Movatterモバイル変換


[0]ホーム

URL:


CN110340894B - Teleoperation system self-adaptive multilateral control method based on fuzzy logic - Google Patents

Teleoperation system self-adaptive multilateral control method based on fuzzy logic
Download PDF

Info

Publication number
CN110340894B
CN110340894BCN201910648989.XACN201910648989ACN110340894BCN 110340894 BCN110340894 BCN 110340894BCN 201910648989 ACN201910648989 ACN 201910648989ACN 110340894 BCN110340894 BCN 110340894B
Authority
CN
China
Prior art keywords
robot
fuzzy logic
slave
function
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910648989.XA
Other languages
Chinese (zh)
Other versions
CN110340894A (en
Inventor
陈正
黄方昊
宋伟
朱世强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJUfiledCriticalZhejiang University ZJU
Priority to CN201910648989.XApriorityCriticalpatent/CN110340894B/en
Publication of CN110340894ApublicationCriticalpatent/CN110340894A/en
Application grantedgrantedCritical
Publication of CN110340894BpublicationCriticalpatent/CN110340894B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种基于模糊逻辑的非线性遥操作系统的自适应多边控制方法。本发明基于模糊逻辑函数,估计了非线性环境动力学的非功率参数,并通过存在时延的通信通道传输回主端,进行主端环境力的重构;针对主从机器人存在的各种不确定性问题,本发明基于模糊逻辑系统,通过设计自适应率在线更新包含未知系统模型信息的非线性函数的参数;针对系统的位置追踪性能,本发明通过基于模糊逻辑系统的非线性自适应多边控制方法,当系统存在通信时延时,使从机器人准确地跟踪主机器人的轨迹信号;针对多机器人间的协同作业时作业力分配的问题,本发明通过设计多机器人的协同控制算法,实现了多个从机器人的作业力分配。

Figure 201910648989

The invention discloses an adaptive multilateral control method based on a fuzzy logic nonlinear teleoperating system. Based on the fuzzy logic function, the invention estimates the non-power parameters of nonlinear environmental dynamics, and transmits it back to the main end through a communication channel with time delay to reconstruct the environmental force of the main end; To solve the deterministic problem, the present invention is based on a fuzzy logic system, and the parameters of the nonlinear function including the model information of the unknown system are updated online by designing the adaptive rate; for the position tracking performance of the system, the present invention adopts the nonlinear adaptive multilateral based on the fuzzy logic system. The control method enables the slave robot to accurately track the trajectory signal of the master robot when there is a time delay in communication in the system; for the problem of work force distribution during cooperative operation among multiple robots, the present invention realizes the multi-robot cooperative control algorithm by designing a multi-robot cooperative control algorithm. Work force distribution for multiple slave robots.

Figure 201910648989

Description

Translated fromChinese
一种基于模糊逻辑的遥操作系统自适应多边控制方法An adaptive multilateral control method for teleoperating systems based on fuzzy logic

技术领域technical field

本发明属于遥操作控制领域,具体来说是一种基于模糊逻辑的遥操作系统自适应多边控制方法,同时保证非线性多边遥操作系统的稳定性、透明性和多从机器人的协同作业性能。The invention belongs to the field of teleoperation control, in particular to a fuzzy logic-based teleoperating system adaptive multilateral control method, which simultaneously ensures the stability and transparency of the nonlinear multilateral teleoperation system and the cooperative operation performance of multi-slave robots.

背景技术Background technique

随着机电技术的不断发展,机器人系统的研究越来越成为现阶段的热门课题,其中依靠人机交互的遥操作机器人技术已经取得了阶段性的进展,并在军事、工业和医疗领域有着广泛的应用。With the continuous development of electromechanical technology, the research on robotic systems has become a hot topic at this stage. Among them, the tele-operation robot technology relying on human-computer interaction has achieved staged progress, and has a wide range of applications in military, industrial and medical fields. Applications.

然而,随着作业任务往复杂、精细的方向发展,需要作业环境中存在多个具有多自由度的机器人进行协同作业,这类机器人往往存在非线性和各种不确定性;此外,随着协同作业机器人数量的增多,多机器人间的信号通信会使存在时延的通信通道中的信号传输变得更加复杂,甚至恶化遥操作系统的稳定性和透明性。However, with the development of complex and delicate tasks, multiple robots with multiple degrees of freedom are required to work collaboratively in the work environment. Such robots often have nonlinearities and various uncertainties; in addition, with the cooperation of With the increase of the number of working robots, the signal communication between multiple robots will make the signal transmission in the communication channel with delay more complicated, and even deteriorate the stability and transparency of the teleoperating system.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提出一种基于模糊逻辑的遥操作系统自适应多边控制方法,以解决传统多边遥操作系统中的稳定性与透明性权衡,主从机器人的非线性和各种不确定性,以及多机器人的协同作业等技术问题。The purpose of the present invention is to propose an adaptive multilateral control method of teleoperating system based on fuzzy logic, so as to solve the trade-off between stability and transparency in traditional multilateral teleoperating system, nonlinearity and various uncertainties of master-slave robot, And technical problems such as multi-robot collaborative operation.

为实现上述目的,本发明的技术方案具体内容如下:To achieve the above object, the specific content of the technical scheme of the present invention is as follows:

一种基于模糊逻辑的遥操作系统自适应多边控制方法,包括以下步骤:An adaptive multilateral control method for teleoperating systems based on fuzzy logic, comprising the following steps:

(一)建立多边遥操作系统的非线性动力学模型。(1) Establish the nonlinear dynamic model of the multilateral teleoperating system.

(二)基于模糊逻辑系统的作业环境估计与主端环境重构。(2) Operating environment estimation and master-side environment reconstruction based on fuzzy logic system.

(三)基于模糊逻辑系统设计主机器人的自适应多边控制器。(3) Design the adaptive multilateral controller of the main robot based on the fuzzy logic system.

(四)基于模糊逻辑系统设计从机器人的自适应多边控制器。(4) The adaptive multilateral controller of slave robot is designed based on fuzzy logic system.

与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

1、基于模糊逻辑系统,估计了非线性环境动力学的非功率参数,并通过存在时延的通信通道传输回主端,进行主端环境力的重构,从而避免了因功率信号在通信通道中的传输造成的遥操作系统的失稳问题,并为操作者提供准确的力反馈信息。1. Based on the fuzzy logic system, the non-power parameters of nonlinear environmental dynamics are estimated, and transmitted back to the main end through the communication channel with delay to reconstruct the environmental force of the main end, thereby avoiding the power signal in the communication channel. The instability problem of the teleoperating system caused by the transmission in the middle, and provide accurate force feedback information for the operator.

2、基于模糊逻辑系统,通过设计自适应率在线更新包含未知系统模型信息的非线性函数的参数,从而解决了主从机器人存在的各种不确定性问题。2. Based on the fuzzy logic system, the parameters of the nonlinear function containing the unknown system model information are updated online by designing the adaptive rate, thus solving the various uncertainties of the master-slave robot.

3、通过基于模糊逻辑系统的非线性自适应多边控制方法,当系统存在通信时延时,使从机器人准确地跟踪主机器人的轨迹信号,从而提升系统的位置追踪性能。3. Through the nonlinear adaptive multilateral control method based on fuzzy logic system, when there is a delay in communication in the system, the slave robot can accurately track the trajectory signal of the master robot, thereby improving the position tracking performance of the system.

4、通过设计多机器人的协同控制算法,实现了多个从机器人的作业力分配,从而提升了多个从机器人对作业任务的协同作业性能。4. By designing a multi-robot collaborative control algorithm, the work force distribution of multiple slave robots is realized, thereby improving the collaborative operation performance of multiple slave robots for work tasks.

5、通过设计李雅普诺夫函数,保证了非线性多边遥操作系统中所有信号的有界性,从而保住了系统的全局渐进稳定性;5. By designing the Lyapunov function, the boundedness of all signals in the nonlinear multilateral teleoperating system is guaranteed, thereby maintaining the global asymptotic stability of the system;

附图说明Description of drawings

图1是本发明提出的基于模糊逻辑系统的非线性遥操作系统的自适应多边控制框图。FIG. 1 is a block diagram of the adaptive multilateral control of the nonlinear teleoperating system based on the fuzzy logic system proposed by the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.

现结合实施例、附图1对本发明作进一步描述:Now in conjunction with embodiment, accompanyingdrawing 1 the present invention is further described:

本发明的实施技术方案为:The technical implementation scheme of the present invention is:

1)建立多边遥操作系统的非线性动力学模型,具体为:1) Establish a nonlinear dynamic model of the multilateral teleoperating system, specifically:

1-1)建立主机器人、从机器人与作业环境的非线性动力学模型1-1) Establish the nonlinear dynamic model of the master robot, slave robot and working environment

Figure BDA0002134536900000021
Figure BDA0002134536900000021

Figure BDA0002134536900000022
Figure BDA0002134536900000022

其中,qm,i,

Figure BDA0002134536900000023
和qs,i,
Figure BDA0002134536900000024
表示第i个主从机器人位置、速度和加速度信号,xm,i,
Figure BDA0002134536900000025
表示第i个主机器人的末端位置,xs,o,
Figure BDA0002134536900000026
表示作业任务中抓取目标的质心位置,Mm,i和Ms表示质量惯性矩阵,Cm,i和Cs表示科氏力/向心力矩阵,Gm,i和Gs表示重力矩阵,Dm,i和Ds表示外干扰和建模误差,um,i和us表示控制输入,Fh,i表示第i个操作者的操作力,Fe表示从机器人与作业任务中的环境力,i=1,2,....,n。Among them, qm,i ,
Figure BDA0002134536900000023
and qs,i ,
Figure BDA0002134536900000024
Indicates the position, velocity and acceleration signals of the i-th master-slave robot, xm,i ,
Figure BDA0002134536900000025
represents the end position of the i-th master robot, xs,o ,
Figure BDA0002134536900000026
Indicates the position of the center of mass of the grasping target in the task, Mm, i and Ms represent the mass inertia matrix, Cm, i and Cs represent the Coriolis force/centripetal force matrix, Gm, i and Gs represent the gravity matrix, Dm, i and Ds represent external disturbance and modeling error,um, i and us represent the control input, Fh, irepresent the operating force of the ith operator, and Fe represent the environment from the robot and the task Force, i=1,2,....,n.

上述系统具有如下特性:The above system has the following characteristics:

①0<Mm,i≤δm0,iI,0<Ms≤δs0I,其中,δm0,is0>0表示单位矩阵I的缩放系数;①0<Mm,i ≤δm0,i I, 0<Ms ≤δs0 I, where δm0,is0 >0 represents the scaling factor of the identity matrix I;

Figure BDA0002134536900000031
Figure BDA0002134536900000032
为斜对称矩阵;②
Figure BDA0002134536900000031
and
Figure BDA0002134536900000032
is an obliquely symmetric matrix;

③公式(1)和(2)中的部分动力学方程可以写成如下线性方程的形式:③Part of the kinetic equations in equations (1) and (2) can be written in the form of the following linear equations:

Figure BDA0002134536900000033
Figure BDA0002134536900000033

Figure BDA0002134536900000034
Figure BDA0002134536900000034

其中,θm,i和θs表示主从机器人的模型未知参数,ζ表示模糊逻辑矩阵。Among them, θm,i and θs represent the unknown parameters of the master-slave robot model, and ζ represents the fuzzy logic matrix.

1-2)建立作业环境的非线性动力学模型1-2) Establish a nonlinear dynamic model of the working environment

Figure BDA0002134536900000035
Figure BDA0002134536900000035

其中,θe表示未知的非功率环境参数。where θe represents an unknown non-power environmental parameter.

2)基于模糊逻辑系统的作业环境估计与主端环境重构,具体为:2) Based on fuzzy logic system operating environment estimation and master-end environment reconstruction, specifically:

2-1)将从端作业环境的动力学模型(3)写成径向基神经网络函数的形式,则:2-1) Write the dynamic model (3) of the slave operating environment in the form of a radial basis neural network function, then:

Fe=ζT(xewe (4)FeT (xewe (4)

其中,xew表示模糊逻辑函数的输入量,且与xs,o,

Figure BDA0002134536900000036
相关。Among them, xew represents the input of the fuzzy logic function, and is the same as xs,o ,
Figure BDA0002134536900000036
related.

2-2)定义

Figure BDA0002134536900000037
为环境的最优估计参数,Ωe和Ωe0分别表示xew和We的有界集,通过MATLAB的模糊逻辑工具箱能够实现从端作业环境的在线估计。2-2) Definition
Figure BDA0002134536900000037
For the optimal estimation parameters of the environment, Ωe and Ωe0 represent the bounded sets of xew and We respectively, and the online estimation of the slave operating environment can be realized by the fuzzy logic toolbox of MATLAB.

2-3)由于通信时延T(t)的存在,为避免功率信号在通信通道间的传递影响多边遥操作系统的稳定性,将非功率环境参数估计值

Figure BDA0002134536900000038
传递到主端,从而得到主端的重构环境力为:2-3) Due to the existence of the communication delay T(t), in order to avoid the transmission of power signals between communication channels from affecting the stability of the multilateral teleoperating system, the estimated value of the non-power environment parameters is
Figure BDA0002134536900000038
Pass it to the master, so as to obtain the reconstructed environment force of the master as:

Figure BDA0002134536900000039
Figure BDA0002134536900000039

其中,xemw表示模糊逻辑函数的输入量,且与xmd,i,

Figure BDA00021345369000000310
相关。Among them, xemw represents the input of the fuzzy logic function, and is the same as xmd,i ,
Figure BDA00021345369000000310
related.

3)基于模糊逻辑系统设计主机器人的自适应多边控制器,具体为:3) Design the adaptive multilateral controller of the main robot based on the fuzzy logic system, specifically:

3-1)设计主机器人的理想轨迹生成器如下:3-1) The ideal trajectory generator for designing the master robot is as follows:

Figure BDA0002134536900000041
Figure BDA0002134536900000041

Figure BDA0002134536900000042
Figure BDA0002134536900000042

其中,i=1,2,...,n,

Figure BDA0002134536900000043
Md,Cd,Gd表示轨迹生成器的优化参数。通过选取适当的优化系数,(6)-(7)能够生成无源的主机器人理想轨迹信号xmd,i。Among them, i=1,2,...,n,
Figure BDA0002134536900000043
Md , Cd , Gd represent the optimization parameters of the trajectory generator. By choosing appropriate optimization coefficients, (6)-(7) can generate the passive ideal trajectory signal xmd,i of the master robot.

3-2)定义xm1,i=xm,i

Figure BDA0002134536900000044
则第i个主机器人的非线性动力学模型(1)可改写为:3-2) Define xm1,i =xm,i ,
Figure BDA0002134536900000044
Then the nonlinear dynamic model (1) of the i-th master robot can be rewritten as:

Figure BDA0002134536900000045
Figure BDA0002134536900000045

3-3)定义第i个主机器人的跟踪误差为:3-3) Define the tracking error of the i-th master robot as:

Figure BDA0002134536900000046
Figure BDA0002134536900000046

其中,αm1,i表示主机器人的虚拟跟踪量。Among them, αm1,i represents the virtual tracking amount of the main robot.

3-4)定义(8)中的第一个子系统的李雅普诺夫函数Vm1,i如下:3-4) Define the Lyapunov function Vm1,i of the first subsystem in (8) as follows:

Figure BDA0002134536900000047
Figure BDA0002134536900000047

通过选取虚拟跟踪量αm1,i

Figure BDA0002134536900000048
则By selecting the virtual tracking amount αm1, i is
Figure BDA0002134536900000048
but

Figure BDA0002134536900000049
Figure BDA0002134536900000049

3-5)定义(8)中的第二个子系统的李雅普诺夫函数Vm2,i如下:3-5) Define the Lyapunov function Vm2,i of the second subsystem in (8) as follows:

Figure BDA00021345369000000410
Figure BDA00021345369000000410

3-6)基于(8)和(9),可得zm2,i的导数为3-6) Based on (8) and (9), the derivative of zm2,i can be obtained as

Figure BDA00021345369000000411
Figure BDA00021345369000000411

于是,可得Vm2,i的导数为Therefore, the derivative of Vm2,i can be obtained as

Figure BDA00021345369000000412
Figure BDA00021345369000000412

其中,

Figure BDA0002134536900000051
表示未知主机器人系统动力学函数。in,
Figure BDA0002134536900000051
represents the unknown master robot system dynamics function.

3-7)根据(14)设计主控制器,保证主端子系统的稳定性,设计的控制器um,i为:3-7) Design the main controller according to (14) to ensure the stability of the main terminal system. The designed controllerum,i is:

um,i=-μm2,izm2,i-zm1,im,i-Fh,i (15)um,i =-μm2,i zm2,i -zm1,im,i -Fh,i (15)

其中,μm2,i>0表示主控制器性能调整参数。Among them, μm2,i >0 represents the main controller performance adjustment parameter.

在从控制器(15)中,Φm,i表示一种用于估计ηm,i的模糊逻辑函数,可定义为:In the slave controller (15), Φm,i represents a fuzzy logic function for estimating ηm,i , which can be defined as:

Figure BDA0002134536900000052
Figure BDA0002134536900000052

其中,θm,i表示未知的主机器人系统动力学参数,

Figure BDA0002134536900000053
表示模糊逻辑函数的输入量,
Figure BDA0002134536900000054
表示第j个局部模糊逻辑函数。where θm,i represents the unknown dynamic parameters of the main robot system,
Figure BDA0002134536900000053
represents the input quantity of the fuzzy logic function,
Figure BDA0002134536900000054
represents the jth local fuzzy logic function.

3-8)设计主端系统的李雅普诺夫函数Vm,i为:3-8) Design the Lyapunov function Vm,i of the master-end system as:

Figure BDA0002134536900000055
Figure BDA0002134536900000055

其中,γm,i>0表示李雅普诺夫函数Vm,i的系数,

Figure BDA0002134536900000056
表示模糊逻辑函数的估计误差,
Figure BDA0002134536900000057
表示最优估计参数。。where γm,i >0 represents the coefficient of the Lyapunov function Vm,i ,
Figure BDA0002134536900000056
represents the estimation error of the fuzzy logic function,
Figure BDA0002134536900000057
represents the optimal estimated parameter. .

基于李雅普诺夫函数Vm,i设计θm,i的自适应率为:Based on the Lyapunov function Vm,i, the design adaptive rate of θm,i is:

Figure BDA0002134536900000058
Figure BDA0002134536900000058

其中,km,i>0和Γm,i>0表示自适应率的性能调节参数。where km,i >0 and Γm,i >0 represent the performance tuning parameters of the adaptation rate.

4)基于模糊逻辑系统设计从机器人的自适应多边控制器,具体为:4) Design the adaptive multilateral controller of the slave robot based on the fuzzy logic system, specifically:

4-1)由于信号在通信通道的传输会不可避免地产生通信时延,主机器人的位置信号xm,i(t)通过通信通道传输到从端得到时延的位置信号xm,i(t-T(t)),设计从机器人的理想轨迹生成器为Hf(s)=1/(ofs+1)2,其中,of表示时间常数,通过输入时延的平均位置信号

Figure BDA0002134536900000061
能够输出理想的从机器人跟踪轨迹xsd,o(t),
Figure BDA0002134536900000062
其中,lo,i表示抓取目标与机器人末端位置间的关系转换,T(t)为系统的通信时延。4-1) Since the transmission of the signal in the communication channel will inevitably generate a communication delay, the position signal xm,i (t) of the master robot is transmitted to the slave through the communication channel to obtain the delayed position signal xm,i ( tT(t )), the ideal trajectory generator of the design slave robot is Hf (s)=1/(of s+ 1)2 , where of represents the time constant, the average position signal through the input time delay
Figure BDA0002134536900000061
Able to output ideal slave robot tracking trajectory xsd,o (t),
Figure BDA0002134536900000062
Among them, lo,i represents the relationship conversion between the grasping target and the end position of the robot, and T(t) is the communication delay of the system.

4-2)定义xs1=xs,o

Figure BDA0002134536900000063
则非线性动力学模型(2)可改写为:4-2) Define xs1 =xs,o ,
Figure BDA0002134536900000063
Then the nonlinear dynamic model (2) can be rewritten as:

Figure BDA0002134536900000064
Figure BDA0002134536900000064

4-3)定义从机器人与抓取目标的跟踪误差为:4-3) Define the tracking error between the slave robot and the grab target as:

Figure BDA0002134536900000065
Figure BDA0002134536900000065

其中,αs1表示从机器人的虚拟跟踪量。Among them, αs1 represents the virtual tracking amount of the slave robot.

4-4)定义(19)中的第一个子系统的李雅普诺夫函数Vs1如下:4-4) Define the Lyapunov function Vs1 of the first subsystem in (19) as follows:

Figure BDA0002134536900000066
Figure BDA0002134536900000066

通过选取虚拟跟踪量αs1

Figure BDA0002134536900000067
则By selecting the virtual tracking amount αs1 as
Figure BDA0002134536900000067
but

Figure BDA0002134536900000068
Figure BDA0002134536900000068

4-5)定义(19)中的第二个子系统的李雅普诺夫Vs2如下:4-5) The Lyapunov Vs2 of the second subsystem in (19) is defined as follows:

Figure BDA0002134536900000069
Figure BDA0002134536900000069

4-6)基于(19)和(20),可得zs2的导数为4-6) Based on (19) and (20), the derivative of zs2 can be obtained as

Figure BDA00021345369000000610
Figure BDA00021345369000000610

于是,可得Vs2的导数为Therefore, the derivative of Vs2 can be obtained as

Figure BDA00021345369000000611
Figure BDA00021345369000000611

其中,

Figure BDA00021345369000000612
表示未知从机器人系统动力学函数。in,
Figure BDA00021345369000000612
represents the unknown slave robot system dynamics function.

4-7)根据(25)设计从控制器,保证从端子系统的稳定性,设计的控制器us为:4-7) Design the slave controller according to (25) to ensure the stability of the slave terminal system. The designed controller us is:

us=-μs2zs2-zs1s+Fe (26)us = -μs2 zs2 -zs1s +Fe (26)

其中,μs2>0表示从控制器性能调整参数。Among them, μs2 > 0 means to adjust the parameters from the controller performance.

在从控制器(26)中,Φs表示一种用于估计ηs的模糊逻辑函数,可定义为:In the slave controller (26), Φs represents a fuzzy logic function for estimating ηs , which can be defined as:

Figure BDA0002134536900000071
Figure BDA0002134536900000071

其中,θs表示未知的从机器人系统动力学参数,

Figure BDA0002134536900000072
表示模糊逻辑函数的输入量,
Figure BDA0002134536900000073
表示第j个局部模糊逻辑函数。where θs represents the unknown dynamic parameters of the slave robot system,
Figure BDA0002134536900000072
represents the input quantity of the fuzzy logic function,
Figure BDA0002134536900000073
represents the jth local fuzzy logic function.

4-8)设计从端系统的李雅普诺夫函数Vs为:4-8) Design the Lyapunov function Vs of the slave system as:

Figure BDA0002134536900000074
Figure BDA0002134536900000074

其中,γs>0表示李雅普诺夫函数Vs的系数,

Figure BDA0002134536900000075
表示模糊逻辑函数的估计误差,
Figure BDA0002134536900000076
表示最优估计参数。where γs >0 represents the coefficient of the Lyapunov function Vs ,
Figure BDA0002134536900000075
represents the estimation error of the fuzzy logic function,
Figure BDA0002134536900000076
represents the optimal estimated parameter.

基于李雅普诺夫函数Vs设计θs的自适应率为:The adaptive rate of designing θs based on the Lyapunov function Vs is:

Figure BDA0002134536900000077
Figure BDA0002134536900000077

其中,ks>0和Γs>0表示自适应率的性能调节参数。where ks >0 and Γs >0 represent the performance tuning parameters of the adaptation rate.

4-9)根据从控制器(26),为得到每个从机器人的控制输入us,i,设计多机器人的协同控制算法如下:4-9) According to the slave controller (26), in order to obtain the control input us,i of each slave robot, the cooperative control algorithm of multiple robots is designed as follows:

Figure BDA0002134536900000078
Figure BDA0002134536900000078

其中,

Figure BDA0002134536900000079
表示分配系数,且
Figure BDA00021345369000000710
W表示不同作业需求的权重系数,
Figure BDA00021345369000000711
表示各个从机器人与抓取目标的内部力,且
Figure BDA00021345369000000712
in,
Figure BDA0002134536900000079
represents the distribution coefficient, and
Figure BDA00021345369000000710
W represents the weight coefficient of different job requirements,
Figure BDA00021345369000000711
represents the internal force of each slave robot and grasping target, and
Figure BDA00021345369000000712

Claims (4)

Translated fromChinese
1.一种基于模糊逻辑的遥操作系统自适应多边控制方法,其特征在于,包括以下步骤:1. a teleoperating system adaptive multilateral control method based on fuzzy logic, is characterized in that, comprises the following steps:1)建立多边遥操作系统的非线性动力学模型,具体为:1) Establish a nonlinear dynamic model of the multilateral teleoperating system, specifically:1-1)建立主机器人、从机器人与作业环境的非线性动力学模型1-1) Establish the nonlinear dynamic model of the master robot, slave robot and working environment
Figure FDA0002620051960000011
Figure FDA0002620051960000011
Figure FDA0002620051960000012
Figure FDA0002620051960000012
其中,qm,i,
Figure FDA0002620051960000013
和qs,i,
Figure FDA0002620051960000014
表示第i个主从机器人位置、速度和加速度信号,xm,i,
Figure FDA0002620051960000015
表示第i个主机器人的末端位置、末端速度和末端加速度,xs,o,
Figure FDA0002620051960000016
表示作业任务中抓取目标的质心位置、质心速度和质心加速度,Mm,i和Ms表示质量惯性矩阵,Cm,i和Cs表示科氏力/向心力矩阵,Gm,i和Gs表示重力矩阵,Dm,i和Ds表示外干扰和建模误差,um,i和us表示控制输入,Fh,i表示第i个操作者的操作力,Fe表示从机器人与作业任务中的环境力,i=1,2,....,n;
Among them, qm,i ,
Figure FDA0002620051960000013
and qs,i ,
Figure FDA0002620051960000014
Indicates the position, velocity and acceleration signals of the i-th master-slave robot, xm,i ,
Figure FDA0002620051960000015
represents the end position, end velocity and end acceleration of the i-th master robot, xs,o ,
Figure FDA0002620051960000016
Indicates the centroid position, centroid velocity and centroid acceleration of the grasping target in the task, Mm,i and Ms indicate the mass inertia matrix, Cm,i and Cs indicate the Coriolis force/centripetal force matrix, Gm,i and Gs represents the gravity matrix, Dm,i and Ds represent the external disturbance and modeling error,um,i and us represent the control input, Fh,irepresents the operating force of the ith operator, and Fe represents the slave robot and the environmental force in the task, i=1,2,....,n;
上述系统具有如下特性:The above system has the following characteristics:①0<Mm,i≤δm0,iI,0<Ms≤δs0I,其中,δm0,is0>0表示单位矩阵I的缩放系数;①0<Mm,i ≤δm0,i I, 0<Ms ≤δs0 I, where δm0,is0 >0 represents the scaling factor of the identity matrix I;
Figure FDA0002620051960000017
Figure FDA0002620051960000018
为斜对称矩阵;
Figure FDA0002620051960000017
and
Figure FDA0002620051960000018
is an obliquely symmetric matrix;
③公式(1)和(2)中的部分动力学方程可以写成如下线性方程的形式:③Part of the kinetic equations in equations (1) and (2) can be written in the form of the following linear equations:
Figure FDA0002620051960000019
Figure FDA0002620051960000019
Figure FDA00026200519600000110
Figure FDA00026200519600000110
其中,θm,i和θs表示主从机器人的模型未知参数,ζ表示模糊逻辑矩阵;Among them, θm,i and θs represent the unknown parameters of the master-slave robot model, and ζ represents the fuzzy logic matrix;1-2)建立从端作业环境的非线性动力学模型1-2) Establish a nonlinear dynamic model of the slave operating environment
Figure FDA00026200519600000111
Figure FDA00026200519600000111
其中,θe表示未知的非功率环境参数;Among them, θe represents the unknown non-power environmental parameters;2)基于模糊逻辑系统的作业环境估计与主端环境重构,具体为:2) Operating environment estimation and master-end environment reconstruction based on fuzzy logic system, specifically:2-1)将从端作业环境的非线性动力学模型(3)写成径向基神经网络函数的形式,则:2-1) Write the nonlinear dynamic model (3) of the slave operating environment in the form of a radial basis neural network function, then:Fe=ζT(xewe (4)FeT (xewe (4)其中,xew表示模糊逻辑函数的输入量;Among them, xew represents the input quantity of the fuzzy logic function;2-2)定义
Figure FDA0002620051960000021
为环境的最优估计参数,Ωe和Ωe0分别表示xew和θe的有界集,通过MATLAB的模糊逻辑工具箱实现从端作业环境的在线估计;
2-2) Definition
Figure FDA0002620051960000021
are the optimal estimation parameters of the environment, Ωe and Ωe0 represent the bounded sets of xew and θe respectively, and the online estimation of the slave operating environment is realized by the fuzzy logic toolbox of MATLAB;
2-3)进行主端的环境力重构;2-3) Carry out the environmental force reconstruction of the main end;3)基于模糊逻辑系统设计主机器人的自适应多边控制器,具体为:3) Design the adaptive multilateral controller of the main robot based on the fuzzy logic system, specifically:3-1)设计主机器人的理想轨迹生成器生成无源的主机器人理想轨迹信号xmd,i;设计的主机器人的理想轨迹生成器如下:3-1) Design the ideal trajectory generator of the main robot to generate a passive ideal trajectory signal xmd,i of the main robot; the ideal trajectory generator of the designed main robot is as follows:
Figure FDA0002620051960000022
Figure FDA0002620051960000022
Figure FDA0002620051960000023
Figure FDA0002620051960000023
其中,i=1,2,...,n,
Figure FDA0002620051960000024
Md,Cd,Gd表示轨迹生成器的优化参数;
Among them, i=1,2,...,n,
Figure FDA0002620051960000024
Md , Cd , Gd represent the optimization parameters of the trajectory generator;
3-2)定义xm1,i=xm,i
Figure FDA0002620051960000025
则第i个主机器人的非线性动力学模型(1)可改写为:
3-2) Define xm1,i =xm,i ,
Figure FDA0002620051960000025
Then the nonlinear dynamic model (1) of the i-th master robot can be rewritten as:
Figure FDA0002620051960000026
Figure FDA0002620051960000026
3-3)定义第i个主机器人的跟踪误差为:3-3) Define the tracking error of the i-th master robot as:
Figure FDA0002620051960000027
Figure FDA0002620051960000027
其中,αm1,i表示主机器人的虚拟跟踪量;Among them, αm1,i represents the virtual tracking amount of the main robot;3-4)定义(8)中的第一个子系统的李雅普诺夫函数Vm1,i如下:3-4) Define the Lyapunov function Vm1,i of the first subsystem in (8) as follows:
Figure FDA0002620051960000028
Figure FDA0002620051960000028
通过选取虚拟跟踪量αm1,i,则By selecting the virtual tracking amount αm1,i , then
Figure FDA0002620051960000029
Figure FDA0002620051960000029
3-5)定义(8)中的第二个子系统的李雅普诺夫函数Vm2,i如下:3-5) Define the Lyapunov function Vm2,i of the second subsystem in (8) as follows:
Figure FDA0002620051960000031
Figure FDA0002620051960000031
3-6)基于(8)和(9),可得zm2,i的导数为3-6) Based on (8) and (9), the derivative of zm2,i can be obtained as
Figure FDA0002620051960000032
Figure FDA0002620051960000032
于是,可得Vm2,i的导数为Therefore, the derivative of Vm2,i can be obtained as
Figure FDA0002620051960000033
Figure FDA0002620051960000033
其中,
Figure FDA0002620051960000034
表示未知主机器人系统动力学函数,μm1,i>0表示虚拟跟踪量的调节参数;
in,
Figure FDA0002620051960000034
represents the unknown master robot system dynamics function, μm1, i > 0 represents the adjustment parameter of the virtual tracking amount;
3-7)根据(14)设计主控制器,保证主端子系统的稳定性,设计的控制器um,i为:3-7) Design the main controller according to (14) to ensure the stability of the main terminal system. The designed controllerum,i is:um,i=-μm2,izm2,i-zm1,im,i-Fh,i (15)um,i =-μm2,i zm2,i -zm1,im,i -Fh,i (15)其中,μm2,i>0表示主控制器性能调整参数;Among them, μm2,i >0 represents the performance adjustment parameter of the main controller;在从控制器(15)中,Φm,i表示一种用于估计ηm,i的模糊逻辑函数,定义为:In the slave controller (15), Φm,i represents a fuzzy logic function for estimating ηm,i , defined as:
Figure FDA0002620051960000035
Figure FDA0002620051960000035
其中,θm,i表示未知的主机器人系统动力学参数,
Figure FDA0002620051960000036
表示模糊逻辑函数的输入量,
Figure FDA0002620051960000037
表示第j个局部模糊逻辑函数;
where θm,i represents the unknown dynamic parameters of the main robot system,
Figure FDA0002620051960000036
represents the input quantity of the fuzzy logic function,
Figure FDA0002620051960000037
represents the jth local fuzzy logic function;
3-8)设计主端系统的李雅普诺夫函数Vm,i为:3-8) Design the Lyapunov function Vm,i of the master-end system as:
Figure FDA0002620051960000038
Figure FDA0002620051960000038
其中,γm,i>0表示李雅普诺夫函数Vm,i的系数,
Figure FDA0002620051960000039
表示模糊逻辑函数的估计误差,
Figure FDA00026200519600000310
表示最优估计参数;
where γm,i >0 represents the coefficient of the Lyapunov function Vm,i ,
Figure FDA0002620051960000039
represents the estimation error of the fuzzy logic function,
Figure FDA00026200519600000310
represents the optimal estimated parameter;
基于李雅普诺夫函数Vm,i设计θm,i的自适应率为:Based on the Lyapunov function Vm,i, the design adaptive rate of θm,i is:
Figure FDA0002620051960000041
Figure FDA0002620051960000041
其中,km,i>0和Γm,i>0表示自适应率的性能调节参数;Among them, km,i >0 and Γm,i >0 represent the performance adjustment parameters of the adaptation rate;4)基于模糊逻辑系统设计从机器人的自适应多边控制器,具体为:4) Design the adaptive multilateral controller of the slave robot based on the fuzzy logic system, specifically:4-1)由于信号在通信通道的传输会不可避免地产生通信时延,主机器人的位置信号xm,i(t)通过通信通道传输到从端得到时延的位置信号xm,i(t-T(t)),设计从机器人的理想轨迹生成器为Hf(s)=1/(ofs+1)2,其中,of表示时间常数,通过输入时延的平均位置信号
Figure FDA0002620051960000042
能够输出理想的从机器人跟踪轨迹xsd,o(t),
Figure FDA0002620051960000043
其中,lo,i表示抓取目标与机器人末端位置间的关系转换,T(t)为系统的通信时延;
4-1) Since the transmission of the signal in the communication channel will inevitably generate a communication delay, the position signal xm,i (t) of the master robot is transmitted to the slave through the communication channel to obtain the delayed position signal xm,i ( tT(t )), the ideal trajectory generator of the design slave robot is Hf (s)=1/(of s+ 1)2 , where of represents the time constant, the average position signal through the input time delay
Figure FDA0002620051960000042
Able to output ideal slave robot tracking trajectory xsd,o (t),
Figure FDA0002620051960000043
Among them, lo,i represents the relationship conversion between the grasping target and the end position of the robot, and T(t) is the communication delay of the system;
4-2)定义xs1=xs,o
Figure FDA0002620051960000044
则非线性动力学模型(2)可改写为:
4-2) Define xs1 =xs,o ,
Figure FDA0002620051960000044
Then the nonlinear dynamic model (2) can be rewritten as:
Figure FDA0002620051960000045
Figure FDA0002620051960000045
4-3)定义从机器人与抓取目标的跟踪误差为:4-3) Define the tracking error between the slave robot and the grab target as:
Figure FDA0002620051960000046
Figure FDA0002620051960000046
其中,αs1表示从机器人的虚拟跟踪量;Among them, αs1 represents the virtual tracking amount of the slave robot;4-4)定义(19)中的第一个子系统的李雅普诺夫函数Vs1如下:4-4) Define the Lyapunov function Vs1 of the first subsystem in (19) as follows:
Figure FDA0002620051960000047
Figure FDA0002620051960000047
通过选取虚拟跟踪量αs1,则By selecting the virtual tracking amount αs1 , then
Figure FDA0002620051960000048
Figure FDA0002620051960000048
4-5)定义(19)中的第二个子系统的李雅普诺夫Vs2如下:4-5) The Lyapunov Vs2 of the second subsystem in (19) is defined as follows:
Figure FDA0002620051960000049
Figure FDA0002620051960000049
4-6)基于(19)和(20),可得zs2的导数为4-6) Based on (19) and (20), the derivative of zs2 can be obtained as
Figure FDA0002620051960000051
Figure FDA0002620051960000051
于是,可得Vs2的导数为Therefore, the derivative of Vs2 can be obtained as
Figure FDA0002620051960000052
Figure FDA0002620051960000052
其中,
Figure FDA0002620051960000053
表示未知从机器人系统动力学函数;
in,
Figure FDA0002620051960000053
represents the unknown slave robot system dynamics function;
4-7)根据(25)设计从控制器,保证从端子系统的稳定性,设计的控制器us为:4-7) Design the slave controller according to (25) to ensure the stability of the slave terminal system. The designed controller us is:us=-μs2zs2-zs1s+Fe (26)us = -μs2 zs2 -zs1s +Fe (26)其中,μs2>0表示从控制器性能调整参数;Among them, μs2 >0 indicates that the parameter is adjusted from the performance of the controller;在从控制器(26)中,Φs表示一种用于估计ηs的模糊逻辑函数,定义为:In the slave controller (26), Φs represents a fuzzy logic function for estimating ηs , defined as:
Figure FDA0002620051960000054
Figure FDA0002620051960000054
其中,θs表示未知的从机器人系统动力学参数,
Figure FDA0002620051960000055
表示模糊逻辑函数的输入量,
Figure FDA0002620051960000056
表示第j个局部模糊逻辑函数;
where θs represents the unknown dynamic parameters of the slave robot system,
Figure FDA0002620051960000055
represents the input quantity of the fuzzy logic function,
Figure FDA0002620051960000056
represents the jth local fuzzy logic function;
4-8)设计从端系统的李雅普诺夫函数Vs为:4-8) Design the Lyapunov function Vs of the slave system as:
Figure FDA0002620051960000057
Figure FDA0002620051960000057
其中,γs>0表示李雅普诺夫函数Vs的系数,
Figure FDA0002620051960000058
表示模糊逻辑函数的估计误差,
Figure FDA0002620051960000059
表示最优估计参数;
where γs >0 represents the coefficient of the Lyapunov function Vs ,
Figure FDA0002620051960000058
represents the estimation error of the fuzzy logic function,
Figure FDA0002620051960000059
represents the optimal estimated parameter;
基于李雅普诺夫函数Vs设计θs的自适应率为:The adaptive rate of designing θs based on the Lyapunov function Vs is:
Figure FDA00026200519600000510
Figure FDA00026200519600000510
其中,ks>0和Γs>0表示自适应率的性能调节参数;where ks >0 and Γs >0 represent the performance tuning parameters of the adaptation rate;4-9)根据从控制器(26),为得到每个从机器人的控制输入us,i,设计多机器人的协同控制算法,所述的协同控制算法如下:4-9) According to the slave controller (26), in order to obtain the control input us,i of each slave robot, a cooperative control algorithm of multiple robots is designed, and the cooperative control algorithm is as follows:
Figure FDA0002620051960000061
Figure FDA0002620051960000061
其中,
Figure FDA0002620051960000062
表示分配系数,且
Figure FDA0002620051960000063
W表示不同作业需求的权重系数,
Figure FDA0002620051960000064
表示各个从机器人与抓取目标的内部力,且
Figure FDA0002620051960000065
in,
Figure FDA0002620051960000062
is the distribution coefficient, and
Figure FDA0002620051960000063
W represents the weight coefficient of different job requirements,
Figure FDA0002620051960000064
represents the internal force of each slave robot and grasping target, and
Figure FDA0002620051960000065
2.根据权利要求1所述的一种基于模糊逻辑的遥操作系统自适应多边控制方法,其特征在于,所述步骤2-3)中,由于通信时延T(t)的存在,为避免功率信号在通信通道间的传递影响多边遥操作系统的稳定性,将非功率环境参数估计值
Figure FDA0002620051960000066
传递到主端,从而得到主端的重构环境力为:
2. a kind of teleoperating system adaptive multilateral control method based on fuzzy logic according to claim 1, is characterized in that, in described step 2-3), due to the existence of communication time delay T (t), in order to avoid The transmission of power signals between communication channels affects the stability of the multilateral teleoperating system, and the estimated values of non-power environmental parameters are
Figure FDA0002620051960000066
Pass it to the master, so as to obtain the reconstructed environment force of the master as:
Figure FDA0002620051960000067
Figure FDA0002620051960000067
其中,xemw表示模糊逻辑函数的输入量。Among them, xemw represents the input quantity of the fuzzy logic function.
3.根据权利要求1所述的一种基于模糊逻辑的遥操作系统自适应多边控制方法,其特征在于,所述步骤3-4)中,选取的虚拟跟踪量αm1,i
Figure FDA0002620051960000068
3. a kind of teleoperating system adaptive multilateral control method based on fuzzy logic according to claim 1, is characterized in that, in described step 3-4), the virtual tracking quantity αm1 that chooses, i is.
Figure FDA0002620051960000068
4.根据权利要求1所述的一种基于模糊逻辑的遥操作系统自适应多边控制方法,其特征在于,所述步骤4-4)中,选取的虚拟跟踪量αs1
Figure FDA0002620051960000069
其中,μs1>0表示虚拟跟踪量的调节参数。
4. a kind of teleoperating system adaptive multilateral control method based on fuzzy logic according to claim 1, is characterized in that, in described step 4-4), the virtual tracking amount αs1 selected is
Figure FDA0002620051960000069
Among them, μs1 >0 represents the adjustment parameter of the virtual tracking quantity.
CN201910648989.XA2019-07-182019-07-18Teleoperation system self-adaptive multilateral control method based on fuzzy logicActiveCN110340894B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201910648989.XACN110340894B (en)2019-07-182019-07-18Teleoperation system self-adaptive multilateral control method based on fuzzy logic

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201910648989.XACN110340894B (en)2019-07-182019-07-18Teleoperation system self-adaptive multilateral control method based on fuzzy logic

Publications (2)

Publication NumberPublication Date
CN110340894A CN110340894A (en)2019-10-18
CN110340894Btrue CN110340894B (en)2020-10-16

Family

ID=68178689

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201910648989.XAActiveCN110340894B (en)2019-07-182019-07-18Teleoperation system self-adaptive multilateral control method based on fuzzy logic

Country Status (1)

CountryLink
CN (1)CN110340894B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN111136633B (en)*2020-01-132021-04-09燕山大学 Full-state control method for flexible master-slave robot system with time-varying delay
CN111198502B (en)*2020-02-282021-04-09浙江大学 Track tracking control method of unmanned aerial vehicle based on disturbance observer and fuzzy system
CN111427264B (en)*2020-03-152021-12-14中国地质大学(武汉) A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology
CN112859596B (en)*2021-01-072022-01-04浙江大学 A Nonlinear Teleoperation Multilateral Control Method Considering Formation Obstacle Avoidance
CN114474051B (en)*2021-12-302023-05-23西北工业大学 A Personalized Gain Teleoperation Control Method Based on Operator Physiological Signals
CN114527664B (en)*2022-02-282025-07-15北京航空航天大学 An adaptive tracking control method for dynamic uncertain systems with asymmetric time delay

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103324196A (en)*2013-06-172013-09-25南京邮电大学Multi-robot path planning and coordination collision prevention method based on fuzzy logic
JP6201126B2 (en)*2013-11-072017-09-27株式会社人機一体 Master-slave system
CN103831831B (en)*2014-03-182016-07-06西华大学There is non-linear remote control system position and the force tracing control system of time-vary delay system
WO2016025941A1 (en)*2014-08-152016-02-18University Of Central Florida Research Foundation, Inc.Control interface for robotic humanoid avatar system and related methods
WO2017033365A1 (en)*2015-08-252017-03-02川崎重工業株式会社Remote control robot system
CN106938462B (en)*2016-12-072019-05-31北京邮电大学A kind of remote operating bilateral control method based on adaptive PD and fuzzy logic
CN107932506B (en)*2017-11-152020-10-16电子科技大学Force feedback bilateral teleoperation stability control method
CN108227497B (en)*2018-01-112021-01-08燕山大学Control method of networked teleoperation system under condition of considering system performance limitation
CN108469733B (en)*2018-03-222020-01-14浙江大学Four-channel teleoperation multilateral control method for improving wave variable
CN108500983B (en)*2018-06-262023-06-16西华大学Nonlinear teleoperation bilateral control system
CN108803344B (en)*2018-07-252019-11-22西北工业大学 A Symmetric Predictive Control Method for Bilateral Teleoperation of Robots Based on Mode Switching
CN109085749B (en)*2018-08-072020-02-28浙江大学 A Nonlinear Teleoperation Bilateral Control Method Based on Adaptive Fuzzy Inversion
CN109240086B (en)*2018-10-162020-02-28浙江大学 An Adaptive Robust Control Method for a Nonlinear Bilateral Teleoperating System
CN109358506B (en)*2018-10-262021-07-23南京理工大学 An Adaptive Fuzzy Teleoperation Control Method Based on Disturbance Observer

Also Published As

Publication numberPublication date
CN110340894A (en)2019-10-18

Similar Documents

PublicationPublication DateTitle
CN110340894B (en)Teleoperation system self-adaptive multilateral control method based on fuzzy logic
CN110262256B (en)Multilateral self-adaptive sliding mode control method of nonlinear teleoperation system
CN109240086B (en) An Adaptive Robust Control Method for a Nonlinear Bilateral Teleoperating System
Wang et al.Adaptive event-triggered control for nonlinear systems with asymmetric state constraints: A prescribed-time approach
CN109085749B (en) A Nonlinear Teleoperation Bilateral Control Method Based on Adaptive Fuzzy Inversion
CN104865829B (en)Multi-robot system distributed self-adaption neutral net continuous tracking control method of electro
CN109807902B (en) A dual manipulator force/position fuzzy hybrid control method based on backstepping method
CN105068427B (en)A kind of multi-robot system finite time robust cooperates with tracking and controlling method
CN103439975B (en)Become Sliding Mode Attitude during a kind of distributed index and work in coordination with tracking and controlling method
CN110434858B (en)Force/position hybrid control method of multi-mechanical-arm system based on command filtering
Wang et al.Adaptive asymptotic tracking control for flexible-joint robots with prescribed performance: Design and experiments
CN108227497B (en)Control method of networked teleoperation system under condition of considering system performance limitation
CN111459016B (en)Cutting machine track contour tracking control method
CN110116409B (en)Four-channel teleoperation bilateral control method based on disturbance observer
Zhao et al.Low-pass-filter-based position synchronization sliding mode control for multiple robotic manipulator systems
CN103728988B (en)SCARA robot trajectory tracking control method based on internal model
CN117506896A (en)Control method for single-connecting-rod mechanical arm embedded with direct-current motor
CN111427264B (en) A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology
CN118357919A (en) Preset time event triggering control method for flexible joint manipulator under error constraints
Wei et al.Asymmetric time‐varying BLF‐based model‐free hybrid force/position control for SEA‐based 2‐DOF manipulator
Zhang et al.Predictive tracking control of network-based agents with communication delays
CN119858164A (en)Control method and system of flexible joint robot under input delay
CN110095989B (en)Distributed multi-Lagrange system tracking control strategy based on back stepping method
CN107263455A (en)The Position Tracking Control method of two degrees of freedom SCARA robots
CN109176529B (en)Self-adaptive fuzzy control method for coordinated movement of space robot

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp