






技术领域technical field
本发明属于石油钻探装备控制技术领域,涉及一种实体钻机数字化监测方法。The invention belongs to the technical field of oil drilling equipment control, and relates to a digital monitoring method for a physical drilling rig.
背景技术Background technique
石油钻机属于连续作业型机械设备,钻井一旦开始,在完钻前不允许停机。而该机械系统中的若干磨损件必须定期更换,否则会因元件故障造成意外停机,严重时会导致巨大的经济损失。目前对关键损耗件的使用寿命估算方法有两种:计算运行时间和经验判断。如:钻井泵的缸套一般采用运行时间确定更换周期;绞车刹车片、轴承等依靠操作人员经验判断是否需要更换。该两种方法虽一直沿用至今,但仍缺乏科学性和准确性。由于设备运行环境不同、负载工况变化、部件自身缺陷等都会对部件的有效使用寿命产生影响,仅通过时间判断偏差较大,更换过早会造成不必要的浪费,更换不及时可能出现经济损失或安全事故。另外,依经验判断的准确性受限于人的主观意识,不确定性因素较多,易于出现误判。The oil drilling rig is a continuous operation mechanical equipment. Once the drilling starts, it is not allowed to stop before the drilling is completed. And some wearing parts in this mechanical system must be replaced regularly, otherwise it will cause unexpected shutdown due to component failure, and in severe cases, it will cause huge economic losses. At present, there are two methods for estimating the service life of key consumable parts: calculating the running time and judging by experience. For example, the cylinder liner of the drilling pump generally uses the running time to determine the replacement cycle; the brake pads and bearings of the drawworks rely on the experience of the operator to judge whether they need to be replaced. Although these two methods have been used until now, they still lack scientificity and accuracy. Due to the different operating environments of equipment, changes in load conditions, and the defects of components themselves, etc., will have an impact on the effective service life of components, the deviation in judging only by time is relatively large, premature replacement will cause unnecessary waste, and economic losses may occur if replacement is not timely or security incidents. In addition, the accuracy of judgment based on experience is limited by human subjective consciousness, and there are many uncertain factors, which are prone to misjudgment.
上述两种非科学的方法不利于组织大规模、标准化生产,设备生产方和设备使用方无法合理准备配件;也不利于及时的维护保养设备;同时较难获取设备准确的运行数据,无法有效的提出设备问题改进方案。The above two non-scientific methods are not conducive to organizing large-scale and standardized production, equipment manufacturers and equipment users cannot reasonably prepare accessories; they are also not conducive to timely maintenance of equipment; at the same time, it is difficult to obtain accurate operating data of equipment, and cannot effectively Propose equipment problem improvement plan.
综上所述,目前这两种部件生命周期估算方法都存在较大缺陷,暂无较为科学合理的问题解决方案。To sum up, at present, these two component life cycle estimation methods have major defects, and there is no more scientific and reasonable solution to the problem.
发明内容Contents of the invention
本发明的目的是提供一种实体钻机数字化监测方法,解决了现有技术无法准确判断损耗件使用寿命的问题,实现了设备运行部件剩余使用寿命的科学计算,避免设备非计划停机、提升易损件更换时间的准确性、有利于生产方和使用方准确高效的预留配件。The purpose of the present invention is to provide a digital monitoring method for physical drilling rigs, which solves the problem that the existing technology cannot accurately judge the service life of consumable parts, realizes the scientific calculation of the remaining service life of equipment operating parts, and avoids unplanned shutdown of equipment and easy damage The accuracy of parts replacement time is conducive to the accurate and efficient reservation of parts by the manufacturer and the user.
本发明所采用的技术方案是,一种实体钻机数字化监测方法,具体步骤如下:The technical scheme adopted in the present invention is a digital monitoring method for a physical drilling rig, and the specific steps are as follows:
步骤1,用数据采集系统采集现场设备的参数以及现场环境的数据;
步骤2,将经步骤1采集的现场设备的参数和现场环境的数据通过运算单元处理,得到现场设备的实时状态数据;
步骤3,利用经步骤2得到的现场设备的实时状态数据对现场设备进行观测、参数的设置和预警分析。
本发明的特点还在于:The present invention is also characterized in that:
其中步骤1中数据采集系统包括现场设备监测单元和现场环境监测单元,所述现场设备监测单元和现场环境监测单元分别连接运算单元的输入端;Wherein the data acquisition system in
其中实时运算单元内部输入有数字模型,数字模型包括:实体钻机数字模型、结构件强度计算模型、材料疲劳计算模型、环境因素计算模型、动力学计算模型、振动-结构计算模型、温度-结构计算模型、噪声-结构计算模型、力学仿真模型、专家数据模型;Among them, the real-time calculation unit has a digital model input inside, and the digital model includes: physical drilling rig digital model, structural component strength calculation model, material fatigue calculation model, environmental factor calculation model, dynamic calculation model, vibration-structure calculation model, temperature-structure calculation model, noise-structure calculation model, mechanical simulation model, expert data model;
其中实体钻机数字模型为将整个钻机物理部件数字化后的数据模型;The digital model of the physical drilling rig is a data model after digitizing the physical components of the entire drilling rig;
结构件强度计算模型用于实时计算被监控结构件的强度变化,并生成特性曲线;The structural member strength calculation model is used to calculate the strength change of the monitored structural member in real time and generate a characteristic curve;
材料疲劳计算模型用于计算钻机磨损件的疲劳特性,然后结合结构件强度计算模型的结果预测结构件剩余使用寿命;The material fatigue calculation model is used to calculate the fatigue characteristics of the wear parts of the drilling rig, and then combine the results of the structural component strength calculation model to predict the remaining service life of the structural component;
环境因素计算模型通过读取现场环境检测单元中的数据对现场环境数据进行归档;The environmental factor calculation model archives the on-site environmental data by reading the data in the on-site environmental detection unit;
动力学计算模型用于计算钻机运动部件的动力学特性,根据负载特性变化预测部件剩余使用寿命;The dynamic calculation model is used to calculate the dynamic characteristics of the moving parts of the drilling rig, and predict the remaining service life of the components according to the change of the load characteristics;
振动-结构计算模型、温度-结构计算模型和噪声-结构计算模型为计算通过振动、温度和噪声的变化预测钻机结构件的损耗情况;Vibration-structure calculation model, temperature-structure calculation model and noise-structure calculation model are used to calculate and predict the loss of drilling rig structural parts through changes in vibration, temperature and noise;
力学仿真模型中包括所有被监测部件的材料特性、结构特点和运行特性,采用力学运行的方法预测相关钻机部件剩余使用寿命;The mechanical simulation model includes the material characteristics, structural characteristics and operating characteristics of all monitored components, and uses the method of mechanical operation to predict the remaining service life of relevant drilling rig components;
专家数据模型为现有的工作参数、钻机关键部件使用寿命和环境变化特点的数据;The expert data model is the data of the existing working parameters, the service life of the key components of the drilling rig and the characteristics of environmental changes;
其中现场环境监测单元包括环境数据采集单元,所述环境数据采集单元分别连接温度传感器TSQ、湿度传感器HSQ、气压传感器PSQ和风速传感器WSQ;Wherein the on-site environmental monitoring unit includes an environmental data acquisition unit, and the environmental data acquisition unit is respectively connected to a temperature sensor TSQ, a humidity sensor HSQ, an air pressure sensor PSQ and a wind speed sensor WSQ;
其中现场设备监测单元为设备本体安装的若干不同类型传感器,现场设备监测单元还连接有现场数据采集单元,现场级数据采集单元将采集到的设备本体参数通过滤波或数字采样进行运算,然后通过总线通讯方式传送至实时运算单元;Among them, the field equipment monitoring unit is a number of different types of sensors installed on the equipment body. The field equipment monitoring unit is also connected to the field data acquisition unit. The field level data acquisition unit performs calculations on the collected equipment body parameters through filtering or digital sampling, and then passes The communication method is sent to the real-time computing unit;
其中实时运算单元的输出端还连接客户端与存储单元,客户端用于对现场设备进行观测、参数的设置和预警分析,存储单元用于备份通过实时运算单元处理后的现场设备的实时状态数据;The output end of the real-time computing unit is also connected to the client and the storage unit. The client is used to observe the field equipment, set the parameters and analyze the early warning, and the storage unit is used to back up the real-time status data of the field equipment processed by the real-time computing unit. ;
所述实时运算单元内的具体计算包括:实施运算单元包含计算单元,所述计算单元包括:实体钻机系统结构矩阵、实体钻机运行参数表、实体钻机操作参数表、现场环境参数表、部件物理特性列表、操作和运行历史数据表;The specific calculation in the real-time operation unit includes: the implementation operation unit includes a calculation unit, and the calculation unit includes: a physical drilling rig system structure matrix, a physical drilling rig operating parameter table, a physical drilling rig operating parameter table, a field environment parameter table, and a component physical characteristic List, operation and run history data tables;
所述实体钻机系统结构矩阵为结合钻机作业地的地质结构对钻机非运动性结构件的数字化展现;The structure matrix of the physical drilling rig system is a digital display of the non-moving structural parts of the drilling rig in combination with the geological structure of the drilling rig operating site;
所述实体钻机运行参数表中的值为现场设备监测单元反馈的数据;The value in the operating parameter table of the physical drilling rig is the data fed back by the field equipment monitoring unit;
所述实体钻机操作参数表中的值为司钻的实际操作参数;The value in the operating parameter table of the physical drilling rig is the actual operating parameter of the driller;
所述现场环境参数表中的值为现场环境监测单元反馈的数据;The value in the field environment parameter table is the data fed back by the field environment monitoring unit;
所述部件物理特性列表是将钻机中被监测部件的运行特性以数字表格的形式存储于模型中,用于分析部件实际损耗情况;The list of physical characteristics of the components is to store the operating characteristics of the monitored components in the drilling rig in the form of digital tables in the model for analyzing the actual wear and tear of the components;
所述操作和运行历史数据表中的数据是通过实时运算单元调用存储单元中的历史数据,用于更新其它所述参数表中的数字模型特性参数;The data in the operation and operation history data table is to call the historical data in the storage unit through the real-time operation unit, and is used to update the digital model characteristic parameters in other said parameter tables;
其中步骤3具体包括:客户端还连接有过程数据缓存,客户端通过过程数据缓存实时获取实施运算单元的计算结果,得到钻机实际使用情况的数据和预估剩余寿命数据,然后对钻机进行调节,过程数据缓存还将所有数据发送至存储单元中;
本发明的有益效果是The beneficial effect of the present invention is
本发明所采用的一种实体钻机数字化监测方法针对可用传感器直接测量的关键部件,可实时监测损耗情况和精确预测使用寿命;针对不可用传感器直接测量部件,通过数字仿真模型间接计算损耗情况和剩余使用寿命;该系统各模块之间可通过远程有线或无线通讯连接,数据可放于云平台远程管理;数学模型和运算单元相互独立,可存储于本地或远端,硬件平台架构可灵活搭建;客户端人机界面直接显示仿真计算结果,高效直观;专家数据库系统辅助运算,进一步提高仿真计算的准确性。A digital monitoring method for a physical drilling rig adopted in the present invention can monitor the loss situation and accurately predict the service life of key components that can be directly measured by sensors; for components that cannot be directly measured by sensors, indirectly calculate the loss situation and residual through a digital simulation model Service life; each module of the system can be connected through remote wired or wireless communication, and the data can be placed on the cloud platform for remote management; the mathematical model and the computing unit are independent of each other and can be stored locally or remotely, and the hardware platform architecture can be flexibly built; The client man-machine interface directly displays the simulation calculation results, which is efficient and intuitive; the expert database system assists calculations to further improve the accuracy of simulation calculations.
附图说明Description of drawings
图1是本发明的一种实体钻机数字化监测方法总体方案图;Fig. 1 is an overall scheme diagram of a digital monitoring method for a physical drilling rig of the present invention;
图2是本发明的一种实体钻机数字化监测方法中的现场设备监测单元原理图;Fig. 2 is a schematic diagram of a field equipment monitoring unit in a digital monitoring method for a physical drilling rig of the present invention;
图3是本发明的一种实体钻机数字化监测方法中的现场环境监测单元原理图;Fig. 3 is a schematic diagram of an on-site environment monitoring unit in a digital monitoring method for a physical drilling rig of the present invention;
图4是本发明的一种实体钻机数字化监测方法中的数字模型原理图;Fig. 4 is a schematic diagram of a digital model in a digital monitoring method of a physical drilling rig of the present invention;
图5是本发明的一种实体钻机数字化监测方法中的实时运算单元原理图;Fig. 5 is a schematic diagram of a real-time computing unit in a digital monitoring method for a physical drilling rig of the present invention;
图6是本发明的一种实体钻机数字化监测方法中的客户端方案图;Fig. 6 is a client scheme diagram in a digital monitoring method of a physical drilling rig of the present invention;
图7是本发明的一种实体钻机数字化监测方法中的存储单元原理图。Fig. 7 is a schematic diagram of a storage unit in a digital monitoring method of a physical drilling rig according to the present invention.
图中,1.现场设备监测单元,2.现场环境监测单元,3.数字模型,4.实时运算单元,5.客户端,6.存储单元,7.现场级数据采集单元,8.环境数据采集单元,9.实体钻机数字模型,10.结构件强度计算模型,11.材料疲劳计算模型,12.环境因素计算模型,13.动力学计算模型,14.振动-结构计算模型,15.温度-结构计算模型,16.噪声-结构计算模型,17.力学仿真模型,18.专家数据模型,19.计算单元,20.实体钻机系统结构矩阵,21.实体钻机运行参数表,22.实体钻机操作参数表,23.现场环境参数表,24.部件物理特性列表,25.操作和运行历史数据表,26.过程数据缓存,27.实际使用情况,28.预估剩余寿命,29.网络管理模块,30.本地客户端,31.远程客户端,32.本地存储,33.云端存储。In the figure, 1. On-site equipment monitoring unit, 2. On-site environment monitoring unit, 3. Digital model, 4. Real-time computing unit, 5. Client, 6. Storage unit, 7. Field-level data acquisition unit, 8. Environmental data Acquisition unit, 9. Digital model of physical drilling rig, 10. Calculation model of strength of structural parts, 11. Calculation model of material fatigue, 12. Calculation model of environmental factors, 13. Calculation model of dynamics, 14. Calculation model of vibration-structure, 15. Temperature -Structure calculation model, 16. Noise-structure calculation model, 17. Mechanical simulation model, 18. Expert data model, 19. Calculation unit, 20. Physical drilling rig system structure matrix, 21. Physical drilling rig operating parameter table, 22. Physical drilling rig Operating parameter table, 23. On-site environmental parameter table, 24. Part physical characteristic list, 25. Operation and operation history data table, 26. Process data cache, 27. Actual usage, 28. Estimated remaining life, 29. Network management Module, 30. Local client, 31. Remote client, 32. Local storage, 33. Cloud storage.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明提供一种实体钻机数字化监测方法,具体步骤如下:The invention provides a digital monitoring method for a physical drilling rig, the specific steps are as follows:
步骤1,用数据采集系统采集现场设备的参数以及现场环境的数据,如图1所示,数据采集系统包括现场设备监测单元1和现场环境监测单元2,所述现场设备监测单元1和现场环境监测单元2分别连接实时运算单元4的输入端,将实时监测结果传送至实时运算单元4,如图3所示,现场环境监测单元2包括环境数据采集单元8,所述环境数据采集单元8分别连接温度传感器TSQ、湿度传感器HSQ、气压传感器PSQ和风速传感器WSQ,现场设备监测单元1为设备本体安装的若干不同类型传感器,现场设备监测单元1还连接有现场数据采集单元7,现场级数据采集单元7将采集到的设备本体参数通过滤波或数字采样进行运算,然后通过总线通讯方式传送至实时运算单元4,环境数据采集单元8将数据收集后通过边缘计算,将计算结果以总线的形式传送于实时运算单元4;
现场设备监测单元1和现场环境监测单元2应尽可能接近被监测部件的工作位置,这样有利于设备一体化运输、采集信号集中处理、避免电磁干扰;The on-site
如图2所示,SQ01、SQ02、···、SQmn分别表示被监测设备本体安装的不同类型传感器,不同类别的传感器将实时测量数据发送至现场级数据采集单元7,现场级数据采集单元7通过一定的本地运算,如:滤波、数字采样等,将有效的传感器数据通过总线通讯方式发送至实时运算单元4;As shown in Figure 2, SQ01, SQ02, ..., and SQmn represent different types of sensors installed on the body of the monitored equipment respectively. Different types of sensors send real-time measurement data to the field-level
针对实体钻机中被监测部件的数量和部件工作位置可采用多个现场级数据采集单元,每个数据采集单元连接一个或多个传感器,将监测数据进行分类处理;如:位于泥浆泵的现场数据采集单元可采集泥浆泵的振动、噪声、主轴温升、冲程、流量等;位于绞车的现场数据采集单元可采集绞车的振动、轴承温升、电机转速等;Multiple field-level data acquisition units can be used for the number of monitored components in the physical drilling rig and the working positions of the components. Each data acquisition unit is connected to one or more sensors to classify and process the monitoring data; for example: field data located at the mud pump The acquisition unit can collect the vibration, noise, spindle temperature rise, stroke, flow, etc. of the mud pump; the on-site data acquisition unit located in the winch can collect the vibration of the winch, bearing temperature rise, motor speed, etc.;
各数据采集单元具有其特定的数据地址,每个现场级数据采集单元的传感器亦有其特定的信号通道地址,现场设备监测单元1将数据发送至实时运算单元4时数据格式中包含两个地址(现场级数据采集单元地址和传感器地址),以便于后续计算、归档、打印报表等;Each data acquisition unit has its specific data address, and the sensor of each field-level data acquisition unit also has its specific signal channel address. When the field
步骤2,将经步骤1采集的现场设备的参数和现场环境的数据通过实施运算单元4处理,得到现场设备的实时状态数据,实时运算单元4内部输入有数字模型3,实时运算单元4的运算方法来自于数字模型3,如图4所示,数字模型3包括:实体钻机数字模型9、结构件强度计算模型10、材料疲劳计算模型11、环境因素计算模型12、动力学计算模型13、振动-结构计算模型14、温度-结构计算模型15、噪声-结构计算模型16、力学仿真模型17、专家数据模型18;实时运算单元4的输出端还连接客户端5与存储单元6,客户端5用于对现场设备进行观测、参数的设置和预警分析,存储单元6用于备份通过实时运算单元4处理后的现场设备的实时状态数据,另外,当存储单元6中累积的现场数据足够多时通过实时运算单元4将其发送至数字模型3,用于改变数字模型3中运算模型的特征参数,以此提高实时运算单元4的计算准确性;数字模型3和存储单元6既可与实时运算单元4安装于同一位置也可安装于不同位置,其间采用有线或无线通讯;
实体钻机数字模型9为将整个钻机物理部件数字化后的数据模型,该模型还包含系统运行时各部件之间的相互关联性,确保数字模型能够最大化反映真实的运行状况和部件间相互作用关系;The
结构件强度计算模型10用于实时计算被监控结构件的强度变化,并生成特性曲线,实时运算单元4在调用该模型是还应结合实体钻机数字模型9和计算单元19中其它数据;The structural member
材料疲劳计算模型11用于计算钻机磨损件的疲劳特性,然后结合结构件强度计算模型10的结果预测结构件剩余使用寿命;The material
环境因素计算模型12通过读取现场环境检测单元2中的数据对现场环境数据进行归档;The environmental
动力学计算模型13用于计算钻机运动部件的动力学特性,根据负载特性变化预测部件剩余使用寿命,如:绞车滚筒轴承的当前磨损情况;The
振动-结构计算模型14、温度-结构计算模型15和噪声-结构计算模型16为计算通过振动、温度和噪声的变化预测钻机结构件的损耗情况,实际运行时也应结合计算单元19中相关数据;Vibration-
力学仿真模型17中包括所有被监测部件的材料特性、结构特点和运行特性,采用力学运行的方法结合实体钻机数字模型9和计算单元19中其它数据预测相关钻机部件剩余使用寿命;The
专家数据模型18为现有的工作参数、钻机关键部件使用寿命和环境变化特点的数据,由前者长时间工作总结的工作参数、关键部件使用寿命、环境变化特点等数据,从经验角度对当前工作给出合理的建议。如:在某作业区块,泥浆泵缸套的平均工作寿命80小时,钻头在井深1000~1500米时的使用寿命为55小时等;The
实时运算单元4与其它单元之间通过总线通讯,可为有线或无线方式;实时运算单元4可安装于设备工作地,远端办公室或云服务器;若安装于设备工作地和远端办公室应具备一定的运算能力,若安装于云服务器则只需规划运算软件,由云服务器负责软件运行;The real-
如图5所示,为实时运算单元4的内部原理图。其中,计算单元19由实时运算单元4按需调用,计算过程数据。计算过程中每个部件所属传感器的数据都有特定的编号,经过计算单元4后的数据编号不会发生任何改变,以便于后续的分类和归档。涉及的计算包括:实体钻机系统结构矩阵20、实体钻机运行参数表21、实体钻机操作参数表22、现场环境参数表23、部件物理特性列表24、操作和运行历史数据表25。As shown in FIG. 5 , it is an internal schematic diagram of the real-
实体钻机系统结构矩阵20是结合钻机作业地的地质结构对钻机非运动性结构件(如:底座、井架等)的数字化展现。该矩阵反映钻机整体的结构强度、韧性等,其数据的优劣性表示承载性结构件是否能够满足额定负载需求,如:井架强度是否能够承受顶驱旋转的反扭矩、底座强度是否能够承受管柱重量等。The physical drilling rig
实体钻机运行参数表21中的值是实时变化的,其内容全部来自于现场设备监测单元1。实时运算单元4根据特定的地址编号和位置编号将数据发送至实体钻机运行参数表21中,供其它模型计算时调用。The values in the operating parameter table 21 of the physical drilling rig change in real time, and all of its contents come from the field
实体钻机操作参数表22中的值也是实时变化的,其存储的内容为司钻的操作参数、如:绞车速度、泵冲、钻盘扭矩等。实时运算单元4根据特定的地址编号和位置编号将数据发送至实体钻机操作参数表22中供其他模型计算时调用。The values in the operating parameter table 22 of the physical drilling rig also change in real time, and the stored content is the operating parameters of the driller, such as: drawworks speed, pump stroke, drill disc torque, etc. The real-
现场环境参数表23中的值是实时变化的,其内容全部来自于现场环境监测单元2,实时运算单元4根据特定的位置编号将数据发送至现场环境参数表23中供其它模型计算时调用。The values in the on-site environment parameter table 23 change in real time, all of which come from the on-site
部件物理特性列表24是将钻机中被监测部件的运行特性以数字表格的形式存储于模型中,用于分析部件实际损耗情况。该列表的参数会根据实体钻机运行参数表21、实体钻机操作参数表22和现场环境参数表23的当前值而不断变化。上述三个表的数值结合力学仿真模型17可通过实时运算单元4计算特定部件的运行损耗和预测使用寿命。The component physical
操作和运行历史数据表25中的数据是通过实时运算单元4调用存储单元6中的历史数据。该数据主要用于更新其它列表中的数字模型特性参数,即:随着部件的不断磨损,其运行特性可能会不断变化,若该特性参数为固定值会造成较大的运算误差。通过不断更新该运算参数可根据实时状况调整部件的物理特性,使数字模型自适应物理物件的特性。The data in the operation and running historical data table 25 is the historical data in the storage unit 6 called by the real-
根据实体钻机系统结构矩阵20、实体钻机运行参数表21、现场环境参数表23中的数据、物理部件特性列表24和力学仿真模型17通过动力学计算14计算绞车滚筒轴承的当前磨损情况,并结合实体钻机操作参数表22、操作和运行历史数据表25和专家数据模型18预测未来工况下的剩余使用寿命,若上述三个表中的数据未参与运算则仅能按已有工况负载特性预测轴承使用寿命,这与实际工况之间差别较大,因此应结合记录的真实未来工况参数对其进行预估,会有效提高寿命预测的准确性。According to the data in the physical drilling rig
当钻机在本区域完成一口井的作业时,该数字化监测系统中的操作和运行历史数据表25会统计本作业周期内被监测部件的损耗情况,便于同区域内其它设备核算成本、估算作业周期、准备配件等。When the drilling rig completes the operation of a well in the area, the operation and operation history data table 25 in the digital monitoring system will count the wear and tear of the monitored components during the operation cycle, which is convenient for other equipment in the same area to calculate the cost and estimate the operation cycle , Prepare accessories, etc.
针对关键部件,应综合上述计算合理判断其损耗情况和剩余使用寿命。计算单元19的结果将存储于过程数据缓存26中,过程数据缓存26将每个计算结果按规则排序存放,分为两种类型:实际使用情况27和预估剩余寿命28,同时过程数据缓存26还将所有数据发送至存储单元6中,用于传感器测量数据、实际使用情况27、预测剩余寿命28中的内容归档。For key components, the wear and tear and remaining service life should be reasonably judged based on the above calculations. The results of the
实际使用情况27中的数据会发送至数学模型3中,用于更新部分模型的运算常数、修正系数、特性参数等。如:环境数据、运行参数等。The data in the
步骤3,利用经步骤2得到的现场设备的实时状态数据对现场设备进行观测、参数的设置和预警分析:客户端5通过过程数据缓存实时获取实施运算单元4的计算结果,得到钻机实际使用情况的数据和预估剩余寿命数据,然后对钻机进行调节,如图6所示,客户端5还包括网络管理模块29、本地客户端30和远程客户端31,所述网络管理模块29连接至实时运算单元4,网络管理模块29对外连接方式有多种,可为有线或无线局域网络、城域网、广域网等,本地客户端安装于钻机作业场所,用于现场人员查看钻机运行状态,远程客户端通过通讯网络与网络管理模块连接,用于远程监测;
实时运算单元4中实际使用情况27用于在本地客户端30和远程客户端31中以曲线图和实时数据的方式显示被监控部件的工作状况、损耗情况等。当实际使用情况27中的数据与专家数据模型18中的标准数据偏差较大时会在本地客户端30和远程客户端31中弹出报警提示消息,并给出可能出现的问题和造成的后果。预估剩余寿命28的数据也会实时在本地客户端30和远程客户端31显示,在到达预估寿命前客户端会有更换部件、停机保养、预估耗费成本、停机时间等维护报表信息。便于用户或设备供应商核算成本、准备配件、协调物流、安排维保服务人员等。The
如图7所示,为存储单元的构成原理,包括本地存储32和云端存储33;本地存储32用于过程数据或少量历史数据的存储,云端存储33用于历史数据归档,云端存储33的数据全部来自于本地存储32,云端存储33的数据结构可以是NoSQL(非关系型数据库)、Hadoop(分布式并行处理框架)或Bigtable(分布式存储系统)等。As shown in Figure 7, it is the composition principle of the storage unit, including
在获取云端数据访问权限后任何数字化监测系统都可访问云端存储33中的数据并下载至本地存储32中,实现新钻机首次作业时读取本区域内已有钻机的工作特性参数和专家数据库,便于优化设备参数。如:A钻机已获取某作业区块的运行数据并将其存储于云端,B钻机进入该区块首次作业前将A钻机的云端数据下载至本地,可快速生成设定参数,系统自动计算每个关键部件的损耗情况、所需备件数量、更换频次等指导信息。B井队可针对此上报物料需求计划,可节约生产成本、缩短生产调配周期、确保设备安全运行、避免非正常停机。After obtaining the cloud data access authority, any digital monitoring system can access the data in the
本发明基于传感器、数字仿真计算、分布式存储等技术提出了一种实体钻机数字化监测系统,实现钻机工作过程中关键易损件的运行状况在线监测;数字模型仿真计算,精确预测无法直接测量部件的剩余使用寿命。科学预测系统停机时间、预先准备配件、提高作业效率。Based on technologies such as sensors, digital simulation calculations, and distributed storage, the present invention proposes a digital monitoring system for physical drilling rigs, which realizes online monitoring of the operating conditions of key wearing parts during the working process of drilling rigs; digital model simulation calculations accurately predict components that cannot be directly measured remaining useful life. Scientifically predict system downtime, prepare accessories in advance, and improve operating efficiency.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910574682.XACN110259433B (en) | 2019-06-28 | 2019-06-28 | Digital monitoring method for solid drilling machine |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910574682.XACN110259433B (en) | 2019-06-28 | 2019-06-28 | Digital monitoring method for solid drilling machine |
| Publication Number | Publication Date |
|---|---|
| CN110259433A CN110259433A (en) | 2019-09-20 |
| CN110259433Btrue CN110259433B (en) | 2023-03-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910574682.XAActiveCN110259433B (en) | 2019-06-28 | 2019-06-28 | Digital monitoring method for solid drilling machine |
| Country | Link |
|---|---|
| CN (1) | CN110259433B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111291499B (en)* | 2020-03-04 | 2023-08-01 | 岭南师范学院 | A Modeling Method of Gas Drainage Drilling Rig Based on Multibody Dynamics |
| CN111723536B (en)* | 2020-06-16 | 2022-10-04 | 岭南师范学院 | A Multibody Dynamics Analysis Method for Gas Drainage Drilling Rig System |
| CN112012695B (en)* | 2020-09-27 | 2023-07-18 | 中油国家油气钻井装备工程技术研究中心有限公司 | An auxiliary guidance device and guidance method for oil rigs based on edge computing |
| CN112595537B (en)* | 2020-12-17 | 2023-03-21 | 弥伦工业产品设计(上海)有限公司 | Equipment health state monitoring method and system based on signal analysis and storage medium |
| CN112859795A (en)* | 2021-02-24 | 2021-05-28 | 上海震业环境科技有限公司 | Safety data acquisition and management method and system for oil and gas equipment |
| CN114636438A (en)* | 2022-01-25 | 2022-06-17 | 四川宏华电气有限责任公司 | Drilling machine online monitoring system based on AR |
| CN116300690B (en)* | 2023-05-17 | 2023-07-25 | 济宁联威车轮制造有限公司 | Radial drilling machine fault monitoring and early warning system based on edge calculation |
| CN118498970B (en)* | 2024-06-26 | 2024-12-20 | 山东石油化工学院 | Marine drilling top tensioning type riser system operation safety analysis system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1396171A (en)* | 1972-08-08 | 1975-06-04 | Santa Fe Int Corp | Drill bit utilization optimizer |
| US6662110B1 (en)* | 2003-01-14 | 2003-12-09 | Schlumberger Technology Corporation | Drilling rig closed loop controls |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7032689B2 (en)* | 1996-03-25 | 2006-04-25 | Halliburton Energy Services, Inc. | Method and system for predicting performance of a drilling system of a given formation |
| US6648082B2 (en)* | 2000-11-07 | 2003-11-18 | Halliburton Energy Services, Inc. | Differential sensor measurement method and apparatus to detect a drill bit failure and signal surface operator |
| US7604072B2 (en)* | 2005-06-07 | 2009-10-20 | Baker Hughes Incorporated | Method and apparatus for collecting drill bit performance data |
| US8521443B2 (en)* | 2008-10-16 | 2013-08-27 | Oxfordian | Method to extract parameters from in-situ monitored signals for prognostics |
| US8504308B2 (en)* | 2010-07-13 | 2013-08-06 | Schlumberger Technology Corporation | System and method for fatigue analysis of a bottom hole assembly |
| CN102900372B (en)* | 2012-10-16 | 2014-05-07 | 中国石油大学(北京) | Method and device for predicting reasonable service life of a PDC drill bit |
| CN103268088A (en)* | 2013-04-24 | 2013-08-28 | 宝鸡石油机械有限责任公司 | Complete set of drilling rig remote online monitoring and fault diagnosis system |
| US11029444B2 (en)* | 2015-03-30 | 2021-06-08 | Schlumberger Technology Corporation | Pipe tracking system for drilling rigs |
| CN104806226B (en)* | 2015-04-30 | 2018-08-17 | 北京四利通控制技术股份有限公司 | intelligent drilling expert system |
| US11125070B2 (en)* | 2015-05-08 | 2021-09-21 | Schlumberger Technology Corporation | Real time drilling monitoring |
| WO2016179767A1 (en)* | 2015-05-08 | 2016-11-17 | Schlumberger Technology Corporation | Fatigue analysis procedure for drill string |
| SG11201707940VA (en)* | 2015-05-18 | 2017-10-30 | Halliburton Energy Services Inc | Condition based maintenance program based on life-stress acceleration model and cumulative damage model |
| US20190360295A1 (en)* | 2016-09-09 | 2019-11-28 | General Electric Company | System and method for controlling a blowout preventer system in an oil rig |
| GB2554685A (en)* | 2016-10-03 | 2018-04-11 | Airbus Operations Ltd | Component monitoring |
| US10669783B2 (en)* | 2017-09-12 | 2020-06-02 | Schlumberger Technology Corporation | System and method for noise, vibration, and light pollution management on rig systems |
| CN109240244B (en)* | 2018-10-26 | 2020-11-20 | 云达世纪(北京)科技有限公司 | Data-driven equipment running state health degree analysis method and system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1396171A (en)* | 1972-08-08 | 1975-06-04 | Santa Fe Int Corp | Drill bit utilization optimizer |
| US6662110B1 (en)* | 2003-01-14 | 2003-12-09 | Schlumberger Technology Corporation | Drilling rig closed loop controls |
| Publication number | Publication date |
|---|---|
| CN110259433A (en) | 2019-09-20 |
| Publication | Publication Date | Title |
|---|---|---|
| CN110259433B (en) | Digital monitoring method for solid drilling machine | |
| US20220137613A1 (en) | Method and system for predicting failure of mining machine crowd system | |
| KR101177949B1 (en) | Equipment component monitoring and replacement management system | |
| CN109507924B (en) | Remote monitoring system for oil field operation equipment | |
| CN110347104A (en) | A kind of online remote supervision system of fracturing pump based on cloud platform | |
| CN110728443A (en) | Motor full life cycle management and control system | |
| CN109491341B (en) | Monitoring and data analysis system for oil field operation equipment | |
| CN114254779A (en) | Production equipment health management system based on predictive maintenance | |
| CN105809255A (en) | IoT-based heat-engine plantrotary machine health management method and system | |
| CN118309644A (en) | Pipeline pump operation flow monitoring method and system based on digital twin | |
| AU2020252893A1 (en) | Device for determining the actual state and/or the remaining service life of a construction, materials-handling and/or conveyor machine | |
| CN116595657A (en) | An Engine Quality Prediction System | |
| CN117514642A (en) | Yaw braking system abnormality monitoring method, device, electronic equipment and storage medium | |
| CN214067336U (en) | Motor operation equipment state on-line monitoring management system | |
| CN116483042A (en) | A digital lean diagnosis method for lean production management and control platform | |
| CN113947216B (en) | Equipment intelligent diagnosis and maintenance management system | |
| CN115901242A (en) | Method for determining failure of mechanical arm, determining device and platform for health management of mechanical arm | |
| AU2015200309B2 (en) | Predicting failure of a mining machine | |
| CN119414146B (en) | A performance testing method and platform for electric hammer | |
| CN118605383A (en) | Remote monitoring method and device for CNC machine tools | |
| TWI783593B (en) | Intelligent production line equipment precise preventive maintenance and energy consumption visual monitoring system and method | |
| AU2018256654B2 (en) | Predicting failure of a mining machine | |
| CN116243626A (en) | Pump station automatic control system and control method | |
| CN120106816A (en) | A fabric production equipment detection and early warning system | |
| CN119577650A (en) | A method for evaluating the health status of hydropower units based on multidimensional data |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| TA01 | Transfer of patent application right | ||
| TA01 | Transfer of patent application right | Effective date of registration:20200927 Address after:Baoji City, Shaanxi Province, 721002 Dongfeng Road, Jintai District No. 2 Applicant after:BAOJI OILFIELD MACHINERY Co.,Ltd. Applicant after:CHINA NATIONAL PETROLEUM Corp. Applicant after:CNPC national oil and gas drilling equipment Engineering Technology Research Center Co.,Ltd. Address before:Baoji City, Shaanxi Province, 721002 Dongfeng Road, Jintai District No. 2 Applicant before:Baoji Oilfield Machinery Co.,Ltd. | |
| GR01 | Patent grant | ||
| GR01 | Patent grant |