技术领域technical field
本发明涉及光学系统和器件设计领域,尤其是涉及一种带衍射面的四反中波红外取景器光学系统。The invention relates to the field of optical system and device design, in particular to an optical system of a four-mirror mid-wave infrared viewfinder with diffractive surfaces.
背景技术Background technique
在红外成像光学系统中,采用透射式光学元件来设计大相对孔径、高分辨率的相机镜头,通常需要多片式镜片组合成像校正像差,这种系统设计通相对冗长,镜片的装配工艺和检测手段繁琐,所用的透镜材料诸如锗、硫化锌或硒化锌等,其价格昂贵且制造困难,然而内反射式的设计结构可以实现低成本、高性能且系统构型轻巧的红外成像光学系统,已经在可见光波段的设计中使用,反射的设计构型会折叠光路,使系统结构紧凑。此外,高通量和高分辨率是红外取景器的关键参数,这些将提升系统在弱光或者夜间复杂环境的目标识别能力。In the infrared imaging optical system, a camera lens with a large relative aperture and high resolution is designed using a transmission optical element, which usually requires a combination of multiple lenses to correct aberrations. This system design is usually relatively lengthy, and the lens assembly process and The detection methods are cumbersome, and the lens materials used, such as germanium, zinc sulfide or zinc selenide, are expensive and difficult to manufacture. However, the internal reflection design structure can realize low-cost, high-performance infrared imaging optical system with light system configuration , has been used in the design of the visible light band, and the reflective design configuration will fold the optical path, making the system compact. In addition, high throughput and high resolution are the key parameters of the infrared viewfinder, which will improve the system's target recognition ability in low light or complex environments at night.
Eric等人在《Ultrathin four-reflection imager》(APPLIED OPTICS,48(2):343-354,2009)中设计了一款F数1.15,焦距为18.6mm,厚度仅5.5mm的超薄四反光学镜头,材料为氟化硅,其工作波段为可见光波段。但该系统是在探测器采集图像后再对色差进行优化处理,并没有实质地校正系统色差。目前尚未有人提出应用在红外成像中且能有效消除色差的一体式同轴光学结构。In "Ultrathin four-reflection imager" (APPLIED OPTICS, 48(2): 343-354, 2009), Eric et al. designed an ultra-thin four-reflection imager with an F number of 1.15, a focal length of 18.6mm, and a thickness of only 5.5mm. The lens is made of silicon fluoride, and its working band is the visible light band. However, this system optimizes the chromatic aberration after the detector collects the image, and does not substantially correct the chromatic aberration of the system. At present, no one has proposed an integrated coaxial optical structure that can effectively eliminate chromatic aberration and is applied in infrared imaging.
发明内容Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种带衍射面的四反中波红外取景器光学系统。The object of the present invention is to provide a four-mirror mid-wave infrared viewfinder optical system with diffractive surfaces in order to overcome the defects in the above-mentioned prior art.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种带衍射面的四反中波红外取景器光学系统,包括前表面、后表面和红外响应探测器,所述前表面包括由外到内依次相邻且共轴的环形平面、第二次反射非球面和第四次反射非球面,所述后表面包括由外到内依次相邻且共轴的第一次反射非球面、第三次反射非球面和衍射面,入射光线经环形平面入射后依次经过第一次反射非球面、第二次反射非球面、第三次反射非球面和第四次反射非球面反射,再经衍射面出射并到达红外响应探测器上。A four-reflective mid-wave infrared viewfinder optical system with a diffractive surface, including a front surface, a rear surface and an infrared response detector, the front surface includes an annular plane that is sequentially adjacent and coaxial from the outside to the inside, the second The reflective aspheric surface and the fourth reflective aspheric surface, the rear surface includes the first reflective aspheric surface, the third reflective aspheric surface and the diffractive surface, which are adjacent and coaxial from the outside to the inside, and the incident light is incident through the annular plane After that, it passes through the first reflection aspheric surface, the second reflection aspheric surface, the third reflection aspheric surface and the fourth reflection aspheric surface, and then exits through the diffraction surface and reaches the infrared response detector.
进一步地,该光学系统的F数为0.8~1.1,入射光瞳直径为60mm~80mm,中心遮拦直径为30~50mm,折中视场和集光能力选择入射光瞳直径大小。Further, the F-number of the optical system is 0.8-1.1, the diameter of the entrance pupil is 60mm-80mm, and the diameter of the central obscuration is 30-50mm, and the diameter of the entrance pupil is selected as a compromise between field of view and light-gathering ability.
进一步地,所述入射光瞳与环形平面重合。Further, the entrance pupil coincides with the annular plane.
进一步地,所述第二次反射非球面和第四次反射非球面、第一次反射非球面、第三次反射非球面的相邻边缘均互不干涉。Further, adjacent edges of the second reflection aspheric surface, the fourth reflection aspheric surface, the first reflection aspheric surface, and the third reflection aspheric surface do not interfere with each other.
进一步地,所述前表面和后表面轴向距离为23mm~28mm,所述后表面与红外响应探测器的轴向距离为5mm~7mm,根据红外响应探测器的尺寸确定。Further, the axial distance between the front surface and the rear surface is 23 mm to 28 mm, and the axial distance between the rear surface and the infrared response detector is 5 mm to 7 mm, which is determined according to the size of the infrared response detector.
进一步地,所述环形平面最外边缘的直径不超过77mm,所述环形平面到红外响应探测器的轴向距离不超过35mm,根据入射光瞳直径和后表面与红外响应探测器的轴向距离确定。Further, the diameter of the outermost edge of the annular plane does not exceed 77 mm, and the axial distance between the annular plane and the infrared responsive detector does not exceed 35 mm, according to the diameter of the entrance pupil and the axial distance between the rear surface and the infrared responsive detector Sure.
进一步地,所述红外响应探测器的单个像素大小为15μm或30μm,总像素数为320×256,尺寸为4.8mm×3.8mm,红外响应波段范围为3.7μm-4.8μm,中心工作波长为4.4μm。Further, the single pixel size of the infrared response detector is 15 μm or 30 μm, the total number of pixels is 320×256, the size is 4.8mm×3.8mm, the infrared response band range is 3.7 μm-4.8 μm, and the central working wavelength is 4.4 μm.
进一步地,所述第一次反射非球面、第二次反射非球面、第三次反射非球面和第四次反射非球面为参数不同的环带高次非球面。Further, the aspheric surface for the first reflection, the aspheric surface for the second reflection, the aspheric surface for the third reflection and the aspheric surface for the fourth reflection are annular high-order aspheric surfaces with different parameters.
进一步地,该系统水平方向和垂直方向的视场角均为5°,实现成像充满红外响应探测器。Furthermore, the field angles of the system are both 5° in the horizontal and vertical directions, enabling imaging to be filled with infrared responsive detectors.
与现有技术相比,本发明具有以如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明中光学系统的前后两个光学面,前表面和后表面外环采用多段式高次非球面,后表面中心区域采用衍射面,入射光线经四次内反射后从衍射面出射,无需经过不同透射材料,故有效校正了系统单色像差,最后的衍射面有效地校正了系统色差,实现了色差的有效校正;(1) For the front and rear optical surfaces of the optical system in the present invention, the outer ring of the front surface and the rear surface adopts a multi-stage high-order aspheric surface, and the central area of the rear surface adopts a diffractive surface, and the incident light is emitted from the diffractive surface after four internal reflections , without going through different transmission materials, so the monochromatic aberration of the system is effectively corrected, and the last diffraction surface effectively corrects the chromatic aberration of the system, realizing the effective correction of chromatic aberration;
(2)本发明的光学系统所采用多段式高次光学面和内反射实现红外成像,光学系统为一体式同轴光学结构,采用单个透镜即可实现,结构紧凑,不需要装配和检测,生产成本低,系统集成度高。(2) The optical system of the present invention adopts multi-stage high-order optical surfaces and internal reflection to realize infrared imaging. The optical system is an integrated coaxial optical structure, which can be realized by a single lens. The structure is compact and does not require assembly and detection. Production Low cost and high system integration.
附图说明Description of drawings
图1为带衍射面的四反中波红外取景器光学系统结构示意图;Fig. 1 is a schematic structural diagram of the optical system of a four-mirror mid-wave infrared viewfinder with diffractive surfaces;
图2为本发明实施例中光学系统的点列图;Fig. 2 is the spot diagram of optical system in the embodiment of the present invention;
图3为本发明实施例中光学系统的MTF曲线图;Fig. 3 is the MTF curve diagram of the optical system in the embodiment of the present invention;
图4为本发明实施例中去除衍射面后光学系统的MTF曲线图。Fig. 4 is an MTF curve diagram of the optical system after removing the diffractive surface in the embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. This embodiment is carried out on the premise of the technical solution of the present invention, and detailed implementation and specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
本实施例提供一种带衍射面的四反中波红外取景器光学系统,如图1所示,包括前表面1、后表面2和红外响应探测器3,前表面1包括由外到内依次相邻且共轴的环形平面101、第二次反射非球面102和第四次反射非球面103,后表面2包括由外到内依次相邻且共轴的第一次反射非球面201、第三次反射非球面202和衍射面203,入射光线经环形平面101入射后依次经过第一次反射非球面201、第二次反射非球面102、第三次反射非球面202和第四次反射非球面103反射,再经衍射面204出射并到达红外响应探测器3上。This embodiment provides a four-mirror mid-wave infrared viewfinder optical system with a diffractive surface, as shown in Figure 1, including a front surface 1, a rear surface 2 and an infrared response detector 3, and the front surface 1 includes sequentially from outside to inside Adjacent and coaxial annular plane 101, the second reflective aspheric surface 102 and the fourth reflective aspheric surface 103, the rear surface 2 includes the first reflective aspheric surface 201, the first reflective aspheric surface 201, the The three-time reflection aspheric surface 202 and the diffraction surface 203, the incident light passes through the annular plane 101 and then passes through the first reflection aspheric surface 201, the second reflection aspheric surface 102, the third reflection aspheric surface 202 and the fourth reflection aspheric surface Reflected by the spherical surface 103 , it exits through the diffraction surface 204 and reaches the infrared response detector 3 .
F数越小,入瞳口径则越大,集光能力越强,有效入瞳越大,相应视场则越小,根据红外响应探测器3型号和参数计算,折中视场和集光能力选择该尺寸的入射光瞳的大小。本实施例中,带衍射面的四反中波红外取景器光学系统的F数为0.9,入射光瞳直径范围为74mm,中心遮拦直径为48mm,等效口径为56mm,中心工作波长为4.4μm,系统水平方向和垂直方向的视场角均为5°,实现成像充满红外响应探测器,入射光瞳与环形平面101重合。The smaller the F-number, the larger the aperture of the entrance pupil, the stronger the light-gathering ability, the larger the effective entrance pupil, and the smaller the corresponding field of view. According to the calculation of the model and parameters of the infrared response detector 3, a compromise between the field of view and the light-gathering ability is selected. The size of the entrance pupil for this size. In this embodiment, the F-number of the optical system of the four-mirror mid-wave infrared viewfinder with diffractive surface is 0.9, the diameter range of the entrance pupil is 74mm, the central obscuration diameter is 48mm, the equivalent aperture is 56mm, and the central working wavelength is 4.4μm , the horizontal and vertical field angles of the system are both 5°, the imaging is full of infrared responsive detectors, and the entrance pupil coincides with the annular plane 101 .
第二次反射非球面102和第四次反射非球面103、第一次反射非球面201、第三次反射非球面202的相邻边缘均互不干涉,第一次反射非球面201、第二次反射非球面102、第三次反射非球面202和第四次反射非球面103为参数不同的环带高次非球面。Adjacent edges of the second reflection aspheric surface 102 and the fourth reflection aspheric surface 103, the first reflection aspheric surface 201, and the third reflection aspheric surface 202 do not interfere with each other. The first reflection aspheric surface 201, the second reflection aspheric surface The secondary reflective aspheric surface 102 , the third reflective aspheric surface 202 and the fourth reflective aspheric surface 103 are annular high-order aspheric surfaces with different parameters.
前表面1和后表面2轴向距离为25mm,后表面2与红外响应探测器3的轴向距离为5mm,红外响应探测器3的单个像素大小为15μm,总像素数为320×256,尺寸为4.8mm×3.8mm。The axial distance between the front surface 1 and the rear surface 2 is 25 mm, the axial distance between the rear surface 2 and the infrared response detector 3 is 5 mm, the single pixel size of the infrared response detector 3 is 15 μm, the total number of pixels is 320×256, and the size It is 4.8mm×3.8mm.
带衍射面的四反中波红外取景器光学系统的各个光学面的参数和间距如表1所示。Table 1 shows the parameters and distances of each optical surface of the optical system of the four-mirror mid-wave infrared viewfinder with diffractive surfaces.
表1:光学系统参数Table 1: Optical system parameters
由于透射材料折射率随波长变化,造成物点发出的不同波长的光线通过光学系统后不会聚在一点,而成为有色的弥散斑,本实施例采用内反射,故入射光线不经过不同的透射材料,故消除了单色色差;衍射面的色散特性与材料的无关性和负向性能够有效消除系统色差。Since the refractive index of the transmissive material changes with the wavelength, the light of different wavelengths emitted by the object point will not gather at one point after passing through the optical system, but will become a colored diffuse spot. This embodiment uses internal reflection, so the incident light does not pass through different transmissive materials. , so the monochromatic chromatic aberration is eliminated; the dispersion characteristics of the diffraction surface are irrelevant to the material and the negativity can effectively eliminate the system chromatic aberration.
图2所示为带衍射面的四反中波红外取景器光学系统的点列图,该点列图展示了像面上的弥散斑大小分布,色差的大小表现为弥散斑大小,根据点列图结果,均小于探测器像元尺寸,故系统色差得到校正;Figure 2 shows the spot diagram of the optical system of the four-mirror mid-wave infrared viewfinder with a diffractive surface. The spot diagram shows the size distribution of the diffuse spots on the image plane. The size of the chromatic aberration is represented by the size of the diffuse spots. The results of the graphs are all smaller than the pixel size of the detector, so the system chromatic aberration is corrected;
图3所示为带衍射面的四反中波红外取景器光学系统的MTF曲线图,MTF曲线图即全视场传递函数图,该系统的设计接近衍射极限;Figure 3 shows the MTF curve diagram of the optical system of the four-mirror mid-wave infrared viewfinder with diffractive surfaces. The MTF curve diagram is the transfer function diagram of the full field of view. The design of this system is close to the diffraction limit;
图4所示为不带衍射面的四反中波红外取景器光学系统的MTF曲线图,相较于不带衍射面的光学系统,带衍射面的四反中波红外取景器光学系统在33lp/mm的设计传函值由原来的0.25提升至0.43,全视场的设计传函接近衍射极限。Figure 4 shows the MTF curve diagram of the optical system of the four-mirror mid-wave infrared viewfinder without a diffractive surface. Compared with the optical system without a diffractive surface, the optical system of the quadruple-reflective mid-wave infrared viewfinder with a diffractive surface is at 33lp The design transfer value of /mm is increased from 0.25 to 0.43, and the design transfer function of the full field of view is close to the diffraction limit.
本实施例提供的带衍射面的四反中波红外取景器光学系统,适用于大相对孔径和高分辨率,且无需装调,可直接采用单点金刚石车削工艺加工出镜片,校正色差的同时保持较低的制造成本。The four-mirror mid-wave infrared viewfinder optical system with diffractive surface provided in this embodiment is suitable for large relative aperture and high resolution, and does not require assembly and adjustment. The lens can be directly processed by single-point diamond turning technology, and the chromatic aberration can be corrected at the same time Keep manufacturing costs low.
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred specific embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art based on the concept of the present invention through logical analysis, reasoning or limited experiments on the basis of the prior art shall be within the scope of protection defined by the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910717176.1ACN110471173B (en) | 2019-08-05 | 2019-08-05 | Four-reflection medium wave infrared viewfinder optical system with diffraction surface |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910717176.1ACN110471173B (en) | 2019-08-05 | 2019-08-05 | Four-reflection medium wave infrared viewfinder optical system with diffraction surface |
| Publication Number | Publication Date |
|---|---|
| CN110471173Atrue CN110471173A (en) | 2019-11-19 |
| CN110471173B CN110471173B (en) | 2021-05-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910717176.1AActiveCN110471173B (en) | 2019-08-05 | 2019-08-05 | Four-reflection medium wave infrared viewfinder optical system with diffraction surface |
| Country | Link |
|---|---|
| CN (1) | CN110471173B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111897117A (en)* | 2020-08-12 | 2020-11-06 | 长春理工大学 | Ultra-thin mid- and long-wave infrared dual-band imaging system |
| WO2024004271A1 (en)* | 2022-06-28 | 2024-01-04 | パナソニックIpマネジメント株式会社 | Optical system, stereo optical system, stereo imaging device, imaging device, and image projection device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5640283A (en)* | 1995-10-20 | 1997-06-17 | The Aerospace Corporation | Wide field, long focal length, four mirror telescope |
| US5659430A (en)* | 1993-12-21 | 1997-08-19 | Olympus Optical Co., Ltd. | Visual display apparatus |
| WO2001077734A1 (en)* | 2000-04-07 | 2001-10-18 | Industrial Research Limited | Compact imaging system including an aspheric quaternary element |
| JP2003177321A (en)* | 2001-12-07 | 2003-06-27 | Nikon Corp | Ultraviolet and infrared catadioptric systems |
| CN1455282A (en)* | 2002-04-29 | 2003-11-12 | 南开大学 | Infrared refraction-diffraction three-piece heat-abstraction optical imaging system structure |
| CN1479131A (en)* | 2002-07-30 | 2004-03-03 | ������������ʽ���� | Projection optical system, projection image display device and image display system |
| JP2004212639A (en)* | 2002-12-27 | 2004-07-29 | Nikon Corp | Catadioptric lens with diffractive optical element |
| JP2004258541A (en)* | 2003-02-27 | 2004-09-16 | Canon Inc | Reflective optical system |
| DE202007001346U1 (en)* | 2007-01-24 | 2007-04-05 | H2B Photonics Gmbh | Apparatus for cutting through articles of brittle material, e.g. glass or ceramic, by directed laser-induced stress cracking, includes concave reflectors with opening(s) for passage of laser radiation |
| EP1772761A1 (en)* | 2005-10-05 | 2007-04-11 | EADS Astrium GmbH | Ultra-wide field multiple-mirror apparatus |
| CN102279047A (en)* | 2011-03-31 | 2011-12-14 | 中国科学院长春光学精密机械与物理研究所 | Telecentric imaging system with field of view of 15 degrees and three coaxial reflectors |
| JP2012124316A (en)* | 2010-12-08 | 2012-06-28 | Nichia Chem Ind Ltd | Light emitting device and manufacturing method of the same |
| CN102590994A (en)* | 2012-03-23 | 2012-07-18 | 北京理工大学 | Wide-field coaxial spherical four-reflector optical system |
| CN103018890A (en)* | 2012-12-14 | 2013-04-03 | 中国科学院长春光学精密机械与物理研究所 | Optical system with four coaxial reflecting mirrors for 20-degree view field without central obscuration |
| CN103293666A (en)* | 2013-06-09 | 2013-09-11 | 北京理工大学 | Coaxial four-mirror auto-zooming optical system with spherical secondary mirror |
| CN203480122U (en)* | 2013-09-17 | 2014-03-12 | 中国科学院西安光学精密机械研究所 | Total reflection optical imaging system |
| CN104111520A (en)* | 2014-07-17 | 2014-10-22 | 中国科学院光电技术研究所 | Off-axis reflection imaging optical system |
| JP2015132710A (en)* | 2014-01-14 | 2015-07-23 | コニカミノルタ株式会社 | Far-infrared lens, image capturing lens system, and camera system |
| CN105115603A (en)* | 2015-09-15 | 2015-12-02 | 北京卓立汉光仪器有限公司 | Wide-spectrum image formation device |
| CN105116527A (en)* | 2015-09-25 | 2015-12-02 | 上海新跃仪表厂 | High-relative-aperture low-distortion wide-angle long-infrared catadioptric optical system |
| CN105334608A (en)* | 2015-12-05 | 2016-02-17 | 中国航空工业集团公司洛阳电光设备研究所 | Prism optical system |
| CN105759439A (en)* | 2016-04-08 | 2016-07-13 | 北京航天计量测试技术研究所 | Infrared refractive-diffractive optical structure suitable for side window imaging |
| JP2017072709A (en)* | 2015-10-07 | 2017-04-13 | 株式会社トプコン | Imaging optical member and optical system of surveying instrument |
| CN106990517A (en)* | 2017-05-22 | 2017-07-28 | 凯迈(洛阳)测控有限公司 | A kind of object lens of large relative aperture long-focus uncooled ir is without thermalization optical system |
| CN107300777A (en)* | 2017-08-18 | 2017-10-27 | 深圳惠牛科技有限公司 | A kind of imaging system reflected based on double free form surfaces |
| CN107589536A (en)* | 2017-08-29 | 2018-01-16 | 北京空间机电研究所 | A kind of small relative aperture folds light path coaxial system |
| JP2018044987A (en)* | 2016-09-12 | 2018-03-22 | コニカミノルタ株式会社 | Reflection optical device, far-infrared ray imaging system, and gas detection system |
| CN107942416A (en)* | 2017-11-15 | 2018-04-20 | 中国科学院长春光学精密机械与物理研究所 | A kind of annulus freeform optics element and single-panel optical system |
| CN108519664A (en)* | 2018-04-10 | 2018-09-11 | 中国科学院长春光学精密机械与物理研究所 | Coaxial three-mirror infrared optical imaging device with integrated main three mirrors |
| JP2018163185A (en)* | 2017-03-24 | 2018-10-18 | コニカミノルタ株式会社 | Reflection optical device |
| CN109387932A (en)* | 2018-11-22 | 2019-02-26 | 长春奥普光电技术股份有限公司 | A kind of optical system of total reflection and space remote sensing optical device |
| CN109628894A (en)* | 2018-12-29 | 2019-04-16 | 润坤(上海)光学科技有限公司 | A kind of preparation method of far ultraviolet high reflective mirror |
| CN109669260A (en)* | 2018-12-29 | 2019-04-23 | 润坤(上海)光学科技有限公司 | Fast coke ratio based on secondary imaging minimizes off-axis three anti-freeform optics system |
| CN109870792A (en)* | 2017-12-01 | 2019-06-11 | 中国人民解放军国防科技大学 | Coaxial all-trans optical imaging system |
| JP2019090996A (en)* | 2017-11-17 | 2019-06-13 | キヤノン株式会社 | Optical system, imaging device, distance measuring device, and on-vehicle camera system |
| CN209028288U (en)* | 2018-10-11 | 2019-06-25 | 佛山科学技术学院 | A kind of star light refraction star sensor optical system |
| CN209117964U (en)* | 2018-11-19 | 2019-07-16 | 苏州大学 | A kind of compact coaxial refraction-reflection whole world face telephotolens |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5659430A (en)* | 1993-12-21 | 1997-08-19 | Olympus Optical Co., Ltd. | Visual display apparatus |
| US5640283A (en)* | 1995-10-20 | 1997-06-17 | The Aerospace Corporation | Wide field, long focal length, four mirror telescope |
| WO2001077734A1 (en)* | 2000-04-07 | 2001-10-18 | Industrial Research Limited | Compact imaging system including an aspheric quaternary element |
| JP2003177321A (en)* | 2001-12-07 | 2003-06-27 | Nikon Corp | Ultraviolet and infrared catadioptric systems |
| CN1455282A (en)* | 2002-04-29 | 2003-11-12 | 南开大学 | Infrared refraction-diffraction three-piece heat-abstraction optical imaging system structure |
| CN1479131A (en)* | 2002-07-30 | 2004-03-03 | ������������ʽ���� | Projection optical system, projection image display device and image display system |
| JP2004212639A (en)* | 2002-12-27 | 2004-07-29 | Nikon Corp | Catadioptric lens with diffractive optical element |
| JP2004258541A (en)* | 2003-02-27 | 2004-09-16 | Canon Inc | Reflective optical system |
| EP1772761A1 (en)* | 2005-10-05 | 2007-04-11 | EADS Astrium GmbH | Ultra-wide field multiple-mirror apparatus |
| DE202007001346U1 (en)* | 2007-01-24 | 2007-04-05 | H2B Photonics Gmbh | Apparatus for cutting through articles of brittle material, e.g. glass or ceramic, by directed laser-induced stress cracking, includes concave reflectors with opening(s) for passage of laser radiation |
| JP2012124316A (en)* | 2010-12-08 | 2012-06-28 | Nichia Chem Ind Ltd | Light emitting device and manufacturing method of the same |
| CN102279047A (en)* | 2011-03-31 | 2011-12-14 | 中国科学院长春光学精密机械与物理研究所 | Telecentric imaging system with field of view of 15 degrees and three coaxial reflectors |
| CN102590994A (en)* | 2012-03-23 | 2012-07-18 | 北京理工大学 | Wide-field coaxial spherical four-reflector optical system |
| CN103018890A (en)* | 2012-12-14 | 2013-04-03 | 中国科学院长春光学精密机械与物理研究所 | Optical system with four coaxial reflecting mirrors for 20-degree view field without central obscuration |
| CN103293666A (en)* | 2013-06-09 | 2013-09-11 | 北京理工大学 | Coaxial four-mirror auto-zooming optical system with spherical secondary mirror |
| CN203480122U (en)* | 2013-09-17 | 2014-03-12 | 中国科学院西安光学精密机械研究所 | Total reflection optical imaging system |
| JP2015132710A (en)* | 2014-01-14 | 2015-07-23 | コニカミノルタ株式会社 | Far-infrared lens, image capturing lens system, and camera system |
| CN104111520A (en)* | 2014-07-17 | 2014-10-22 | 中国科学院光电技术研究所 | Off-axis reflection imaging optical system |
| CN105115603A (en)* | 2015-09-15 | 2015-12-02 | 北京卓立汉光仪器有限公司 | Wide-spectrum image formation device |
| CN105116527A (en)* | 2015-09-25 | 2015-12-02 | 上海新跃仪表厂 | High-relative-aperture low-distortion wide-angle long-infrared catadioptric optical system |
| JP2017072709A (en)* | 2015-10-07 | 2017-04-13 | 株式会社トプコン | Imaging optical member and optical system of surveying instrument |
| CN105334608A (en)* | 2015-12-05 | 2016-02-17 | 中国航空工业集团公司洛阳电光设备研究所 | Prism optical system |
| CN105759439A (en)* | 2016-04-08 | 2016-07-13 | 北京航天计量测试技术研究所 | Infrared refractive-diffractive optical structure suitable for side window imaging |
| JP2018044987A (en)* | 2016-09-12 | 2018-03-22 | コニカミノルタ株式会社 | Reflection optical device, far-infrared ray imaging system, and gas detection system |
| JP2018163185A (en)* | 2017-03-24 | 2018-10-18 | コニカミノルタ株式会社 | Reflection optical device |
| CN106990517A (en)* | 2017-05-22 | 2017-07-28 | 凯迈(洛阳)测控有限公司 | A kind of object lens of large relative aperture long-focus uncooled ir is without thermalization optical system |
| CN107300777A (en)* | 2017-08-18 | 2017-10-27 | 深圳惠牛科技有限公司 | A kind of imaging system reflected based on double free form surfaces |
| CN107589536A (en)* | 2017-08-29 | 2018-01-16 | 北京空间机电研究所 | A kind of small relative aperture folds light path coaxial system |
| CN107942416A (en)* | 2017-11-15 | 2018-04-20 | 中国科学院长春光学精密机械与物理研究所 | A kind of annulus freeform optics element and single-panel optical system |
| JP2019090996A (en)* | 2017-11-17 | 2019-06-13 | キヤノン株式会社 | Optical system, imaging device, distance measuring device, and on-vehicle camera system |
| CN109870792A (en)* | 2017-12-01 | 2019-06-11 | 中国人民解放军国防科技大学 | Coaxial all-trans optical imaging system |
| CN108519664A (en)* | 2018-04-10 | 2018-09-11 | 中国科学院长春光学精密机械与物理研究所 | Coaxial three-mirror infrared optical imaging device with integrated main three mirrors |
| CN209028288U (en)* | 2018-10-11 | 2019-06-25 | 佛山科学技术学院 | A kind of star light refraction star sensor optical system |
| CN209117964U (en)* | 2018-11-19 | 2019-07-16 | 苏州大学 | A kind of compact coaxial refraction-reflection whole world face telephotolens |
| CN109387932A (en)* | 2018-11-22 | 2019-02-26 | 长春奥普光电技术股份有限公司 | A kind of optical system of total reflection and space remote sensing optical device |
| CN109628894A (en)* | 2018-12-29 | 2019-04-16 | 润坤(上海)光学科技有限公司 | A kind of preparation method of far ultraviolet high reflective mirror |
| CN109669260A (en)* | 2018-12-29 | 2019-04-23 | 润坤(上海)光学科技有限公司 | Fast coke ratio based on secondary imaging minimizes off-axis three anti-freeform optics system |
| Title |
|---|
| TREMBLEY,EJ 等: "Ultrathin four-reflection imager", 《APPLIED OPTICS》* |
| 徐奉刚 等: "遗传算法在离轴四反光学系统设计中的应用", 《光学 精密工程》* |
| 王刚: "一种两镜五反光学系统设计", 《应用光学》* |
| 谭默言 等: "《极紫外与软X射线用非晶碳膜全反射镜的研究》", 《光子学报》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111897117A (en)* | 2020-08-12 | 2020-11-06 | 长春理工大学 | Ultra-thin mid- and long-wave infrared dual-band imaging system |
| WO2024004271A1 (en)* | 2022-06-28 | 2024-01-04 | パナソニックIpマネジメント株式会社 | Optical system, stereo optical system, stereo imaging device, imaging device, and image projection device |
| Publication number | Publication date |
|---|---|
| CN110471173B (en) | 2021-05-11 |
| Publication | Publication Date | Title |
|---|---|---|
| US9651763B2 (en) | Co-aperture broadband infrared optical system | |
| CN102495474B (en) | Visible light/long-wave infrared broad band spectrum joint focusing optical imaging system | |
| CN101770072B (en) | A compound field of view sensor imaging system | |
| US10782513B2 (en) | Total internal reflection aperture stop imaging | |
| CN101672978A (en) | Catadioptric type off-axis three-reflector long-wave infrared optical system | |
| CN111751915A (en) | A compact infrared viewfinder optical system based on free-form surface prism | |
| CN209297022U (en) | A kind of big visual field object lens of large relative aperture LONG WAVE INFRARED optical system | |
| CN107991763B (en) | High-definition long-focus long-wave infrared lens | |
| CN106772959B (en) | A short-wave, long-wave infrared dual-band confocal plane large relative aperture optical system | |
| CN202024818U (en) | Shared view filed and aperture multispectral imaging system with cassegrain type front end | |
| CN110471173A (en) | A kind of four anti-medium-wave infrared finder optical systems with diffraction surfaces | |
| CN111367042A (en) | Large-caliber long-focus infrared bicolor optical lens and imaging device | |
| TW202030506A (en) | Lens | |
| CN113075788A (en) | Multispectral multichannel common-caliber zooming imaging optical system | |
| CN112230409A (en) | High-efficiency visible-infrared co-aperture off-axis optical system | |
| CN111751914B (en) | Common-caliber infrared free-form surface prism optical system with double wave bands and double view fields | |
| CN102253479B (en) | Main focus type refraction and reflection optical system | |
| CN104459958B (en) | Prime lens used for infrared camera | |
| CN207216122U (en) | A kind of large aperture salt free ligands face Cassegrain formula camera lens | |
| JP7526565B2 (en) | Lens system | |
| US20160116719A1 (en) | Compact multispectral wide angle refractive optical system | |
| CN117631074A (en) | Mid-wave infrared and long-wave infrared multispectral imaging system | |
| CN105467570B (en) | Deep space exploration aircraft determines appearance star sensor optical imaging system | |
| EP1286208A1 (en) | Image sensor | |
| CN111381352A (en) | Transmissive Dual Spectral Common Aperture Zoom Optical System |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |