技术领域technical field
本发明涉及一种基于比特翻转的极化码置信传播列表译码方法,属于无线通信中的信道编码技术领域。The invention relates to a decoding method of a polar code belief propagation list based on bit flipping, and belongs to the technical field of channel coding in wireless communication.
背景技术Background technique
极化码技术作为一种新型的信道编码技术,在码长趋于无穷时,传输速率能达到在二进制输入无记忆对称信道的信道容量。目前极化码较为主流的译码方式有两类,一类基于串行抵消(Successive Cancellation,SC)译码方法,包括了基于SC译码的串行抵消列表(Successive Cancellation List,SCL)译码方法,基于SC的极化码译码方法属于序贯译码,已经译出的信息比特对后续信息比特的估计产生影响,因此必须逐个估计码字中的信息比特,由此产生了较大的译码时延。极化码的另外一类主流译码方法基于置信传播(Belief Propagation,BP)译码方法,包括置信传播列表(Belief PropagationList,BPL)译码方法,基于BP的译码方法由于其并行迭代计算的性质,其译码时延显著低于基于SC的译码方法并且对码字长度不敏感,因此BP译码方法适用于对时延要求较高的应用场景。传统的BP译码方法误码率和误帧率性能较差,BPL译码方法采用多个基于不同因子图的BP译码器进行译码,在BP译码方法的基础上以更高的计算复杂度和硬件要求为代价带来了误码率和误帧率性能的提升,但是与添加循环冗余校验(Cylic Redundancy Check,CRC)的SCL译码方法相比,BPL译码方法的误码率和误帧率性能仍然较差。。Polar code technology is a new type of channel coding technology. When the code length tends to infinity, the transmission rate can reach the channel capacity of binary input memoryless symmetric channel. At present, there are two mainstream decoding methods for polar codes. One is based on the Serial Cancellation (Successive Cancellation, SC) decoding method, including the Serial Cancellation List (SCL) decoding based on SC decoding. method, the SC-based polar code decoding method belongs to sequential decoding, and the decoded information bits have an impact on the estimation of subsequent information bits, so the information bits in the codeword must be estimated one by one, resulting in a large Decoding delay. Another mainstream decoding method for polar codes is based on the Belief Propagation (BP) decoding method, including the Belief Propagation List (BPL) decoding method. The BP-based decoding method is due to its parallel iterative calculation properties, its decoding delay is significantly lower than that of SC-based decoding methods and is not sensitive to codeword length, so BP decoding method is suitable for application scenarios with higher delay requirements. The traditional BP decoding method has poor bit error rate and frame error rate performance. The BPL decoding method uses multiple BP decoders based on different factor graphs for decoding. Based on the BP decoding method, a higher calculation Complexity and hardware requirements have brought the improvement of bit error rate and frame error rate performance at the cost, but compared with the SCL decoding method that adds cyclic redundancy check (Cylic Redundancy Check, CRC), the error rate of BPL decoding method Bit rate and frame error rate performance is still poor. .
发明内容Contents of the invention
为改善BPL译码方法的误码率和误帧率性能,本发明提供一种基于比特翻转的极化码置信传播列表译码方法,使用的码字是CRC码和极化码形成的级联码。本发明中的方法在BPL译码结果未通过CRC校验的情况下,通过对BPL译码方法中的译码结果进行分析,构造翻转比特集合(Flip Bits Set,FBS),对极化码位于FBS内的信息比特进行翻转(本发明中的比特翻转是通过将被翻转比特的先验对数似然比设置为无穷大来实现的),能够纠正部分BPL译码器中的错误,进而改善BPL译码方法的误码率和误帧率性能。In order to improve the bit error rate and frame error rate performance of the BPL decoding method, the present invention provides a polar code belief propagation list decoding method based on bit flipping, and the code word used is the concatenation of CRC code and polar code code. In the method of the present invention, when the BPL decoding result does not pass the CRC check, by analyzing the decoding result in the BPL decoding method, a flip bit set (Flip Bits Set, FBS) is constructed, and the polar code is located at The information bits in the FBS are flipped (bit flipping in the present invention is realized by setting the prior logarithmic likelihood ratio of the flipped bits to infinity), which can correct errors in some BPL decoders, and then improve the BPL Bit error rate and frame error rate performance of the decoding method.
本发明为解决上述技术问题采用以下技术方案:The present invention adopts the following technical schemes for solving the problems of the technologies described above:
本发明提供一种基于比特翻转的极化码置信传播列表译码方法,包括如下步骤:The present invention provides a decoding method of a polar code belief propagation list based on bit flipping, comprising the following steps:
第一步,进行带CRC校验的BPL译码,具体为:The first step is to perform BPL decoding with CRC check, specifically:
(1)初始化(1) Initialization
对于码长为N、原始信息比特序列长为K的极化码,记接收信号为BPL译码方法中的列表数记为L,转入步骤(2);其中,原始信息比特序列为经过CRC编码、未填充冻结比特的信息序列;For a polar code with code length N and original information bit sequence length K, write the received signal as The number of lists in the BPL decoding method is denoted as L, and proceeds to step (2); wherein, the original information bit sequence is an information sequence through CRC encoding, unfilled frozen bits;
(2)同时启动L个BP译码器进行译码(2) Simultaneously start L BP decoders for decoding
第i个BP译码器对信息比特序列的估计作为该BP译码器的输出结果,计算第i个BP译码器对码字比特序列的估计与接收信号之间的欧氏距离di,转入步骤(3);其中,1≤i≤L,是第i个BP译码器对信息比特序列中第j个比特uj的估计,1≤j≤N,是第i个BP译码器对码字比特序列中第j个比特xj的估计;信息比特序列为将由原始信息比特序列填充冻结比特后得到的信息序列,码字比特序列为将信息比特序列经过极化码编码后生成的比特序列;Estimation of Information Bit Sequence by i-th BP Decoder As the output of this BP decoder, calculate the estimate of the codeword bit sequence by the ith BP decoder and receive signal The Euclidean distance di between, turn to step (3); where, 1≤i≤L, is the estimate of the i-th BP decoder to the j-th bit uj in the information bit sequence, 1≤j≤N, is the estimate of the jth bit xj in the codeword bit sequence by the i-th BP decoder; the information bit sequence is the information sequence obtained by filling the frozen bits with the original information bit sequence, and the codeword bit sequence is the information bit sequence A bit sequence generated after polar code encoding;
(3)对L个BP译码器译码结果进行排序(3) Sort the decoding results of L BP decoders
记为步骤(2)中得到的L个BP译码器对信息比特序列的估计组成的矢量,对decoded_u中的分量按如下排序规则进行排序后得到新的矢量decoded_u_sorted,转入步骤(4):remember Be the vector that L BP decoders that obtain in step (2) form to the estimation of information bit sequence, obtain new vector decoded_u_sorted after sorting the components in decoded_u according to the following sorting rules, turn to step (4):
其中,表示decoded_u_sorted中的第km个分量,表示与接收信号之间的欧氏距离,表示与接收信号之间的欧氏距离;in, Represents the kmth component in decoded_u_sorted, express and receive signal The Euclidean distance between express and receive signal Euclidean distance between;
(4)对L个BP译码器译码结果进行CRC校验(4) Perform CRC check on the decoding results of L BP decoders
对decoded_u_sorted中的分量逐个进行CRC校验,若存在通过CRC检验的分量,则带有CRC校验的BPL译码器译码成功,将通过CRC检验的分量作为译码输出,整个译码流程结束;若不存在通过CRC检验的分量,则带有CRC校验的BPL译码器译码失败,转入第二步;Perform CRC check on the components in decoded_u_sorted one by one. If there are components that pass the CRC check, the BPL decoder with CRC check succeeds in decoding, and the components that pass the CRC check are used as decoding output, and the entire decoding process ends ; If there is no component that passes the CRC check, then the BPL decoder with the CRC check fails to decode, and proceeds to the second step;
第二步,构造翻转比特集合FBS,具体为:The second step is to construct the flip bit set FBS, specifically:
(A)初始化K行2列的全零矩阵reczero_one_matrix,reczero_one_matrix中第p行第q列的元素记为recp,q,1≤p≤K,1≤q≤2;FBS中元素个数记为T,0≤T≤K,转入步骤(B);(A) Initialize the all-zero matrix reczero_one_matrix with K rows and 2 columns. The elements in row p and column q in reczero_one_matrix are recorded as recp,q , 1≤p≤K, 1≤q≤2; the number of elements in FBS is recorded as T, 0≤T≤K, go to step (B);
(B)根据第一步中BPL译码方法的译码结果,按如下更新规则更新reczero_one_matrix,转入步骤(C):(B) According to the decoding result of the BPL decoding method in the first step, update the reczero_one_matrix according to the following update rules, and turn to step (C):
其中,indexp是长为K的原始信息比特序列中第p个比特在填充冻结比特后的信息比特序列中的比特索引,1≤indexj≤N;Among them, indexp is the bit index of the pth bit in the original information bit sequence of length K in the information bit sequence filled with frozen bits, 1≤indexj ≤N;
(C)计算原始信息比特序列中每个比特被译为0和1的比例(C) Calculate the ratio of each bit in the original information bit sequence being translated as 0 and 1
若recp,1≤recp,2,则recp,1和recp,2中的较小值对较大值的比值若recp,1>recp,2,则转入步骤(D);If recp,1 ≤ rec p,2 , the ratio of the smaller value to the larger value of recp,1 and recp,2 If recp,1 >recp,2 , then Go to step (D);
(D)从信息比特集合中选出FBS(D) Select FBS from the information bit set
对集合Index_U={index1,index2,...,indexK}中的元素按如下排序规则进行排序,从排序得到的集合中选择前T个元素构建FBS,转入第三步:Sort the elements in the set Index_U={index1 ,index2 ,...,indexK } according to the following sorting rules, select the first T elements from the sorted set to build FBS, and go to the third step:
其中,Index_Usorted表示Index_U经过排序得到的集合,表示Index_Usorted中的第wa个元素,Among them, Index_Usorted indicates the collection obtained by sorting Index_U, Represents the w ath element inIndex_Usorted ,
第三步,进行基于比特翻转的极化码置信传播列表译码,具体为:The third step is to decode the polar code belief propagation list based on bit flipping, specifically:
①初始化t=1,转入步骤②;①Initialize t=1, go to step ②;
②若t>T,则基于比特翻转的BPL译码方法译码失败,整个译码流程结束;若t≤T,转入步骤③;②If t>T, the BPL decoding method based on bit flipping fails to decode, and the entire decoding process ends; if t≤T, go to step ③;
③BPL方法中的L个BP译码器都对信息比特序列中索引为的比特进行比特翻转,转入步骤④;其中,BPL方法中的每个BP译码器都对应一个大小为N×(1+log2N)的矩阵R,R的第一列用于存储信息比特的先验对数似然比,比特翻转的规则为:若第i个BP译码器在第一步中步骤(2)译码得到的对信息比特序列中第个比特的估计为1,则将该BP译码器对应的R中第行第一列元素赋值为正无穷;若为0,则将该BP译码器对应的R中第行第一列元素赋值为负无穷,R中其余元素的值仍按BP译码方法赋值;③The L BP decoders in the BPL method all index the information bit sequence as The bits of the BPL method are bit flipped and turned to step ④; wherein, each BP decoder in the BPL method corresponds to a matrix R with a size of N×(1+log2 N), and the first column of R is used to store information The prior logarithmic likelihood ratio of the bit, the rule of bit flipping is: if the i-th BP decoder decodes the pair information bit sequence obtained in step (2) in the first step bit estimate is 1, then the corresponding BP decoder in R The element in the first column of the row is assigned a value of positive infinity; if is 0, then the corresponding BP decoder in R The element in the first column of the row is assigned a value of negative infinity, and the values of the rest of the elements in R are still assigned according to the BP decoding method;
④使用步骤③得到的R,同时启动L个BP译码器进行译码,转入步骤⑤;4. use the R that step 3. obtains, start L BP decoder simultaneously and carry out decoding, change to step 5.;
⑤对步骤④中L个BP译码器的译码结果按第一步中步骤(3)的排序规则进行排序,转入步骤⑥;5. the decoding results of L BP decoders in step 4. are sorted by the sorting rules of step (3) in the first step, and go to step 6.;
⑥对步骤⑤中的排序后的译码结果逐个进行CRC校验,若存在通过CRC检验的译码结果,则比特翻转译码成功,将通过CRC检验的译码结果作为译码输出,整个译码流程结束;若不存在通过CRC检验的分量,则令t=t+1,转入步骤②。⑥ Carry out CRC check on the sorted decoding results in step ⑤ one by one. If there is a decoding result that passes the CRC check, the bit flip decoding is successful, and the decoding result that passes the CRC check is used as the decoding output, and the whole decoding The coding process ends; if there is no component that passes the CRC check, then set t=t+1 and go to step ②.
作为本发明的进一步技术方案,取值为0或1。As a further technical solution of the present invention, The value is 0 or 1.
作为本发明的进一步技术方案,T的取值可由信息接收方根据信道情况自主确定。As a further technical solution of the present invention, the value of T can be independently determined by the information receiver according to the channel conditions.
作为本发明的进一步技术方案,As a further technical solution of the present invention,
有益效果Beneficial effect
本发明中基于比特翻转的极化码置信传播列表译码方法,能够在极化码BPL译码方法译码失败的情况下,通过对失败译码结果进行数据分析,进而构造出识别不可靠的信息比特判决的翻转比特集合,置不可靠信息比特的先验对数似然比为无穷值,以试探性译码的方式纠正BPL译码方法中的错误,提高了极化码在BPL译码方法下的误帧率性能。在中高信噪比区间内,相比于BPL译码方法,本发明中的方法能够将误帧率改善一个数量级,同时本发明中的译码方法的平均译码时延与BPL译码方法相似,这说明本发明中的方法能够以较小的译码时延为代价获取误码率性能的增益。In the present invention, the polar code belief propagation list decoding method based on bit flipping can, in the case of a polar code BPL decoding method failure, conduct data analysis on the failed decoding result, and then construct an unreliable identification The inverted bit set of information bit judgment sets the prior logarithmic likelihood ratio of unreliable information bits to an infinite value, corrects the errors in the BPL decoding method by tentative decoding, and improves the performance of polar codes in BPL decoding. The frame error rate performance under the method. In the medium-to-high SNR interval, compared with the BPL decoding method, the method in the present invention can improve the frame error rate by an order of magnitude, and the average decoding time delay of the decoding method in the present invention is similar to that of the BPL decoding method , which shows that the method of the present invention can obtain a gain in bit error rate performance at the cost of a small decoding delay.
附图说明Description of drawings
图1是基于比特翻转的极化码置信传播列表译码方法流程图。Fig. 1 is a flowchart of a decoding method of a polar code belief propagation list based on bit flipping.
具体实施方式Detailed ways
本发明中将经过CRC编码、未填充冻结比特的长为K的信息序列记为原始信息比特序列,将由长为K的原始信息比特序列填充冻结比特后得到的长为N的信息序列记为信息比特序列,将信息比特序列经过极化码编码后生成的比特序列称为码字比特序列。In the present invention, the information sequence of length K that is not filled with frozen bits through CRC encoding is recorded as the original information bit sequence, and the information sequence of length N that is obtained by filling the frozen bits with the original information bit sequence of length K is recorded as information A bit sequence, a bit sequence generated by encoding an information bit sequence with a polar code is called a codeword bit sequence.
本发明中基于比特翻转的极化码置信传播译码方法,以码长N=256,原始信息比特序列长度K=136(其中包含循环冗余校验码长度r=8)的极化码为例进行说明。本例中的极化码的构造方法为高斯近似,码字构造信噪比为2.5分贝,循环冗余校验码的生成多项式为g(x)=x8+x6+x3+x2+1。In the polar code belief propagation decoding method based on bit flipping in the present invention, with the code length N=256, the polar code of the original information bit sequence length K=136 (including cyclic redundancy check code length r=8) is Example to illustrate. The construction method of the polar code in this example is Gaussian approximation, the signal-to-noise ratio of the code word construction is 2.5 decibels, and the generator polynomial of the cyclic redundancy check code is g(x)=x8 +x6 +x3 +x2 +1.
如图1所示,包括如下步骤:As shown in Figure 1, it includes the following steps:
第一步:进行带CRC校验的BPL译码。本步骤包括如下流程:Step 1: Perform BPL decoding with CRC check. This step includes the following processes:
(1)初始化。对于码长为N,原始信息比特序列长为K的极化码,记接收信号为本例中N=256。BPL译码方法中的列表数记为L(BPL译码方法是已有的方法,其列表数L表示BPL译码方法中使用L个采用不同因子图的BP译码器进行译码),本例中L=32。转入步骤(2)。(1) Initialization. For a polar code with code length N and original information bit sequence length K, write the received signal as N=256 in this example. The number of lists in the BPL decoding method is denoted as L (the BPL decoding method is an existing method, and its list number L indicates that L BP decoders using different factor graphs are used for decoding in the BPL decoding method). In the example L=32. Go to step (2).
(2)同时启动L个BP译码器进行译码。记为第i个BP译码器对信息比特序列的估计,作为该BP译码器的的输出结果,1≤i≤L,其中是第i个BP译码器对信息比特序列中第j个比特uj的估计,取值为0或1。记为第i个BP译码器对码字比特序列的估计,其中是第i个BP译码器对码字比特序列中第j个比特xj的估计。利用L个BP译码器同时进行BP译码。计算出第i个BP译码器得出的码字比特序列的估计与接收信号之间的欧氏距离di,转入步骤(3)。(2) Simultaneously start L BP decoders for decoding. remember is the estimate of the information bit sequence by the i-th BP decoder, as the output result of the BP decoder, 1≤i≤L, where is the estimate of the i-th BP decoder to the j-th bit uj in the information bit sequence, The value is 0 or 1. remember is the estimate of the codeword bit sequence for the i-th BP decoder, where is the estimate of the i-th BP decoder to the j-th bit xj in the codeword bit sequence. Utilize L BP decoders to perform BP decoding simultaneously. Calculate the estimate of the codeword bit sequence obtained by the i-th BP decoder and receive signal The Euclidean distance di between Go to step (3).
(3)对L个BP译码器译码结果进行排序。记为步骤(2)中得到的L个BP译码器对信息比特序列的估计组成的矢量,其中的每个分量为一个BP译码器对信息比特序列的估计。对decoded_u中的分量按如下规则进行排序后得到新的矢量decoded_u_sorted:(3) Sort the decoding results of L BP decoders. remember is a vector composed of the estimates of the information bit sequence by the L BP decoders obtained in step (2), where each component is an estimate of the information bit sequence by a BP decoder. After sorting the components in decoded_u according to the following rules, a new vector decoded_u_sorted is obtained:
表示decoded_u_sorted中的第km个分量,km表示由排序引起的索引的变化。然后转入步骤(4)。 Indicates the kmth component in decoded_u_sorted, where km represents the change in index caused by sorting. Then go to step (4).
(4)对L个BP译码器译码结果进行CRC校验。对decoded_u_sorted中的分量逐个进行CRC校验,若存在通过CRC检验的分量,则带有CRC校验的BPL译码器译码成功,将通过CRC检验的分量作为译码输出,整个译码流程结束;若不存在通过CRC检验的分量,则带有CRC校验的BPL译码器译码失败,需要进行试探性比特翻转译码,转入第二步。(4) Carry out CRC check on the decoding results of L BP decoders. Perform CRC check on the components in decoded_u_sorted one by one. If there are components that pass the CRC check, the BPL decoder with CRC check succeeds in decoding, and the components that pass the CRC check are used as decoding output, and the entire decoding process ends ; If there is no component that passes the CRC check, then the BPL decoder with the CRC check fails to decode, and needs to perform tentative bit flip decoding, and turn to the second step.
第二步:构造翻转比特集合FBS。本步骤包括如下流程:Step 2: construct flip bit set FBS. This step includes the following processes:
(1)初始化。初始化K行2列的全零矩阵reczero_one_matrix用于统计第一步中BPL译码结果,本例中K=136。reczero_one_matrix矩阵中第p行第q列的元素记为recp,q,1≤p≤K,1≤q≤2。FBS中元素个数记为T,0≤T≤K,T表示可用于翻转的比特数,其取值可由信息接收方根据信道情况自主确定。本例中取T=4。转入步骤(2)。(1) Initialization. Initialize the all-zero matrix reczero_one_matrix with K rows and 2 columns to count the BPL decoding results in the first step. In this example, K=136. The elements in row p and column q in the reczero_one_matrix matrix are recorded as recp,q , 1≤p≤K, 1≤q≤2. The number of elements in the FBS is recorded as T, 0≤T≤K, T represents the number of bits that can be used for flipping, and its value can be independently determined by the information receiver according to the channel situation. Take T=4 in this example. Go to step (2).
(2)统计第一步中BPL译码方法的译码结果,写入矩阵reczero_one_matrix中。记indexj是长为K的原始信息比特序列中第j个比特在填充冻结比特后的信息比特序列中的比特索引,1≤j≤K,1≤indexj≤N。reczero_one_matrix的更新规则如下:(2) Count the decoding results of the BPL decoding method in the first step, and write them into the matrix reczero_one_matrix. Note that indexj is the bit index of the jth bit in the original information bit sequence of length K in the information bit sequence filled with frozen bits, 1≤j≤K, 1≤indexj ≤N. The update rules for reczero_one_matrix are as follows:
因此,recp,1记录L个BP译码器中将信息比特序列中第indexp个比特译为0的译码器数目,recp,2记录L个BP译码器中将信息比特序列中第indexp个比特译为1的译码器数目。转入步骤(3)。Therefore, recp,1 records the number of decoders that translate the indexp bit in the information bit sequence to 0 among the L BP decoders, and recp,2 records the number of decoders that convert the information bit sequence to 0 among the L BP decoders. The number of decoders that interpret the bit at indexp as 1. Go to step (3).
(3)计算原始信息比特序列中每个比特被译为0和1的比例。定义ratiop,1≤p≤K为recp,1和recp,2中的较小值对较大值的比值,以保证ratiop的值不超过1,方便后续步骤的排序。计算规则为若recp,1≤recp,2,则若recp,1>recp,2,则ratiop越大则表明BPL译码方法中的L个BP译码器对信息比特序列中第ratiop个比特的译码差异越大,该信息比特发生译码错误的概率也就越大。转入步骤(4)。(3) Calculate the ratio of each bit in the original information bit sequence being interpreted as 0 and 1. Define ratiop , 1≤p≤K as the ratio of the smaller value to the larger value in recp,1 and recp,2 , so as to ensure that the value of ratiop does not exceed 1, which is convenient for sorting in subsequent steps. The calculation rule is if recp,1 ≤recp,2 , then If recp,1 >recp,2 , then The larger the ratiop is, the greater the decoding difference between the L BP decoders in the BPL decoding method is for the ratiop bit in the information bit sequence, and the greater the probability of decoding errors in the information bit. Go to step (4).
(4)从信息比特集合中选出FBS。记集合Index_U={index1,index2,...,indexK}为K个原始信息比特在填充冻结比特后的信息比特序列中的比特索引组成的集合。对Index_U中的元素进行排序,排序规则为:(4) Select the FBS from the information bit set. Note that the set Index_U={index1 , index2 ,...,indexK } is a set composed of bit indices of K original information bits in the information bit sequence after the frozen bits are filled. Sort the elements in Index_U, the sorting rules are:
Index_Usorted表示经过排序后的Index_U集合,表示Index_Usorted中的第wa个元素,wa表示由排序引起的索引的变化。从排序后的集合Index_Usorted中选择前T个元素构建本例中的FBS={6,7,13,20}。Index_Usorted indicates the sorted Index_U collection, Represents the w ath element inIndex_Usorted , wa represents the index change caused by sorting. Select the first T elements from the sorted collection Index_Usorted to build FBS = {6,7,13,20} in this example.
第三步:进行基于比特翻转的极化码置信传播列表译码。本步骤包括如下流程:Step 3: Decoding the polar code belief propagation list based on bit flipping. This step includes the following processes:
(1)初始化t=1,用t对试探性比特翻转译码的次数进行计数,转入步骤(2)。(1) Initialize t=1, use t to count the number of times of tentative bit flip decoding, and turn to step (2).
(2)若t>T,则基于比特翻转的BPL译码方法译码失败,整个译码流程结束;若t≤T,转入步骤(3)。(2) If t>T, the BPL decoding method based on bit inversion fails to decode, and the whole decoding process ends; if t≤T, go to step (3).
(3)BPL方法中的L个BP译码器都对信息比特序列中索引为(FBS集合中的第t个元素)的比特进行比特翻转。BPL译码方法中的每个BP译码器都对应一个矩阵R,R是一个大小为N×(1+log2N)的矩阵,其中N是极化码的长度。R的第一列用于存储信息比特的先验对数似然比。比特翻转的规则为:若第i个BP译码器在第一步中步骤(2)译码得到的对信息比特序列中第个比特的估计为1,则将该BP译码器对应的R矩阵的第行第一列元素赋值为正无穷;若为0,则将该BP译码器对应的R矩阵的第行第一列元素赋值为负无穷。R中其余元素的值仍按传统BP译码方法赋值。转入步骤(4)。(3) The L BP decoders in the BPL method all index the information bit sequence as The bits of (the t-th element in the FBS set) are bit flipped. Each BP decoder in the BPL decoding method corresponds to a matrix R, and R is a matrix with a size of N×(1+log2 N), where N is the length of the polar code. The first column of R is used to store the prior log-likelihood ratios of the information bits. The rule of bit flipping is: if the i-th BP decoder decodes the information bit sequence obtained in step (2) in the first step bit estimate is 1, then the th row of the R matrix corresponding to the BP decoder The element in the first column of the row is assigned a value of positive infinity; if is 0, then the first row of the R matrix corresponding to the BP decoder The elements of the first column of the row are assigned negative infinity. The values of the remaining elements in R are still assigned according to the traditional BP decoding method. Go to step (4).
(4)使用按照步骤(3)赋值后的矩阵R进行BPL译码。为第i个BP译码器对信息比特序列的估计,作为该BP译码器的的输出结果,1≤i≤L,其中是第i个BP译码器对信息比特序列中第j个比特uj的估计,取值为0或1。为第i个BP译码器对码字比特序列的估计,其中是第i个BP译码器对码字比特序列中第j个比特xj的估计。利用L个BP译码器同时进行BP译码。计算出第i个BP译码器得出的码字估计与接收信号之间的欧氏距离di,转入步骤(5)。(4) Use the matrix R assigned according to step (3) to perform BPL decoding. is the estimate of the information bit sequence by the i-th BP decoder, as the output result of the BP decoder, 1≤i≤L, where is the estimate of the i-th BP decoder to the j-th bit uj in the information bit sequence, The value is 0 or 1. is the estimate of the codeword bit sequence for the i-th BP decoder, where is the estimate of the i-th BP decoder to the j-th bit xj in the codeword bit sequence. Utilize L BP decoders to perform BP decoding simultaneously. Calculate the codeword estimate from the i-th BP decoder and receive signal The Euclidean distance di between Go to step (5).
(5)对L个BP译码器译码结果进行排序。记为步骤(4)中得到的L个BP译码器对信息比特的估计组成的矢量,其中的每个分量为一个BP译码器对信息比特序列的估计。对decoded_u中的分量按照式(1)进行排序得到新的矢量decoded_u_sorted。转入步骤(6)。(5) Sort the decoding results of L BP decoders. remember is a vector composed of estimates of information bits by L BP decoders obtained in step (4), where each component is an estimate of an information bit sequence by a BP decoder. The components in decoded_u are sorted according to formula (1) to obtain a new vector decoded_u_sorted. Go to step (6).
(6)对L个BP译码器译码结果进行CRC校验。对decoded_u_sorted中的分量逐个进行CRC校验,若存在通过CRC检验的分量,则比特翻转译码成功,将通过CRC检验的分量作为译码输出,整个译码流程结束;若不存在通过CRC检验的分量,则令t=t+1,转入步骤(2)。(6) Perform CRC check on the decoding results of L BP decoders. Perform CRC check on the components in decoded_u_sorted one by one. If there is a component that passes the CRC check, the bit flip decoding is successful, and the component that passes the CRC check is used as the decoding output, and the entire decoding process ends; if there is no component that passes the CRC check. component, then let t=t+1, go to step (2).
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, but they will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910530129.6ACN110278002B (en) | 2019-06-19 | 2019-06-19 | Polar Code Belief Propagation List Decoding Method Based on Bit Flip |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910530129.6ACN110278002B (en) | 2019-06-19 | 2019-06-19 | Polar Code Belief Propagation List Decoding Method Based on Bit Flip |
| Publication Number | Publication Date |
|---|---|
| CN110278002Atrue CN110278002A (en) | 2019-09-24 |
| CN110278002B CN110278002B (en) | 2023-01-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910530129.6AActiveCN110278002B (en) | 2019-06-19 | 2019-06-19 | Polar Code Belief Propagation List Decoding Method Based on Bit Flip |
| Country | Link |
|---|---|
| CN (1) | CN110278002B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110492974A (en)* | 2019-08-19 | 2019-11-22 | 北京邮电大学 | A kind of parallel polarization code coding method and device |
| CN110620588A (en)* | 2019-10-25 | 2019-12-27 | 网络通信与安全紫金山实验室 | BPL decoding method and device based on polarization code |
| CN110798284A (en)* | 2019-11-25 | 2020-02-14 | 安徽大学 | Polarization code transmission method based on double BP decoding graph parallel decoding technology |
| CN110932824A (en)* | 2020-02-11 | 2020-03-27 | 网络通信与安全紫金山实验室 | Polarization code belief propagation algorithm based on two-way graph with bit reversal |
| CN111416624A (en)* | 2020-03-27 | 2020-07-14 | 网络通信与安全紫金山实验室 | Polarization code belief propagation decoding method, equipment and storage medium |
| CN111446973A (en)* | 2020-04-17 | 2020-07-24 | 北京交通大学 | Polarization code belief propagation decoding method based on multi-flip bit set |
| CN111541517A (en)* | 2020-04-17 | 2020-08-14 | 北京交通大学 | A Propagation Decoding Method for List Polar Codes |
| CN111970009A (en)* | 2020-08-21 | 2020-11-20 | 东南大学 | Cascaded polarization code bit reversal belief propagation coding and decoding method |
| CN112803954A (en)* | 2020-12-31 | 2021-05-14 | 中山大学 | Improved BP List decoding algorithm based on CRC (cyclic redundancy check) segmentation processing |
| CN113315526A (en)* | 2021-06-09 | 2021-08-27 | 东南大学 | Cascaded polarization code bit freezing belief propagation decoding method |
| CN113556135A (en)* | 2021-07-27 | 2021-10-26 | 东南大学 | Polarization code belief propagation bit flipping decoding method based on frozen flipping list |
| CN113556133A (en)* | 2021-06-15 | 2021-10-26 | 中山大学 | Mixed decoding method and device for CRC-Polar cascade code |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109286405A (en)* | 2018-09-10 | 2019-01-29 | 山东科技大学 | A low-complexity progressive bit-flip SC decoding method for polar codes |
| CN109831216A (en)* | 2019-01-21 | 2019-05-31 | 中国计量大学 | Polarization code SBP decoder based on G-Matrix verification |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109286405A (en)* | 2018-09-10 | 2019-01-29 | 山东科技大学 | A low-complexity progressive bit-flip SC decoding method for polar codes |
| CN109831216A (en)* | 2019-01-21 | 2019-05-31 | 中国计量大学 | Polarization code SBP decoder based on G-Matrix verification |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110492974A (en)* | 2019-08-19 | 2019-11-22 | 北京邮电大学 | A kind of parallel polarization code coding method and device |
| CN110620588A (en)* | 2019-10-25 | 2019-12-27 | 网络通信与安全紫金山实验室 | BPL decoding method and device based on polarization code |
| CN110620588B (en)* | 2019-10-25 | 2023-08-25 | 网络通信与安全紫金山实验室 | A BPL decoding method and device based on polar codes |
| CN110798284A (en)* | 2019-11-25 | 2020-02-14 | 安徽大学 | Polarization code transmission method based on double BP decoding graph parallel decoding technology |
| CN110798284B (en)* | 2019-11-25 | 2022-01-21 | 安徽大学 | Polarization code transmission method based on double BP decoding graph parallel decoding technology |
| CN110932824A (en)* | 2020-02-11 | 2020-03-27 | 网络通信与安全紫金山实验室 | Polarization code belief propagation algorithm based on two-way graph with bit reversal |
| CN111416624A (en)* | 2020-03-27 | 2020-07-14 | 网络通信与安全紫金山实验室 | Polarization code belief propagation decoding method, equipment and storage medium |
| WO2021208244A1 (en)* | 2020-04-17 | 2021-10-21 | 北京交通大学 | List polar code propagation decoding method |
| CN111541517A (en)* | 2020-04-17 | 2020-08-14 | 北京交通大学 | A Propagation Decoding Method for List Polar Codes |
| CN111446973A (en)* | 2020-04-17 | 2020-07-24 | 北京交通大学 | Polarization code belief propagation decoding method based on multi-flip bit set |
| CN111446973B (en)* | 2020-04-17 | 2022-03-25 | 北京交通大学 | Polarization code belief propagation decoding method based on multi-flip bit set |
| CN111541517B (en)* | 2020-04-17 | 2022-03-25 | 北京交通大学 | List polarization code propagation decoding method |
| CN111970009A (en)* | 2020-08-21 | 2020-11-20 | 东南大学 | Cascaded polarization code bit reversal belief propagation coding and decoding method |
| CN112803954B (en)* | 2020-12-31 | 2023-02-03 | 中山大学 | An Improved BP List Decoding Algorithm Based on CRC Segmentation Processing |
| CN112803954A (en)* | 2020-12-31 | 2021-05-14 | 中山大学 | Improved BP List decoding algorithm based on CRC (cyclic redundancy check) segmentation processing |
| CN113315526B (en)* | 2021-06-09 | 2022-11-01 | 东南大学 | Cascade polarization code bit freezing belief propagation decoding method |
| CN113315526A (en)* | 2021-06-09 | 2021-08-27 | 东南大学 | Cascaded polarization code bit freezing belief propagation decoding method |
| CN113556133A (en)* | 2021-06-15 | 2021-10-26 | 中山大学 | Mixed decoding method and device for CRC-Polar cascade code |
| CN113556133B (en)* | 2021-06-15 | 2024-05-28 | 中山大学 | Hybrid decoding method and device for CRC-Polar concatenated code |
| CN113556135A (en)* | 2021-07-27 | 2021-10-26 | 东南大学 | Polarization code belief propagation bit flipping decoding method based on frozen flipping list |
| CN113556135B (en)* | 2021-07-27 | 2023-08-01 | 东南大学 | Polar Code Belief Propagation Bit Flip Decoding Method Based on Frozen Flip List |
| Publication number | Publication date |
|---|---|
| CN110278002B (en) | 2023-01-17 |
| Publication | Publication Date | Title |
|---|---|---|
| CN110278002B (en) | Polar Code Belief Propagation List Decoding Method Based on Bit Flip | |
| CN109842418B (en) | Polarization code belief propagation decoding method based on bit flipping | |
| CN108282264B (en) | A Polar Code Decoding Method Based on Bit Flip Serial Elimination List Algorithm | |
| CN111970009B (en) | Cascade polarization code bit reversal belief propagation coding and decoding method | |
| CN105978577B (en) | A kind of serial list decoding method based on bit reversal | |
| CN104025459B (en) | decoding processing method and decoder | |
| CN112290954B (en) | A decoding algorithm for LDPC codes based on deep learning post-processing | |
| CN110233628B (en) | Adaptive Belief Propagation List Decoding Method for Polar Codes | |
| JP2023547596A (en) | Method and apparatus for encoding and decoding data using concatenated polarity adjusted convolutional codes | |
| WO2016099646A1 (en) | Gldpc soft decoding with hard decision inputs | |
| CN110995278A (en) | Improved polar code serial elimination list bit flipping decoding method and system | |
| CN106571832A (en) | Multi-system LDPC cascaded neural network decoding method and device | |
| CN106888026A (en) | Segmentation polarization code coding/decoding method and system based on LSC CRC decodings | |
| CN101867379A (en) | A Decoding Method of Convolutional Codes Aided by Cyclic Redundancy Check | |
| WO2011032387A1 (en) | Method and device for decoding reed-solomon (rs) code | |
| CN111130567B (en) | Belief Propagation List Decoding Method for Polar Codes with Added Noise Perturbation and Bit Flip | |
| CN110098839A (en) | The blind-identification method of nonsystematic convolutional code coding parameter under a kind of high bit error | |
| CN111900998B (en) | LDPC code dynamic turning decoding method based on packet parallel processing | |
| CN111446973B (en) | Polarization code belief propagation decoding method based on multi-flip bit set | |
| CN113556135B (en) | Polar Code Belief Propagation Bit Flip Decoding Method Based on Frozen Flip List | |
| CN116760425A (en) | A CRC-assisted OSD decoding method for LDPC codes | |
| Xiao et al. | A low-latency and area-efficient ORBGRAND decoder for polar codes | |
| CN110995279A (en) | Polarization code combined SCF spherical list overturning decoding method | |
| CN111541457B (en) | Low-time-delay low-complexity decoding method for polar code serial cancellation list | |
| CN106209312A (en) | A kind of cyclic code parameter blind recognition algorithm utilizing soft-decision |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |