技术领域technical field
本发明涉及六维力/力矩传感器领域,具体地,涉及六维力/力矩传感器、补偿装置及方法,尤其是一种可实时补偿负载重力项、惯性力和惯性力矩的重力和惯性力/力矩补偿装置和方法。The present invention relates to the field of six-dimensional force/torque sensors, in particular to six-dimensional force/torque sensors, compensation devices and methods, especially a gravity and inertial force/torque capable of real-time compensation of load gravity items, inertial forces and inertial moments Compensation device and method.
背景技术Background technique
近年来,随着科技的进步与经济的发展,尤其是人工智能与机器人自动化的发展,使六维力/力矩传感器的需求日益增加,并广泛应用于自动焊接、抓取、安装、柔顺控制等领域。目前六维力、力矩传感器只能测量作用于传感器的力和力矩,这种力和力矩包含作用于负载的力和力矩和负载自身重力项和运动产生的惯性力和惯性力矩。在一些实际应用场合,传感器使用者只希望获得作用于负载的力和力矩,而目前所使用的传感器一般无法直接、有效的区分这两种力和力矩。一些研究者只能通过设备的其它测量参数计算出负载的惯性力和惯性力矩,然后通过补偿运算得到负载所受到的力和力矩,这种方法往往需要研究者添加一些额外的测量设备和运算程序,使系统变得更复杂,降低系统的运行速度。In recent years, with the advancement of science and technology and the development of the economy, especially the development of artificial intelligence and robot automation, the demand for six-dimensional force/torque sensors is increasing, and they are widely used in automatic welding, grasping, installation, compliance control, etc. field. At present, the six-dimensional force and moment sensor can only measure the force and moment acting on the sensor. This force and moment includes the force and moment acting on the load and the gravity item of the load itself and the inertial force and moment of inertia generated by the movement. In some practical applications, sensor users only want to obtain the force and moment acting on the load, and the sensors currently used generally cannot directly and effectively distinguish these two kinds of force and moment. Some researchers can only calculate the inertial force and moment of inertia of the load through other measurement parameters of the equipment, and then obtain the force and moment of the load through compensation calculations. This method often requires researchers to add some additional measurement equipment and calculation programs , making the system more complex and reducing the operating speed of the system.
专利文献CN1385677A公开了一种十二维力/加速度机器人腕传感器,这种传感器可同时检测六分量力/力矩和六分量线加速度/角加速度,但这种结构的传感器结构较负载,标定困难,需要使用者自行设计补偿程序。因此需要设计一种结构简单,使用方便,可以实时补偿负载惯性力和惯性力矩的六维力传感器。Patent document CN1385677A discloses a 12-dimensional force/acceleration robot wrist sensor, which can simultaneously detect six-component force/torque and six-component linear acceleration/angular acceleration, but the sensor structure of this structure is relatively heavy, and calibration is difficult. The user needs to design the compensation program by himself. Therefore, it is necessary to design a six-dimensional force sensor with simple structure, convenient use, and real-time compensation of load inertial force and inertial moment.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种六维力/力矩传感器、补偿装置及方法。Aiming at the defects in the prior art, the object of the present invention is to provide a six-dimensional force/torque sensor, compensation device and method.
根据本发明提供的一种六维力/力矩传感器,包括:传感器外壳1、传感器电路板2、传感器底座3以及传感器补偿运算模块;传感器电路板2包括:惯性测量单元21,惯性测量单元21能够同时测量三轴角速度和三轴加速度;传感器底座3包括:支架31;传感器外壳1与传感器底座3装配连接,支架31固定安装于传感器底座3,传感器电路板2与支架31紧固连接,惯性测量单元21集成设置在传感器电路板2上;传感器补偿运算模块与传感器电路板2相连接,所述传感器补偿运算模块能够进行负载4的重力、惯性力和惯性力矩补偿运算。According to a six-dimensional force/torque sensor provided by the present invention, it includes: a sensor housing 1, a sensor circuit board 2, a sensor base 3 and a sensor compensation calculation module; the sensor circuit board 2 includes: an inertial measurement unit 21, and the inertial measurement unit 21 can Simultaneously measure triaxial angular velocity and triaxial acceleration; sensor base 3 includes: bracket 31; sensor housing 1 is assembled and connected with sensor base 3, bracket 31 is fixedly installed on sensor base 3, sensor circuit board 2 is tightly connected with bracket 31, inertial measurement The unit 21 is integrated on the sensor circuit board 2 ; the sensor compensation calculation module is connected to the sensor circuit board 2 , and the sensor compensation calculation module can perform compensation calculations for the gravity, inertia force and inertia moment of the load 4 .
优选地,传感器补偿运算模块设置于上位机或者集成设置于传感器电路板2上。Preferably, the sensor compensation calculation module is set on the host computer or integrated on the sensor circuit board 2 .
优选地,所述传感器电路板2能够输出以下任一种或者任多种信号:-模拟量信号;-数字量信号。Preferably, the sensor circuit board 2 can output any one or any of the following signals: - analog signal; - digital signal.
根据本发明提供的一种补偿装置,包括:六维力/力矩传感器。A compensation device provided according to the present invention includes: a six-dimensional force/torque sensor.
优选地,还包括:负载4;所述负载4与六维力/力矩传感器相互连接;所述六维力/力矩传感器包括:传感器外壳1;所述负载4与传感器外壳1紧固连接。Preferably, it also includes: a load 4; the load 4 is connected to the six-dimensional force/torque sensor; the six-dimensional force/torque sensor includes: a sensor housing 1; the load 4 is firmly connected to the sensor housing 1 .
根据本发明提供的一种补偿方法,包括:测速步骤:通过置于六维力/力矩传感器内部的惯性测量单元21测量负载4的三轴角速度和三轴加速度,获取三轴角速度参数和三轴加速度参数;运算步骤:根据三轴角速度参数和三轴加速度参数,获取负载4的重力参数、惯性力参数/惯性力矩参数;补偿步骤:根据负载4的重力参数、惯性力参数和惯性力矩参数,补偿重力、惯性力和惯性力矩至六维力/力矩至传感器。According to a compensation method provided by the present invention, it includes: speed measurement step: measure the triaxial angular velocity and triaxial acceleration of the load 4 through the inertial measurement unit 21 placed inside the six-dimensional force/moment sensor, and obtain the triaxial angular velocity parameters and the triaxial acceleration. Acceleration parameters; operation steps: according to the three-axis angular velocity parameters and three-axis acceleration parameters, obtain the gravity parameters, inertial force parameters/inertial moment parameters of the load 4; compensation steps: according to the gravity parameters, inertial force parameters and inertial moment parameters of the load 4, Compensates gravity, inertial force and moment of inertia to six-dimensional force/moment to sensor.
优选地,测速步骤包括:创建第一坐标系步骤:创建惯性测量单元21的坐标系;创建第二坐标系步骤:创建传感器力测量基准坐标系;创建第三坐标系步骤:创建负载4的质心坐标系。Preferably, the speed measuring step includes: creating the first coordinate system step: creating the coordinate system of the inertial measurement unit 21; creating the second coordinate system step: creating the sensor force measurement reference coordinate system; creating the third coordinate system step: creating the center of mass of the load 4 Coordinate System.
优选地,测速步骤还包括:微分步骤:对三轴角速度参数取微分,获取三轴角加速度参数;所述三轴加速度参数为沿惯性测量单元21的坐标系的三个坐标轴的加速度参数;所述三轴角加速度参数为绕惯性测量单元21的坐标系的三个坐标轴的角加速度参数。Preferably, the speed measurement step further includes: a differentiation step: taking a differential on the three-axis angular velocity parameter to obtain the three-axis angular acceleration parameter; the three-axis acceleration parameter is the acceleration parameter along the three coordinate axes of the coordinate system of the inertial measurement unit 21; The three-axis angular acceleration parameters are angular acceleration parameters around three coordinate axes of the coordinate system of the inertial measurement unit 21 .
优选地,运算步骤包括:-获取重力、惯性力和惯性力矩步骤:根据三轴加速度和角加速度参数,获取负载4的重力参数、惯性力参数和惯性力矩参数在惯性测量单元21的坐标系下和负载4的质心坐标系下的表示;-简化到坐标系步骤:将惯性测量单元21坐标系下和负载4的质心坐标系下表示的负载重力、惯性力和惯性力矩变换到传感器力测量基准坐标系下表示。Preferably, the calculation steps include: - Obtain gravity, inertial force and moment of inertia step: according to the three-axis acceleration and angular acceleration parameters, obtain the gravity parameter, inertial force parameter and moment of inertia parameter of the load 4 under the coordinate system of the inertial measurement unit 21 and representation under the center of mass coordinate system of load 4; - Simplify to the coordinate system step: transform the load gravity, inertial force and moment of inertia expressed under the coordinate system of inertial measurement unit 21 and the center of mass coordinate system of load 4 to the sensor force measurement reference expressed in the coordinate system.
优选地,补偿步骤包括:获取负载所受到的真实接触力及力矩步骤:将力传感器测量值减去在传感器力测量基准坐标系下表示的负载4的重力、惯性力和惯性力矩,获取以下信息:-负载所受到的真实接触力信息;-负载所受到的真实接触力矩信息。Preferably, the compensating step includes: obtaining the real contact force and torque suffered by the load step: subtracting the gravity, inertial force and moment of inertia of the load 4 expressed in the sensor force measurement reference coordinate system from the measured value of the force sensor to obtain the following information : - the real contact force information of the load; - the real contact moment information of the load.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明中,重力和惯性补偿装置将惯性测量单元集成于传感器电路板上,通过内置补偿程序,使传感器实时输出作用于负载的力和力矩,该补偿装置结构简单,使用方便;1. In the present invention, the gravity and inertia compensation device integrates the inertial measurement unit on the sensor circuit board. Through the built-in compensation program, the sensor can output the force and moment acting on the load in real time. The compensation device has a simple structure and is easy to use;
2、本发明可以实时补偿负载重力、惯性力和惯性力矩;2. The present invention can compensate load gravity, inertia force and inertia moment in real time;
3、本发明可以直接、有效地区分重力、惯性力和力矩。3. The present invention can directly and effectively distinguish gravity, inertial force and moment.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为本发明的流程示意图。Fig. 1 is a schematic flow chart of the present invention.
图2为本发明的系统剖视示意图。Fig. 2 is a schematic sectional view of the system of the present invention.
图3为本发明的系统爆炸示意图。Fig. 3 is a schematic diagram of the explosion of the system of the present invention.
图4为本发明实施例中的坐标变换示意图。Fig. 4 is a schematic diagram of coordinate transformation in an embodiment of the present invention.
图中:In the picture:
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several changes and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
根据本发明提供的一种六维力/力矩传感器,包括:传感器外壳1、传感器电路板2、传感器底座3以及传感器补偿运算模块;传感器电路板2包括:惯性测量单元21,惯性测量单元21能够同时测量三轴角速度和三轴加速度;传感器底座3包括:支架31;传感器外壳1与传感器底座3装配连接,支架31固定安装于传感器底座3,传感器电路板2与支架31紧固连接,惯性测量单元21集成设置在传感器电路板2上;传感器补偿运算模块与传感器电路板2相连接,所述传感器补偿运算模块能够进行负载4的重力、惯性力和惯性力矩补偿运算。According to a six-dimensional force/torque sensor provided by the present invention, it includes: a sensor housing 1, a sensor circuit board 2, a sensor base 3 and a sensor compensation calculation module; the sensor circuit board 2 includes: an inertial measurement unit 21, and the inertial measurement unit 21 can Simultaneously measure triaxial angular velocity and triaxial acceleration; sensor base 3 includes: bracket 31; sensor housing 1 is assembled and connected with sensor base 3, bracket 31 is fixedly installed on sensor base 3, sensor circuit board 2 is tightly connected with bracket 31, inertial measurement The unit 21 is integrated on the sensor circuit board 2 ; the sensor compensation calculation module is connected to the sensor circuit board 2 , and the sensor compensation calculation module can perform compensation calculations for the gravity, inertia force and inertia moment of the load 4 .
优选地,传感器补偿运算模块设置于上位机或者集成设置于传感器电路板2上。Preferably, the sensor compensation calculation module is set on the host computer or integrated on the sensor circuit board 2 .
优选地,所述传感器电路板2能够输出以下任一种或者任多种信号:-模拟量信号;-数字量信号。Preferably, the sensor circuit board 2 can output any one or any of the following signals: - analog signal; - digital signal.
根据本发明提供的一种补偿装置,包括:六维力/力矩传感器。A compensation device provided according to the present invention includes: a six-dimensional force/torque sensor.
优选地,还包括:负载4;所述负载4与六维力/力矩传感器相互连接;所述六维力/力矩传感器包括:传感器外壳1;所述负载4与传感器外壳1紧固连接。Preferably, it also includes: a load 4; the load 4 is connected to the six-dimensional force/torque sensor; the six-dimensional force/torque sensor includes: a sensor housing 1; the load 4 is firmly connected to the sensor housing 1 .
该装置可以补偿掉被测负载的重力、惯性力和惯性力矩。传感器包括传感器外壳1、传感器电路板2、传感器底座3,传感器电路板2包含惯性测量单元(IMU)21,传感器底座3包含支架31。传感器外壳1与传感器底座3装配连接,支架31固定安装于传感器底座3,传感器电路板2固定在支架31上,惯性测量单元(IMU)21集成在传感器电路板2上,惯性测量单元(IMU)21可以同时测量三轴角速度和三轴加速度,传感器电路板2可以输出模拟量信号,也可以输出数字量信号,当输出模拟量信号时,传感器负载重力项、惯性力和惯性力矩补偿运算在上位机进行,当输出数字量信号时,传感器负载重力项、惯性力和惯性力矩补偿运算可以集成到传感器电路板2上进行。本重力、惯性力和惯性力矩补偿传感器通过置于内部的惯性测量单元测量负载的三轴角速度和三轴加速度,通过计算得出负载的重力、惯性力和惯性力矩并补偿到六维力传感器,使传感器输出负载所受到的真实接触力及力矩。本发明中力传感器的构型不作具体限制,也不一定是六维的力传感器。The device can compensate the gravity, inertia force and inertia moment of the load under test. The sensor includes a sensor housing 1 , a sensor circuit board 2 , and a sensor base 3 , the sensor circuit board 2 includes an inertial measurement unit (IMU) 21 , and the sensor base 3 includes a bracket 31 . The sensor housing 1 is assembled and connected to the sensor base 3, the bracket 31 is fixedly installed on the sensor base 3, the sensor circuit board 2 is fixed on the bracket 31, the inertial measurement unit (IMU) 21 is integrated on the sensor circuit board 2, and the inertial measurement unit (IMU) 21 can measure three-axis angular velocity and three-axis acceleration at the same time. The sensor circuit board 2 can output analog signals or digital signals. When outputting analog signals, the sensor load gravity item, inertial force and inertial moment compensation calculation are in the upper position When the digital signal is output, the sensor load gravity term, inertial force and inertial moment compensation calculation can be integrated on the sensor circuit board 2 to perform. The gravity, inertial force and inertial moment compensation sensor measures the three-axis angular velocity and three-axis acceleration of the load through the internal inertial measurement unit, and calculates the load's gravity, inertial force and inertial moment and compensates it to the six-dimensional force sensor. Make the sensor output the real contact force and moment of the load. The configuration of the force sensor in the present invention is not specifically limited, nor is it necessarily a six-dimensional force sensor.
根据本发明提供的一种补偿方法,包括:测速步骤:通过置于六维力/力矩传感器内部的惯性测量单元21测量负载4的三轴角速度和三轴加速度,获取三轴角速度参数和三轴加速度参数;运算步骤:根据三轴角速度参数和三轴加速度参数,获取负载4的重力参数、惯性力参数/惯性力矩参数;补偿步骤:根据负载4的重力参数、惯性力参数和惯性力矩参数,补偿重力、惯性力和力矩至六维力/力矩至传感器。According to a compensation method provided by the present invention, it includes: speed measurement step: measure the triaxial angular velocity and triaxial acceleration of the load 4 through the inertial measurement unit 21 placed inside the six-dimensional force/moment sensor, and obtain the triaxial angular velocity parameters and the triaxial acceleration. Acceleration parameters; operation steps: according to the three-axis angular velocity parameters and three-axis acceleration parameters, obtain the gravity parameters, inertial force parameters/inertial moment parameters of the load 4; compensation steps: according to the gravity parameters, inertial force parameters and inertial moment parameters of the load 4, Compensates gravity, inertial forces and moments to six-dimensional force/torque to the sensor.
优选地,测速步骤包括:创建第一坐标系步骤:创建惯性测量单元21的坐标系;创建第二坐标系步骤:创建传感器力测量基准坐标系;创建第三坐标系步骤:创建负载4的质心坐标系。Preferably, the speed measuring step includes: creating the first coordinate system step: creating the coordinate system of the inertial measurement unit 21; creating the second coordinate system step: creating the sensor force measurement reference coordinate system; creating the third coordinate system step: creating the center of mass of the load 4 Coordinate System.
优选地,测速步骤还包括:微分步骤:对三轴角速度参数取微分,获取三轴角加速度参数;所述三轴加速度参数为沿惯性测量单元21的坐标系的三个坐标轴的加速度参数;所述三轴角加速度参数为绕惯性测量单元21的坐标系的三个坐标轴的角加速度参数。Preferably, the speed measurement step further includes: a differentiation step: taking a differential on the three-axis angular velocity parameter to obtain the three-axis angular acceleration parameter; the three-axis acceleration parameter is the acceleration parameter along the three coordinate axes of the coordinate system of the inertial measurement unit 21; The three-axis angular acceleration parameters are angular acceleration parameters around three coordinate axes of the coordinate system of the inertial measurement unit 21 .
优选地,运算步骤包括:-获取重力、惯性力和惯性力矩步骤:根据三轴加速度和角加速度参数,获取负载4的重力参数、惯性力参数和惯性力矩参数在惯性测量单元21的坐标系下和负载4的质心坐标系下的表示;-简化到坐标系步骤:将惯性测量单元21坐标系下和负载4的质心坐标系下表示的负载重力、惯性力和惯性力矩变换到传感器力测量基准坐标系下表示。Preferably, the calculation steps include: - Obtain gravity, inertial force and moment of inertia step: according to the three-axis acceleration and angular acceleration parameters, obtain the gravity parameter, inertial force parameter and moment of inertia parameter of the load 4 under the coordinate system of the inertial measurement unit 21 and representation under the center of mass coordinate system of load 4; - Simplify to the coordinate system step: transform the load gravity, inertial force and moment of inertia expressed under the coordinate system of inertial measurement unit 21 and the center of mass coordinate system of load 4 to the sensor force measurement reference expressed in the coordinate system.
优选地,补偿步骤包括:获取负载所受到的真实接触力及力矩步骤:将力传感器测量值减去在传感器力测量基准坐标系下表示的负载4的重力、惯性力和惯性力矩,获取以下信息:-负载所受到的真实接触力信息;-负载所受到的真实接触力矩信息。如图4所示,惯性补偿方法原理如下:负载4与传感器外壳1固定链接,o1-x1y1z1是惯性测量单元(IMU)21的坐标系,o2-x2y2z2是传感器力测量基准坐标系,o3-x3y3z3是负载4的质心坐标系,当传感器与负载一起运动时,惯性测量单元(IMU)21会输出沿x1y1z1三轴的加速度ax1ay1az1和绕这三个轴的角速度wx1wy1wz1,对角速度进行微分可以求得绕x1y1z1三轴的角加速度αx1αy1αz1,根据公式F=ma,M=Jα以及刚体惯性力系简化原理,可以将负载产生的重力、惯性力和惯性力矩简化到坐标系o1-x1y1z1或o3-x3y3z3下表示,然后再变换到坐标系o2-x2y2z2下表示,最后通过数学运算对六维力传感器测量值进行补偿,则可以得到在坐标系o2-x2y2z2下表示的作用在负载上的真实接触力和力矩。Preferably, the compensating step includes: obtaining the real contact force and torque suffered by the load step: subtracting the gravity, inertial force and moment of inertia of the load 4 expressed in the sensor force measurement reference coordinate system from the measured value of the force sensor to obtain the following information : - the real contact force information of the load; - the real contact moment information of the load. As shown in Figure 4, the principle of the inertia compensation method is as follows: the load 4 is fixedly linked with the sensor housing 1, o1 -x1 y1 z1 is the coordinate system of the inertial measurement unit (IMU) 21, o2 -x2 y2 z2 is the sensor force measurement reference coordinate system, o3 -x3 y3 z3 is the barycenter coordinate system of the load 4, when the sensor and the load move together, the inertial measurement unit (IMU) 21 will output along x1 y1 z1 The three-axis acceleration ax1 ay1 az1 and the angular velocity wx1 wy1 wz1 around these three axes can be obtained by differentiating the angular velocity αx1 αy1 αz1 around the three axes of x1 y1 z1 , according to the formula F=ma, M=Jα and the simplification principle of the rigid body inertial force system, the gravity, inertial force and moment of inertia generated by the load can be simplified to the coordinate system o1 -x1 y1 z1 or o3 -x3 y3 z3 , and then transform to the coordinate system o2 -x2 y2 z2 , and finally compensate the measured value of the six-dimensional force sensor through mathematical operations, then it can be obtained in the coordinate system o2 -x2 y The real contact forces and moments acting on the load are represented under2 z2 .
本发明中,重力和惯性补偿装置将惯性测量单元集成于传感器电路板上,通过内置补偿程序,使传感器实时输出作用于负载的力和力矩,该补偿装置结构简单,使用方便;本发明可以实时补偿负载重力、惯性力和惯性力矩;本发明可以直接、有效的区分这重力、惯性力和力矩。In the present invention, the gravity and inertia compensation device integrates the inertial measurement unit on the sensor circuit board, and through the built-in compensation program, the sensor can output the force and moment acting on the load in real time. The compensation device is simple in structure and easy to use; Compensation of load gravity, inertial force and moment of inertia; the present invention can directly and effectively distinguish the gravity, inertial force and moment of inertia.
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。Those skilled in the art know that, in addition to realizing the system provided by the present invention and its various devices, modules, and units in a purely computer-readable program code mode, the system provided by the present invention and its various devices can be completely programmed by logically programming the method steps. , modules, and units implement the same functions in the form of logic gates, switches, ASICs, programmable logic controllers, and embedded microcontrollers. Therefore, the system and its various devices, modules, and units provided by the present invention can be regarded as a hardware component, and the devices, modules, and units included in it for realizing various functions can also be regarded as hardware components. The structure; the devices, modules, and units for realizing various functions can also be regarded as not only the software modules for realizing the method, but also the structures in the hardware components.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910744558.3ACN110411641A (en) | 2019-08-13 | 2019-08-13 | Six-dimensional force/torque sensor, compensation device and method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910744558.3ACN110411641A (en) | 2019-08-13 | 2019-08-13 | Six-dimensional force/torque sensor, compensation device and method |
| Publication Number | Publication Date |
|---|---|
| CN110411641Atrue CN110411641A (en) | 2019-11-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910744558.3APendingCN110411641A (en) | 2019-08-13 | 2019-08-13 | Six-dimensional force/torque sensor, compensation device and method |
| Country | Link |
|---|---|
| CN (1) | CN110411641A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111329581A (en)* | 2020-01-23 | 2020-06-26 | 诺创智能医疗科技(杭州)有限公司 | Force feedback measurement method of surgical manipulator and surgical manipulator |
| CN111531566A (en)* | 2020-06-12 | 2020-08-14 | 南京神源生智能科技有限公司 | A six-dimensional force sensor integrating data acquisition system and inertial force compensation system |
| CN110806302B (en)* | 2019-11-21 | 2021-01-08 | 中国空气动力研究与发展中心低速空气动力研究所 | Pressure compensation device capable of decoupling six-component acting force |
| CN112975971A (en)* | 2021-03-01 | 2021-06-18 | 南京航空航天大学 | A kind of robot inertia force compensation method |
| CN113432761A (en)* | 2021-05-31 | 2021-09-24 | 杭州电子科技大学 | Touch sensor for robot with inertial environment compensation function and manufacturing method thereof |
| CN113829350A (en)* | 2021-10-12 | 2021-12-24 | 北京卫星环境工程研究所 | Method for compensating inertial force of spacecraft assembling robot |
| CN115157260A (en)* | 2022-07-27 | 2022-10-11 | 北京航空航天大学 | Gravity and inertia force compensation method for six-dimensional force sensor at tail end of mechanical arm |
| CN115931202A (en)* | 2022-12-28 | 2023-04-07 | 中国科学院长春光学精密机械与物理研究所 | Space Six-Dimensional Force Testing Method Based on Acceleration Sensor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101528151A (en)* | 2006-10-25 | 2009-09-09 | 欧洲原子能共同体由欧洲委员会代表 | Force assessment for minimally invasive robotic surgical treatment systems |
| CN102990642A (en)* | 2011-09-09 | 2013-03-27 | 发那科株式会社 | Robot having workpiece mass measurement function |
| CN103968976A (en)* | 2014-04-30 | 2014-08-06 | 东南大学 | System and method for detecting vehicle wheel movement state vector |
| CN107433590A (en)* | 2017-07-31 | 2017-12-05 | 上海宇航系统工程研究所 | Mechanical arm load quality and the gravitational compensation method of sensor fluctating on-line identification |
| WO2018158120A1 (en)* | 2017-03-02 | 2018-09-07 | Physik Instrumente (Pi) Gmbh & Co. Kg | Apparatus for analysing movement and drive apparatus |
| CN108716962A (en)* | 2018-05-10 | 2018-10-30 | 珞石(山东)智能科技有限公司 | Robot end's force snesor zero bias scaling method synchronous with load parameter |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101528151A (en)* | 2006-10-25 | 2009-09-09 | 欧洲原子能共同体由欧洲委员会代表 | Force assessment for minimally invasive robotic surgical treatment systems |
| CN102990642A (en)* | 2011-09-09 | 2013-03-27 | 发那科株式会社 | Robot having workpiece mass measurement function |
| CN103968976A (en)* | 2014-04-30 | 2014-08-06 | 东南大学 | System and method for detecting vehicle wheel movement state vector |
| WO2018158120A1 (en)* | 2017-03-02 | 2018-09-07 | Physik Instrumente (Pi) Gmbh & Co. Kg | Apparatus for analysing movement and drive apparatus |
| CN107433590A (en)* | 2017-07-31 | 2017-12-05 | 上海宇航系统工程研究所 | Mechanical arm load quality and the gravitational compensation method of sensor fluctating on-line identification |
| CN108716962A (en)* | 2018-05-10 | 2018-10-30 | 珞石(山东)智能科技有限公司 | Robot end's force snesor zero bias scaling method synchronous with load parameter |
| Title |
|---|
| 刘岩: "机械臂腕力传感器负载端重力补偿算法与仿真", 《哈尔滨理工大学学报》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110806302B (en)* | 2019-11-21 | 2021-01-08 | 中国空气动力研究与发展中心低速空气动力研究所 | Pressure compensation device capable of decoupling six-component acting force |
| CN111329581A (en)* | 2020-01-23 | 2020-06-26 | 诺创智能医疗科技(杭州)有限公司 | Force feedback measurement method of surgical manipulator and surgical manipulator |
| CN111329581B (en)* | 2020-01-23 | 2022-03-15 | 诺创智能医疗科技(杭州)有限公司 | Force feedback measurement method of surgical manipulator and surgical manipulator |
| CN111531566A (en)* | 2020-06-12 | 2020-08-14 | 南京神源生智能科技有限公司 | A six-dimensional force sensor integrating data acquisition system and inertial force compensation system |
| WO2021248681A1 (en)* | 2020-06-12 | 2021-12-16 | 南京神源生智能科技有限公司 | Six-dimensional force sensor integrating data acquisition system and inertia force compensation system |
| CN112975971A (en)* | 2021-03-01 | 2021-06-18 | 南京航空航天大学 | A kind of robot inertia force compensation method |
| CN112975971B (en)* | 2021-03-01 | 2022-03-11 | 南京航空航天大学 | A kind of robot inertia force compensation method |
| CN113432761A (en)* | 2021-05-31 | 2021-09-24 | 杭州电子科技大学 | Touch sensor for robot with inertial environment compensation function and manufacturing method thereof |
| CN113829350A (en)* | 2021-10-12 | 2021-12-24 | 北京卫星环境工程研究所 | Method for compensating inertial force of spacecraft assembling robot |
| CN115157260A (en)* | 2022-07-27 | 2022-10-11 | 北京航空航天大学 | Gravity and inertia force compensation method for six-dimensional force sensor at tail end of mechanical arm |
| CN115157260B (en)* | 2022-07-27 | 2024-08-20 | 北京航空航天大学 | Gravity and inertial force compensation method for six-dimensional force sensor at tail end of mechanical arm |
| CN115931202A (en)* | 2022-12-28 | 2023-04-07 | 中国科学院长春光学精密机械与物理研究所 | Space Six-Dimensional Force Testing Method Based on Acceleration Sensor |
| Publication | Publication Date | Title |
|---|---|---|
| CN110411641A (en) | Six-dimensional force/torque sensor, compensation device and method | |
| CN107433590B (en) | Gravity compensation method based on mechanical arm load mass and sensor null shift online identification | |
| CN106064377B (en) | A kind of excitation track optimizing method of robot for space dynamic parameters identification | |
| Liu et al. | A mobile force plate and three-dimensional motion analysis system for three-dimensional gait assessment | |
| Song et al. | Efficient break-away friction ratio and slip prediction based on haptic surface exploration | |
| CN109202942A (en) | The simulator of hand control device, hand control method and hand | |
| Roan et al. | Manipulator state estimation with low cost accelerometers and gyroscopes | |
| Zheng et al. | Dexterous robotic grasping of delicate fruits aided with a multi-sensory e-glove and manual grasping analysis for damage-free manipulation | |
| Moisio et al. | Model of tactile sensors using soft contacts and its application in robot grasping simulation | |
| Taunyazov et al. | A novel low-cost 4-DOF wireless human arm motion tracker | |
| Li et al. | Multi-axis force/torque sensor technologies: design principles and robotic force control applications: A review | |
| SaLoutos et al. | Design of a multimodal fingertip sensor for dynamic manipulation | |
| WO2025073242A1 (en) | Method and apparatus for controlling robotic arm, and device, storage medium and program product | |
| Kopniak et al. | Natural interface for robotic arm controlling based on inertial motion capture | |
| Zhou et al. | Contact localization using force/torque measurements | |
| Pan et al. | A sensor glove for the interaction with a nursing-care assistive robot | |
| Li et al. | A novel piezoelectric 6-component heavy force/moment sensor for huge heavy-load manipulator's gripper | |
| Židek et al. | Wireless device based on MEMS sensors and bluetooth low energy (LE/Smart) technology for diagnostics of mechatronic systems | |
| Romeo et al. | Instrumenting a robotic finger to augment the capabilities of robotic grippers | |
| Wang et al. | A sensor glove based on inertial measurement unit for robot teleoperetion | |
| Žumer et al. | An advanced nonlinear model of a low-g MEMS accelerometer for a computer pen | |
| Zhang et al. | Improved extended Kalman fusion method for upper limb motion estimation with inertial sensors | |
| Lam et al. | Motion sensing for robot hands using MIDS | |
| Ivanov et al. | Human-machine interface with motion capture system for prosthetic control | |
| Khong et al. | Design and implementation of a three-axis force sensor for applications to bilateral teleoperation systems |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20191105 |