技术领域technical field
本发明涉及一种基于室内伪卫星信号载噪比的终端定位方法,属于室内定位技术领域。The invention relates to a terminal positioning method based on the carrier-to-noise ratio of indoor pseudolite signals, and belongs to the technical field of indoor positioning.
背景技术Background technique
室内定位技术发展迅速,但尚不成熟,无法进行产业化。由于人们对室内定位的需求迫切,因此室内定位技术得到了蓬勃发展,目前主流的室内定位有Wi-Fi、蓝牙、UWB、射频传感器等技术,但是这些技术还不能同时满足高精度室内定位,以及室外GNSS系统无缝定位需求。Indoor positioning technology is developing rapidly, but it is still immature and cannot be industrialized. Due to people's urgent demand for indoor positioning, indoor positioning technology has been vigorously developed. At present, mainstream indoor positioning technologies include Wi-Fi, Bluetooth, UWB, radio frequency sensors and other technologies, but these technologies cannot simultaneously meet high-precision indoor positioning, and Outdoor GNSS system seamless positioning requirements.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种基于室内伪卫星信号载噪比的终端定位方法,能够实现室内的高精度定位,提高室内定位效率。The technical problem to be solved by the present invention is to provide a terminal positioning method based on indoor pseudolite signal carrier-to-noise ratio, which can realize indoor high-precision positioning and improve indoor positioning efficiency.
本发明为了解决上述技术问题采用以下技术方案:本发明设计了一种基于室内伪卫星信号载噪比的终端定位方法,基于室内所设置的各个伪卫星发射节点,实现终端在室内的定位,其中,各个伪卫星发射节点的信号共同实现对室内各区域的覆盖;In order to solve the above technical problems, the present invention adopts the following technical solutions: the present invention designs a terminal positioning method based on indoor pseudolite signal carrier-to-noise ratio, and realizes indoor positioning of the terminal based on each pseudolite transmitting node set indoors, wherein , the signals of each pseudolite transmitting node jointly realize the coverage of various indoor areas;
所述终端定位方法中,首先,获得移动终端分别位于室内各个坐标位置、所获大于预设信号强度阈值的各个信号强度,以及该各信号强度分别所对应伪卫星发射节点,构成室内信号强度数据库;然后终端执行如下步骤,实现在室内当前位置的定位;In the terminal positioning method, first, the mobile terminal is located at each coordinate position indoors, each signal strength obtained is greater than the preset signal strength threshold, and the pseudolite transmitting nodes corresponding to the respective signal strengths are obtained to form an indoor signal strength database ; Then the terminal performs the following steps to realize the positioning of the current indoor location;
步骤A.获取终端位于室内当前位置、所获来自各个伪卫星发射节点的信号强度,并选择其中大于预设信号强度阈值的各个信号强度,以及该各信号强度分别所对应伪卫星发射节点,构成当前位置所对应的各个待分析伪卫星发射节点、以及来自各待分析伪卫星发射节点的信号强度,然后进入步骤B;Step A. Acquire the signal strengths obtained from each pseudolite transmitting node at the current indoor location of the terminal, and select each signal strength greater than the preset signal strength threshold, and the respective pseudolite transmitting nodes corresponding to each signal strength, to form a Each pseudolite transmitting node to be analyzed corresponding to the current position, and the signal strength from each pseudolite transmitting node to be analyzed, and then enter step B;
步骤B.分别针对当前位置所对应的各个待分析伪卫星发射节点,获取待分析伪卫星发射节点所对应当前位置信号前度、分别与室内信号强度数据库中该待分析伪卫星发射节点所对应各信号强度之间的欧氏距离,并获得其中预设数目个最小欧氏距离,以及该各欧氏距离分别所对应室内信号强度数据库中的坐标位置,构成当前位置对应该待分析伪卫星发射节点的各个参考坐标位置;进而获得当前位置分别对应各待分析伪卫星发射节点的各个参考坐标位置,然后进入步骤C;Step B. For each pseudolite transmitting node to be analyzed corresponding to the current position, obtain the current position signal front degree corresponding to the pseudolite transmitting node to be analyzed, respectively, and each pseudolite transmitting node corresponding to the pseudolite transmitting node to be analyzed in the indoor signal strength database. The Euclidean distance between the signal strengths, and obtain the preset number of minimum Euclidean distances, and the coordinate positions in the indoor signal strength database corresponding to the Euclidean distances, to form the current position corresponding to the pseudolite launch node to be analyzed Each reference coordinate position of each; and then obtain the current position respectively corresponding to each reference coordinate position of each pseudolite launching node to be analyzed, and then enter step C;
步骤C.针对当前位置所对应的全部参考坐标位置,根据各个参考位置所对应步骤B中的欧式距离大小进行递增或递减排序,并基于各个参考坐标位置的排序,顺序针对各个参考坐标位置设置权重,各个参考坐标位置分别所对应的权重随各参考坐标位置的排序、依次递增或依次递减,且各权重的排序与各参考坐标位置所对应欧式距离的距离相反,以及各个参考坐标位置分别所对应权重的和为1,然后进入步骤D;Step C. For all reference coordinate positions corresponding to the current position, sort them in ascending or descending order according to the Euclidean distance in step B corresponding to each reference position, and set weights for each reference coordinate position in order based on the sorting of each reference coordinate position , the weights corresponding to each reference coordinate position increase or decrease sequentially with the order of each reference coordinate position, and the order of each weight is opposite to the distance of the Euclidean distance corresponding to each reference coordinate position, and each reference coordinate position corresponds to The sum of the weights is 1, and then enter step D;
步骤D.针对当前位置所对应各个参考坐标位置,按其权重进行加权处理,所获加权结果即为终端所在当前位置的坐标位置,实现终端在室内的定位。Step D. For each reference coordinate position corresponding to the current position, weighting is performed according to its weight, and the obtained weighted result is the coordinate position of the current position of the terminal, so as to realize the positioning of the terminal indoors.
作为本发明的一种优选技术方案:所述终端定位方法中,室内信号强度数据库按如下方法构建;As a preferred technical solution of the present invention: in the terminal positioning method, the indoor signal strength database is constructed as follows;
分别针对室内的各个坐标位置,执行如下步骤Ⅰ至步骤Ⅱ,获得各个坐标位置分别所对应的数据记录,由此构成室内信号强度数据库;For each coordinate position in the room, perform the following steps Ⅰ to Ⅱ to obtain the data records corresponding to each coordinate position, thereby forming an indoor signal strength database;
步骤Ⅰ.获取终端位于坐标位置、所获来自各个伪卫星发射节点的信号强度,然后进入步骤Ⅱ;Step Ⅰ. Obtain the terminal at the coordinate position and the signal strength obtained from each pseudolite transmitting node, and then enter step Ⅱ;
步骤Ⅱ.选择该坐标位置所获取各个信号强度中、大于预设信号强度阈值的各个信号强度,并获得该各信号强度分别所对应的伪卫星发射节点,构成该坐标位置与该各伪卫星发射节点分别相对该坐标位置的信号强度之间的数据映射关系,作为该坐标位置所对应的数据记录。Step II. Select each signal strength greater than the preset signal strength threshold among the signal strengths obtained at the coordinate position, and obtain the pseudolite transmitting nodes corresponding to the respective signal strengths, and form the coordinate position and the pseudolite transmitting nodes. The data mapping relationship between the signal strengths of the nodes relative to the coordinate position is used as the data record corresponding to the coordinate position.
作为本发明的一种优选技术方案:所述终端按如下步骤ⅰ至步骤ⅱ,获得其所在位置来自各伪卫星发射节点的信号强度;As a preferred technical solution of the present invention: the terminal obtains the signal strength from each pseudolite transmitting node at its position according to the following steps i to step ii;
步骤ⅰ.分别针对终端位于所在位置的各个朝向,获得终端位于该位置朝向下、来自各伪卫星发射节点的信号强度;进而终端获得来自各伪卫星发射节点、分别对应终端所在位置各朝向下的信号强度,然后进入步骤ⅱ;Step i. For each direction in which the terminal is located, obtain the signal strength of the terminal located in the direction of the position and from each pseudolite transmitting node; and then the terminal obtains the signal strength from each pseudolite transmitting node corresponding to the position of the terminal in each direction. Signal strength, then go to step ii;
步骤ⅱ.分别针对各个伪卫星发射节点,针对终端所获来自伪卫星发射节点、分别对应终端所在位置各朝向下的信号强度,按朝向数,获得终端所获来自该伪卫星发射节点的信号强度的平均值,作为终端位于所在位置、所获来自该伪卫星发射节点的信号强度;进而终端获得其所在位置来自各伪卫星发射节点的信号强度。Step ii. For each pseudolite transmitting node, for the signal strength obtained by the terminal from the pseudolite transmitting node and corresponding to each orientation of the terminal location, according to the number of orientations, obtain the signal strength obtained by the terminal from the pseudolite transmitting node The average value of is used as the signal strength obtained by the terminal from the pseudolite transmitting node at its location; and then the terminal obtains the signal strength from each pseudolite transmitting node at its location.
作为本发明的一种优选技术方案:所述终端获得来自伪卫星发射节点的信号强度的过程中,终端首先获得来自伪卫星发射节点的载噪比,然后根据载噪比到信号强度的转换,终端获得来自伪卫星发射节点的信号强度。As a preferred technical solution of the present invention: in the process of the terminal obtaining the signal strength from the pseudolite transmitting node, the terminal first obtains the carrier-to-noise ratio from the pseudolite transmitting node, and then according to the conversion from the carrier-to-noise ratio to the signal strength, The terminal obtains the signal strength from the pseudolite transmitting node.
作为本发明的一种优选技术方案,所述步骤C中,按如下公式:As a preferred technical solution of the present invention, in the step C, according to the following formula:
获得当前位置所对应各个参考坐标位置的权重ωi,其中,i∈{1、…、I},j∈{1、…、I},I表示当前位置所对应参考坐标位置的个数,ωi表示当前位置所对应第i个参考坐标位置的权重,Di表示当前位置所对应第i个参考坐标位置、对应于步骤B中的欧式距离,Dj表示当前位置所对应第j个参考坐标位置、对应于步骤B中的欧式距离。Obtain the weight ωi of each reference coordinate position corresponding to the current position, where, i∈{1,...,I}, j∈{1,...,I}, I represents the number of reference coordinate positions corresponding to the current position, ωi represents the weight of the i-th reference coordinate position corresponding to the current position, Di represents the i-th reference coordinate position corresponding to the current position, corresponding to the Euclidean distance in step B, and Dj represents the j-th reference coordinate position corresponding to the current position position, corresponding to the Euclidean distance in step B.
本发明所述一种基于室内伪卫星信号载噪比的终端定位方法,采用以上技术方案与现有技术相比,具有以下技术效果:A terminal positioning method based on indoor pseudolite signal carrier-to-noise ratio described in the present invention adopts the above technical scheme compared with the prior art, and has the following technical effects:
本发明所设计基于室内伪卫星信号载噪比的终端定位方法,避开了传统使用伪卫星信号的伪距、载波等信息的定位解算来实现定位的方法,而是提出一种利用伪卫星信号载噪比来实现定位的方法,同时利用SAWKNN算法来优化定位精度,减少伪卫星定位时的多路径效应,避免了定位过程中多路径效应带来的误差,提高了伪卫星定位的准确性。The terminal positioning method based on the carrier-to-noise ratio of the indoor pseudolite signal designed by the present invention avoids the traditional positioning calculation method using pseudolite signal pseudo-range, carrier and other information to achieve positioning, but proposes a method using pseudolite The signal carrier-to-noise ratio is used to realize the positioning method, and the SAWKNN algorithm is used to optimize the positioning accuracy, reduce the multi-path effect during pseudolite positioning, avoid the error caused by the multi-path effect in the positioning process, and improve the accuracy of pseudolite positioning .
附图说明Description of drawings
图1是本发明设计基于室内伪卫星信号载噪比的终端定位方法的流程示意图。FIG. 1 is a schematic flowchart of a terminal positioning method designed based on indoor pseudolite signal carrier-to-noise ratio in the present invention.
具体实施方式Detailed ways
下面结合说明书附图对本发明的具体实施方式作进一步详细的说明。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.
局域伪卫星系统是为满足上述环境中的定位需求、而发展的局域定位技术之一,针对卫星导航系统中存在的这些问题,在引入伪卫星技术之后,就可以实现这些恶劣情况下的局域定位,也能较好的解决卫星导航的局限性,提高卫星导航的可靠性、可用性和精度;伪卫星定位技术是实现局域高精度定位的一个可行方案。The local pseudolite system is one of the local positioning technologies developed to meet the positioning requirements in the above-mentioned environment. In view of these problems in the satellite navigation system, after the introduction of the pseudolite technology, it is possible to realize positioning in these harsh conditions. Local positioning can also better solve the limitations of satellite navigation and improve the reliability, usability and accuracy of satellite navigation; pseudolite positioning technology is a feasible solution to realize local high-precision positioning.
在指纹算法中,基于概率性的指纹算法假设来自AP的RSSI呈现高斯分布,通过朴素贝叶斯等概率匹配算法进行定位,实测表明RSSI并不是标准的高斯分布,而是呈现双峰高斯分布,并且非高斯性的解决使计算复杂度上升,不利于移动设备定位;而基于确定性的指纹算法,如加权K临近法(Weight K—nearest Neighborhood,WKNN),相对基于概率性的算法,计算复杂度低,运行速度快,易于实现,同时WKNN算法相对于其他基于确定性的匹配算法定位精度高。In the fingerprint algorithm, the probabilistic fingerprint algorithm assumes that the RSSI from the AP presents a Gaussian distribution, and uses the naive Bayesian equal probability matching algorithm for positioning. The actual measurement shows that the RSSI is not a standard Gaussian distribution, but a bimodal Gaussian distribution. Moreover, the non-Gaussian solution increases the computational complexity, which is not conducive to the positioning of mobile devices; and the fingerprint algorithm based on determinism, such as the weighted K-nearest Neighborhood (WKNN), is relatively complex to calculate based on the probability algorithm. The accuracy is low, the operation speed is fast, and it is easy to implement. At the same time, the WKNN algorithm has higher positioning accuracy than other deterministic-based matching algorithms.
本发明设计了一种基于室内伪卫星信号载噪比的终端定位方法,基于室内所设置的各个伪卫星发射节点,实现终端在室内的定位,其中,各个伪卫星发射节点的信号共同实现对室内各区域的覆盖。The present invention designs a terminal positioning method based on the carrier-to-noise ratio of indoor pseudolite signals. Based on each pseudolite transmitting node set indoors, the indoor positioning of the terminal is realized, wherein the signals of each pseudolite transmitting node jointly realize indoor positioning. coverage of each region.
所述终端定位方法中,首先,获得移动终端分别位于室内各个坐标位置、所获大于预设信号强度阈值的各个信号强度,以及该各信号强度分别所对应伪卫星发射节点,构成室内信号强度数据库;实际应用中,具体按如下过程进行执行。In the terminal positioning method, first, the mobile terminal is located at each coordinate position indoors, each signal strength obtained is greater than the preset signal strength threshold, and the pseudolite transmitting nodes corresponding to the respective signal strengths are obtained to form an indoor signal strength database ; In actual application, the specific implementation is as follows.
分别针对室内的各个坐标位置,执行如下步骤Ⅰ至步骤Ⅱ,获得各个坐标位置分别所对应的数据记录,由此构成室内信号强度数据库。For each coordinate position in the room, the following steps I to II are performed to obtain data records corresponding to each coordinate position, thereby forming an indoor signal strength database.
步骤Ⅰ.获取终端位于坐标位置、所获来自各个伪卫星发射节点的信号强度,然后进入步骤Ⅱ。Step Ⅰ. Obtain the terminal at the coordinate position and the signal strength obtained from each pseudolite transmitting node, and then proceed to step Ⅱ.
步骤Ⅱ.选择该坐标位置所获取各个信号强度中、大于预设信号强度阈值的各个信号强度,并获得该各信号强度分别所对应的伪卫星发射节点,构成该坐标位置与该各伪卫星发射节点分别相对该坐标位置的信号强度之间的数据映射关系,作为该坐标位置所对应的数据记录。Step II. Select each signal strength greater than the preset signal strength threshold among the signal strengths obtained at the coordinate position, and obtain the pseudolite transmitting nodes corresponding to the respective signal strengths, and form the coordinate position and the pseudolite transmitting nodes. The data mapping relationship between the signal strengths of the nodes relative to the coordinate position is used as the data record corresponding to the coordinate position.
然后如图1所示,终端执行如下步骤A至步骤D,实现在室内当前位置的定位。Then, as shown in FIG. 1 , the terminal executes the following steps A to D to realize the positioning of the current indoor location.
步骤A.获取终端位于室内当前位置、所获来自各个伪卫星发射节点的信号强度,并选择其中大于预设信号强度阈值的各个信号强度,以及该各信号强度分别所对应伪卫星发射节点,构成当前位置所对应的各个待分析伪卫星发射节点、以及来自各待分析伪卫星发射节点的信号强度,然后进入步骤B。Step A. Acquire the signal strengths obtained from each pseudolite transmitting node at the current indoor location of the terminal, and select each signal strength greater than the preset signal strength threshold, and the respective pseudolite transmitting nodes corresponding to each signal strength, to form a Each pseudolite transmitting node to be analyzed corresponding to the current position, and the signal strength from each pseudolite transmitting node to be analyzed, and then enter step B.
上述室内信号强度数据库的构建过程中,以及步骤A中,终端按如下步骤ⅰ至步骤ⅱ,获得其所在位置来自各伪卫星发射节点的信号强度。In the process of building the above-mentioned indoor signal strength database, and in step A, the terminal obtains the signal strength of each pseudolite transmitting node at its location according to the following steps i to step ii.
步骤ⅰ.分别针对终端位于所在位置的各个朝向,获得终端位于该位置朝向下、来自各伪卫星发射节点的信号强度;进而终端获得来自各伪卫星发射节点、分别对应终端所在位置各朝向下的信号强度,然后进入步骤ⅱ。Step i. For each direction in which the terminal is located, obtain the signal strength of the terminal located in the direction of the position and from each pseudolite transmitting node; and then the terminal obtains the signal strength from each pseudolite transmitting node corresponding to the position of the terminal in each direction. signal strength, then go to step ii.
步骤ⅱ.分别针对各个伪卫星发射节点,针对终端所获来自伪卫星发射节点、分别对应终端所在位置各朝向下的信号强度,按朝向数,获得终端所获来自该伪卫星发射节点的信号强度的平均值,作为终端位于所在位置、所获来自该伪卫星发射节点的信号强度;进而终端获得其所在位置来自各伪卫星发射节点的信号强度。Step ii. For each pseudolite transmitting node, for the signal strength obtained by the terminal from the pseudolite transmitting node and corresponding to each orientation of the terminal location, according to the number of orientations, obtain the signal strength obtained by the terminal from the pseudolite transmitting node The average value of is used as the signal strength obtained by the terminal from the pseudolite transmitting node at its location; and then the terminal obtains the signal strength from each pseudolite transmitting node at its location.
并且实际应用中,对于终端获得来自伪卫星发射节点的信号强度的过程中,终端首先获得来自伪卫星发射节点的载噪比,然后根据载噪比到信号强度的转换,终端获得来自伪卫星发射节点的信号强度。And in practical applications, in the process of obtaining the signal strength from the pseudolite transmitting node for the terminal, the terminal first obtains the carrier-to-noise ratio from the pseudolite transmitting node, and then according to the conversion from the carrier-to-noise ratio to the signal strength, the terminal obtains the signal strength from the pseudolite transmitting node. The signal strength of the node.
在载噪比到信号强度的具体转换中,载噪比是载波噪声比C/N0的简称,用来衡量信号的质量,其定义如下:In the specific conversion from carrier-to-noise ratio to signal strength, carrier-to-noise ratio is the abbreviation of carrier-to-noise ratio C/N0 , which is used to measure the quality of the signal, and its definition is as follows:
其中,Pr表示接受功率,也就是信号强度;N0表示噪声功率,N0的值一般情况下取为-200dBW/Hz,因此,信号强度Pr可以通过如下公式获取,单位为dBW。Among them, Pr represents the received power, that is, the signal strength; N0 represents the noise power, and the value of N0 is generally taken as -200dBW/Hz. Therefore, the signal strength Pr can be obtained by the following formula, and the unit is dBW.
Pr=C/N0-200 (4)Pr =C/N0 -200 (4)
再将信号强度转换成距离,当发射机与接收机之间的信号在真空中进行传播,且传播路径上没有任何障碍物导致出现遮挡、多径、绕射等情况,我们将其称之为自由空间传播;根据无线通信传播理论,在自由空间传播时,信号的发射功率与接收功率存在以下关系:Then convert the signal strength into a distance. When the signal between the transmitter and the receiver propagates in a vacuum, and there are no obstacles on the propagation path to cause occlusion, multipath, diffraction, etc., we call it Free space propagation; according to the theory of wireless communication propagation, when propagating in free space, there is the following relationship between the transmitted power and received power of the signal:
式中,d表示接收机与发射机之间的距离,Pr(d)表示在相距d时信号的接收功率,Pt表示信号的发射功率,GtGr分别是发射端和接收端的天线増益,λ表示信号的波长。式(5)等号两边同时取对数,可得:In the formula, d represents the distance between the receiver and the transmitter, Pr (d) represents the received power of the signal at a distance of d, Pt represents the transmitted power of the signal, and Gt Gr are the antennas of the transmitting end and the receiving end respectively Gain, λ represents the wavelength of the signal. Taking the logarithm on both sides of the equal sign in formula (5), we can get:
令d=d0,有:Let d=d0 , there are:
将两式相减并整理可得到:Subtract and rearrange the two equations to get:
10lg[Pr(d)]=20lg(d0)+10lg[Pr(d0)]-20lg(d) (8)10lg[Pr (d)]=20lg(d0 )+10lg[Pr (d0 )]-20lg(d) (8)
特殊处理下,令d0=1m时,式(8)变为:Under special treatment, when d0 =1m, formula (8) becomes:
10lg[Pr(d)]=10lg[Pr(d0)]-20lg(d) (9)10lg[Pr (d)]=10lg[Pr (d0 )]-20lg(d) (9)
由于信号功率和距离是强相关关系,当距离保持不变时所接收到的信号功率将是个定值。因此式(9)中的10lg[Pr(d0)]为一个定值,将等号左边的接收功率用符号RSSI(d)表示,同时令10lg[Pr(d0)]=A,此时式(9)可以改写为:Since signal power and distance are strongly correlated, the received signal power will be a constant value when the distance remains constant. Therefore, 10lg[Pr (d0 )] in formula (9) is a fixed value, and the received power on the left side of the equal sign is represented by the symbol RSSI(d), and 10lg[Pr (d0 )]=A, At this time, formula (9) can be rewritten as:
RSSI(d)=A-20lg(d) (10)RSSI(d)=A-20lg(d) (10)
最终在考虑现实环境的一系列因素影响之下,得到的空间损耗模型将变为:Finally, under the consideration of a series of factors in the real environment, the resulting space loss model will become:
因此非自由空间下的信号强度RSSI与d的关系如下:Therefore, the relationship between the signal strength RSSI and d in the non-free space is as follows:
RSSI(d)=A-10lg(d) (12)RSSI(d)=A-10lg(d) (12)
由此即实现信号强度RSSI(d)的获得,完成载噪比到信号强度的转换。In this way, the acquisition of the signal strength RSSI(d) is realized, and the conversion from the carrier-to-noise ratio to the signal strength is completed.
步骤B.分别针对当前位置所对应的各个待分析伪卫星发射节点,获取待分析伪卫星发射节点所对应当前位置信号前度、分别与室内信号强度数据库中该待分析伪卫星发射节点所对应各信号强度之间的欧氏距离,并获得其中预设数目个最小欧氏距离,以及该各欧氏距离分别所对应室内信号强度数据库中的坐标位置,构成当前位置对应该待分析伪卫星发射节点的各个参考坐标位置;进而获得当前位置分别对应各待分析伪卫星发射节点的各个参考坐标位置,然后进入步骤C。Step B. For each pseudolite transmitting node to be analyzed corresponding to the current position, obtain the current position signal front degree corresponding to the pseudolite transmitting node to be analyzed, respectively, and each pseudolite transmitting node corresponding to the pseudolite transmitting node to be analyzed in the indoor signal strength database. The Euclidean distance between the signal strengths, and obtain the preset number of minimum Euclidean distances, and the coordinate positions in the indoor signal strength database corresponding to the Euclidean distances, to form the current position corresponding to the pseudolite launch node to be analyzed Each reference coordinate position of each of the pseudolite launching nodes corresponding to the current position is obtained, and then step C is entered.
步骤C.针对当前位置所对应的全部参考坐标位置,根据各个参考位置所对应步骤B中的欧式距离大小进行递增或递减排序,并基于各个参考坐标位置的排序,顺序针对各个参考坐标位置设置权重,各个参考坐标位置分别所对应的权重随各参考坐标位置的排序、依次递增或依次递减,且各权重的排序与各参考坐标位置所对应欧式距离的距离相反,以及各个参考坐标位置分别所对应权重的和为1,然后进入步骤D。Step C. For all reference coordinate positions corresponding to the current position, sort them in ascending or descending order according to the Euclidean distance in step B corresponding to each reference position, and set weights for each reference coordinate position in order based on the sorting of each reference coordinate position , the weights corresponding to each reference coordinate position increase or decrease sequentially with the order of each reference coordinate position, and the order of each weight is opposite to the distance of the Euclidean distance corresponding to each reference coordinate position, and each reference coordinate position corresponds to The sum of the weights is 1, and then go to step D.
具体实际应用中,上述步骤C中,针对当前位置所对应的各个参考坐标位置,按如下公式:In specific practical applications, in the above step C, for each reference coordinate position corresponding to the current position, the following formula is used:
获得当前位置所对应各个参考坐标位置的权重ωi,其中,i∈{1、…、I},j∈{1、…、I},I表示当前位置所对应参考坐标位置的个数,ωi表示当前位置所对应第i个参考坐标位置的权重,Di表示当前位置所对应第i个参考坐标位置、对应于步骤B中的欧式距离,Dj表示当前位置所对应第j个参考坐标位置、对应于步骤B中的欧式距离。Obtain the weight ωi of each reference coordinate position corresponding to the current position, where, i∈{1,...,I}, j∈{1,...,I}, I represents the number of reference coordinate positions corresponding to the current position, ωi represents the weight of the i-th reference coordinate position corresponding to the current position, Di represents the i-th reference coordinate position corresponding to the current position, corresponding to the Euclidean distance in step B, and Dj represents the j-th reference coordinate position corresponding to the current position position, corresponding to the Euclidean distance in step B.
步骤D.针对当前位置所对应各个参考坐标位置,按其权重进行加权处理,所获加权结果即为终端所在当前位置的坐标位置,实现终端在室内的定位。Step D. For each reference coordinate position corresponding to the current position, weighting is performed according to its weight, and the obtained weighted result is the coordinate position of the current position of the terminal, so as to realize the positioning of the terminal indoors.
上述技术方案所设计基于室内伪卫星信号载噪比的终端定位方法,避开了传统使用伪卫星信号的伪距、载波等信息的定位解算来实现定位的方法,而是提出一种利用伪卫星信号载噪比来实现定位的方法,同时利用SAWKNN算法来优化定位精度,减少伪卫星定位时的多路径效应,避免了定位过程中多路径效应带来的误差,提高了伪卫星定位的准确性。The terminal positioning method based on the indoor pseudolite signal carrier-to-noise ratio designed by the above technical solution avoids the traditional positioning calculation method using pseudolite signal pseudorange, carrier and other information to achieve positioning, but proposes a method using pseudolite The satellite signal carrier-to-noise ratio is used to realize the positioning method, and the SAWKNN algorithm is used to optimize the positioning accuracy, reduce the multipath effect during pseudolite positioning, avoid the error caused by the multipath effect in the positioning process, and improve the accuracy of pseudolite positioning sex.
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above embodiments, and can also be made without departing from the gist of the present invention within the scope of knowledge possessed by those of ordinary skill in the art. Variations.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910699029.6ACN110456307B (en) | 2019-07-31 | 2019-07-31 | Terminal positioning method based on indoor pseudo satellite signal carrier-to-noise ratio |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910699029.6ACN110456307B (en) | 2019-07-31 | 2019-07-31 | Terminal positioning method based on indoor pseudo satellite signal carrier-to-noise ratio |
| Publication Number | Publication Date |
|---|---|
| CN110456307Atrue CN110456307A (en) | 2019-11-15 |
| CN110456307B CN110456307B (en) | 2022-04-22 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910699029.6AActiveCN110456307B (en) | 2019-07-31 | 2019-07-31 | Terminal positioning method based on indoor pseudo satellite signal carrier-to-noise ratio |
| Country | Link |
|---|---|
| CN (1) | CN110456307B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111856527A (en)* | 2020-08-07 | 2020-10-30 | 中国电子科技集团公司第五十四研究所 | An indoor positioning method based on pseudolite space signal map |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050086001A1 (en)* | 2003-08-14 | 2005-04-21 | Samsung Electronics Co., Ltd. | System and method for assigning pseudo random noise codes to pseudo satellites |
| CN102854491A (en)* | 2012-08-24 | 2013-01-02 | 东莞中山大学研究院 | A method and system for realizing positioning based on bluetooth technology |
| CN103513229A (en)* | 2013-10-18 | 2014-01-15 | 常州大学 | Positioning method based on WIFI signal |
| CN105101406A (en)* | 2015-06-26 | 2015-11-25 | 上海汇纳信息科技股份有限公司 | A method and system for indoor positioning based on wireless strength |
| CN106597512A (en)* | 2016-12-28 | 2017-04-26 | 格星微电子科技成都有限公司 | Indoor pseudo satellite quick positioning method |
| CN106772505A (en)* | 2016-12-22 | 2017-05-31 | 格星微电子科技成都有限公司 | Navigation locating method based on Pseudolite signal carrier-to-noise ratio |
| CN109195099A (en)* | 2018-07-06 | 2019-01-11 | 广东工业大学 | A kind of indoor orientation method merged based on iBeacon and PDR |
| CN109945870A (en)* | 2019-03-11 | 2019-06-28 | 东南大学 | A pseudolite indoor positioning method based on the fusion of pseudorange observations and carrier-to-noise ratio |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050086001A1 (en)* | 2003-08-14 | 2005-04-21 | Samsung Electronics Co., Ltd. | System and method for assigning pseudo random noise codes to pseudo satellites |
| CN102854491A (en)* | 2012-08-24 | 2013-01-02 | 东莞中山大学研究院 | A method and system for realizing positioning based on bluetooth technology |
| CN103513229A (en)* | 2013-10-18 | 2014-01-15 | 常州大学 | Positioning method based on WIFI signal |
| CN105101406A (en)* | 2015-06-26 | 2015-11-25 | 上海汇纳信息科技股份有限公司 | A method and system for indoor positioning based on wireless strength |
| CN106772505A (en)* | 2016-12-22 | 2017-05-31 | 格星微电子科技成都有限公司 | Navigation locating method based on Pseudolite signal carrier-to-noise ratio |
| CN106597512A (en)* | 2016-12-28 | 2017-04-26 | 格星微电子科技成都有限公司 | Indoor pseudo satellite quick positioning method |
| CN109195099A (en)* | 2018-07-06 | 2019-01-11 | 广东工业大学 | A kind of indoor orientation method merged based on iBeacon and PDR |
| CN109945870A (en)* | 2019-03-11 | 2019-06-28 | 东南大学 | A pseudolite indoor positioning method based on the fusion of pseudorange observations and carrier-to-noise ratio |
| Title |
|---|
| 夏炎等: "基于载噪比加权融合的异步伪卫星室内定位方法", 《中国惯性技术学报》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111856527A (en)* | 2020-08-07 | 2020-10-30 | 中国电子科技集团公司第五十四研究所 | An indoor positioning method based on pseudolite space signal map |
| CN111856527B (en)* | 2020-08-07 | 2023-06-20 | 中国电子科技集团公司第五十四研究所 | Indoor positioning method based on pseudolite space signal spectrum |
| Publication number | Publication date |
|---|---|
| CN110456307B (en) | 2022-04-22 |
| Publication | Publication Date | Title |
|---|---|---|
| Lam et al. | RSSI-based LoRa localization systems for large-scale indoor and outdoor environments | |
| US20200015047A1 (en) | Wifi multi-band fingerprint-based indoor positioning | |
| US9084217B2 (en) | Single-site localization via multipath fingerprinting | |
| CN106909779B (en) | Calculation method of Cramero bound for MIMO radar based on distributed processing | |
| CN111381226B (en) | Range finding enhancement method based on multi-band received signal strength | |
| JP2002320254A (en) | Mobile communication apparatus and its position detection method | |
| WO2003060632A2 (en) | Method for determining location information | |
| CN110351660B (en) | A Bluetooth indoor positioning method based on two-step fingerprint matching architecture | |
| CN108226912B (en) | Sparse network-based non-contact object perception positioning method and system | |
| Naghdi et al. | Trilateration with BLE RSSI accounting for pathloss due to human obstacles | |
| CN113852922A (en) | High-precision indoor positioning method for direct line-of-sight propagation path mining of WiFi signals | |
| US8577388B2 (en) | Apparatus and method for determining position | |
| CN111866709A (en) | A moving target-oriented indoor Wi-Fi localization error bound estimation method | |
| Diao et al. | CMD-based NLOS identification and mitigation in wireless sensor networks | |
| CN115150744A (en) | A method for locating indoor signal interference sources in large conference venues | |
| CN114521014A (en) | Method for improving positioning accuracy in UWB positioning process | |
| Doiphode et al. | Survey of indoor positioning measurements, methods and techniques | |
| CN115499277B (en) | A high-resolution broadband spatial domain non-stationary channel parameter estimation method | |
| US11733344B2 (en) | Interference source searching method and interference source searching apparatus | |
| CN108650009B (en) | Wireless link occlusion estimation method for passive detection of aircraft | |
| CN110456307A (en) | A terminal positioning method based on indoor pseudolite signal carrier-to-noise ratio | |
| CN113484824B (en) | RSS difference trilateral positioning method based on receiving and transmitting separation RFID positioning system | |
| Escudero et al. | An indoor positioning method using ieee 802.11 channel state information | |
| Rizos et al. | Indoor positioning techniques based on wireless LAN | |
| CN119402817A (en) | An integrated positioning method based on spatial spectrum estimation and map matching |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |