技术领域technical field
本发明属于车载雷达智能泊车领域,特别涉及一种基于毫米波雷达成像的无人驾驶汽车智能泊车方法。The invention belongs to the field of vehicle-mounted radar intelligent parking, and in particular relates to an intelligent parking method for unmanned vehicles based on millimeter-wave radar imaging.
背景技术Background technique
随着城市的现代化发展,越来越来领域引入自动驾驶技术,无人驾驶汽车的安全性问题受到越来越来的关注。无人驾驶汽车的泊车过程是指依靠传感器装置和全球定位系统协同合作,提供安全可靠的泊车环境信息,推荐合理的泊车计划。其主要由环境感知系统、路径规划系统、运动控制系统等组成。环境感知环节通过各种传感器采集周围环境的基本信息,是自动驾驶的基础,主要包括以下几种方式:光学摄像头、超声波检测器、红外检测器、激光雷达、毫米波雷达。主要存在以下问题:(1)光学摄像头极大地受天气和光照条件的影响,且受障碍物的制约;(2)红外及超声波传感器受污物、遮盖物影响大,传感距离有限,精度准确度较差;(3)激光雷达的计算复杂度较高,且其结构笨重,价格昂贵,目前还没有得到广泛的应用;(4)毫米波雷达通过波形的频率差计算障碍物的距离,无法提供可视性界面,无法得到直观的车位占用情况。With the modernization of cities and the introduction of autonomous driving technology in more and more fields, the safety of driverless cars has received more and more attention. The parking process of driverless cars refers to relying on the cooperation of sensor devices and global positioning systems to provide safe and reliable parking environment information and recommend reasonable parking plans. It is mainly composed of environment perception system, path planning system, motion control system and so on. The environmental perception link collects the basic information of the surrounding environment through various sensors, which is the basis of automatic driving. It mainly includes the following methods: optical camera, ultrasonic detector, infrared detector, laser radar, and millimeter wave radar. The main problems are as follows: (1) The optical camera is greatly affected by weather and light conditions, and is restricted by obstacles; (2) Infrared and ultrasonic sensors are greatly affected by dirt and coverings, and the sensing distance is limited and the accuracy is accurate (3) The computational complexity of lidar is high, and its structure is cumbersome and expensive, and it has not been widely used at present; (4) millimeter-wave radar calculates the distance of obstacles through the frequency difference of the waveform, which cannot A visual interface is provided, and it is impossible to obtain an intuitive parking space occupancy situation.
基于雷达传感器的辅助泊车技术,相比于其他传感方法,可以实现对目标的探测、测距、测角、测速、跟踪、成像等,另外它具有对环境影响不敏感,抗干扰能力强,可同时探测多车位等优点。特别的,毫米波合成孔径雷达(SAR)具有全天候、全天候工作和强大的高分辨率成像功能,可用于汽车应用的实时成像,提供稳定、全面的实时停车场景图,是获取停车信息的一种很好的方式。Compared with other sensing methods, the auxiliary parking technology based on radar sensors can realize target detection, ranging, angle measurement, speed measurement, tracking, imaging, etc. In addition, it is not sensitive to environmental influences and has strong anti-interference ability , can detect multiple parking spaces at the same time and so on. In particular, millimeter-wave synthetic aperture radar (SAR) has all-weather, all-weather work and powerful high-resolution imaging capabilities, which can be used for real-time imaging in automotive applications, providing a stable and comprehensive real-time parking scene map, and is a method for obtaining parking information good way.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种不受天气和光照条件的影响,不受障碍物的制约,抗干扰能力强,可以同时探测多车位,提供可视性界面,能够有效地提供稳定可靠车位占用信息及给出灵活的泊车计划的基于毫米波雷达成像的无人驾驶汽车智能泊车方法。The purpose of the present invention is to overcome the deficiencies of the prior art, to provide a car that is not affected by weather and light conditions, is not restricted by obstacles, has strong anti-interference ability, can detect multiple parking spaces at the same time, provides a visual interface, and can effectively An intelligent parking method for unmanned vehicles based on millimeter-wave radar imaging that provides stable and reliable parking space occupancy information and flexible parking plans.
本发明的目的是通过以下技术方案来实现的:基于毫米波雷达成像的无人驾驶汽车智能泊车方法,包括以下步骤:The object of the present invention is achieved through the following technical solutions: the intelligent parking method for unmanned vehicles based on millimeter-wave radar imaging, comprising the following steps:
S1、获取停车场景SAR图像;S1. Acquire the SAR image of the parking scene;
S2、提取停车场景中的已停放车辆;S2. Extracting the parked vehicles in the parking scene;
S3、定位可用停车位;S3, positioning available parking spaces;
S4、规划泊车路线,根据步骤S1~S3检测到的场景中的车位占用情况,选择可行泊车起始点,选取满足车辆最小转弯半径约束和泊车避障约束的两圆弧相切曲泊车轨迹,最终完成辅助停车。S4. Planning the parking route. According to the occupancy of parking spaces in the scene detected in steps S1-S3, select a feasible starting point for parking, and select a two-arc tangent curved parking that satisfies the minimum turning radius constraint of the vehicle and the parking obstacle avoidance constraint. trajectories, eventually completing assisted parking.
进一步地,所述步骤S1具体实现方法为:Further, the specific implementation method of the step S1 is:
S11、对接收到的回波数据做一维傅里叶变换,完成对接收脉冲的距离脉压,获得距离向的高分辨特性:S11. Perform one-dimensional Fourier transform on the received echo data, complete the distance pulse pressure of the received pulse, and obtain the high-resolution characteristics of the distance direction:
secho=fft(prec) (1)secho = fft(prec ) (1)
其中,prec表示接收的脉冲信号,fft(·)表示一维傅里叶变换,secho表示距离脉压后的信号;Among them, prec represents the received pulse signal, fft( ) represents the one-dimensional Fourier transform, and secho represents the signal after the pulse pressure;
S12、针对雷达平台与目标相对位置变化而产生的距离单元徙动现象,对脉冲压缩后的信号进行运动补偿,完成距离单元徙动校正:S12. For the range unit migration phenomenon caused by the relative position change between the radar platform and the target, perform motion compensation on the signal after pulse compression, and complete the range unit migration correction:
其中,表示相位补偿因子,fft2和ifft2分别代表二维傅里叶变换和二维傅里叶逆变换,srcmc表示距离徙动校正后的信号;in, Represents the phase compensation factor, fft2 and ifft2 represent two-dimensional Fourier transform and two-dimensional inverse Fourier transform respectively, srcmc represents the signal after range migration correction;
S13、对距离单元徙动校正后的信号进行方位脉压,得到高分辨率的合成孔径雷达图像:S13. Perform azimuth pulse pressure on the signal after the migration correction of the range unit to obtain a high-resolution synthetic aperture radar image:
其中,sout为输出的高分辨率SRA图像,hfilter表示匹配滤波器。Among them, sout is the output high-resolution SRA image, and hfilter represents the matched filter.
进一步地,所述步骤S2包括以下子步骤:Further, the step S2 includes the following sub-steps:
S21、对所获取毫米波合成孔径雷达图像,利用最大极值稳定区域方法提取场景中已停放车辆区域;判断极值区域的面积变化率是否满足若是,将该区域认为是稳定区域,即已停放车辆区域,否则该区域认为没有停放车辆;得到区域集合为:S21. For the acquired millimeter-wave synthetic aperture radar image, use the maximum extreme value stable area method to extract the parked vehicle area in the scene; determine the area change rate of the extreme value area Is it satisfied If so, the area is considered to be a stable area, that is, the area of parked vehicles, otherwise the area is considered to have no parked vehicles; the obtained area set is:
其中,为极值区域,{ni|ni=ni+1-Δ};Δ为灰度稳定范围,S(·)为区域面积,R为区域集合,为极值区域的面积变化率,ε为面积变化率的上限;in, is the extreme value area, {ni |ni =ni+1 -Δ}; Δ is the gray stable range, S( ) is the area of the area, R is the set of areas, is the area change rate of the extreme value region, ε is the upper limit of the area change rate;
S22、使用面积、长宽比来消除步骤S21检测到的区域中对其他背景目标和强杂波的虚警,并利用上下文信息的差异来区分真实车辆与虚警;S22, using area and aspect ratio to eliminate false alarms to other background targets and strong clutter in the region detected in step S21, and using the difference in context information to distinguish real vehicles from false alarms;
具体实现方法为:依次计算连续区域的面积和长宽比,符合公式(5)(6)的区域被认为是车辆区域,不符合的区域被认为是虚警;The specific implementation method is: sequentially calculate the area and aspect ratio of the continuous area, the area that meets the formula (5) (6) is considered as the vehicle area, and the area that does not meet is considered as a false alarm;
然后,计算所有目标区域的中心点坐标,取平均值提取分割线,测量中心点到分割线的最小距离,根据公式(7)将距离大于阈值的目标确定为虚警目标,并从检测结果中剔除:Then, calculate the center point coordinates of all target areas, take the average value to extract the dividing line, measure the minimum distance from the center point to the dividing line, and determine the target with a distance greater than the threshold as a false alarm target according to the formula (7), and from the detection result Eliminate:
其中,R1、R2、R3分别代表候选车辆区域的集合,a,b为面积大小的范围,rWH表示长宽比,W(·)和L(·)分别为区域的宽度和长度,c,d表示长宽比的范围,Cy(·)为区域中心的y轴坐标,average[·]代表取平均值运算,e表示选取的阈值。Among them, R1 , R2 , and R3 respectively represent the collection of candidate vehicle regions, a, b are the area size range, rWH represents the aspect ratio, W(·) and L(·) are the width and length of the region respectively , c, d indicate the range of aspect ratio, Cy (·) is the y-axis coordinate of the center of the area, average[·] represents the average value operation, and e represents the selected threshold.
进一步地,所述步骤S3包括以下子步骤:Further, the step S3 includes the following sub-steps:
S31、根据步骤S2中提取的场景中已停放车辆的相对质心位置,确定两车之间的空间;然后通过已停放车辆的长宽比,判断停车方式是平行停车还是垂直停车,如式(8)所示:S31, according to the relative center of mass position of the parked vehicle in the scene extracted in step S2, determine the space between the two vehicles; then by the aspect ratio of the parked vehicle, judge whether the parking mode is parallel parking or vertical parking, such as formula (8 ) as shown:
计算两车之间的空间是否足够停车,以及能够容纳几辆车,利用式(9)得到两车之间可容纳的车辆数:Calculate whether the space between the two cars is enough to park, and how many cars can be accommodated, and use formula (9) to get the number of vehicles that can be accommodated between the two cars:
其中,wp和lv分别代表车位的宽度和长度,Cx(·)为区域中心的x轴坐标,floor[·]代表向下取整运算,num为两辆已停放车辆中间可容纳的车辆数;Among them, wp and lv represent the width and length of the parking space respectively, Cx ( ) is the x-axis coordinate of the center of the area, floor[ ] represents the rounding down operation, and num is the space that can be accommodated between two parked vehicles number of vehicles;
S32、采用MSER方法来评估车位中是否有影响停车的障碍物,将有障碍区的车位移除,获得最终的空闲停车位。S32. Using the MSER method to evaluate whether there is an obstacle affecting parking in the parking space, remove the parking space in the obstacle area, and obtain the final free parking space.
进一步地,所述步骤S4具体实现方法为:以当前车辆位置为泊车起点,若存在连接车辆泊车起始点和终止点且满足车辆最小转弯半径约束和泊车避障约束的两圆弧相切曲线,则该起始点为可行泊车起始点,选取满足下式的转弯半径R,给出持续稳定的泊车路径:Further, the specific implementation method of step S4 is: taking the current vehicle position as the starting point of parking, if there are two arcs that connect the starting point and the ending point of the vehicle parking and satisfy the vehicle minimum turning radius constraint and parking obstacle avoidance constraint curve, then the starting point is the feasible starting point of parking, and the turning radius R satisfying the following formula is selected to give a continuous and stable parking path:
对于平行泊车:For parallel parking:
R≥Rmin (10)R≥Rmin (10)
其中,Rmin代表车辆最小转弯半径,为与目标停车位相邻的前车后车的中心距离,Dcar为与目标停车位相邻的前车对角线长度,Wcar为装载雷达的车辆的宽度,为与目标停车位相邻的后车长度;Among them, Rmin represents the minimum turning radius of the vehicle, is the center distance of the front car and the rear car adjacent to the target parking space, Dcar is the diagonal length of the front car adjacent to the target parking space, Wcar is the width of the vehicle loaded with radar, is the length of the rear vehicle adjacent to the target parking space;
对于垂直泊车:For perpendicular parking:
R≥Rmin (13)R≥Rmin (13)
其中,Wcar和Lcar分别为装载雷达的车辆的宽度和长度,和分别为目标停车位的右边界线和左边界线的横坐标。Among them, Wcar and Lcar are the width and length of the vehicle loaded with radar, respectively, and are the abscissas of the right boundary line and left boundary line of the target parking space, respectively.
本发明的有益效果是:本发明的无人驾驶汽车智能泊车方法不受天气和光照条件的影响,不受障碍物的制约,抗干扰能力强,可以同时探测多车位,提供可视性界面,能够有效地提供稳定可靠车位占用信息及给出灵活的泊车计划。The beneficial effects of the present invention are: the intelligent parking method for unmanned vehicles of the present invention is not affected by weather and light conditions, is not restricted by obstacles, has strong anti-interference ability, can detect multiple parking spaces at the same time, and provides a visual interface , can effectively provide stable and reliable parking space occupancy information and give flexible parking plans.
附图说明Description of drawings
图1为本发明方法流程图。Fig. 1 is a flow chart of the method of the present invention.
具体实施方式Detailed ways
下面结合附图进一步说明本发明的技术方案。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings.
如图1所示,本发明的一种基于毫米波雷达成像的无人驾驶汽车智能泊车方法,包括以下步骤:As shown in Figure 1, a kind of unmanned vehicle intelligent parking method based on millimeter-wave radar imaging of the present invention comprises the following steps:
S1、获取停车场景SAR图像;具体实现方法为:S1. Obtain the SAR image of the parking lot scene; the specific implementation method is:
S11、对接收到的回波数据做一维傅里叶变换,完成对接收脉冲的距离脉压,获得距离向的高分辨特性:S11. Perform one-dimensional Fourier transform on the received echo data, complete the distance pulse pressure of the received pulse, and obtain the high-resolution characteristics of the distance direction:
secho=fft(prec) (1)secho = fft(prec ) (1)
其中,prec表示接收的脉冲信号,fft(·)表示一维傅里叶变换,secho表示距离脉压后的信号;Among them, prec represents the received pulse signal, fft( ) represents the one-dimensional Fourier transform, and secho represents the signal after the pulse pressure;
S12、针对雷达平台与目标相对位置变化而产生的距离单元徙动现象,对脉冲压缩后的信号进行运动补偿,完成距离单元徙动校正:S12. For the range unit migration phenomenon caused by the relative position change between the radar platform and the target, perform motion compensation on the signal after pulse compression, and complete the range unit migration correction:
其中,表示相位补偿因子,fft2和ifft2分别代表二维傅里叶变换和二维傅里叶逆变换,srcmc表示距离徙动校正后的信号;in, Represents the phase compensation factor, fft2 and ifft2 represent two-dimensional Fourier transform and two-dimensional inverse Fourier transform respectively, srcmc represents the signal after range migration correction;
S13、对距离单元徙动校正后的信号进行方位脉压,得到高分辨率的合成孔径雷达图像:S13. Perform azimuth pulse pressure on the signal after the migration correction of the range unit to obtain a high-resolution synthetic aperture radar image:
其中,sout为输出的高分辨率SRA图像,hfilter表示匹配滤波器。Among them, sout is the output high-resolution SRA image, and hfilter represents the matched filter.
S2、提取停车场景中的已停放车辆;包括以下子步骤:S2. Extracting the parked vehicle in the parking scene; including the following sub-steps:
S21、对所获取毫米波合成孔径雷达图像,利用最大极值稳定区域(MSER)方法提取场景中已停放车辆区域;判断极值区域的面积变化率是否满足若是,将该区域认为是稳定区域,即已停放车辆区域,否则该区域认为没有停放车辆;得到区域集合为:S21. For the acquired millimeter-wave synthetic aperture radar image, use the maximum extremum stable region (MSER) method to extract the parked vehicle area in the scene; determine the area change rate of the extremum area Is it satisfied If so, the area is considered to be a stable area, that is, the area of parked vehicles, otherwise the area is considered to have no parked vehicles; the obtained area set is:
其中,为极值区域,{ni|ni=ni+1-Δ};Δ为灰度稳定范围,S(·)为区域面积,R为区域集合,为极值区域的面积变化率,ε为面积变化率的上限;in, is the extreme value area, {ni |ni =ni+1 -Δ}; Δ is the gray stable range, S( ) is the area of the area, R is the set of areas, is the area change rate of the extreme value region, ε is the upper limit of the area change rate;
S22、使用面积、长宽比来消除步骤S21检测到的区域中对其他背景目标和强杂波的虚警,并利用上下文信息的差异来区分真实车辆与虚警;S22, using area and aspect ratio to eliminate false alarms to other background targets and strong clutter in the region detected in step S21, and using the difference in context information to distinguish real vehicles from false alarms;
具体实现方法为:依次计算连续区域的面积和长宽比,符合公式(5)(6)的区域被认为是车辆区域,不符合的区域被认为是虚警;The specific implementation method is: sequentially calculate the area and aspect ratio of the continuous area, the area that meets the formula (5) (6) is considered as the vehicle area, and the area that does not meet is considered as a false alarm;
然后,计算所有目标区域的中心点坐标,取平均值提取分割线,测量中心点到分割线的最小距离,根据公式(7)将距离大于阈值的目标确定为虚警目标,并从检测结果中剔除:Then, calculate the center point coordinates of all target areas, take the average value to extract the dividing line, measure the minimum distance from the center point to the dividing line, and determine the target with a distance greater than the threshold as a false alarm target according to the formula (7), and from the detection result Eliminate:
其中,R1、R2、R3分别代表候选车辆区域的集合,a,b为面积大小的范围,rWH表示长宽比,W(·)和L(·)分别为区域的宽度和长度,c,d表示长宽比的范围,Cy(·)为区域中心的y轴坐标,average[·]代表取平均值运算,e表示选取的阈值。Among them, R1 , R2 , and R3 respectively represent the collection of candidate vehicle regions, a, b are the area size range, rWH represents the aspect ratio, W(·) and L(·) are the width and length of the region respectively , c, d indicate the range of aspect ratio, Cy (·) is the y-axis coordinate of the center of the area, average[·] represents the average value operation, and e represents the selected threshold.
S3、定位可用停车位;包括以下子步骤:S3. Locating an available parking space; including the following sub-steps:
S31、根据步骤S2中提取的场景中已停放车辆的相对质心位置,确定两车之间的空间;然后通过已停放车辆的长宽比,判断停车方式是平行停车还是垂直停车,如式(8)所示:S31, according to the relative center of mass position of the parked vehicle in the scene extracted in step S2, determine the space between the two vehicles; then by the aspect ratio of the parked vehicle, judge whether the parking mode is parallel parking or vertical parking, such as formula (8 ) as shown:
计算两车之间的空间是否足够停车,以及能够容纳几辆车,利用式(9)得到两车之间可容纳的车辆数:Calculate whether the space between the two cars is enough to park, and how many cars can be accommodated, and use formula (9) to get the number of vehicles that can be accommodated between the two cars:
其中,wp和lv分别代表车位的宽度和长度,Cx(·)为区域中心的x轴坐标,floor[·]代表向下取整运算,num为两辆已停放车辆中间可容纳的车辆数;Among them, wp and lv represent the width and length of the parking space respectively, Cx ( ) is the x-axis coordinate of the center of the area, floor[ ] represents the rounding down operation, and num is the space that can be accommodated between two parked vehicles number of vehicles;
S32、采用MSER方法来评估车位中是否有影响停车的障碍物,将有障碍区的车位移除,获得最终的空闲停车位。S32. Using the MSER method to evaluate whether there is an obstacle affecting parking in the parking space, remove the parking space in the obstacle area, and obtain the final free parking space.
S4、规划泊车路线,根据步骤S1~S3检测到的场景中的车位占用情况,选择可行泊车起始点,选取满足车辆最小转弯半径约束和泊车避障约束的两圆弧相切曲泊车轨迹,最终完成辅助停车;具体实现方法为:具体实现方法为:以当前车辆位置为泊车起点,若存在连接车辆泊车起始点和终止点且满足车辆最小转弯半径约束和泊车避障约束的两圆弧相切曲线,则该起始点为可行泊车起始点,选取满足下式的转弯半径R,给出持续稳定的泊车路径:S4. Planning the parking route. According to the occupancy of parking spaces in the scene detected in steps S1-S3, select a feasible starting point for parking, and select a two-arc tangent curved parking that satisfies the minimum turning radius constraint of the vehicle and the parking obstacle avoidance constraint. The specific implementation method is as follows: take the current vehicle position as the starting point of parking, if there is a vehicle that connects the starting point and end point of parking and satisfies the minimum turning radius constraint and parking obstacle avoidance constraint If the two arcs are tangent curves, then the starting point is the feasible starting point for parking, and the turning radius R satisfying the following formula is selected to give a continuous and stable parking path:
对于平行泊车:For parallel parking:
R≥Rmin (10)R≥Rmin (10)
其中,Rmin代表车辆最小转弯半径,为与目标停车位相邻的前车后车的中心距离,Dcar为与目标停车位相邻的前车对角线长度,Wcar为装载雷达的车辆的宽度,为与目标停车位相邻的后车长度;Among them, Rmin represents the minimum turning radius of the vehicle, is the center distance of the front car and the rear car adjacent to the target parking space, Dcar is the diagonal length of the front car adjacent to the target parking space, Wcar is the width of the vehicle loaded with radar, is the length of the rear vehicle adjacent to the target parking space;
对于垂直泊车:For perpendicular parking:
R≥Rmin (13)R≥Rmin (13)
其中,Wcar和Lcar分别为装载雷达的车辆的宽度和长度,和分别为目标停车位的右边界线和左边界线的横坐标。Among them, Wcar and Lcar are the width and length of the vehicle loaded with radar, respectively, and are the abscissas of the right boundary line and left boundary line of the target parking space, respectively.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910674959.6ACN110379178B (en) | 2019-07-25 | 2019-07-25 | Intelligent parking method for unmanned vehicles based on millimeter wave radar imaging |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910674959.6ACN110379178B (en) | 2019-07-25 | 2019-07-25 | Intelligent parking method for unmanned vehicles based on millimeter wave radar imaging |
| Publication Number | Publication Date |
|---|---|
| CN110379178Atrue CN110379178A (en) | 2019-10-25 |
| CN110379178B CN110379178B (en) | 2021-11-02 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910674959.6AActiveCN110379178B (en) | 2019-07-25 | 2019-07-25 | Intelligent parking method for unmanned vehicles based on millimeter wave radar imaging |
| Country | Link |
|---|---|
| CN (1) | CN110379178B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110796892A (en)* | 2019-11-06 | 2020-02-14 | 重庆市城投金卡信息产业(集团)股份有限公司 | Parking guidance method and system for parking lot |
| CN110969892A (en)* | 2019-11-06 | 2020-04-07 | 重庆市城投金卡信息产业(集团)股份有限公司 | Parking lot management method and system |
| CN112101128A (en)* | 2020-08-21 | 2020-12-18 | 东南大学 | A perception planning method for unmanned formula racing car based on multi-sensor information fusion |
| CN112489427A (en)* | 2020-11-26 | 2021-03-12 | 招商华软信息有限公司 | Vehicle trajectory tracking method, device, equipment and storage medium |
| CN112562397A (en)* | 2020-12-11 | 2021-03-26 | 南京信江物联网技术有限公司 | Intelligent parking system and use method |
| CN113238237A (en)* | 2021-07-12 | 2021-08-10 | 天津天瞳威势电子科技有限公司 | Library position detection method and device |
| CN113920770A (en)* | 2020-07-07 | 2022-01-11 | 北京新能源汽车股份有限公司 | Passenger-riding parking control method, device, equipment and vehicle |
| CN114179788A (en)* | 2021-12-29 | 2022-03-15 | 纵目科技(上海)股份有限公司 | Automatic parking method, system, computer readable storage medium and vehicle terminal |
| CN115980746A (en)* | 2022-11-25 | 2023-04-18 | 惠州市德赛西威汽车电子股份有限公司 | A detection method, device, vehicle and storage medium of a drivable area |
| CN118883102A (en)* | 2024-09-30 | 2024-11-01 | 山东港口烟台港集团有限公司 | A single-line laser radar tire detection method based on feature evaluation function |
| CN120195673A (en)* | 2025-05-26 | 2025-06-24 | 上海几何伙伴智能驾驶有限公司 | An automatic parking obstacle perception method based on millimeter wave radar |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008029038A1 (en)* | 2006-09-07 | 2008-03-13 | Renault S.A.S. | Device and method for estimating the dimensions of a parking space, motor vehicle comprising such a device |
| CN102658819A (en)* | 2012-05-16 | 2012-09-12 | 涂亚庆 | Automobile automatic parking method based on humanoid intelligent control |
| CN102968640A (en)* | 2012-10-25 | 2013-03-13 | 西安电子科技大学 | Polarized synthetic aperture radar (SAR) image classification method based on Freeman decomposition and data distribution characteristics |
| CN103310439A (en)* | 2013-05-09 | 2013-09-18 | 浙江大学 | Method for detecting maximally stable extremal region of image based on scale space |
| CN103810901A (en)* | 2012-11-09 | 2014-05-21 | 现代自动车株式会社 | Apparatus and method for parking position display of vehicle |
| CN104156723A (en)* | 2014-09-01 | 2014-11-19 | 中国人民解放军国防科学技术大学 | Method for extracting maximally stable extremal region with scale invariance |
| CN104331886A (en)* | 2014-10-29 | 2015-02-04 | 中国人民解放军国防科学技术大学 | Port region ship and warship detection method based on high resolution SAR image |
| CN105182340A (en)* | 2015-09-28 | 2015-12-23 | 电子科技大学 | Bistatic forward-looking SAR (Synthetic Aperture Radar) motion compensation method |
| CN105539430A (en)* | 2015-12-29 | 2016-05-04 | 北京理工大学 | Intelligent man-car interaction parking method based on hand-held terminal |
| CN105584480A (en)* | 2014-10-24 | 2016-05-18 | 法雷奥汽车内部控制(深圳)有限公司 | Parking assisting method and system for automatically selecting parking operations |
| US9440652B1 (en)* | 2013-08-01 | 2016-09-13 | Google Inc. | Filtering noisy/high-intensity regions in laser-based lane marker detection |
| CN106291543A (en)* | 2016-07-19 | 2017-01-04 | 电子科技大学 | A kind of motion platform scanning radar super-resolution imaging method |
| CN106529591A (en)* | 2016-11-07 | 2017-03-22 | 湖南源信光电科技有限公司 | Improved MSER image matching algorithm |
| CN106680817A (en)* | 2016-12-26 | 2017-05-17 | 电子科技大学 | Method of realizing high-resolution imaging of forwarding looking radar |
| CN106781670A (en)* | 2016-12-30 | 2017-05-31 | 华勤通讯技术有限公司 | The choosing method and device on a kind of parking stall |
| CN106846339A (en)* | 2017-02-13 | 2017-06-13 | 广州视源电子科技股份有限公司 | Image detection method and device |
| CN106908783A (en)* | 2017-02-23 | 2017-06-30 | 苏州大学 | Obstacle detection method based on multi-sensor information fusion |
| CN106945662A (en)* | 2017-03-30 | 2017-07-14 | 重庆大学 | A kind of vertical automatic parking paths planning method and system |
| CN106980117A (en)* | 2017-05-31 | 2017-07-25 | 西安电子科技大学 | Millimetre-wave radar video imaging method based on overlapping aperture |
| JP2017147629A (en)* | 2016-02-18 | 2017-08-24 | 三菱重工業株式会社 | Parking position detection system, and automatic parking system using the same |
| CN107209992A (en)* | 2015-02-03 | 2017-09-26 | 西门子公司 | Traffic monitoring system for monitoring traffic area |
| CN107235077A (en)* | 2016-03-29 | 2017-10-10 | 长城汽车股份有限公司 | Parking assistance method, system and the vehicle of vehicle |
| CN107284443A (en)* | 2016-04-12 | 2017-10-24 | 福特全球技术公司 | Detect available parking places |
| CN206649533U (en)* | 2017-03-23 | 2017-11-17 | 北京行易道科技有限公司 | Vehicle-mounted pattern recognition device and vehicle |
| US20180025640A1 (en)* | 2016-07-19 | 2018-01-25 | Ford Global Technologies, Llc | Using Virtual Data To Test And Train Parking Space Detection Systems |
| CN107656274A (en)* | 2017-09-20 | 2018-02-02 | 电子科技大学 | SAR transient echos migration corrects and orientation energy accumulation method |
| CN107776570A (en)* | 2017-09-19 | 2018-03-09 | 广州汽车集团股份有限公司 | Full-automatic park method and full-automatic parking system |
| CN107976676A (en)* | 2017-11-24 | 2018-05-01 | 电子科技大学 | A kind of Moving Target with Airborne Synthetic Aperture Radar imaging method |
| EP3343438A1 (en)* | 2016-12-30 | 2018-07-04 | Hyundai Motor Company | Automatic parking system and automatic parking method |
| WO2018142852A1 (en)* | 2017-01-31 | 2018-08-09 | 富士通株式会社 | Movement assistance system, movement assistance device, movement assistance terminal, movement assistance method, map generating system, map generating device, and information acquisition terminal |
| WO2018148851A1 (en)* | 2017-02-20 | 2018-08-23 | William Bailie | Cruise efficient vertical and short take-off and landing aircraft |
| DE102017110063A1 (en)* | 2017-03-02 | 2018-09-06 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Method and device for environment detection |
| CN108545079A (en)* | 2018-03-30 | 2018-09-18 | 吉利汽车研究院(宁波)有限公司 | A kind of congestion road conditions driving assistance system and method |
| CN108597234A (en)* | 2018-05-10 | 2018-09-28 | 芜湖航飞科技股份有限公司 | A kind of intelligent transportation detector based on high-resolution radar |
| CN108629246A (en)* | 2017-03-23 | 2018-10-09 | 北京行易道科技有限公司 | Vehicle-mounted image processing method, device and vehicle |
| CN108928343A (en)* | 2018-08-13 | 2018-12-04 | 吉利汽车研究院(宁波)有限公司 | A kind of panorama fusion automated parking system and method |
| CN109017767A (en)* | 2018-08-22 | 2018-12-18 | 深圳市广和通无线股份有限公司 | It parks method, apparatus, computer equipment and storage medium |
| WO2018235304A1 (en)* | 2017-06-22 | 2018-12-27 | 株式会社ショーワ | Obstacle detection device, vehicle, and obstacle detection system |
| CN109284704A (en)* | 2018-09-07 | 2019-01-29 | 中国电子科技集团公司第三十八研究所 | CNN-based vehicle target detection method for complex background SAR |
| US20190041859A1 (en)* | 2017-08-04 | 2019-02-07 | Aptiv Technologies Limited | Sensor failure compensation system for an automated vehicle |
| CN109407094A (en)* | 2018-12-11 | 2019-03-01 | 湖南华诺星空电子技术有限公司 | Vehicle-mounted ULTRA-WIDEBAND RADAR forword-looking imaging system |
| US20190120931A1 (en)* | 2017-10-24 | 2019-04-25 | Novelic D.O.O. | Millimeter-wave System-in-Package for Parking Assistance |
| CN109677398A (en)* | 2019-02-22 | 2019-04-26 | 海马汽车有限公司 | Automatic parking method, apparatus and automobile |
| CN109703491A (en)* | 2018-11-16 | 2019-05-03 | 天津大学 | A safe parking method |
| CN109720342A (en)* | 2019-01-16 | 2019-05-07 | 杭州湘滨电子科技有限公司 | A kind of path planning design method vertically parked |
| CN109727265A (en)* | 2018-12-28 | 2019-05-07 | 北京行易道科技有限公司 | Target Segmentation method and device |
| CN109866761A (en)* | 2019-03-05 | 2019-06-11 | 重庆长安汽车股份有限公司 | Automatic parking paths planning method, system and computer readable storage medium |
| DE102017129933A1 (en)* | 2017-12-14 | 2019-06-19 | Conti Temic Microelectronic Gmbh | Method for acquiring environmental information by means of a radar system |
| CN109949364A (en)* | 2019-04-01 | 2019-06-28 | 上海淞泓智能汽车科技有限公司 | A kind of vehicle attitude detection accuracy optimization method based on drive test monocular cam |
| CN109948698A (en)* | 2019-03-19 | 2019-06-28 | 北京行易道科技有限公司 | Vehicle characteristics determine method, apparatus, equipment and storage medium |
| CN109961416A (en)* | 2019-04-02 | 2019-07-02 | 西南交通大学 | A business license information extraction method based on multi-scale fusion of morphological gradients |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010502507A (en)* | 2006-09-07 | 2010-01-28 | ルノー・エス・アー・エス | Device and method for estimating the size of a parking space, and automobile equipped with the device |
| WO2008029038A1 (en)* | 2006-09-07 | 2008-03-13 | Renault S.A.S. | Device and method for estimating the dimensions of a parking space, motor vehicle comprising such a device |
| CN102658819A (en)* | 2012-05-16 | 2012-09-12 | 涂亚庆 | Automobile automatic parking method based on humanoid intelligent control |
| CN102968640A (en)* | 2012-10-25 | 2013-03-13 | 西安电子科技大学 | Polarized synthetic aperture radar (SAR) image classification method based on Freeman decomposition and data distribution characteristics |
| CN103810901A (en)* | 2012-11-09 | 2014-05-21 | 现代自动车株式会社 | Apparatus and method for parking position display of vehicle |
| CN103310439A (en)* | 2013-05-09 | 2013-09-18 | 浙江大学 | Method for detecting maximally stable extremal region of image based on scale space |
| US9440652B1 (en)* | 2013-08-01 | 2016-09-13 | Google Inc. | Filtering noisy/high-intensity regions in laser-based lane marker detection |
| CN104156723A (en)* | 2014-09-01 | 2014-11-19 | 中国人民解放军国防科学技术大学 | Method for extracting maximally stable extremal region with scale invariance |
| CN105584480A (en)* | 2014-10-24 | 2016-05-18 | 法雷奥汽车内部控制(深圳)有限公司 | Parking assisting method and system for automatically selecting parking operations |
| CN104331886A (en)* | 2014-10-29 | 2015-02-04 | 中国人民解放军国防科学技术大学 | Port region ship and warship detection method based on high resolution SAR image |
| CN107209992A (en)* | 2015-02-03 | 2017-09-26 | 西门子公司 | Traffic monitoring system for monitoring traffic area |
| CN105182340A (en)* | 2015-09-28 | 2015-12-23 | 电子科技大学 | Bistatic forward-looking SAR (Synthetic Aperture Radar) motion compensation method |
| CN105539430A (en)* | 2015-12-29 | 2016-05-04 | 北京理工大学 | Intelligent man-car interaction parking method based on hand-held terminal |
| JP2017147629A (en)* | 2016-02-18 | 2017-08-24 | 三菱重工業株式会社 | Parking position detection system, and automatic parking system using the same |
| CN107235077A (en)* | 2016-03-29 | 2017-10-10 | 长城汽车股份有限公司 | Parking assistance method, system and the vehicle of vehicle |
| CN107284443A (en)* | 2016-04-12 | 2017-10-24 | 福特全球技术公司 | Detect available parking places |
| CN106291543A (en)* | 2016-07-19 | 2017-01-04 | 电子科技大学 | A kind of motion platform scanning radar super-resolution imaging method |
| US20180025640A1 (en)* | 2016-07-19 | 2018-01-25 | Ford Global Technologies, Llc | Using Virtual Data To Test And Train Parking Space Detection Systems |
| CN106529591A (en)* | 2016-11-07 | 2017-03-22 | 湖南源信光电科技有限公司 | Improved MSER image matching algorithm |
| CN106680817A (en)* | 2016-12-26 | 2017-05-17 | 电子科技大学 | Method of realizing high-resolution imaging of forwarding looking radar |
| EP3343438A1 (en)* | 2016-12-30 | 2018-07-04 | Hyundai Motor Company | Automatic parking system and automatic parking method |
| CN106781670A (en)* | 2016-12-30 | 2017-05-31 | 华勤通讯技术有限公司 | The choosing method and device on a kind of parking stall |
| WO2018142852A1 (en)* | 2017-01-31 | 2018-08-09 | 富士通株式会社 | Movement assistance system, movement assistance device, movement assistance terminal, movement assistance method, map generating system, map generating device, and information acquisition terminal |
| CN106846339A (en)* | 2017-02-13 | 2017-06-13 | 广州视源电子科技股份有限公司 | Image detection method and device |
| WO2018148851A1 (en)* | 2017-02-20 | 2018-08-23 | William Bailie | Cruise efficient vertical and short take-off and landing aircraft |
| CN106908783A (en)* | 2017-02-23 | 2017-06-30 | 苏州大学 | Obstacle detection method based on multi-sensor information fusion |
| DE102017110063A1 (en)* | 2017-03-02 | 2018-09-06 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Method and device for environment detection |
| CN206649533U (en)* | 2017-03-23 | 2017-11-17 | 北京行易道科技有限公司 | Vehicle-mounted pattern recognition device and vehicle |
| CN108629246A (en)* | 2017-03-23 | 2018-10-09 | 北京行易道科技有限公司 | Vehicle-mounted image processing method, device and vehicle |
| CN106945662A (en)* | 2017-03-30 | 2017-07-14 | 重庆大学 | A kind of vertical automatic parking paths planning method and system |
| CN106980117A (en)* | 2017-05-31 | 2017-07-25 | 西安电子科技大学 | Millimetre-wave radar video imaging method based on overlapping aperture |
| WO2018235304A1 (en)* | 2017-06-22 | 2018-12-27 | 株式会社ショーワ | Obstacle detection device, vehicle, and obstacle detection system |
| US20190041859A1 (en)* | 2017-08-04 | 2019-02-07 | Aptiv Technologies Limited | Sensor failure compensation system for an automated vehicle |
| CN107776570A (en)* | 2017-09-19 | 2018-03-09 | 广州汽车集团股份有限公司 | Full-automatic park method and full-automatic parking system |
| CN107656274A (en)* | 2017-09-20 | 2018-02-02 | 电子科技大学 | SAR transient echos migration corrects and orientation energy accumulation method |
| US20190120931A1 (en)* | 2017-10-24 | 2019-04-25 | Novelic D.O.O. | Millimeter-wave System-in-Package for Parking Assistance |
| CN109693629A (en)* | 2017-10-24 | 2019-04-30 | 纽威莱克公司 | Millimeter-wave systems grade encapsulation for auxiliary of stopping |
| CN107976676A (en)* | 2017-11-24 | 2018-05-01 | 电子科技大学 | A kind of Moving Target with Airborne Synthetic Aperture Radar imaging method |
| DE102017129933A1 (en)* | 2017-12-14 | 2019-06-19 | Conti Temic Microelectronic Gmbh | Method for acquiring environmental information by means of a radar system |
| CN108545079A (en)* | 2018-03-30 | 2018-09-18 | 吉利汽车研究院(宁波)有限公司 | A kind of congestion road conditions driving assistance system and method |
| CN108597234A (en)* | 2018-05-10 | 2018-09-28 | 芜湖航飞科技股份有限公司 | A kind of intelligent transportation detector based on high-resolution radar |
| CN108928343A (en)* | 2018-08-13 | 2018-12-04 | 吉利汽车研究院(宁波)有限公司 | A kind of panorama fusion automated parking system and method |
| CN109017767A (en)* | 2018-08-22 | 2018-12-18 | 深圳市广和通无线股份有限公司 | It parks method, apparatus, computer equipment and storage medium |
| CN109284704A (en)* | 2018-09-07 | 2019-01-29 | 中国电子科技集团公司第三十八研究所 | CNN-based vehicle target detection method for complex background SAR |
| CN109703491A (en)* | 2018-11-16 | 2019-05-03 | 天津大学 | A safe parking method |
| CN109407094A (en)* | 2018-12-11 | 2019-03-01 | 湖南华诺星空电子技术有限公司 | Vehicle-mounted ULTRA-WIDEBAND RADAR forword-looking imaging system |
| CN109727265A (en)* | 2018-12-28 | 2019-05-07 | 北京行易道科技有限公司 | Target Segmentation method and device |
| CN109720342A (en)* | 2019-01-16 | 2019-05-07 | 杭州湘滨电子科技有限公司 | A kind of path planning design method vertically parked |
| CN109677398A (en)* | 2019-02-22 | 2019-04-26 | 海马汽车有限公司 | Automatic parking method, apparatus and automobile |
| CN109866761A (en)* | 2019-03-05 | 2019-06-11 | 重庆长安汽车股份有限公司 | Automatic parking paths planning method, system and computer readable storage medium |
| CN109948698A (en)* | 2019-03-19 | 2019-06-28 | 北京行易道科技有限公司 | Vehicle characteristics determine method, apparatus, equipment and storage medium |
| CN109949364A (en)* | 2019-04-01 | 2019-06-28 | 上海淞泓智能汽车科技有限公司 | A kind of vehicle attitude detection accuracy optimization method based on drive test monocular cam |
| CN109961416A (en)* | 2019-04-02 | 2019-07-02 | 西南交通大学 | A business license information extraction method based on multi-scale fusion of morphological gradients |
| Title |
|---|
| HO GI JUNG等: ""Scanning Laser Radar-Based Target Position Designation for Parking Aid System"", 《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS》* |
| HUAMING WU等: ""Automotive SAR for Parking Lot Detection"", 《2009 GERMAN MICROWAVE CONFERENCE》* |
| MARTINEZ, JAVIER等: ""Convolutional neural networks for parking space detection in downfire urban radar"", 《INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES》* |
| 上官伟等: ""SAR图像近岸舰船检测"", 《第八届全国信号和智能信息处理与应用学术会议会刊》* |
| 喻玲娟等: ""基于FCNN和ICAE的SAR图像目标识别方法"", 《雷达学报》* |
| 孙婷等: ""巡检机器人中指针式仪表示数的自动识别方法"", 《计算机应用》* |
| 孙成璐: ""基于SAR图像的舰船目标检测与鉴别算法研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》* |
| 张倩: ""无人机载SAR运动补偿和高分辨率成像算法研究"", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》* |
| 张永梅等: ""一种基于多元特征的海上目标分割方法"", 《计算机应用与软件》* |
| 江浩斌等: ""基于多传感器数据融合的自动泊车系统高精度辨识车位的方法"", 《重庆理工大学学报(自然科学)》* |
| 王文飞: ""基于超声波与机器视觉的自动泊车系统设计"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》* |
| 翟亮: ""SAR图像港口内舰船目标检测"", 《中国优秀硕士学位论文全文数据库 信息科技辑》* |
| 胡汉莉等: ""一种基于MSER的仿射不变二进制特征提取算法"", 《计算机与数字工程》* |
| 袁湛等: ""基于上下文信息的高分辨率SAR图像ROIs提取算法"", 《数据采集与处理》* |
| 过杰等: ""渤海溢油特点及对其生态系统影响——蓬莱19-3石油平台溢油"", 《中国海洋湖沼学会第十次会员代表大会暨学术研讨会》* |
| 高航等: ""基于多传感器多路径规划自动泊车系统仿真及实车验证"", 《自动化与仪器仪表》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110969892A (en)* | 2019-11-06 | 2020-04-07 | 重庆市城投金卡信息产业(集团)股份有限公司 | Parking lot management method and system |
| CN110796892A (en)* | 2019-11-06 | 2020-02-14 | 重庆市城投金卡信息产业(集团)股份有限公司 | Parking guidance method and system for parking lot |
| CN113920770B (en)* | 2020-07-07 | 2022-12-27 | 北京新能源汽车股份有限公司 | Passenger-riding parking control method, device, equipment and vehicle |
| CN113920770A (en)* | 2020-07-07 | 2022-01-11 | 北京新能源汽车股份有限公司 | Passenger-riding parking control method, device, equipment and vehicle |
| CN112101128A (en)* | 2020-08-21 | 2020-12-18 | 东南大学 | A perception planning method for unmanned formula racing car based on multi-sensor information fusion |
| CN112489427A (en)* | 2020-11-26 | 2021-03-12 | 招商华软信息有限公司 | Vehicle trajectory tracking method, device, equipment and storage medium |
| CN112489427B (en)* | 2020-11-26 | 2022-04-15 | 招商华软信息有限公司 | A vehicle trajectory tracking method, device, device and storage medium |
| CN112562397A (en)* | 2020-12-11 | 2021-03-26 | 南京信江物联网技术有限公司 | Intelligent parking system and use method |
| CN113238237A (en)* | 2021-07-12 | 2021-08-10 | 天津天瞳威势电子科技有限公司 | Library position detection method and device |
| CN113238237B (en)* | 2021-07-12 | 2021-10-01 | 天津天瞳威势电子科技有限公司 | A storage location detection method and device |
| CN114179788A (en)* | 2021-12-29 | 2022-03-15 | 纵目科技(上海)股份有限公司 | Automatic parking method, system, computer readable storage medium and vehicle terminal |
| CN114179788B (en)* | 2021-12-29 | 2024-07-12 | 纵目科技(上海)股份有限公司 | Automatic parking method, system, computer readable storage medium and vehicle terminal |
| CN115980746A (en)* | 2022-11-25 | 2023-04-18 | 惠州市德赛西威汽车电子股份有限公司 | A detection method, device, vehicle and storage medium of a drivable area |
| WO2024109347A1 (en)* | 2022-11-25 | 2024-05-30 | 惠州市德赛西威汽车电子股份有限公司 | Method and apparatus for detecting travelable area, and vehicle and storage medium |
| CN118883102A (en)* | 2024-09-30 | 2024-11-01 | 山东港口烟台港集团有限公司 | A single-line laser radar tire detection method based on feature evaluation function |
| CN120195673A (en)* | 2025-05-26 | 2025-06-24 | 上海几何伙伴智能驾驶有限公司 | An automatic parking obstacle perception method based on millimeter wave radar |
| CN120195673B (en)* | 2025-05-26 | 2025-08-22 | 上海几何伙伴智能驾驶有限公司 | An automatic parking obstacle perception method based on millimeter-wave radar |
| Publication number | Publication date |
|---|---|
| CN110379178B (en) | 2021-11-02 |
| Publication | Publication Date | Title |
|---|---|---|
| CN110379178B (en) | Intelligent parking method for unmanned vehicles based on millimeter wave radar imaging | |
| CN111144432B (en) | Method for eliminating fuzzy detection in sensor fusion system | |
| CN109649384B (en) | Parking assisting method | |
| JP3822770B2 (en) | Vehicle front monitoring device | |
| CN110058239B (en) | Vehicle-mounted millimeter wave radar device and target detection method | |
| CN103064086B (en) | Vehicle tracking method based on depth information | |
| CN103176185B (en) | Method and system for detecting road barrier | |
| CN112810619B (en) | A radar-based method for identifying front target vehicles in driver assistance systems | |
| CN107103275B (en) | Wheel-based vehicle detection and tracking using radar and vision | |
| Han et al. | Road boundary detection and tracking for structured and unstructured roads using a 2D lidar sensor | |
| CN109359409A (en) | A kind of vehicle passability detection system of view-based access control model and laser radar sensor | |
| WO2018177026A1 (en) | Device and method for determining road edge | |
| CN109017801A (en) | The method for determining target vehicle yaw rate | |
| JP2004508627A (en) | Route prediction system and method | |
| CN113189975A (en) | Method for determining position data and/or movement data of a vehicle | |
| CN113253257B (en) | Strip mine obstacle detection method based on multi-millimeter-wave radar and vision | |
| CN112771591B (en) | Method for evaluating the influence of an object in the environment of a vehicle on the driving maneuver of the vehicle | |
| CN116299473B (en) | Method for detecting crossing target based on MIMO millimeter wave radar | |
| US10970870B2 (en) | Object detection apparatus | |
| JP2002098758A (en) | Method and device for finding position of automobile with respect to traveling lane | |
| CN110095776B (en) | Method for determining the presence and/or the characteristics of an object and surrounding identification device | |
| CN114815833A (en) | Autonomous vehicle formation following guiding method applying passive guiding system | |
| CN114814778B (en) | Carrier speed calculation method based on millimeter wave radar | |
| JP7719953B2 (en) | Method for characterizing objects in the vicinity of a motorized vehicle - Patents.com | |
| Zhong et al. | Dynamic obstacle detection and tracking based on 3D lidar |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |