disordered database, that is to say, it can be a data retrieval request to obtain a certain piece of data in the disordered database. In addition, the first data can also be understood as a data retrieval request to obtain multiple data in the disordered database , for example, a data retrieval request for two data or a data retrieval request for eight data, which is not limited in this embodiment of the present application.

在本申请实施例中,请继续参见图2,现场可编程门阵列FPGA中包括量子编码模块、数模转换模块、模数转换模块以及量子译码模块,这样的话,可以使得非量子处理器与量子处理器之间能够快速有效的进行信息的交互,FPGA相当于具备非量子处理器和量子处理器之间的转达信息功能,可以使得非量子处理器和量子处理器相互知晓对方使用的编程语言,从而可以快速的进行通信,提高信息的传输速率。In the embodiment of the present application, please continue to refer to FIG. 2 , the field programmable gate array FPGA includes a quantum encoding module, a digital-to-analog conversion module, an analog-to-digital conversion module, and a quantum decoding module. In this case, the non-quantum processor can be connected to Quantum processors can exchange information quickly and effectively. FPGA is equivalent to having the function of relaying information between non-quantum processors and quantum processors, enabling non-quantum processors and quantum processors to know each other’s programming language. , so that communication can be carried out quickly and the transmission rate of information can be improved.

在本申请实施例中,当非量子处理将第一数据的数据检索请求发送给接收现场可编程门阵列FPGA之后,考虑到量子处理器需要处于极低温度下(例如零下100摄氏度)时,才可以进行快速地计算的特性。还可以对检测键值存储系统当前所处环境的温度进行检测,当确定当前所处环境的温度处于第一预设温度范围时,则确定可以对数据检索处理请求采用量子算法进行处理,这样的话,可以使得FPGA和量子处理器处于同一工作环境中,从而可以减少对量子处理器控制和读取的延迟,以尽量保证整个键值存储系统的正常运作。In this embodiment of the present application, after the non-quantum processing sends the data retrieval request for the first data to the receiving field programmable gate array FPGA, considering that the quantum processor needs to be at an extremely low temperature (for example, minus 100 degrees Celsius), Features that can be calculated quickly. It is also possible to detect the temperature of the environment where the detection key-value storage system is currently located. When it is determined that the temperature of the current environment is within the first preset temperature range, it is determined that the data retrieval processing request can be processed by using a quantum algorithm. , which can make the FPGA and the quantum processor in the same working environment, thereby reducing the delay of control and reading of the quantum processor, so as to ensure the normal operation of the entire key-value storage system as much as possible.

进一步地,当确定量子处理器可以对第一数据的数据检索请求进行处理时,现场可编程门阵列FPGA可以将第一数据检索请求转化为量子处理器可识别的第一处理信息,并将第一处理信息发送给量子处理器。Further, when it is determined that the quantum processor can process the data retrieval request of the first data, the field programmable gate array FPGA can convert the first data retrieval request into the first processing information identifiable by the quantum processor, and convert the first data retrieval request into the first processing information identifiable by the quantum processor. A processed information is sent to the quantum processor.

在本申请实施例中,具体的,量子编码模块可以对接收的第一数据的数据检索请求进行量子编码处理,从而可以获得量子处理器可识别的数字化控制信号,然后将数据化控制信号发送给数模转换模块,进而数模转换模块可以将数字化控制信号进行数模转换处理,获得第一处理信息。In the embodiment of the present application, specifically, the quantum encoding module may perform quantum encoding processing on the received data retrieval request of the first data, so as to obtain a digital control signal identifiable by the quantum processor, and then send the digital control signal to The digital-to-analog conversion module, and then the digital-to-analog conversion module can perform digital-to-analog conversion processing on the digitized control signal to obtain the first processing information.

在具体的实施过程中,请参见图3所示,量子编码模块可以根据预设的控制指令编码,将接收到的第一数据的数据检索请求进行处理,然后获得与第一数据的数据检索请求对应的数字化控制信号,然后将通过数模转换模块,将数字化的控制信号转换成第一处理信息,具体的,第一处理信息为将经过量子编码模块编码处理的第一数据的数据检索请求的模拟信号。In the specific implementation process, please refer to FIG. 3 , the quantum coding module can process the received data retrieval request of the first data according to the preset control command coding, and then obtain the data retrieval request related to the first data The corresponding digitized control signal is then converted into the first processing information through the digital-to-analog conversion module. Specifically, the first processing information is the data retrieval request of the first data encoded and processed by the quantum coding module. analog signal.

在具体的实施过程中,由于量子处理器采用不同的实现工艺,从而具有不同类型的量子处理器,例如超导量子处理器,离子阱量子处理器等等。前述这些不同的量子处理器虽然都可以执行相同的量子算法,但实际的对第一数据的数据检索请求的处理方式会有所不同,即控制信号和检测信号的不同。也就是说,量子处理器的内部控制结构不同。例如,控制信号的测量信号的通道数量可能不同,另外,还可能是具体的每个通道的位宽可能不同等等。In the specific implementation process, since the quantum processors use different implementation techniques, there are different types of quantum processors, such as superconducting quantum processors, ion trap quantum processors, and so on. Although the aforementioned different quantum processors can all execute the same quantum algorithm, the actual processing methods for the data retrieval request for the first data will be different, that is, the control signal and the detection signal are different. That is, the internal control structures of quantum processors are different. For example, the number of channels of the measurement signal of the control signal may be different, in addition, the specific bit width of each channel may be different, and so on.

而量子处理器的整个处理系统必须要求延时极短,如采用软件方法实现则无法满足要求,如用定制化芯片来实现则成本过高且灵活性差,无法满足不同量子处理器的要求。However, the entire processing system of a quantum processor must require extremely short delays. If it is implemented by software methods, it cannot meet the requirements. If it is implemented by customized chips, the cost is too high and the flexibility is poor, which cannot meet the requirements of different quantum processors.

鉴于此,在本申请实施例中,现场可编程门阵列FPGA中的量子编码模块,可以根据量子处理器的类型,对应调整对第一数据的数据检索请求进行处理的编码方式。这样的话,可以实现针对不同的量子处理器以及键值存储的部署需求可以定制化量子指令编码译码单元,进一步地,还可以对数模转换模块或模数转换模块进行对应的调整。也就是说,采用FPGA作为经典处理器和量子处理器之间的接口芯片,可以满足可重构性的需求,从而提升用户的使用体验。In view of this, in the embodiment of the present application, the quantum encoding module in the field programmable gate array FPGA can correspondingly adjust the encoding method for processing the data retrieval request of the first data according to the type of the quantum processor. In this way, the quantum instruction encoding and decoding unit can be customized according to the deployment requirements of different quantum processors and key-value storage, and further, the digital-to-analog conversion module or the analog-to-digital conversion module can be adjusted accordingly. That is to say, using FPGA as the interface chip between the classical processor and the quantum processor can meet the requirements of reconfigurability, thereby improving the user experience.

在本申请实施例中,请继续参考图2,当量子处理器接收到第一转换信息的模拟信号之后,量子处理器可以将待检索键即前述的第一数据的n个量子比特通过Hadamard门后,依次和量子处理器中的键值存储的量子比特们一起经过多个线路模块G进行并行处理,从而可以获得测量待检索键的n个量子比特值的存储地址,即前述的第一数据的第一存储地址信息。In the embodiment of the present application, please continue to refer to FIG. 2 , after the quantum processor receives the analog signal of the first conversion information, the quantum processor can pass the key to be retrieved, that is, the n qubits of the aforementioned first data, through the Hadamard gate Then, the qubits in the key-value storage in the quantum processor are processed in parallel through multiple circuit modules G, so that the storage address of the n qubit values of the key to be retrieved can be obtained, that is, the aforementioned first data. The first storage address information of .

也就是说,本申请实施例中的算法,以Grover搜索算法为例,可以通过从现场可编程门阵列FPGA发送的第一处理信息中的

Figure BDA0002223762670000091
个待搜索的量子比特,首先可以对这些量子比特进行Hadarmard变换(Hadamard Transform,哈达玛变换);然后可以对这些量子比特施加一系列的迭代G,具体的,可以被称作Grover迭代或者Grover操作,然后可以对这些量子比特进行测量,测量结果即为Grover算法的检索结果。That is to say, the algorithm in the embodiment of the present application, taking the Grover search algorithm as an example, can be processed by the first processing information sent from the field programmable gate array FPGA.
Figure BDA0002223762670000091
For each qubit to be searched, the Hadamard transform (Hadamard Transform) can be performed on these qubits; then a series of iterations G can be applied to these qubits, specifically, it can be called Grover iteration or Grover operation , and then these qubits can be measured, and the measurement result is the retrieval result of the Grover algorithm.

进一步地,为了更好的说明量子算法确定第一存储地址信息的过程,参见图4,图4示出了量子线路模块G内部的结构。具体的,在描述量子算法的量子线路中,输入为若干量子比特(如图4中的0,1量子比特),以及施加在这些量子比特上的一系列量子门,需要说明的是,量子门也可称作量子算符,在后文中为了便于描述,以量子门为例进行说明。在具体的实施过程中,前述的量子门的运算可以理解为对表示前述量子比特的向量v1,乘以一个矩阵M,将这些量子比特的状态改变为v2。然后再对这些量子比特进行量子测量,测量结果即为量子算法的最终结果。Further, in order to better illustrate the process of determining the first storage address information by the quantum algorithm, please refer to FIG. 4 , which shows the internal structure of the quantum circuit module G. FIG. Specifically, in the quantum circuit describing the quantum algorithm, the input is several qubits (0, 1 qubits in Figure 4), and a series of quantum gates applied to these qubits. It should be noted that the quantum gates It can also be called a quantum operator. In the following, for the convenience of description, a quantum gate is used as an example for description. In a specific implementation process, the operation of the aforementioned quantum gate can be understood as multiplying the vector v1 representing the aforementioned qubit by a matrix M to change the state of these qubits to v2. These qubits are then subjected to quantum measurements, which are the final results of the quantum algorithm.

在具体的实施过程中,请参见图5,假设待搜索的键值存储包含N个可能值,则本申请中的量子算法可以对应设置为检索一个N维的空间,可以用n=log2N个量子比特表示前述的待检索的键值存储,即如图5所示的n个待检索的量子比特|0>,且检索请求为量子比特|1>。Grover算法的量子线路图如图5所示,其中主要包括的量子门有:Hadamard门(图5中以H或者H^(×n)示出),Grover Diffusion算符,Uw算符。In the specific implementation process, please refer to FIG. 5 , assuming that the key-value store to be searched contains N possible values, the quantum algorithm in this application can be set to retrieve an N-dimensional space correspondingly, and n=log2 N can be used qubits represent the aforementioned key-value storage to be retrieved, that is, n qubits to be retrieved |0> as shown in FIG. 5 , and the retrieval request is qubit |1>. The quantum circuit diagram of Grover algorithm is shown in Figure 5, which mainly includes quantum gates: Hadamard gate (shown as H or H^(×n) in Figure 5), Grover Diffusion operator, and Uw operator.

为了便于本领域普通技术人员理解,以下对上述涉及到的三个量子门进行解释,具体如下:In order to facilitate the understanding of those of ordinary skill in the art, the three quantum gates involved in the above are explained below, as follows:

1、Hadamard门(也可以称作H门):记作矩阵H,具体可以理解为对于前述图5中的

Figure BDA0002223762670000104
可以理解为将n个H门并列放置。1. Hadamard gate (also known as H gate): denoted as matrix H, which can be understood as For the aforementioned figure 5
Figure BDA0002223762670000104
It can be understood as placing n H gates in parallel.

2、Uw算符:Uw算符的具体含义可以理解为对于量子比特x进行检索,如果检索到w则将量子比特进行0、1翻转,具体的数学表达式为:2. Uw operator: The specific meaning of the Uw operator can be understood as retrieving the qubit x. If w is retrieved, the qubit will be reversed by 0 and 1. The specific mathematical expression is:

Figure BDA0002223762670000102
Figure BDA0002223762670000102

3、Grover Diffusion算符:包括两个Hadamard门,在两个Hadamard门中间需要经过量子门2|0n><0n|-In。该量子门的详细解释如下:3. Grover Diffusion operator: It includes two Hadamard gates, and thequantum gate 2|0n ><0n |-In needs to be passed between the two Hadamard gates. The detailed explanation of this quantum gate is as follows:

3.1该量子门表示对于输入的量子比特的状态|x>先进行混合计算,获得状态|s>,具体可以记作

Figure BDA0002223762670000103
3.1 The quantum gate indicates that the state |x> of the input qubit is first mixed to obtain the state |s>, which can be written as
Figure BDA0002223762670000103

3.2然后再对于状态|s>施加量子算符2|s><s|-In,即对状态|s>和自身进行外积运算,然后将运算结果的n x n矩阵减去n x n的单位矩阵In3.2 Then apply thequantum operator 2|s><s|-In to the state |s>, that is, perform the outer product operation on the state |s> and itself, and then subtract the nxn unit matrix I from the nxn matrix of the operation result.n .

也就是说,如图5所示的Grover算符的量子线路图,以N个量子比特为例,将GroverDiffusion算符和Uw算符组合为一个单元,需要将这个单元重复

Figure BDA0002223762670000111
次,然后对最终结果进行量子测量,即为最终的搜索结果。这样的话,可以明显的知晓基于量子搜索算法的键值存储系统最终的检索请求时间复杂度为
Figure BDA0002223762670000112
That is to say, as shown in Figure 5, the quantum circuit diagram of the Grover operator, taking N qubits as an example, combines the GroverDiffusion operator and the Uw operator into a unit, which needs to be repeated
Figure BDA0002223762670000111
times, and then perform quantum measurement on the final result, which is the final search result. In this case, it can be clearly known that the final retrieval request time complexity of the key-value storage system based on the quantum search algorithm is:
Figure BDA0002223762670000112

当量子处理器采用如前所述的量子算法获得第一数据的第一存储地址信息即图3中所示出的模拟测量结果之后,可以将第一存储地址信息发送给FPGA。然后FPGA内部的模数转换模块对第一存储地址信息的模拟信号进行模数转换处理,获得第一存储地址信息的数字信号即图3中的数字化测量结果,并将第一存储地址信息的数字信号发送给量子译码模块,然后量子译码模块对第一存储地址信息的数字信号进行译码处理,获得第二存储地址信息即图3中的键值地址信息。After the quantum processor obtains the first storage address information of the first data by using the aforementioned quantum algorithm, that is, the simulation measurement result shown in FIG. 3 , the first storage address information may be sent to the FPGA. Then the analog-to-digital conversion module inside the FPGA performs analog-to-digital conversion processing on the analog signal of the first storage address information, obtains the digital signal of the first storage address information, that is, the digital measurement result in FIG. 3, and converts the digital signal of the first storage address information The signal is sent to the quantum decoding module, and then the quantum decoding module decodes the digital signal of the first storage address information to obtain the second storage address information, that is, the key value address information in FIG. 3 .

在本申请实施例中,FPGA可以将第二存储地址信息发送给非量子处理器,也可以将第二存储地址信息发送给非量子存储器。在具体实施过程中,可以是非量子处理器根据第二存储地址信息向非量子存储器发送获取第一数据的信息,从而非量子处理器可以获得第一数据,也可以是FPGA直接将第二存储地址信息和指示将与第二存储地址信息对应的第一数据发送给非量子处理器的信息组合为指令信息发送给非量子存储器,从而非量子处理器可以获得第一数据。In this embodiment of the present application, the FPGA may send the second storage address information to the non-quantum processor, and may also send the second storage address information to the non-quantum memory. In the specific implementation process, the non-quantum processor may send information for obtaining the first data to the non-quantum memory according to the second storage address information, so that the non-quantum processor may obtain the first data, or the FPGA may directly store the second storage address. The information and the information indicating that the first data corresponding to the second storage address information is sent to the non-quantum processor are combined into instruction information and sent to the non-quantum memory, so that the non-quantum processor can obtain the first data.

在本申请实施例中,采用非量子处理器、非量子存储器、现场可编程门阵列FPGA以及量子处理器组成键值存储系统,且非量子处理器、非量子存储器以及量子处理器均与现场可编程门阵列FPGA连接,非量子存储器与非量子处理器连接,也就是说,通过部署在量子处理器中的量子算法,可以对海量的无序数据实现快速检索,并且,由于量子算法本身的并行处理特性,对待多个数据检索请求可以利用多个量子比特,仅需检索操作处理,即可以实现对前述多个数据检索请求的处理,可以高数据检索的效率。进一步地,在本申请实施例中,可以采用量子处理器来索引键值存储的地址信息,然后用非量子存储器来保存键值存储的完整数据的存储系统架构,这样的话,可以使得在基于量子处理器快速对数据检索请求中KEY进行处理的基础上,还可以考虑到尽可能的保存数据量较大的value值数据,即可以实现对一个键对应的多个值的完整存储且快速检索,从而提升用户的使用体验。In the embodiment of this application, a non-quantum processor, non-quantum memory, field programmable gate array FPGA and quantum processor are used to form a key-value storage system, and the non-quantum processor, non-quantum memory and quantum processor are all compatible with the field-available The programming gate array FPGA is connected, and the non-quantum memory is connected to the non-quantum processor. That is to say, through the quantum algorithm deployed in the quantum processor, a large amount of disordered data can be quickly retrieved, and, due to the parallelism of the quantum algorithm itself In terms of processing characteristics, multiple qubits can be used for multiple data retrieval requests, and the processing of the aforementioned multiple data retrieval requests can be realized only by the retrieval operation processing, which can improve the efficiency of data retrieval. Further, in this embodiment of the present application, a quantum processor can be used to index the address information of the key-value store, and then a non-quantum memory can be used to store the storage system architecture of the complete data of the key-value store. On the basis of quickly processing the KEY in the data retrieval request, the processor can also consider saving the value data with a large amount of data as much as possible, that is, the complete storage and fast retrieval of multiple values corresponding to a key can be realized. Thereby improving the user experience.

基于同一发明构思,本申请还提出了一种数据检索方法,应用于前述的基于量子算法的键值存储系统,该键值存储系统包括非量子处理器、非量子存储器、现场可编程门阵列FPGA以及量子处理器该方法流程图请参见图6所示,具体描述如下。Based on the same inventive concept, the present application also proposes a data retrieval method, which is applied to the aforementioned key-value storage system based on quantum algorithms. The key-value storage system includes a non-quantum processor, a non-quantum memory, and a field programmable gate array (FPGA) Please refer to FIG. 6 for the flow chart of the method of the quantum processor, and the specific description is as follows.

步骤601:FPGA接收非量子处理器发送的第一数据的数据检索请求;Step 601: the FPGA receives a data retrieval request for the first data sent by the non-quantum processor;

步骤602:FPGA将数据检索请求转化为量子处理器可识别的第一处理信息,并将第一处理信息发送给量子处理器;Step 602: the FPGA converts the data retrieval request into first processing information identifiable by the quantum processor, and sends the first processing information to the quantum processor;

步骤603:FPGA接收量子处理器使用量子算法在与量子处理器对应的存储器中,基于量子比特和第一处理信息并发检索第一数据的第一存储地址信息;Step 603: the FPGA receives the quantum processor and uses the quantum algorithm to concurrently retrieve the first storage address information of the first data based on the qubit and the first processing information in the memory corresponding to the quantum processor;

步骤604:FPGA将第一存储地址信息转化为非量子处理器可识别的第二存储地址信息,并将第二存储地址信息发送给非量子处理器,以使非量子处理器根据第二存储地址信息从非量子存储器处获得第一数据。Step 604: The FPGA converts the first storage address information into second storage address information identifiable by the non-quantum processor, and sends the second storage address information to the non-quantum processor, so that the non-quantum processor can use the second storage address according to the second storage address. The information obtains the first data from the non-quantum memory.

在一种可能的实施方式中,在获取第一数据的数据检索请求之后,所述方法还包括:In a possible implementation manner, after obtaining the data retrieval request for the first data, the method further includes:

确定所述系统当前所处环境的温度;determining the temperature of the environment in which the system is currently located;

若所述温度处于第一预设温度范围内,则将所述数据检索请求转化为所述量子处理器可识别的第一处理信息。If the temperature is within a first preset temperature range, converting the data retrieval request into first processing information identifiable by the quantum processor.

在一种可能的实施方式中,所述将所述数据检索请求转化为量子处理器可识别的第一处理信息,包括:In a possible implementation manner, the converting the data retrieval request into first processing information identifiable by the quantum processor includes:

所述第一数据的数据检索请求进行量子编码处理,获得所述量子处理器可识别的数字化控制信号;The data retrieval request of the first data is subjected to quantum encoding processing to obtain a digital control signal identifiable by the quantum processor;

对所述数字化控制信号进行数模转换处理,获得所述第一处理信息。Perform digital-to-analog conversion processing on the digitized control signal to obtain the first processing information.

在一种可能的实施方式中,所述将所述第一存储地址信息转化为非量子处理器可识别的第二存储地址信息,包括:In a possible implementation manner, the converting the first storage address information into second storage address information identifiable by a non-quantum processor includes:

对所述第一存储地址信息的模拟信号进行模数转换处理,获得所述第一存储地址信息的数字信号;performing analog-to-digital conversion processing on the analog signal of the first storage address information to obtain the digital signal of the first storage address information;

对所述第一存储地址信息的数字信号进行译码处理,获得所述第二存储地址信息。Decoding the digital signal of the first storage address information to obtain the second storage address information.

在一种可能的实施方式中,所述方法还包括:In a possible implementation, the method further includes:

根据所述量子处理器的类型,对应调整对所述第一数据的数据检索请求进行处理的编码方式。According to the type of the quantum processor, the encoding method for processing the data retrieval request of the first data is correspondingly adjusted.

所以,通过上述方法,在本申请实施例中,可以采用量子算法对数据检索请求快速的进行处理,从而提高数据检索的处理效率,提升用户的使用体验。Therefore, through the above method, in the embodiment of the present application, a quantum algorithm can be used to quickly process the data retrieval request, thereby improving the processing efficiency of data retrieval and improving the user experience.

本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.

本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present disclosure is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the disclosure. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.

本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由前述的权利要求指出。Other embodiments of the present application will readily occur to those skilled in the art upon consideration of the specification and practice of the invention disclosed herein. This application is intended to cover any variations, uses or adaptations of this application that follow the general principles of this application and include common knowledge or conventional techniques in the technical field not disclosed in this application . The specification and examples are to be regarded as exemplary only, with the true scope and spirit of the application being indicated by the foregoing claims.

显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present application without departing from the spirit and scope of the present application. Thus, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalents, the present application is also intended to include these modifications and variations.

Claims (10)

Translated fromChinese
1.一种基于量子算法的键值存储系统,其特征在于,所述键值存储系统包括非量子处理器、非量子存储器、现场可编程门阵列FPGA以及量子处理器,所述非量子处理器、所述非量子存储器以及所述量子处理器均与所述FPGA连接,所述非量子存储器与所述非量子处理器连接,其中:1. a key-value storage system based on quantum algorithm, is characterized in that, described key-value storage system comprises non-quantum processor, non-quantum memory, field programmable gate array FPGA and quantum processor, described non-quantum processor , the non-quantum memory and the quantum processor are all connected to the FPGA, and the non-quantum memory is connected to the non-quantum processor, wherein:所述非量子处理器,用于发送获取第一数据的数据检索请求;the non-quantum processor, configured to send a data retrieval request for obtaining the first data;所述FPGA,用于将所述数据检索请求转化为所述量子处理器可识别的第一处理信息,并将所述第一处理信息发送给所述量子处理器;the FPGA, configured to convert the data retrieval request into first processing information identifiable by the quantum processor, and send the first processing information to the quantum processor;所述量子处理器,用于使用量子算法在与所述量子处理器对应的存储器中,基于不同量子比特和所述第一处理信息并发检索所述第一数据的第一存储地址信息,并将所述第一存储地址信息发送给所述FPGA;The quantum processor is used for concurrently retrieving the first storage address information of the first data based on different quantum bits and the first processing information in the memory corresponding to the quantum processor using a quantum algorithm, and storing the The first storage address information is sent to the FPGA;所述FPGA还用于将所述第一存储地址信息转化为所述非量子处理器可识别的第二存储地址信息,并将所述第二存储地址信息发送给所述非量子处理器;The FPGA is further configured to convert the first storage address information into second storage address information identifiable by the non-quantum processor, and send the second storage address information to the non-quantum processor;所述非量子存储器,用于接收所述FPGA或所述非量子处理器发送的至少包括所述第二存储地址信息的数据获取请求,并根据所述数据获取请求向所述非量子处理器发送所述第一数据。The non-quantum memory is configured to receive a data acquisition request including at least the second storage address information sent by the FPGA or the non-quantum processor, and send the data acquisition request to the non-quantum processor according to the data acquisition request the first data.2.如权利要求1所述的系统,其特征在于,所述FPGA,还用于:2. system as claimed in claim 1, is characterized in that, described FPGA is also used for:确定所述系统当前所处环境的温度;determining the temperature of the environment in which the system is currently located;若所述温度处于第一预设温度范围内,则将所述数据检索请求转化为所述量子处理器可识别的第一处理信息。If the temperature is within a first preset temperature range, converting the data retrieval request into first processing information identifiable by the quantum processor.3.如权利要求1所述的系统,其特征在于,所述FPGA至少包括量子编码模块、数模转换模块,其中:3. The system of claim 1, wherein the FPGA at least comprises a quantum coding module and a digital-to-analog conversion module, wherein:所述量子编码模块用于对所述第一数据的数据检索请求进行量子编码处理,获得所述量子处理器可识别的数字化控制信号;The quantum encoding module is configured to perform quantum encoding processing on the data retrieval request of the first data to obtain a digital control signal identifiable by the quantum processor;所述数模转换模块用于对所述数字化控制信号进行数模转换处理,获得所述第一处理信息。The digital-to-analog conversion module is configured to perform digital-to-analog conversion processing on the digitized control signal to obtain the first processing information.4.如权利要求1所述的系统,其特征在于,所述FPGA还包括模数转换模块以及量子译码模块,其中:4. The system of claim 1, wherein the FPGA further comprises an analog-to-digital conversion module and a quantum decoding module, wherein:所述模数转换模块用于对所述第一存储地址信息的模拟信号进行模数转换处理,获得所述第一存储地址信息的数字信号;The analog-to-digital conversion module is configured to perform analog-to-digital conversion processing on the analog signal of the first storage address information to obtain the digital signal of the first storage address information;所述量子译码模块用于对所述第一存储地址信息的数字信号进行译码处理,获得所述第二存储地址信息。The quantum decoding module is used for decoding the digital signal of the first storage address information to obtain the second storage address information.5.如权利要求3所述的系统,其特征在于,所述量子编码模块根据所述量子处理器的类型,对应调整对所述第一数据的数据检索请求进行处理的编码方式。5 . The system of claim 3 , wherein the quantum encoding module correspondingly adjusts the encoding method for processing the data retrieval request of the first data according to the type of the quantum processor. 6 .6.一种检索数据的方法,其特征在于,应用于基于量子算法的键值存储系统,所述键值存储系统包括非量子处理器、非量子存储器、现场可编程门阵列FPGA以及量子处理器,所述方法包括:6. a method for retrieving data, is characterized in that, is applied to the key-value storage system based on quantum algorithm, described key-value storage system comprises non-quantum processor, non-quantum memory, field programmable gate array FPGA and quantum processor , the method includes:所述FPGA接收所述非量子处理器发送的第一数据的数据检索请求;receiving, by the FPGA, a data retrieval request for the first data sent by the non-quantum processor;所述FPGA将所述数据检索请求转化为所述量子处理器可识别的第一处理信息,并将所述第一处理信息发送给所述量子处理器;The FPGA converts the data retrieval request into first processing information identifiable by the quantum processor, and sends the first processing information to the quantum processor;所述FPGA接收所述量子处理器使用量子算法在与所述量子处理器对应的存储器中,基于不同量子比特并发检索所述第一数据的第一存储地址信息,以根据所述第一处理信息获得所述第一数据的第一存储地址信息;The FPGA receives the quantum processor and uses a quantum algorithm to concurrently retrieve the first storage address information of the first data based on different quantum bits in the memory corresponding to the quantum processor, so as to process the information according to the first obtaining first storage address information of the first data;所述FPGA将所述第一存储地址信息转化为所述非量子处理器可识别的第二存储地址信息,并将所述第二存储地址信息发送给所述非量子处理器,以使所述非量子处理器根据所述第二存储地址信息从所述非量子存储器处获得所述第一数据。The FPGA converts the first storage address information into second storage address information identifiable by the non-quantum processor, and sends the second storage address information to the non-quantum processor, so that the The non-quantum processor obtains the first data from the non-quantum memory according to the second storage address information.7.如权利要求6所述的方法,其特征在于,在获取第一数据的数据检索请求之后,所述方法还包括:7. The method of claim 6, wherein after obtaining the data retrieval request for the first data, the method further comprises:确定所述系统当前所处环境的温度;determining the temperature of the environment in which the system is currently located;若所述温度处于第一预设温度范围内,则将所述数据检索请求转化为所述量子处理器可识别的第一处理信息。If the temperature is within a first preset temperature range, converting the data retrieval request into first processing information identifiable by the quantum processor.8.如权利要求6所述的方法,其特征在于,所述将所述数据检索请求转化为量子处理器可识别的第一处理信息,包括:8. The method of claim 6, wherein the converting the data retrieval request into first processing information identifiable by a quantum processor comprises:对所述第一数据的数据检索请求进行量子编码处理,获得所述量子处理器可识别的数字化控制信号;performing quantum encoding processing on the data retrieval request of the first data to obtain a digital control signal identifiable by the quantum processor;对所述数字化控制信号进行数模转换处理,获得所述第一处理信息。Perform digital-to-analog conversion processing on the digitized control signal to obtain the first processing information.9.如权利要求6所述的方法,其特征在于,所述将所述第一存储地址信息转化为非量子处理器可识别的第二存储地址信息,包括:9. The method of claim 6, wherein the converting the first storage address information into second storage address information identifiable by a non-quantum processor comprises:对所述第一存储地址信息的模拟信号进行模数转换处理,获得所述第一存储地址信息的数字信号;performing analog-to-digital conversion processing on the analog signal of the first storage address information to obtain the digital signal of the first storage address information;对所述第一存储地址信息的数字信号进行译码处理,获得所述第二存储地址信息。Decoding the digital signal of the first storage address information to obtain the second storage address information.10.如权利要求8所述的方法,其特征在于,所述方法还包括:10. The method of claim 8, further comprising:根据所述量子处理器的类型,对应调整对所述第一数据的数据检索请求进行处理的编码方式。According to the type of the quantum processor, the encoding method for processing the data retrieval request of the first data is correspondingly adjusted.
CN201910944384.5A2019-09-302019-09-30Quantum algorithm-based key value storage system and methodPendingCN110717595A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201910944384.5ACN110717595A (en)2019-09-302019-09-30Quantum algorithm-based key value storage system and method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201910944384.5ACN110717595A (en)2019-09-302019-09-30Quantum algorithm-based key value storage system and method

Publications (1)

Publication NumberPublication Date
CN110717595Atrue CN110717595A (en)2020-01-21

Family

ID=69212152

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201910944384.5APendingCN110717595A (en)2019-09-302019-09-30Quantum algorithm-based key value storage system and method

Country Status (1)

CountryLink
CN (1)CN110717595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN112583604A (en)*2020-12-112021-03-30北京天融信网络安全技术有限公司Information transmission method and device, electronic equipment and storage medium
CN116502726A (en)*2023-06-282023-07-28深圳市爱云信息科技有限公司Quantum chip-based data storage system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20060101236A1 (en)*2004-10-132006-05-11Samsung Electronics Co., Ltd.Method and apparatus for increasing processing speed using quantum coprocessor
US10127499B1 (en)*2014-08-112018-11-13Rigetti & Co, Inc.Operating a quantum processor in a heterogeneous computing architecture
CN109978171A (en)*2019-02-262019-07-05南京航空航天大学A kind of Grover quantum simulation algorithm optimization method based on cloud computing
CN110162536A (en)*2019-04-102019-08-23深圳大学A kind of quantum searching method, system, electronic device and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20060101236A1 (en)*2004-10-132006-05-11Samsung Electronics Co., Ltd.Method and apparatus for increasing processing speed using quantum coprocessor
US10127499B1 (en)*2014-08-112018-11-13Rigetti & Co, Inc.Operating a quantum processor in a heterogeneous computing architecture
CN109978171A (en)*2019-02-262019-07-05南京航空航天大学A kind of Grover quantum simulation algorithm optimization method based on cloud computing
CN110162536A (en)*2019-04-102019-08-23深圳大学A kind of quantum searching method, system, electronic device and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN112583604A (en)*2020-12-112021-03-30北京天融信网络安全技术有限公司Information transmission method and device, electronic equipment and storage medium
CN112583604B (en)*2020-12-112023-01-10北京天融信网络安全技术有限公司Information transmission method and device, electronic equipment and storage medium
CN116502726A (en)*2023-06-282023-07-28深圳市爱云信息科技有限公司Quantum chip-based data storage system and method
CN116502726B (en)*2023-06-282023-09-19深圳市爱云信息科技有限公司Quantum chip-based data storage system and method

Similar Documents

PublicationPublication DateTitle
TWI489779B (en)Boolean logic in a state machine lattice
TWI515668B (en)Methods and systems for detection in a state machine
TWI735545B (en) Model training method and device
TWI600295B (en)Methods and systems for routing in a state machine
TWI486810B (en)Counter operation in a state machine lattice
US11627207B2 (en)Systems and methods for data deduplication by generating similarity metrics using sketch computation
ES2898868T3 (en) Method and device for image search
US11995050B2 (en)Systems and methods for sketch computation
CN109558400A (en)Data processing method, device, equipment and storage medium
JP7700128B2 (en) Systems and methods for sketch computation - Patents.com
US20220156081A1 (en)Processing-in-memory and method of outputting instruction using processing-in-memory
CN106712928A (en)Big data rainbow table based decryption method and device
CN114529741A (en)Picture duplicate removal method and device and electronic equipment
CN111752879A (en) An acceleration system, method and storage medium based on convolutional neural network
CN103414762B (en)cloud backup method and device
US20220108730A1 (en)Apparatuses and methods for performing operations using sense amplifiers and intermediary circuitry
US20210191640A1 (en)Systems and methods for data segment processing
CN110717595A (en)Quantum algorithm-based key value storage system and method
US10423617B2 (en)Remote query optimization in multi data sources
WO2019127926A1 (en)Calculation method and calculation device for sparse neural network, electronic device, computer readable storage medium, and computer program product
US12399773B2 (en)End to end check code protection in storage engine
CN119046302A (en)Keyword privacy information retrieval method and system
CN118296661A (en)Homomorphic encryption CNN acceleration method based on FPGA
CN112711545B (en)Data access method based on array linked list type queue structure
US8902086B1 (en)Data encoding for analysis acceleration

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination

[8]ページ先頭

©2009-2025 Movatter.jp