Movatterモバイル変換


[0]ホーム

URL:


CN110487745A - A kind of THZ-SPRi biological sensing system and its negative-feedback algorithm - Google Patents

A kind of THZ-SPRi biological sensing system and its negative-feedback algorithm
Download PDF

Info

Publication number
CN110487745A
CN110487745ACN201910870250.3ACN201910870250ACN110487745ACN 110487745 ACN110487745 ACN 110487745ACN 201910870250 ACN201910870250 ACN 201910870250ACN 110487745 ACN110487745 ACN 110487745A
Authority
CN
China
Prior art keywords
terahertz
module
sensing
sensing module
spri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910870250.3A
Other languages
Chinese (zh)
Other versions
CN110487745B (en
Inventor
彭晓
阳维维
袁玉峰
宋军
屈军乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen UniversityfiledCriticalShenzhen University
Priority to CN201910870250.3ApriorityCriticalpatent/CN110487745B/en
Publication of CN110487745ApublicationCriticalpatent/CN110487745A/en
Application grantedgrantedCritical
Publication of CN110487745BpublicationCriticalpatent/CN110487745B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention discloses a kind of THZ-SPRi biological sensing system and its negative-feedback algorithms, comprising: terahertz sources module, sensing module, terahertz detection module and signal display module;Sensing module is arranged between terahertz sources module and terahertz detection module, terahertz sources module includes terahertz transmitter and the tunable filter that is arranged between terahertz transmitter and sensing module, signal display module is connect with terahertz detector, tunable filter respectively, sensing module includes metal film, bio-sensing chip and prism, metal film is arranged on prism, bio-sensing chip is coupled on metal film, the thz beam of terahertz transmitter transmitting injects sensing module from prism, and comes out from refraction by prism.Realize and detect to biological tissue that there are the performances such as highly sensitive, high-throughput and quick detection in terms of bio-sensing, solve the current SPRi sensing technology technical problem slow there are image taking speed with Terahertz surface plasma resonance imaging sensing technology.

Description

Translated fromChinese
一种THZ-SPRi生物传感系统及其负反馈算法A THZ-SPRi biosensing system and its negative feedback algorithm

技术领域technical field

本发明涉及光学传感的技术领域,尤其涉及一种THZ-SPRi生物传感系统及其负反馈算法。The invention relates to the technical field of optical sensing, in particular to a THZ-SPRi biosensing system and a negative feedback algorithm thereof.

背景技术Background technique

太赫兹波(Tera Hertz,THz)是一种特定波段的电磁辐射,它主要位于微波和红外辐射之间,一般指频率在0.1-10THZ范围的电磁波,波长范围为0.3-3mm,随着超快激光技术不断的成熟和商业化,众多的太赫兹脉冲辐射和探测方法被相继研究出来,由于太赫兹辐射具有宽光谱、窄脉宽、无损性、相干性、惧水性、透视性、指纹吸收谱等诸多特性,确定了它在众多工业、军事和基础研究领域都存在着巨大的发展空间。Terahertz wave (Tera Hertz, THz) is a specific band of electromagnetic radiation, which is mainly located between microwave and infrared radiation. With the continuous maturity and commercialization of laser technology, many terahertz pulsed radiation and detection methods have been researched one after another. Because terahertz radiation has wide spectrum, narrow pulse width, lossless, coherent, fear of water, perspective, and fingerprint absorption spectrum And many other characteristics have determined that it has huge development space in many fields of industry, military affairs and basic research.

SPR传感技术以其免标记、高时间分辨率、非入侵性、高灵敏度等优点已经成为探索分子间相互作用的重要工具,并且被广泛应用于生化分析、药物研发等领域。随着生物技术的发展,人们越来越需要能够同时对多样品经行检测的高通量传感手段。SPRi则是将传感技术与成像技术结合,提高了SPR传感通量,可以实现同时对多样品进行高通量检测。SPRi传感技术已经广泛应用于检测异性亲和力、大分子的动力学结合过程。SPR sensing technology has become an important tool for exploring molecular interactions due to its advantages of label-free, high time resolution, non-invasiveness, and high sensitivity, and has been widely used in biochemical analysis, drug development and other fields. With the development of biotechnology, people increasingly need high-throughput sensing methods that can detect multiple samples at the same time. SPRi combines sensing technology with imaging technology to improve the sensing throughput of SPR and realize high-throughput detection of multiple samples at the same time. SPRi sensing technology has been widely used to detect heterosexual affinity and kinetic binding process of macromolecules.

发明内容Contents of the invention

本发明的主要目的在于提供一种THZ-SPRi生物传感系统及其负反馈算法,运用太赫兹表面等离子共振成像传感技术来实现对生物组织检测,在生物传感方面具有高灵敏、高通量及快速检测等性能,解决了目前SPRi传感技术存在成像速度慢的技术问题。The main purpose of the present invention is to provide a THZ-SPRi biosensing system and its negative feedback algorithm, which uses terahertz surface plasmon resonance imaging sensing technology to realize the detection of biological tissues, and has high sensitivity and high-pass in biosensing. It solves the technical problem of slow imaging speed in the current SPRi sensing technology.

为实现上述目的,本发明第一方面提供一种THZ-SPRi生物传感系统,包括:太赫兹发射模块、传感模块、太赫兹探测模块以及信号显示模块;所述传感模块设置在所述太赫兹发射模块与所述太赫兹探测模块之间,所述太赫兹发射模块包括太赫兹发射器和设置在所述太赫兹发射器与所述传感模块之间的可调滤波器,所述信号显示模块分别与所述太赫兹探测器、所述可调滤波器连接,所述传感模块包括金属膜、生物传感芯片以及棱镜,所述金属膜设置在所述棱镜上,所述生物传感芯片偶联在所述金属膜上,所述太赫兹发射器发射的太赫兹光束从所述棱镜射入所述传感模块,并从所述棱镜折射出来。In order to achieve the above object, the first aspect of the present invention provides a THZ-SPRi biosensing system, including: a terahertz emission module, a sensing module, a terahertz detection module and a signal display module; the sensing module is set on the Between the terahertz transmitting module and the terahertz detecting module, the terahertz transmitting module includes a terahertz transmitter and an adjustable filter arranged between the terahertz transmitter and the sensing module, the The signal display module is respectively connected with the terahertz detector and the tunable filter, the sensing module includes a metal film, a biological sensor chip and a prism, the metal film is arranged on the prism, and the biological The sensor chip is coupled on the metal film, and the terahertz beam emitted by the terahertz emitter enters the sensor module from the prism and is refracted from the prism.

进一步地,所述太赫兹发射模块还包括设置在所述可调滤波器与所述传感模块之间的起偏器,所述太赫兹探测模块包括太赫兹探测器和设置在所述太赫兹探测器与所述传感模块之间的检偏器。Further, the terahertz transmitting module further includes a polarizer arranged between the tunable filter and the sensing module, the terahertz detecting module includes a terahertz detector and a polarizer arranged in the terahertz An analyzer between the detector and the sensing module.

进一步地,所述太赫兹发射模块还包括孔径光阑,所述孔径光阑设置在所述太赫兹发生器与所述可调滤波器之间。Further, the terahertz transmitting module further includes an aperture stop, and the aperture stop is arranged between the terahertz generator and the tunable filter.

进一步地,所述太赫兹发射器与所述孔径光阑之间设置有第一透镜,所述孔径光阑与所述可调滤波器之间设置有所述第一透镜。Further, a first lens is arranged between the terahertz emitter and the aperture stop, and the first lens is arranged between the aperture stop and the tunable filter.

进一步地,所述检偏器与所述太赫兹探测器之间设置有第二透镜,所述检偏器与所述传感模块之间设置有所述第二透镜。Further, a second lens is arranged between the analyzer and the terahertz detector, and the second lens is arranged between the analyzer and the sensing module.

进一步地,所述传感模块还包括设置在所述金属膜上的流通池、与所述流通池连通的注入管以及与所述流通池连接的蠕动泵。Further, the sensing module further includes a flow cell arranged on the metal membrane, an injection pipe connected to the flow cell, and a peristaltic pump connected to the flow cell.

进一步地,本发明第二方面提供一种THZ-SPRi生物传感系统的负反馈算法,包括步骤:Further, the second aspect of the present invention provides a negative feedback algorithm of a THZ-SPRi biosensing system, comprising steps:

S1:设定扫描次数为n,并对所述传感模块进行大范围扫描,获得初始共振波长λ0S1: set the number of scans as n, and scan the sensing module in a large range to obtain the initial resonance wavelength λ0 ;

S2:选择扫描范围从λ0-x~λ0+x,并对所述传感模块进行扫描;S2: Select the scanning range from λ0 -x to λ0 +x, and scan the sensing module;

S3:判断所述传感模块的折射率是否发生变化,若是,则转至S4,若否,则转至S2;S3: judging whether the refractive index of the sensing module changes, if yes, go to S4, if not, go to S2;

S4:通过变化的折射率确定新的共振波长λiS4: Determine the new resonance wavelength λi by changing the refractive index;

S5:判断i﹥n是否成立,若成立,转至S6,若不成立,则转至S51;S5: Determine whether i > n is true, if true, go to S6, if not, go to S51;

S51:选择扫描范围从λi-x~λi+x,并对所述传感模块进行扫描;S51: Select the scanning range from λi -x to λi +x, and scan the sensing module;

S52:判断所述传感模块的折射率是否发生变化,若是,则转至S4,若否,则转至S51;S52: judging whether the refractive index of the sensing module changes, if so, then go to S4, if not, then go to S51;

S6:在一系列共振波长λ0~λi中取出最小共振波长设为λmin,取出最大共振波长设为λmax,则得到共振波长的范围为λmin-x~λmax+x。S6: From a series of resonance wavelengths λ0 to λi , take the minimum resonance wavelength as λmin and the maximum resonance wavelength as λmax , then the range of resonance wavelengths is λmin -x to λmax +x.

本发明提供一种THZ-SPRi生物传感系统,有益效果在于:太赫兹发射器发射的太赫兹光束经过棱镜射入传感模块中,并从所述棱镜折射出来;当金属膜上的生物样品和生物传感芯片上修饰的分子相互作用时,会引起传感模块的折射率变化,折射率变化的信号由信号显示模块显示,通过接收到的信号处理对可调滤波器进行负反馈式调制,控制扫描光谱的范围,从而实现快速扫描式生物传感。The invention provides a THZ-SPRi biosensing system, which has the beneficial effect that: the terahertz beam emitted by the terahertz emitter enters the sensing module through a prism, and is refracted from the prism; when the biological sample on the metal film When interacting with the modified molecules on the biosensing chip, it will cause a change in the refractive index of the sensing module. The signal of the refractive index change is displayed by the signal display module, and the adjustable filter is modulated by negative feedback through the received signal processing. , to control the range of the scanning spectrum, thereby realizing fast scanning biosensing.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without creative work.

图1为本发明一种THZ-SPRi生物传感系统的结构示意框图;Fig. 1 is the schematic block diagram of a kind of THZ-SPRi biosensing system of the present invention;

图2为本发明一种THZ-SPRi生物传感系统的负反馈算法的流程示意图。Fig. 2 is a schematic flow chart of a negative feedback algorithm of a THZ-SPRi biosensing system of the present invention.

其中,上述附图包括以下附图标记:Wherein, the above-mentioned accompanying drawings include the following reference signs:

11、太赫兹发射器;12、可调滤波器;13、起偏器;14、孔径光阑;15、第一透镜;21、金属膜;22、棱镜;23、流通池;24、注入管;31、太赫兹探测器;32、检偏器;33、第二透镜;40、信号显示模块。11. Terahertz emitter; 12. Tunable filter; 13. Polarizer; 14. Aperture stop; 15. First lens; 21. Metal film; 22. Prism; 23. Flow cell; 24. Injection tube 31. Terahertz detector; 32. Analyzer; 33. Second lens; 40. Signal display module.

具体实施方式Detailed ways

为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, features and advantages of the present invention more obvious and understandable, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described The embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of the present invention.

请参阅图1,为一种THZ-SPRi生物传感系统,包括:太赫兹发射模块、传感模块、太赫兹探测模块以及信号显示模块40;传感模块设置在太赫兹发射模块与太赫兹探测模块之间,太赫兹发射模块包括太赫兹发射器11和设置在太赫兹发射器11与传感模块之间的可调滤波器12,信号显示模块40分别与太赫兹探测器31、可调滤波器12连接,传感模块包括金属膜21、生物传感芯片以及棱镜22,金属膜21设置在棱镜22上,生物传感芯片偶联在金属膜21上,太赫兹发射器11发射的太赫兹光束从棱镜22射入传感模块,并从棱镜22折射出来。Please refer to Fig. 1, which is a THZ-SPRi biosensing system, including: a terahertz emission module, a sensing module, a terahertz detection module, and a signal display module 40; the sensing module is arranged between the terahertz emission module and the terahertz detection module. Between the modules, the terahertz emission module includes a terahertz emitter 11 and an adjustable filter 12 arranged between the terahertz emitter 11 and the sensing module, and the signal display module 40 is connected with the terahertz detector 31 and the adjustable filter respectively. sensor 12, the sensing module includes a metal film 21, a biosensing chip and a prism 22, the metal film 21 is set on the prism 22, the biosensing chip is coupled to the metal film 21, and the terahertz emitted by the terahertz emitter 11 The light beam enters the sensing module from the prism 22 and is refracted from the prism 22 .

在本发明中,太赫兹发射器11发射的太赫兹光束经过棱镜22射入传感模块中,并从棱镜22折射出来;当金属膜21上的生物样品和生物传感芯片上修饰的分子相互作用时,会引起传感模块的折射率变化,折射率变化的信号由信号显示模块40显示,通过接收到的信号处理对可调滤波器12进行负反馈式调制,控制扫描光谱的范围,从而实现快速扫描式生物传感。本技术方案运用太赫兹表面等离子共振成像传感技术来实现对生物组织检测,减少对生物组织的损坏,在生物传感方面具有高灵敏、高通量及快速检测等性能,解决了目前SPRi传感技术存在成像速度慢的技术问题。In the present invention, the terahertz beam emitted by the terahertz emitter 11 enters the sensing module through the prism 22 and is refracted from the prism 22; when the biological sample on the metal film 21 interacts with the modified molecules on the biosensing chip When it works, it will cause the refractive index of the sensing module to change, and the signal of the refractive index change is displayed by the signal display module 40, and the adjustable filter 12 is subjected to negative feedback modulation through the received signal processing to control the range of the scanning spectrum, thereby Enable fast scanning biosensing. This technical solution uses terahertz surface plasmon resonance imaging sensing technology to realize the detection of biological tissue and reduce the damage to biological tissue. Sensing technology has the technical problem of slow imaging speed.

进一步地,太赫兹发射模块还包括设置在可调滤波器12与传感模块之间的起偏器13,太赫兹探测模块包括太赫兹探测器31和设置在太赫兹探测器31与传感模块之间的检偏器32,通过起偏器13获得偏振光,偏振光在金属膜21上与生物样品发生spri效应,反射出的太赫兹光束由检偏器32检验是否为偏振光,最后被太赫兹探测器31接收。Further, the terahertz transmitting module also includes a polarizer 13 arranged between the adjustable filter 12 and the sensing module, the terahertz detecting module includes a terahertz detector 31 and a terahertz detector 31 arranged between the terahertz detector 31 and the sensing module The polarizer 32 in between is used to obtain polarized light through the polarizer 13. The polarized light has a spri effect on the metal film 21 and the biological sample. The reflected terahertz beam is checked by the polarizer 32 to see whether it is polarized light. Terahertz detector 31 receives.

优选地,太赫兹发射模块还包括孔径光阑14,孔径光阑14设置在太赫兹发生器与可调滤波器12之间,且太赫兹发射器11与孔径光阑14之间设置有第一透镜15,孔径光阑14与可调滤波器12之间设置有第一透镜15;第一透镜15对太赫兹发射器11发出的太赫兹光束进行准直聚焦,孔径光阑14对聚焦后的太赫兹光束再进行空间滤波,经过孔径光阑14滤波后的太赫兹光束再由第一透镜15进一步聚焦后进入可调滤波器12。Preferably, the terahertz emission module further includes an aperture stop 14, the aperture stop 14 is arranged between the terahertz generator and the tunable filter 12, and a first A lens 15, a first lens 15 is arranged between the aperture stop 14 and the adjustable filter 12; the first lens 15 collimates and focuses the terahertz beam emitted by the terahertz transmitter 11, and the aperture stop 14 collimates and focuses the focused terahertz beam The terahertz beam is then spatially filtered, and the terahertz beam filtered by the aperture stop 14 is further focused by the first lens 15 and enters the tunable filter 12 .

同理,检偏器32与太赫兹探测器31之间设置有第二透镜33,检偏器32与传感模块之间设置有第二透镜33,第二透镜33对折射出来的太赫兹光束进行准直聚焦后进入检偏器32。Similarly, a second lens 33 is provided between the analyzer 32 and the terahertz detector 31, and a second lens 33 is provided between the analyzer 32 and the sensing module. After being collimated and focused, it enters the analyzer 32 .

进一步地,传感模块还包括设置在金属膜21上的流通池23、与流通池23连通的注入管24以及与流通池23连接的蠕动泵,生物样品由注入管24注入到流通池23后与金属膜21接触;优选地,采用p625蠕动泵,其具有高稳定性,且可以配合不同的蠕动管来选择流速,蠕动管可选择020号蠕动管。Further, the sensing module also includes a flow cell 23 arranged on the metal membrane 21, an injection tube 24 communicated with the flow cell 23, and a peristaltic pump connected to the flow cell 23, after the biological sample is injected into the flow cell 23 through the injection tube 24 It is in contact with the metal membrane 21; preferably, a p625 peristaltic pump is used, which has high stability and can cooperate with different peristaltic tubes to select the flow rate, and the peristaltic tube can be 020 peristaltic tube.

如图2所示,本发明提供一种THZ-SPRi生物传感系统的负反馈算法,包括步骤:As shown in Figure 2, the present invention provides a kind of negative feedback algorithm of THZ-SPRi biosensing system, comprises steps:

S1:设定扫描次数为n,并对传感模块进行大范围扫描,获得初始共振波长λ0S1: Set the number of scans as n, and scan the sensor module in a large range to obtain the initial resonance wavelength λ0 ;

S2:选择扫描范围从λ0-x~λ0+x,并对传感模块进行扫描;S2: Select the scanning range from λ0 -x to λ0 +x, and scan the sensing module;

S3:判断传感模块的折射率是否发生变化,若是,则转至S4,若否,则转至S2;S3: Determine whether the refractive index of the sensing module changes, if yes, go to S4, if not, go to S2;

S4:通过变化的折射率确定新的共振波长λiS4: Determine the new resonance wavelength λi by changing the refractive index;

S5:判断i﹥n是否成立,若成立,转至S6,若不成立,则转至S51;S5: Determine whether i > n is true, if true, go to S6, if not, go to S51;

S51:选择扫描范围从λi-x~λi+x,并对传感模块进行扫描;S51: Select the scan range from λi -x to λi +x, and scan the sensing module;

S52:判断传感模块的折射率是否发生变化,若是,则转至S4,若否,则转至S51;S52: judge whether the refractive index of sensing module changes, if so, then go to S4, if not, then go to S51;

S6:在一系列共振波长λ0~λi中取出最小共振波长设为λmin,取出最大共振波长设为λmax,则得到共振波长的范围为λmin-x~λmax+x。S6: From a series of resonance wavelengths λ0 to λi , take the minimum resonance wavelength as λmin and the maximum resonance wavelength as λmax , then the range of resonance wavelengths is λmin -x to λmax +x.

本技术方案中通过大范围扫描获得初始共振波长,并不断地对共振波长附近波段进行局部扫描,能够保证生物样品发生变化时,共振波长位置始终在扫描范围内,减少了扫描区域,提高了扫描效率。该THZ-SPRi生物传感系统使用了负反馈步长追踪算法,并采用了宽带太赫兹衰减全反射技术,实现了对生物样品折射率检测,改善了现有SPRi成像速度慢的局限性。In this technical solution, the initial resonance wavelength is obtained by scanning in a large range, and the local scanning of the band near the resonance wavelength is continuously performed, which can ensure that when the biological sample changes, the position of the resonance wavelength is always within the scanning range, reducing the scanning area and improving the scanning efficiency. efficiency. The THZ-SPRi biosensing system uses a negative feedback step tracking algorithm and a broadband terahertz attenuated total reflection technology to realize the detection of the refractive index of biological samples and improve the limitation of the existing SPRi imaging speed.

以上为对本发明所提供的一种THZ-SPRi生物传感系统及其负反馈算法的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。The above is a description of a THZ-SPRi biosensing system and its negative feedback algorithm provided by the present invention. For those skilled in the art, according to the ideas of the embodiments of the present invention, there will be specific implementation methods and application ranges. Changes, in summary, the contents of this specification should not be construed as limiting the present invention.

Claims (7)

Translated fromChinese
1.一种THZ-SPRi生物传感系统,其特征在于,包括:太赫兹发射模块、传感模块、太赫兹探测模块以及信号显示模块;1. A THZ-SPRi biosensing system, characterized in that it comprises: a terahertz emission module, a sensing module, a terahertz detection module and a signal display module;所述传感模块设置在所述太赫兹发射模块与所述太赫兹探测模块之间,所述太赫兹发射模块包括太赫兹发射器和设置在所述太赫兹发射器与所述传感模块之间的可调滤波器,所述信号显示模块分别与所述太赫兹探测器、所述可调滤波器连接,所述传感模块包括金属膜、生物传感芯片以及棱镜,所述金属膜设置在所述棱镜上,所述生物传感芯片偶联在所述金属膜上,所述太赫兹发射器发射的太赫兹光束从所述棱镜射入所述传感模块,并从所述棱镜折射出来。The sensing module is arranged between the terahertz emitting module and the terahertz detecting module, the terahertz emitting module includes a terahertz emitter and is arranged between the terahertz emitter and the sensing module The adjustable filter between them, the signal display module is respectively connected with the terahertz detector and the adjustable filter, the sensing module includes a metal film, a biosensor chip and a prism, and the metal film is set On the prism, the biosensing chip is coupled to the metal film, the terahertz beam emitted by the terahertz emitter enters the sensing module from the prism, and is refracted from the prism come out.2.根据权利要求1所述的THZ-SPRi生物传感系统,其特征在于,所述太赫兹发射模块还包括设置在所述可调滤波器与所述传感模块之间的起偏器,所述太赫兹探测模块包括太赫兹探测器和设置在所述太赫兹探测器与所述传感模块之间的检偏器。2. The THZ-SPRi biosensing system according to claim 1, wherein the terahertz transmitting module also includes a polarizer arranged between the adjustable filter and the sensing module, The terahertz detection module includes a terahertz detector and a polarizer disposed between the terahertz detector and the sensing module.3.根据权利要求2所述的THZ-SPRi生物传感系统,其特征在于,所述太赫兹发射模块还包括孔径光阑,所述孔径光阑设置在所述太赫兹发生器与所述可调滤波器之间。3. The THZ-SPRi biosensing system according to claim 2, wherein the terahertz emission module further comprises an aperture stop, and the aperture stop is arranged between the terahertz generator and the adjustable terahertz generator. between filters.4.根据权利要求3所述的THZ-SPRi生物传感系统,其特征在于,所述太赫兹发射器与所述孔径光阑之间设置有第一透镜,所述孔径光阑与所述可调滤波器之间设置有所述第一透镜。4. The THZ-SPRi biosensing system according to claim 3, wherein a first lens is arranged between the terahertz emitter and the aperture stop, and the aperture stop and the adjustable The first lens is arranged between the tuning filters.5.根据权利要求4所述的THZ-SPRi生物传感系统,其特征在于,所述检偏器与所述太赫兹探测器之间设置有第二透镜,所述检偏器与所述传感模块之间设置有所述第二透镜。5. The THZ-SPRi biosensing system according to claim 4, wherein a second lens is arranged between the polarizer and the terahertz detector, and the polarizer and the sensor The second lens is arranged between the sensing modules.6.根据权利要求1所述的THZ-SPRi生物传感系统,其特征在于,所述传感模块还包括设置在所述金属膜上的流通池、与所述流通池连通的注入管以及与所述流通池连接的蠕动泵。6. THZ-SPRi biosensing system according to claim 1, is characterized in that, described sensing module also comprises the flow cell that is arranged on described metal membrane, the injection pipe that communicates with described flow cell and with The flow cell is connected to a peristaltic pump.7.一种如权利要求1-6中任一项所述的THZ-SPRi生物传感系统的负反馈算法,其特征在于,包括步骤:7. A negative feedback algorithm of the THZ-SPRi biosensor system as described in any one of claims 1-6, is characterized in that, comprises the steps:S1:设定扫描次数为n,并对所述传感模块进行大范围扫描,获得初始共振波长λ0S1: set the number of scans as n, and scan the sensing module in a large range to obtain the initial resonance wavelength λ0 ;S2:选择扫描范围从λ0-x~λ0+x,并对所述传感模块进行扫描;S2: Select the scanning range from λ0 -x to λ0 +x, and scan the sensing module;S3:判断所述传感模块的折射率是否发生变化,若是,则转至S4,若否,则转至S2;S3: judging whether the refractive index of the sensing module changes, if yes, go to S4, if not, go to S2;S4:通过变化的折射率确定新的共振波长λiS4: Determine the new resonance wavelength λi by changing the refractive index;S5:判断i﹥n是否成立,若成立,转至S6,若不成立,则转至S51;S5: Determine whether i > n is true, if true, go to S6, if not, go to S51;S51:选择扫描范围从λi-x~λi+x,并对所述传感模块进行扫描;S51: Select the scanning range from λi -x to λi +x, and scan the sensing module;S52:判断所述传感模块的折射率是否发生变化,若是,则转至S4,若否,则转至S51;S52: judging whether the refractive index of the sensing module changes, if so, then go to S4, if not, then go to S51;S6:在一系列共振波长λ0~λi中取出最小共振波长设为λmin,取出最大共振波长设为λmax,则得到共振波长的范围为λmin-x~λmax+x。S6: From a series of resonance wavelengths λ0 to λi , take the minimum resonance wavelength as λmin and the maximum resonance wavelength as λmax , then the range of resonance wavelengths is λmin -x to λmax +x.
CN201910870250.3A2019-09-162019-09-16THZ-SPRi biosensing system and negative feedback algorithm thereofActiveCN110487745B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201910870250.3ACN110487745B (en)2019-09-162019-09-16THZ-SPRi biosensing system and negative feedback algorithm thereof

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201910870250.3ACN110487745B (en)2019-09-162019-09-16THZ-SPRi biosensing system and negative feedback algorithm thereof

Publications (2)

Publication NumberPublication Date
CN110487745Atrue CN110487745A (en)2019-11-22
CN110487745B CN110487745B (en)2025-01-17

Family

ID=68558087

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201910870250.3AActiveCN110487745B (en)2019-09-162019-09-16THZ-SPRi biosensing system and negative feedback algorithm thereof

Country Status (1)

CountryLink
CN (1)CN110487745B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN114527092A (en)*2022-02-212022-05-24青岛青源峰达太赫兹科技有限公司Rapid TDS spectral scanning imaging system optimization method based on delay tracking
CN116026760A (en)*2022-11-232023-04-28广东工业大学Wavelength type SPR sensing system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103389284A (en)*2012-05-092013-11-13深圳大学Surface plasma resonance system and detection method thereof
CN105486665A (en)*2016-01-262016-04-13深圳大学SPR detection system and method
CN105581773A (en)*2014-10-212016-05-18深圳先进技术研究院Terahertz imaging system
CN211206242U (en)*2019-09-162020-08-07深圳大学 A THZ-SPRi Biosensing System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103389284A (en)*2012-05-092013-11-13深圳大学Surface plasma resonance system and detection method thereof
CN105581773A (en)*2014-10-212016-05-18深圳先进技术研究院Terahertz imaging system
CN105486665A (en)*2016-01-262016-04-13深圳大学SPR detection system and method
CN211206242U (en)*2019-09-162020-08-07深圳大学 A THZ-SPRi Biosensing System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘立新等: "两维荧光光谱技术及最佳光谱分辨率设计", 深圳大学学报(理工版), vol. 24, no. 03, 31 July 2007 (2007-07-31), pages 252 - 256*

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN114527092A (en)*2022-02-212022-05-24青岛青源峰达太赫兹科技有限公司Rapid TDS spectral scanning imaging system optimization method based on delay tracking
CN116026760A (en)*2022-11-232023-04-28广东工业大学Wavelength type SPR sensing system and method
CN116026760B (en)*2022-11-232023-10-31广东工业大学Wavelength type SPR sensing system and method

Also Published As

Publication numberPublication date
CN110487745B (en)2025-01-17

Similar Documents

PublicationPublication DateTitle
CN105911020B (en)Method for simultaneously measuring multi-component gas based on cavity ring-down spectroscopy
US20140252233A1 (en)Methods, devices and kits for peri-critical reflectance spectroscopy
CN101419157B (en)Accurate measurement method for optical parameter of edible oil by terahertz time-domain spectrum
CN105699317A (en)Terahertz time-domain spectrograph capable of entering at fixed angle and simultaneously detecting transmission and reflection
CN102830069B (en)Alcohol concentration measuring device by using terahertz anisotropic medium resonance effect and method thereof
CN106442424B (en)Alcohol concentration measuring device and method using graphene terahertz surface plasma effect
CN209356405U (en) A near-field terahertz wave spectral imaging system
CN107764776B (en) Multi-wavelength tunable surface plasmon resonance imaging device and its application
CN107219199A (en)Novel angle modulation SPR imaging systems based on 4F systems
CN103837520A (en)Optic travelling wave cavity enhanced laser raman gas concentration detection device
JP2018009824A (en)Sample analysis method and sample analyzer
CN101294900B (en)High-fineness cavity surface plasma resonance sensing equipment
CN110487745A (en)A kind of THZ-SPRi biological sensing system and its negative-feedback algorithm
CN104749137B (en)The measuring system and measuring method of liquid refractivity
CN105158208B (en)A kind of Gu Sihanxin displacements SPR high sensitivity medium refraction index detection methods
CN211206242U (en) A THZ-SPRi Biosensing System
CN113324954A (en)Prism coupling surface plasmon resonance test system based on spectral imaging
CN207730658U (en)A kind of hazardous gas high sensitivity Terahertz spectrum detection device
CN109520967A (en)The detection system and its detection method of trace heavy metal in a kind of food
CN112525859B (en)Surface plasmon resonance sensing measurement method, device and system
CN110501307B (en)Optical fiber surface plasmon resonance refractive index sensor based on quantum enhancement
Zeng et al.High-throughput imaging surface plasmon resonance biosensing based on ultrafast two-point spectral-dip tracking scheme
CN102944537A (en)Detection system and detection method based on SPR
CN202994658U (en)Detecting system based on surface plasmon resonance (SPR)
CN104237169B (en)Detection method of SPR detection system based on external field modulation

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp