Movatterモバイル変換


[0]ホーム

URL:


CN110249348A - The configuration and parametrization of energy management system - Google Patents

The configuration and parametrization of energy management system
Download PDF

Info

Publication number
CN110249348A
CN110249348ACN201780077551.XACN201780077551ACN110249348ACN 110249348 ACN110249348 ACN 110249348ACN 201780077551 ACN201780077551 ACN 201780077551ACN 110249348 ACN110249348 ACN 110249348A
Authority
CN
China
Prior art keywords
configuration
processing device
parameterization information
components
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780077551.XA
Other languages
Chinese (zh)
Inventor
乌尔里希·明茨
约阿希姆·班贝格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Corp
Original Assignee
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens CorpfiledCriticalSiemens Corp
Publication of CN110249348ApublicationCriticalpatent/CN110249348A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromChinese

公开了用于配置和参数化能量控制系统的技术的示例。在根据本公开的各方面的一个示例实施方式中,一种计算机实现的方法包括由处理装置接收多个数字双胞胎。多个数字双胞胎中的每个数字双胞胎与多个部件的一个部件相关联。该方法还包括至少部分地基于多个数字双胞胎,由处理装置计算多个部件中的每个部件的配置和参数化信息。该方法还包括由处理装置将配置和参数化信息发送到多个部件中的各个部件,以使多个部件能够实现配置和参数化信息。

Examples of techniques for configuring and parameterizing energy control systems are disclosed. In one example embodiment in accordance with aspects of the present disclosure, a computer-implemented method includes receiving, by a processing device, a plurality of digital twins. Each digital twin of the plurality of digital twins is associated with a part of the plurality of parts. The method also includes computing, by the processing device, configuration and parameterization information for each of the plurality of components based at least in part on the plurality of digital twins. The method also includes sending, by the processing device, the configuration and parameterization information to each of the plurality of components to enable the plurality of components to implement the configuration and parameterization information.

Description

Translated fromChinese
能量控制系统的配置与参数化Configuration and parameterization of energy control systems

技术领域technical field

本公开主要涉及能量控制系统,并且更具体地涉及能量控制系统的配置和参数化。The present disclosure relates generally to energy control systems, and more particularly to the configuration and parameterization of energy control systems.

背景技术Background technique

电力系统提供电子部件网络,以从发电机产生电力并向电力消耗者传输和供应电力。电力系统可以包括用于产生电力的发电机、用于跨越远距离传输电力的传输系统、以及将电力分配给电力消耗者的配电系统。电网为电力系统的一个示例。可以实施能量控制系统以管理和控制电力系统的各种电子部件。A power system provides a network of electronic components to generate electricity from generators and to transmit and supply electricity to electricity consumers. Power systems may include generators for generating electrical power, transmission systems for transmitting electrical power across long distances, and electrical distribution systems for distributing electrical power to consumers of the electrical power. An electrical grid is an example of a power system. Energy control systems may be implemented to manage and control various electronic components of the power system.

发明内容SUMMARY OF THE INVENTION

根据本公开的示例,提供了包括用于配置和参数化能量控制系统的方法、系统和/或计算机程序产品的技术。用于配置和参数化能量控制系统的计算机实现的方法包括由处理装置接收多个数字双胞胎。多个数字双胞胎中的每个数字双胞胎与多个部件的一个部件相关联。该方法还包括至少部分地基于多个数字双胞胎,由处理装置计算多个部件中的每个部件的配置和参数化信息。该方法还包括由处理装置将配置和参数化信息发送到多个部件中的各个部件,以使多个部件能够实现配置和参数化信息。According to examples of the present disclosure, techniques are provided that include methods, systems, and/or computer program products for configuring and parameterizing an energy control system. A computer-implemented method for configuring and parameterizing an energy control system includes receiving, by a processing device, a plurality of digital twins. Each digital twin of the plurality of digital twins is associated with a part of the plurality of parts. The method also includes computing, by the processing device, configuration and parameterization information for each of the plurality of components based at least in part on the plurality of digital twins. The method also includes sending, by the processing device, the configuration and parameterization information to each of the plurality of components to enable the plurality of components to implement the configuration and parameterization information.

一种用于配置和参数化能量控制系统的系统,包括具有计算机可读指令的存储器和用于执行计算机可读指令的处理装置,计算机可读指令用于执行一种方法。该方法包括由处理装置接收多个数字双胞胎。多个数字双胞胎中的每个数字双胞胎与多个部件的一个部件相关联。该方法还包括至少部分地基于多个数字双胞胎,由处理装置计算多个部件中的每个部件的配置和参数化信息。该方法还包括由处理装置将配置和参数化信息发送到多个部件中的各个部件,以使多个部件能够实现配置和参数化信息。A system for configuring and parameterizing an energy control system includes a memory having computer readable instructions and a processing device for executing the computer readable instructions for performing a method. The method includes receiving, by a processing device, a plurality of digital twins. Each digital twin of the plurality of digital twins is associated with a part of the plurality of parts. The method also includes computing, by the processing device, configuration and parameterization information for each of the plurality of components based at least in part on the plurality of digital twins. The method also includes sending, by the processing device, the configuration and parameterization information to each of the plurality of components to enable the plurality of components to implement the configuration and parameterization information.

用于配置和参数化能量控制系统的计算机程序产品包括计算机可读存储介质,该计算机可读存储介质具有利用其实施的程序指令,该程序指令可由虚拟现实处理系统执行以使处理装置执行一种方法。该方法包括由处理装置接收多个数字双胞胎。多个数字双胞胎中的每个数字双胞胎与多个部件的一个部件相关联。该方法还包括至少部分地基于多个数字双胞胎,由处理装置计算多个部件中的每个部件的配置和参数化信息。该方法还包括由处理装置将配置和参数化信息发送到多个部件中的各个部件,以使多个部件能够实现配置和参数化信息。A computer program product for configuring and parameterizing an energy control system includes a computer-readable storage medium having program instructions embodied therewith that are executable by a virtual reality processing system to cause a processing device to perform a method. The method includes receiving, by a processing device, a plurality of digital twins. Each digital twin of the plurality of digital twins is associated with a part of the plurality of parts. The method also includes computing, by the processing device, configuration and parameterization information for each of the plurality of components based at least in part on the plurality of digital twins. The method also includes sending, by the processing device, the configuration and parameterization information to each of the plurality of components to enable the plurality of components to implement the configuration and parameterization information.

用于配置和参数化能量控制系统的另一种方法包括由处理装置接收多个数字双胞胎,其中多个数字双胞胎中的每个数字双胞胎与多个部件中的部件相关联。该方法还包括由处理装置至少部分地基于多个数字双胞胎计算用于二级控制器和三级控制器中的至少一者的配置和参数化信息。该方法还包括由处理装置将配置和参数化信息发送到二级控制器和三级控制器中的至少一者,以使二级控制器和三级控制器中的至少一者能够实现配置和参数化信息。Another method for configuring and parameterizing an energy control system includes receiving, by a processing device, a plurality of digital twins, wherein each digital twin of the plurality of digital twins is associated with a component of the plurality of components. The method also includes computing, by the processing device, configuration and parameterization information for at least one of the secondary controller and the tertiary controller based at least in part on the plurality of digital twins. The method also includes sending, by the processing device, configuration and parameterization information to at least one of the secondary controller and the tertiary controller to enable the at least one of the secondary controller and the tertiary controller to implement the configuration and Parametric information.

通过本公开的技术实现了额外的特征和优点。其他方面在本文中详细描述并且被认为是本公开的一部分。为了更好地理解本公开的优点和特征,参考以下描述和附图。Additional features and advantages are realized through the techniques of the present disclosure. Other aspects are described in detail herein and are considered a part of this disclosure. For a better understanding of the advantages and features of the present disclosure, reference is made to the following description and accompanying drawings.

附图说明Description of drawings

在说明书结论中的权利要求中特别指出并清楚地要求保护被视为本发明的主题。根据以下结合附图的详细描述,前述的和其他的特征及其优点是显而易见的,其中:The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages thereof will be apparent from the following detailed description taken in conjunction with the accompanying drawings, wherein:

图1A示出根据本公开一个方面的能量控制系统的框图;1A shows a block diagram of an energy control system according to an aspect of the present disclosure;

图1B示出根据本公开各方面的具有能量控制系统配置和参数化模块的图1A的能量控制系统的框图;1B illustrates a block diagram of the energy control system of FIG. 1A with energy control system configuration and parameterization modules in accordance with aspects of the present disclosure;

图1C示出根据本公开各方面的具有能量控制系统配置和参数化模块的图1A的能量控制系统的框图;1C illustrates a block diagram of the energy control system of FIG. 1A with energy control system configuration and parameterization modules in accordance with aspects of the present disclosure;

图2示出根据本公开各方面的用于配置和参数化能量控制系统的方法的流程图;以及2 illustrates a flowchart of a method for configuring and parameterizing an energy control system in accordance with aspects of the present disclosure; and

图3示出根据本公开的示例的用于实现本文描述的技术的处理系统。3 illustrates a processing system for implementing the techniques described herein, according to an example of the present disclosure.

具体实施方式Detailed ways

电力系统的工程和调试可能是耗时的手动任务,其包括管理和控制电力系统各种电子部件的能量控制系统的配置和参数化。本技术通过提供能量控制系统的自动自配置和自参数化来解决该问题。Engineering and commissioning of power systems can be time-consuming manual tasks that include the configuration and parameterization of energy control systems that manage and control the various electronic components of the power system. The present technology addresses this problem by providing automatic self-configuration and self-parameterization of the energy control system.

特别地,本技术使用从每个部件接收到的“数字双胞胎”,针对电力系统中的多个部件中的每个部件,计算配置和参数化信息。数字双胞胎是物理资产、流程和系统的数字复制品或表示。例如,数字双胞胎可以包括用于电力系统的部件的元件的控制器结构和可调参数。数字双胞胎还可以包括成本函数和对某些要素(例如,电池容量)、负荷曲形和部件的健康状态的约束。In particular, the present technology uses the "digital twin" received from each component to compute configuration and parameterization information for each of the plurality of components in the power system. A digital twin is a digital replica or representation of physical assets, processes and systems. For example, the digital twin may include controller structures and tunable parameters for the elements of the components of the power system. The digital twin may also include cost functions and constraints on certain elements (eg, battery capacity), load curves, and health of components.

通过这种方式,部件充当物联网(IoT)对象。术语物联网对象是指具有可寻址接口(例如,互联网协议(IP)地址、蓝牙标识符(ID)、近场通信(NFC)ID等)的任何对象(例如,部件、设备、传感器等)并且可以通过有线或无线连接将信息发送到一个或多个其他对象。IoT对象可以具有无源通信接口,诸如快速响应(QR)代码、射频识别(RFID)标签、NFC标签等,或者有源通信接口,诸如调制解调器、收发器、发送器-接收器等。IoT对象可以具有一组特定的属性(例如,装置的一个或多个状态,诸如IoT对象是开还是关、打开还是关闭、空闲还是活动,可用于任务执行还是忙碌等等,发电的成本函数、环境监测或记录功能、发光功能、发声功能等),其可以由中央处理单元(CPU)、微处理器、ASIC等嵌入和/或控制/监测,并且被配置用于连接到诸如本地ad-hoc网络或因特网的IoT网络。例如,IoT对象可包括但不限于冰箱、烤面包机、烤箱、微波炉、冰柜、洗碗机、手动工具、洗衣机、干衣机、炉子、加热、通风、空调和制冷(HVACR)系统、空调、恒温器、燃烧器和锅炉控制、发电机、楼宇管理控制、电视、灯具、吸尘器、洒水器、电表、煤气表等,只要这些装置配备有可寻址的用于与IoT网络进行通信的通信接口。IoT对象还可以包括手机、台式计算机、膝上型计算机、平板计算机、个人数字助理(PDA)等。因此,除了通常不具有互联网连接的装置(例如,洗碗机等)之外,IoT网络还可以包括“传统”因特网可访问装置(例如,膝上型或台式计算机,手机等)的组合。In this way, components act as Internet of Things (IoT) objects. The term IoT object refers to any object (eg, component, device, sensor, etc.) that has an addressable interface (eg, Internet Protocol (IP) address, Bluetooth identifier (ID), Near Field Communication (NFC) ID, etc.) And information can be sent to one or more other objects via wired or wireless connections. IoT objects may have passive communication interfaces, such as quick response (QR) codes, radio frequency identification (RFID) tags, NFC tags, etc., or active communication interfaces, such as modems, transceivers, transmitter-receivers, and the like. IoT objects can have a specific set of properties (e.g., one or more states of the device, such as whether the IoT object is on or off, on or off, idle or active, available for task execution or busy, etc., cost function for generating electricity, environmental monitoring or recording functions, lighting functions, sounding functions, etc.), which may be embedded and/or controlled/monitored by a central processing unit (CPU), microprocessor, ASIC, etc., and configured for connection to, for example, local ad-hoc Internet or IoT network of the Internet. For example, IoT objects may include, but are not limited to, refrigerators, toasters, ovens, microwaves, freezers, dishwashers, hand tools, washing machines, dryers, stoves, heating, ventilation, air conditioning and refrigeration (HVACR) systems, air conditioners, Thermostats, burner and boiler controls, generators, building management controls, televisions, lamps, vacuum cleaners, sprinklers, electricity meters, gas meters, etc., as long as these devices are equipped with an addressable communication interface for communicating with the IoT network . IoT objects may also include cell phones, desktop computers, laptop computers, tablet computers, personal digital assistants (PDAs), and the like. Thus, IoT networks may include a combination of "traditional" Internet-accessible devices (eg, laptop or desktop computers, cell phones, etc.) in addition to devices that typically do not have an Internet connection (eg, dishwashers, etc.).

数字双胞胎通过通信网络被传输到能量控制系统配置和参数化(ECSCP)模块。能量控制系统在电力系统的各个级别提供控制(包括低级控制、初级控制、二级控制和/或三级控制)。ECSCP模块从电力系统内的部件收集数字双胞胎并将它们组合以便全部或部分地配置和参数化能量控制系统(例如,能量控制的一些部件可以被预配置,而其他部件由ECSCP模块配置)。例如,ECSCP模块使用部件的成本函数和部件专用约束来配置和参数化三级控制器的模型预测控制器(MPC)。ECSCP模块使用通信网络将计算出的配置和参数发送到各个控制器和部件。不同的控制器应用所接收到的配置和参数化信息,以便控制电力系统内的一个或多个相关部件。The digital twin is transmitted to the Energy Control System Configuration and Parameterization (ECSCP) module via the communication network. The energy control system provides control at various levels of the power system (including low-level control, primary control, secondary control, and/or tertiary control). The ECSCP module collects digital twins from components within the power system and combines them to configure and parameterize the energy control system in whole or in part (eg, some components of the energy control may be preconfigured while others are configured by the ECSCP module). For example, the ECSCP module uses the component's cost function and component-specific constraints to configure and parameterize a three-level controller's Model Predictive Controller (MPC). The ECSCP module uses the communication network to send the calculated configuration and parameters to the various controllers and components. Different controllers apply the received configuration and parameterization information in order to control one or more related components within the power system.

本技术提供了若干益处。例如,降低了电力系统及其能量控制系统的工程和调试成本。当电力系统中发生断电时(由于电力系统中的故障、天气事件、地震等),本技术提供能量控制系统的在线重新配置和重新参数化。The present technology provides several benefits. For example, engineering and commissioning costs for power systems and their energy control systems are reduced. When a power outage occurs in the power system (due to failures in the power system, weather events, earthquakes, etc.), the present technology provides online reconfiguration and reparameterization of the energy control system.

本公开的示例实施例包括或产生各种技术特征、技术效果和/或技术改进。本公开的示例实施例提供了一种能量控制系统,其被配置为基于从部件接收到的数字双胞胎,通过计算配置和参数化信息,来控制电力系统及其部件。计算出的配置和参数化信息被发送到部件(例如,发送到与部件相关联的控制器),以使该部件能够实现配置和参数化信息以控制该部件。本公开的这些方面构成技术特征,其基于每个部件的数字双胞胎,通过实现对电力系统中的部件的集中和分散控制,产生改进电力系统和能量控制系统的技术效果。作为这些技术特征和技术效果的结果,根据本公开的示例实施例的能量控制系统代表了对现有电力系统控制技术的改进。应当理解,本公开的示例实施例的技术特征、技术效果和技术改进的上述示例仅仅为说明性的而非穷举的。如本文所述,这些和其他益处将如本文所述是显而易见的。Example embodiments of the present disclosure include or produce various technical features, technical effects, and/or technical improvements. Example embodiments of the present disclosure provide an energy control system configured to control a power system and its components by computing configuration and parameterization information based on a digital twin received from the components. The calculated configuration and parameterization information is sent to the component (eg, to a controller associated with the component) to enable the component to implement the configuration and parameterization information to control the component. These aspects of the present disclosure constitute technical features that produce the technical effect of improving power systems and energy control systems by enabling centralized and decentralized control of components in the power system, based on a digital twin of each component. As a result of these technical features and technical effects, energy control systems according to example embodiments of the present disclosure represent improvements over existing power system control techniques. It should be understood that the above-described examples of technical features, technical effects, and technical improvements of the exemplary embodiments of the present disclosure are merely illustrative and not exhaustive. These and other benefits will be apparent as described herein.

图1A示出根据本公开的一个方面的能量控制系统100的框图。尽管图1A示出纯电能系统,但是本技术也可以应用于多模态能量系统(即,包括电能、热能、化学能和/或机械能及其转换的能量系统)。FIG. 1A shows a block diagram of an energy control system 100 according to one aspect of the present disclosure. Although FIG. 1A shows a purely electrical energy system, the present techniques can also be applied to multimodal energy systems (ie, energy systems that include electrical, thermal, chemical, and/or mechanical energy and their conversion).

能量控制系统100使得能够控制电力系统(例如,电网150和各种负荷152a、152b、152c、152d、152e(统称为“负荷152”))的部件110a、110b、110c、110d、110e(统称为“部件110”)。部件110产生电力并通过电网150将电力传输给终端用户(由负荷152表示)。Energy control system 100 enables control of components 110a, 110b, 110c, 110d, 110e (collectively referred to as "loads 152") of an electrical power system (eg, grid 150 and various loads 152a, 152b, 152c, 152d, 152e (collectively "loads 152")) "Component 110"). Component 110 generates and transmits electricity to end users (represented by loads 152 ) through grid 150 .

部件110包括电气硬件,诸如柴油发电机114a、光伏发电机114b、风力发电机114c、电池存储器114d、可控负荷114e(统称为“发电硬件114”)。可以实现其他类型的发电硬件114,诸如燃气轮机、燃煤发电厂、核电站、水力发电厂等。Components 110 include electrical hardware such as diesel generators 114a, photovoltaic generators 114b, wind generators 114c, battery storage 114d, controllable loads 114e (collectively "generating hardware 114"). Other types of power generation hardware 114 may be implemented, such as gas turbines, coal-fired power plants, nuclear power plants, hydroelectric power plants, and the like.

根据本公开的各方面,能量控制系统100包括四个控制级别:低级控制、初级控制、二级控制和三级控制。特别地,可以从各种控制器控制发电硬件114,控制器包括:低级控制器112a、112b、112c、112d、112e(统称为“低级控制器112”);初级控制器120a、120b、120c、120d、120e(统称为“初级控制器120”);二级控制器130和三级控制器140。虽然图1A示出了集中的二级和三级控制级别以及分散的初级和低级控制级别,但是其他配置也是可能的(例如,控制级别可以组合,控制级别可以分成多个控制级别等)。因此,附图中示出的示例性实施例有助于理解本公开,但不是限制性的,因为在本公开的范围内可以预期具有附加的、更少的或替代的部件的其他配置。各个控制级别简要描述如下。According to aspects of the present disclosure, the energy control system 100 includes four control levels: low level control, primary control, secondary control, and tertiary control. In particular, the power generation hardware 114 may be controlled from various controllers including: low-level controllers 112a, 112b, 112c, 112d, 112e (collectively "low-level controllers 112"); primary controllers 120a, 120b, 120c, 120d, 120e (collectively "primary controller 120"); secondary controller 130 and tertiary controller 140. Although FIG. 1A shows centralized secondary and tertiary control levels and decentralized primary and low-level control levels, other configurations are possible (eg, control levels may be combined, control levels may be divided into multiple control levels, etc.). Accordingly, the exemplary embodiments shown in the figures are helpful in understanding the present disclosure, but are not limiting, as other configurations with additional, fewer, or alternative components are contemplated within the scope of the present disclosure. Each control level is briefly described below.

低级控制器112提供对各个单独的发电硬件114的分散的本地控制,使得发电硬件114的输出电压满足某些条件(例如,60Hz下110V等)。例如,低级控制器112a控制柴油发电机114a,低级控制器112b控制光伏发电机114b,等等。由于这需要非常快速的反应(例如,在毫秒范围内电网150的变化范围,短路等),该控制级别通常位于每个部件110的控制器硬件内。The low-level controller 112 provides decentralized local control of the individual power generation hardware 114 so that the output voltage of the power generation hardware 114 meets certain conditions (eg, 110V at 60Hz, etc.). For example, the low-level controller 112a controls the diesel generator 114a, the low-level controller 112b controls the photovoltaic generator 114b, and so on. Since this requires very fast reactions (eg, changes in the range of the grid 150 in the millisecond range, short circuits, etc.), this level of control is typically located within the controller hardware of each component 110.

初级控制器120还提供对部件110的分散的本地控制,并用于实现各个部件110之间的快速电力平衡。在经典交流(AC)电网中,这可以通过频率有功功率下垂控制器(f-P-下垂控制器)和电压无功功率下垂控制器(Q-U-下垂控制器)来实现。在直流(DC)电网中,这可以通过电压有功功率下垂控制器(U-P-下垂控制器)来实现。初级控制器120通常以100ms和1s之间的采样速率运行,并向低级控制器112提供电压和/或功率设定点。与低级控制器112类似,初级控制器120通常在每个部件110的控制器硬件内实现。The primary controller 120 also provides decentralized local control of the components 110 and is used to achieve fast power balancing among the various components 110 . In a classical alternating current (AC) grid, this can be achieved by a frequency active power droop controller (f-P-droop controller) and a voltage reactive power droop controller (Q-U-droop controller). In a direct current (DC) grid, this can be achieved by a voltage active power droop controller (U-P-droop controller). The primary controller 120 typically operates at a sampling rate between 100 ms and 1 s and provides voltage and/or power setpoints to the low-level controller 112 . Similar to the low-level controller 112 , the primary controller 120 is typically implemented within the controller hardware of each component 110 .

在控制多个部件110时,二级控制器130为集中式控制器。二级控制器130为每个部件110协调各个初级控制器120。例如,二级控制器130可以为积分控制器,以实现电网150稳定性的零稳态频率偏移。例如,二级控制器130以多秒到几分钟的采样率向初级控制器120提供设定点。还可以实现不同的集中式和分散式二级控制器。When controlling multiple components 110, the secondary controller 130 is a centralized controller. Secondary controllers 130 coordinate the various primary controllers 120 for each component 110 . For example, the secondary controller 130 may be an integral controller to achieve zero steady state frequency offset for grid 150 stability. For example, secondary controller 130 provides setpoints to primary controller 120 at a sampling rate of multiple seconds to minutes. Different centralized and decentralized secondary controllers can also be implemented.

三级控制器140提供另一种形式的集中控制。例如,三级控制器140可用于以例如15分钟的采样率对发电机进行经济上最佳的调度。与二级控制器130类似,可以实现用于三级控制的不同的集中式和分散式方法。例如,在实际的岛式电网中,三级控制器140可以在集中式能量管理系统中实现。在大型能源系统中,三级控制器例如由能源市场代替。Tertiary controller 140 provides another form of centralized control. For example, the tertiary controller 140 may be used to economically optimally schedule generators at a sampling rate of, for example, 15 minutes. Similar to the secondary controller 130, different centralized and decentralized approaches for tertiary control can be implemented. For example, in an actual island grid, the tertiary controller 140 may be implemented in a centralized energy management system. In large energy systems, three-level controllers are replaced, for example, by energy markets.

现有的能量控制系统在工程和调试期间手动配置和参数化。低级控制器112被手动配置和参数化。在更简单的应用中,它们在调试期间根据对实际工厂执行的标准测试用例进行配置和参数化。在更复杂的情况下,低级控制器112在模拟研究中被配置和参数化。更复杂的情况包括例如具有高可再生发电和/或电力电子转换器的电力系统。在每种情况下,这种手动配置和参数化都是昂贵且耗时的。分析表明,这种方法在将来在大规模网络中引入高可再生能源发电的电力系统中是不可行的,因为电力系统的动态波动取决于例如天气。Existing energy control systems were manually configured and parameterized during engineering and commissioning. The low-level controller 112 is manually configured and parameterized. In simpler applications, they are configured and parameterized during commissioning according to standard test cases executed on the actual plant. In more complex cases, the low-level controller 112 is configured and parameterized in a simulation study. More complex situations include, for example, power systems with high renewable generation and/or power electronic converters. In each case, this manual configuration and parameterization is expensive and time-consuming. Analysis shows that this approach is not feasible in future power systems where high-renewable energy generation is introduced in large-scale networks, because the dynamic fluctuations of the power system depend on, for example, the weather.

初级控制器120通常在调试期间基于拇指法则和/或经验进行配置和参数化。只要电力系统很小,这就足够了,但对于较大的电力系统来说变得难以管理。在调试期间再次参数化二级控制。相关参数可以包括例如积分控制器的增益和采样率以减小频率偏移。The primary controller 120 is typically configured and parameterized during commissioning based on thumb rules and/or experience. This is sufficient as long as the power system is small, but becomes unmanageable for larger power systems. Parameterize the secondary control again during commissioning. Relevant parameters may include, for example, the gain and sampling rate of the integrating controller to reduce frequency offset.

用于孤岛电力系统的三级控制器可以基于模型预测控制器(MPC)。MPC组合各个部件110的成本函数以及电力系统的局部和全局约束(例如,电池充电状态或N-1稳定性约束)。由此产生的优化问题在减小的范围内得到解决,以实现成本最低的发电。然而,MPC需要基于成本函数和来自各个部件的约束以及总体约束来手动配置和参数化。由于这种方法主要是手动的,因此成本高且耗时。此外,该方法不灵活并且不容易适应,例如,如果引入新部件(或新类型的部件)或者如果移除部件。A three-level controller for an islanded power system can be based on a Model Predictive Controller (MPC). The MPC combines the cost functions of the various components 110 as well as the local and global constraints of the power system (eg, battery state of charge or N-1 stability constraints). The resulting optimization problem is solved on a reduced scale to achieve the lowest cost power generation. However, MPC needs to be manually configured and parameterized based on the cost function and constraints from individual components as well as overall constraints. Since this method is mainly manual, it is costly and time-consuming. Furthermore, the method is inflexible and not easily adaptable, eg if new parts (or new types of parts) are introduced or if parts are removed.

图1B和1C示出了根据本公开的各方面的具有能量控制系统配置和参数化(ECSCP)模块160的图1A的能量控制系统100的框图。特别地,图1B示出了由部件110发送到ECSCP模块160的数字双胞胎(虚线),而图1C示出了由ECSCP模块160发送到部件110、二级控制器130和三级控制器140的参数(虚线)。1B and 1C illustrate a block diagram of the energy control system 100 of FIG. 1A with an energy control system configuration and parameterization (ECSCP) module 160 in accordance with various aspects of the present disclosure. In particular, FIG. 1B shows the digital twin (dashed line) sent by component 110 to ECSCP module 160 , while FIG. 1C shows the digital twin sent by ECSCP module 160 to component 110 , secondary controller 130 and tertiary controller 140 parameter (dotted line).

关于图1A-1C描述的各种控制器和模块(例如,ECSCP模块160、低级控制器112、初级控制器120、二级控制器130和/或三级控制器140)可以实现为存储在计算机可读存储介质上的指令,实现为硬件模块,实现为特殊用途硬件(例如,实现为应用专用硬件、应用专用集成电路(ASIC)、嵌入式控制器、硬连线电路等),或者实现为这些的一些组合或多个组合。在示例中,本文描述的引擎可以为硬件和编程的组合。编程可以为存储在有形存储器上的处理器可执行指令,并且硬件可以包括用于执行那些指令的处理装置。因此,系统存储器可以存储程序指令,该程序指令在由处理装置执行时实现本文描述的控制器和模块。其他控制器和/或模块也可用于包括本文其他示例中描述的其他特征和功能。The various controllers and modules described with respect to FIGS. 1A-1C (eg, ECSCP module 160 , low-level controller 112 , primary controller 120 , secondary controller 130 , and/or tertiary controller 140 ) may be implemented as storage on a computer Instructions on a readable storage medium, implemented as hardware modules, implemented as special-purpose hardware (eg, implemented as application-specific hardware, application-specific integrated circuits (ASICs), embedded controllers, hard-wired circuits, etc.), or as Some combination or combinations of these. In an example, the engines described herein may be a combination of hardware and programming. The programming may be processor-executable instructions stored on tangible memory, and the hardware may include processing means for executing those instructions. Accordingly, system memory may store program instructions that, when executed by a processing device, implement the controllers and modules described herein. Other controllers and/or modules may also be used to include other features and functions described in other examples herein.

另选地或另外地,能量控制系统100可以包括专用的硬件,诸如一个或多个集成电路、应用专用集成电路(ASIC)、应用专用特殊处理器(ASSP)、现场可编程门阵列(FPGA)或上述专用硬件的示例的任何组合,其用于执行本文描述的技术。Alternatively or additionally, the energy control system 100 may include dedicated hardware, such as one or more integrated circuits, application specific integrated circuits (ASICs), application specific special processors (ASSPs), field programmable gate arrays (FPGAs) or any combination of the above examples of dedicated hardware for performing the techniques described herein.

参考图1B,每个部件110包含数字双胞胎(即,部件的数字表示)。数字双胞胎中包含的数据示例可以包括以下项:表示部件的控制结构和可调参数的框图(例如,基于用于功率转换器、柴油发电机、燃气轮机等的IEEE参考模型);发电的成本函数;部件专用约束(例如,电池的容量(例如,电池114d));负荷(例如,负荷152)的典型曲形;和/或部件的健康状况。Referring to Figure IB, each component 110 contains a digital twin (ie, a digital representation of the component). Examples of data contained in a digital twin may include the following: block diagrams representing control structures and adjustable parameters of components (eg, based on IEEE reference models for power converters, diesel generators, gas turbines, etc.); cost functions for power generation; Component-specific constraints (eg, capacity of the battery (eg, battery 114d)); typical curvature of the load (eg, load 152 ); and/or the health of the component.

包含数字双胞胎的部件使用通信网络(由虚线表示)将它们各自的数字双胞胎发送到ECSCP模块160。ECSCP模块160为集中式能量管理系统的一部分,该集中式能量管理系统还包含二级和三级控制功能(即,二级控制的二级控制器130和三级控制的三级控制器140)。在一些示例中,如果二级和三级控制是分布式的(例如,在能源市场中),则ESCPS模块也可以为分布式的。The components that contain the digital twin send their respective digital twins to the ECSCP module 160 using the communication network (represented by dashed lines). ECSCP module 160 is part of a centralized energy management system that also includes secondary and tertiary control functions (ie, secondary controller 130 for secondary control and tertiary controller 140 for tertiary control) . In some examples, if the secondary and tertiary controls are distributed (eg, in an energy market), the ESCPS modules may also be distributed.

ECSCP模块160从部件110收集数字双胞胎并将它们组合以便计算整个能量控制系统的配置和参数化信息。例如,ECSCP模块160使用部件110的成本函数和/或部件110的专用约束来配置和参数化三级控制器140的MPC问题。此外,ECSCP模块160可以利用其他技术来参数化初级控制器120和/或低级控制器112。ECSCP module 160 collects digital twins from components 110 and combines them in order to calculate configuration and parameterization information for the entire energy control system. For example, the ECSCP module 160 configures and parameterizes the MPC problem of the three-level controller 140 using the cost function of the component 110 and/or the specific constraints of the component 110 . Additionally, the ECSCP module 160 may utilize other techniques to parameterize the primary controller 120 and/or the low-level controller 112.

根据本公开的示例,ECSCP模块160可以计算配置和参数化信息以实现功率振荡阻尼和/或能量管理。当从电力系统中断开部件(例如,发电机、电力线、变压器等)时,发生功率振荡阻尼。在这种情况下,为了计算配置和参数化信息,ECSCP模块160可以通过将每个部件的动态模型(从每个部件获得的数字双胞胎)互连,通过功率流方程导出电力系统的动态模型(例如,在调试期间实现的),针对断开部件导出等效模型,线性化等效模型,在发生断开时满足电力系统约束,并确定控制器的最佳参数以实现优化目标。According to examples of the present disclosure, the ECSCP module 160 may calculate configuration and parameterization information to enable power oscillation damping and/or energy management. Power oscillation damping occurs when components (eg, generators, power lines, transformers, etc.) are disconnected from the power system. In this case, in order to calculate configuration and parameterization information, the ECSCP module 160 can derive a dynamic model of the power system through the power flow equation by interconnecting the dynamic model of each component (a digital twin obtained from each component) ( For example, implemented during commissioning), derive an equivalent model for disconnected components, linearize the equivalent model, satisfy power system constraints when disconnection occurs, and determine the optimal parameters of the controller to achieve optimization goals.

可以通过适当地配置和参数化三级控制器140来实现能量管理。在这种情况下,每个部件110提供作为数字双胞胎的成本函数,其描述了它可以以什么成本向电网150供应多少电力。例如,对于柴油发电机,成本函数取决于燃料成本。此外,部件110可以具有也被添加到数字双胞胎的约束,例如电池的容量或柴油发电机的燃料箱的容量。结合这些数字双胞胎,ECSCP 160将具有所有成本函数的总和的三级控制器140配置和参数化为总成本函数,并将所有发电机的约束配置和参数化为约束。Energy management can be achieved by appropriately configuring and parameterizing the tertiary controller 140 . In this case, each component 110 provides as a digital twin a cost function that describes how much power it can supply to the grid 150 at what cost. For example, for diesel generators, the cost function depends on the fuel cost. Additionally, component 110 may have constraints that are also added to the digital twin, such as the capacity of a battery or the capacity of a diesel generator's fuel tank. Combining these digital twins, ECSCP 160 configures and parameterizes the three-level controller 140 with the sum of all cost functions as the total cost function and the constraints of all generators as constraints.

在配置和参数化的计算之后,ECSCP模块160可以执行模拟测试,以验证是否满足预先指定的约束。通常,使用组合数字双胞胎的简化或缩减版本来计算配置和参数化信息(例如,组合数字双胞胎为非线性微分方程,并且使用其线性化版本来计算配置和参数化)。为了验证配置和参数化,将该配置和参数化信息应用于原始非线性微分方程数字双胞胎。随后,针对一组典型测试案例(例如,负荷变化、发电单元的损耗和/或电力线的损耗等)执行该非线性微分方程组合数字双胞胎的模拟。在一些示例中,可以在操作期间实现差分代数系统的快速模拟。然后使用模拟结果来验证配置和参数化信息确实达到了所需的性能。After the configuration and parameterization calculations, the ECSCP module 160 may perform simulation tests to verify that pre-specified constraints are met. Typically, the configuration and parameterization information is computed using a simplified or reduced version of the combined digital twin (eg, the combined digital twin is a nonlinear differential equation and its linearized version is used to compute the configuration and parameterization). To verify the configuration and parameterization, this configuration and parameterization information is applied to the original nonlinear differential equation digital twin. Then, a simulation of the nonlinear differential equation combined digital twin is performed for a set of typical test cases (eg, load changes, losses in power generation units, and/or losses in power lines, etc.). In some examples, rapid simulation of differential algebraic systems can be achieved during operation. The simulation results are then used to verify that the configuration and parameterization information is indeed achieving the desired performance.

一旦计算出配置和参数信息,ECSCP模块160就将配置和参数信息发送到部件的各个控制器(例如,初级控制器120和/或低级控制器112),如图1C中的虚线所示。配置和参数信息也可以被发送到二级控制器130,以实现用于协调电网稳定性的电压和频率(U/f)控制的方案和/或发送到三级控制器140,以实现降低成本的成本最优功率调度的方案(例如,在最佳时间使用部件110以体验成本节约)。Once the configuration and parameter information is calculated, ECSCP module 160 sends the configuration and parameter information to the various controllers of the component (eg, primary controller 120 and/or low-level controller 112), as shown by the dashed lines in Figure 1C. Configuration and parameter information may also be sent to the secondary controller 130 to implement a voltage and frequency (U/f) control scheme for coordinating grid stability and/or to the tertiary controller 140 to achieve cost reduction A scheme for cost-optimized power scheduling (eg, using components 110 at optimal times to experience cost savings).

在调试期间,可以使用额外的校准测试获得不易获得的附加数据(例如,在柴油发电机的情况下,在一系列负荷步骤之后测量柴油发电机的动态行为以基于这些测量确定/识别(部分的)数字双胞胎;或者,在电池系统的情况下,将特定的电压和/或电流曲线应用于电力系统,以识别将电池系统的输出连接到中压电网的变压器)。这对于没有数字双胞胎(例如,变压器或不受控制的负荷)的部件110特别有用。在这种情况下,可以在调试期间生成数字双胞胎。例如,ECSCP模块160还可以包含用户界面,该用户界面引导操作员(例如,调试工程师)完成校准测试。During commissioning, additional data that is not readily available can be obtained using additional calibration tests (eg, in the case of diesel generators, measuring the dynamic behavior of the diesel generator after a series of load steps to determine/identify based on these measurements (part of the ) digital twin; or, in the case of a battery system, applying a specific voltage and/or current curve to the power system to identify the transformer connecting the output of the battery system to the medium voltage grid). This is especially useful for components 110 that do not have a digital twin (eg, transformers or uncontrolled loads). In this case, the digital twin can be generated during debugging. For example, the ECSCP module 160 may also contain a user interface that guides an operator (eg, a commissioning engineer) through calibration testing.

根据本公开的各方面,ECSCP模块160可以包含用于验证数字双胞胎的附加验证模块。例如,ECSCP模块160可以在待执行各个部件110的调试期间,自动执行或建议特定测试序列。ECSCP模块160还可以包含参数识别模块,其基于在数字双胞胎验证期间进行的测量来识别和/或校正数字双胞胎的丢失和/或错误参数。在另一示例中,ECSCP模块160可以在线(即,在操作期间)执行这些验证测试。例如,这可以基于传输系统中的相位测量单元(PMU)来实现。According to aspects of the present disclosure, the ECSCP module 160 may contain additional verification modules for verifying the digital twin. For example, the ECSCP module 160 may automatically perform or suggest certain test sequences during commissioning of the various components 110 to be performed. ECSCP module 160 may also include a parameter identification module that identifies and/or corrects missing and/or erroneous parameters of the digital twin based on measurements made during digital twin verification. In another example, ECSCP module 160 may perform these verification tests online (ie, during operation). For example, this can be achieved based on a phase measurement unit (PMU) in the transmission system.

在一些示例中,可能需要高弹性能量系统。在这种情况下,ECSCP模块160可以在几个独立的硬件单元中实现(例如,在分布式系统中)。这可以防止单点故障。在这种情况下,一个硬件单元正在主动执行ECSCP模块160,而另一个硬件单元处于待机状态。这些待机硬件单元使它们的内部表示(即,数字双胞胎的组合)与活动硬件单元同步。如果活动单元经历故障(例如,硬件单元崩溃、硬件单元变为离线等),则下一个硬件单元不间断地接管。在另一示例中,这甚至可以完全分布在所有部件110上的方式实现。例如,每个部件控制器(例如,低级控制器11、初级控制器120)包含ECSCP模块。选择一个部件(例如,部件110a)来托管活动ECSCP模块实例。如果该部件(例如,部件110a)发生故障,则下一个部件(例如,部件110b)接管为活动ECSCP。这种方法可用于战术军事微电网或遭受常规自然灾害(例如,地震、飓风、龙卷风等)的地区。在后一种情况下,可以基于仍然可操作的部件来建立电力系统。因此,提供了一种高弹性能量控制系统。假设在自然灾害之后一些硬件仍然可操作,则本技术使能量控制系统自身能够重新配置和重新参数化并快速返回操作和/或无需人工干预。In some examples, a highly elastic energy system may be required. In this case, the ECSCP module 160 may be implemented in several separate hardware units (eg, in a distributed system). This prevents single points of failure. In this case, one hardware unit is actively executing the ECSCP module 160, while the other hardware unit is in a standby state. These standby hardware units synchronize their internal representation (ie, the composition of the digital twin) with the active hardware unit. If an active unit experiences a failure (eg, a hardware unit crashes, a hardware unit goes offline, etc.), the next hardware unit takes over without interruption. In another example, this can even be achieved in a manner that is completely distributed over all components 110 . For example, each component controller (eg, low level controller 11, primary controller 120) contains an ECSCP module. A component (eg, component 110a) is selected to host the active ECSCP module instance. If that component (eg, component 110a) fails, the next component (eg, component 110b) takes over as the active ECSCP. This approach can be used in tactical military microgrids or in areas subject to conventional natural disasters (eg, earthquakes, hurricanes, tornadoes, etc.). In the latter case, the power system can be built based on components that are still operational. Thus, a highly elastic energy control system is provided. Assuming that some hardware is still operational after a natural disaster, the present technology enables the energy control system itself to be reconfigured and reparameterized and returned to operation quickly and/or without human intervention.

图2示出了根据本公开的各方面的用于配置和参数化能量控制系统的方法200的流程图。该方法可以由合适的处理系统(诸如能量控制系统100、图3的处理系统300、其适当的组合、和/或其他合适的处理系统)来执行。2 shows a flowchart of a method 200 for configuring and parameterizing an energy control system in accordance with aspects of the present disclosure. The method may be performed by a suitable processing system, such as energy control system 100, processing system 300 of FIG. 3, suitable combinations thereof, and/or other suitable processing systems.

在框202处,ECSCP模块160(或合适的处理装置)接收多个数字双胞胎,其中,多个数字双胞胎中的每个数字双胞胎与多个部件的部件(例如,部件110)相关联。在一个示例中,可以使用例如模拟测试来验证一个或多个数字双胞胎,以验证是否指定了预先指定的约束。At block 202, the ECSCP module 160 (or suitable processing device) receives a plurality of digital twins, wherein each digital twin of the plurality of digital twins is associated with a part of the plurality of parts (eg, part 110). In one example, one or more digital twins may be validated using, for example, a simulation test to verify that pre-specified constraints are specified.

在框204处,ECSCP模块160(或合适的处理装置)至少部分地基于多个数字双胞胎来计算多个部件中的至少一个部件的配置和参数化信息。在一个示例中,在计算配置和参数化信息之前,可以组合多个数字双胞胎,并且然后可以至少部分地基于组合的多个数字双胞胎来计算配置和参数化信息。例如,ECSCP模块160组合了部件110的成本函数。在另一示例中,ECSCP模块160(或合适的处理装置)至少部分地基于多个数字双胞胎计算二级控制器130和第三级控制器140中的至少一者的配置和参数化信息。At block 204, the ECSCP module 160 (or suitable processing device) computes configuration and parameterization information for at least one of the plurality of components based at least in part on the plurality of digital twins. In one example, the plurality of digital twins may be combined prior to computing the configuration and parameterization information, and the configuration and parameterization information may then be computed based at least in part on the combined plurality of digital twins. For example, the ECSCP module 160 combines the cost functions of the components 110 . In another example, ECSCP module 160 (or a suitable processing device) computes configuration and parameterization information for at least one of secondary controller 130 and tertiary controller 140 based at least in part on the plurality of digital twins.

在框206处,ECSCP模块160(或合适的处理装置)将配置和参数化信息发送到多个部件的相应部件,以使得多个部件中的至少一个部件能够实现配置和参数化信息,以控制多个部件中的至少一个部件。这使得部件110能够被配置和参数化以供使用。在一些示例中,仅配置二级控制器130和三级控制器140,但不配置低级控制器112和初级控制器120。在另一示例中,ECSCP模块160(或合适的处理装置)将配置和参数化信息发送到二级控制器130和第三级控制器140中的至少一者,以启用二级控制器130和第三级控制器140中的至少一者以实现配置和参数化信息。At block 206, the ECSCP module 160 (or suitable processing device) sends configuration and parameterization information to respective ones of the plurality of components to enable at least one of the plurality of components to implement the configuration and parameterization information to control at least one of the plurality of components. This enables component 110 to be configured and parameterized for use. In some examples, only the secondary controller 130 and the tertiary controller 140 are configured, but the low-level controller 112 and the primary controller 120 are not configured. In another example, ECSCP module 160 (or suitable processing device) sends configuration and parameterization information to at least one of secondary controller 130 and tertiary controller 140 to enable secondary controller 130 and At least one of the third level controllers 140 to implement configuration and parameterization information.

还可以包括其他过程。例如,ECSCP模块160(或合适的处理装置)将配置和参数化信息发送到二级控制器130,以使二级控制器130能够至少部分地基于配置和参数化信息来实现电压和频率控制方案。Other procedures may also be included. For example, ECSCP module 160 (or suitable processing device) sends configuration and parameterization information to secondary controller 130 to enable secondary controller 130 to implement a voltage and frequency control scheme based at least in part on the configuration and parameterization information .

在另一示例中,ECSCP模块160(或合适的处理装置)将配置和参数化信息发送到三级控制器140,以使三级控制器140能够至少部分地基于配置和参数化信息来实现功率调度方案。例如,三级控制器140可以实现成本最优功率调度。In another example, ECSCP module 160 (or a suitable processing device) sends configuration and parameterization information to tertiary controller 140 to enable tertiary controller 140 to implement power based at least in part on the configuration and parameterization information scheduling plan. For example, the tertiary controller 140 may implement cost-optimized power scheduling.

在又一个示例中,可以对部件执行校准测试以生成该部件的数字双胞胎。如果特别的部件不包含数字双胞胎,这可能有用。应当理解,图2中示出的过程表示说明,并且可以添加其他过程或者可以移除、修改或重新布置现有过程而不脱离本公开的范围和精神。In yet another example, a calibration test can be performed on a part to generate a digital twin of the part. This may be useful if the particular part does not contain a digital twin. It should be understood that the processes shown in FIG. 2 are illustrative and that other processes may be added or existing processes may be removed, modified, or rearranged without departing from the scope and spirit of the present disclosure.

方法200可以与图1A中描述的操作并行地在线重复执行。因此,方法200可以在操作期间调整和优化能量控制系统。如果某些部件110不可操作(例如,经历维护、停用或故障)或者如果将新部件添加到系统中,则这种调整可能有用。Method 200 may be repeated online in parallel with the operations described in FIG. 1A . Accordingly, method 200 may adjust and optimize the energy control system during operation. Such adjustments may be useful if certain components 110 are inoperable (eg, undergoing maintenance, outages, or failures) or if new components are added to the system.

应当理解,本技术能够结合现在已知或以后开发的任何其他合适类型的计算环境来实现。例如,图3示出了用于实现本文描述的技术的处理系统300的框图。在示例中,处理系统300具有一个或多个中央处理单元(即,处理器、处理装置)321a、321b、321c等(统称或总称为处理器321和/或为处理装置)。在本公开的各方面,每个处理器321可以包括精简指令集计算机(RISC)微处理器。处理器321经由系统总线333耦合到系统存储器324(例如,随机存取存储器(RAM)324)和各种其他部件。只读存储器(ROM)322耦合到系统总线333,并且可以包括基本输入/输出系统(BIOS),其控制计算机系统300的某些基本功能。It should be appreciated that the present technology can be implemented in conjunction with any other suitable type of computing environment now known or later developed. For example, FIG. 3 shows a block diagram of a processing system 300 for implementing the techniques described herein. In an example, processing system 300 has one or more central processing units (ie, processors, processing devices) 321a, 321b, 321c, etc. (collectively or collectively referred to as processors 321 and/or as processing devices). In aspects of the present disclosure, each processor 321 may include a reduced instruction set computer (RISC) microprocessor. Processor 321 is coupled to system memory 324 (eg, random access memory (RAM) 324 ) and various other components via system bus 333 . Read only memory (ROM) 322 is coupled to system bus 333 and may include a basic input/output system (BIOS), which controls certain basic functions of computer system 300 .

还示出了输入/输出(I/O)适配器327和耦合到系统总线333的网络适配器326。I/O适配器327可以为小型计算机系统接口(SCSI)适配器,其与硬盘323和/或磁带存储驱动器325或任何其他类似部件通信。I/O适配器327、硬盘323和磁带存储装置325在本文中统称为大容量存储装置334。用于在处理系统300上执行的操作系统340可以存储在大容量存储装置334中。网络适配器326将系统总线333与外部网络336互连,使得处理系统300能够与其他这样的系统通信。Also shown are input/output (I/O) adapter 327 and network adapter 326 coupled to system bus 333 . I/O adapter 327 may be a Small Computer System Interface (SCSI) adapter that communicates with hard disk 323 and/or tape storage drive 325 or any other similar components. I/O adapter 327 , hard disk 323 and tape storage 325 are collectively referred to herein as mass storage 334 . Operating system 340 for execution on processing system 300 may be stored in mass storage device 334 . Network adapter 326 interconnects system bus 333 with external network 336 to enable processing system 300 to communicate with other such systems.

显示器(例如,显示监测器)335通过显示适配器332连接到系统总线333,显示适配器112可以包括图形适配器以改善图形密集型应用的性能,以及视频控制器。在本公开的一个方面,适配器326、327和332可以连接到一个或多个I/O总线,这些I/O总线经由中间总线桥(未示出)连接到系统总线333。用于连接诸如硬盘控制器、网络适配器和图形适配器的外围装置的合适的I/O总线通常包括通用协议,诸如外围部件互连(PCI)。附加的输入/输出装置被示为经由用户接口适配器328和显示适配器332连接到系统总线333。键盘329、鼠标330和扬声器331可以经由用户接口适配器328互连到总线333,用户接口适配器108可以包括例如将多个装置适配器集成到单个集成电路中的超级I/O芯片。Display (eg, display monitor) 335 is connected to system bus 333 through display adapter 332, which may include a graphics adapter to improve the performance of graphics-intensive applications, as well as a video controller. In one aspect of the present disclosure, adapters 326, 327, and 332 may be connected to one or more I/O buses that are connected to system bus 333 via an intermediate bus bridge (not shown). Suitable I/O buses for connecting peripheral devices such as hard disk controllers, network adapters, and graphics adapters typically include common protocols such as Peripheral Component Interconnect (PCI). Additional input/output devices are shown connected to system bus 333 via user interface adapter 328 and display adapter 332 . Keyboard 329, mouse 330, and speakers 331 may be interconnected to bus 333 via user interface adapter 328, which may include, for example, a super I/O chip that integrates multiple device adapters into a single integrated circuit.

在本公开的一些方面,处理系统300包括图形处理单元337。图形处理单元337为专用电子电路,其被设计为操纵和改变存储器以加速形成旨在用于输出到显示器的帧缓冲器中的图像。通常,图形处理单元337在操纵计算机图形和图像处理方面非常有效,并且具有高度并行的结构,使得它比用于并行完成大块数据处理的算法的通用CPU更有效。In some aspects of the present disclosure, processing system 300 includes graphics processing unit 337 . Graphics processing unit 337 is a dedicated electronic circuit designed to manipulate and alter memory to accelerate the formation of images intended for output into a frame buffer of a display. In general, the graphics processing unit 337 is very efficient at manipulating computer graphics and image processing, and has a highly parallel architecture, making it more efficient than a general-purpose CPU used to perform algorithms for processing large blocks of data in parallel.

因此,如图1中配置的,处理系统300包括处理器321形式的处理能力,包括系统存储器(例如,RAM 324)和大容量存储装置334的存储能力,诸如键盘329和鼠标330的输入装置,以及包括扬声器331和显示器335的输出能力。在本公开的一些方面,系统存储器的一部分(例如,RAM324)和大容量存储装置334共同存储操作系统,诸如IBM公司的操作系统,以协调处理系统300中所示的各种部件的功能。Thus, as configured in FIG. 1, processing system 300 includes processing capabilities in the form of processor 321, including system memory (eg, RAM 324) and storage capabilities of mass storage devices 334, such as input devices such as keyboard 329 and mouse 330, and output capabilities including speaker 331 and display 335. In some aspects of the present disclosure, a portion of system memory (eg, RAM 324 ) and mass storage device 334 collectively store an operating system, such as IBM Corporation's An operating system to coordinate the functions of the various components shown in processing system 300 .

已经出于说明的目的给出了对本公开的各种实施例的描述,但是并不旨在穷举或限制于所公开的实施例。在不脱离所描述的技术的范围和精神的情况下,许多修改和变化对于本领域普通技术人员来说是显而易见的。选择本文使用的术语是为了最好地解释本技术的原理、实际应用或对市场中发现的技术的技术改进,或者使本领域普通技术人员能够理解本文公开的技术。The description of various embodiments of the present disclosure has been presented for purposes of illustration, and is not intended to be exhaustive or limited to the disclosed embodiments. Numerous modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described technology. The terms used herein were chosen to best explain the principles of the technology, the practical application or technical improvement over technologies found in the marketplace, or to enable those of ordinary skill in the art to understand the technologies disclosed herein.

Claims (20)

Translated fromChinese
1.一种用于配置和参数化能量控制系统的计算机实现的方法,所述方法包括:1. A computer-implemented method for configuring and parameterizing an energy control system, the method comprising:由处理装置接收多个数字双胞胎,其中,所述多个数字双胞胎中的每个数字双胞胎与多个部件中的部件相关联;receiving, by the processing device, a plurality of digital twins, wherein each digital twin of the plurality of digital twins is associated with a component of the plurality of components;至少部分地基于所述多个数字双胞胎,由所述处理装置计算用于所述多个部件中的至少一个部件的配置和参数化信息;以及calculating, by the processing device, configuration and parameterization information for at least one of the plurality of components based at least in part on the plurality of digital twins; and由所述处理装置将所述配置和参数化信息发送到所述多个部件的各个部件,以使所述多个部件中的至少一个部件能够实现所述配置和参数化信息,以控制所述多个部件中的至少一个部件。The configuration and parameterization information is sent by the processing device to each of the plurality of components to enable at least one of the plurality of components to implement the configuration and parameterization information to control the at least one of the plurality of components.2.根据权利要求1所述的计算机实现的方法,还包括:2. The computer-implemented method of claim 1, further comprising:由所述处理装置将所述配置和参数化信息发送到二级控制器,以使所述二级控制器能够至少部分地基于所述配置和参数化信息来实现电压和频率控制方案。The configuration and parameterization information is sent by the processing device to a secondary controller to enable the secondary controller to implement a voltage and frequency control scheme based at least in part on the configuration and parameterization information.3.根据权利要求1所述的计算机实现的方法,还包括:3. The computer-implemented method of claim 1, further comprising:由所述处理装置将所述配置和参数化信息发送到三级控制器,以使所述三级控制器能够至少部分地基于所述配置和参数化信息来实现功率调度方案。The configuration and parameterization information is sent by the processing device to a tertiary controller to enable the tertiary controller to implement a power scheduling scheme based at least in part on the configuration and parameterization information.4.根据权利要求3所述的计算机实现的方法,其中,所述功率调度方案为成本最优功率调度方案。4. The computer-implemented method of claim 3, wherein the power scheduling scheme is a cost-optimal power scheduling scheme.5.根据权利要求1所述的计算机实现的方法,还包括:5. The computer-implemented method of claim 1, further comprising:由所述处理装置对所述多个部件中的至少一个部件执行校准测试,以针对该部件生成数字双胞胎。A calibration test is performed by the processing device on at least one part of the plurality of parts to generate a digital twin for the part.6.根据权利要求1所述的计算机实现的方法,还包括:6. The computer-implemented method of claim 1, further comprising:在接收所述多个数字双胞胎之后,由所述处理装置验证所述多个数字双胞胎中的至少一个数字双胞胎。After receiving the plurality of digital twins, at least one digital twin of the plurality of digital twins is verified by the processing device.7.根据权利要求1所述的计算机实现的方法,还包括:7. The computer-implemented method of claim 1, further comprising:在计算所述配置和参数化信息之前,由所述处理装置组合所述多个数字双胞胎,其中,计算所述配置和参数化信息是至少部分地基于组合的多个数字双胞胎。The plurality of digital twins are combined by the processing device prior to computing the configuration and parameterization information, wherein computing the configuration and parameterization information is based at least in part on the combined plurality of digital twins.8.根据权利要求1所述的计算机实现的方法,其中,每个所述数字双胞胎包括关于与每个数字双胞胎相关联的部件的数据。8. The computer-implemented method of claim 1, wherein each of the digital twins includes data regarding components associated with each digital twin.9.根据权利要求8所述的计算机实现的方法,其中,所述数据包括以下项中的一者或多者:表示所述部件的结构和可调参数的框图;发电的成本函数;部件专用约束;负荷的典型负荷曲线;以及所述部件的健康状况。9. The computer-implemented method of claim 8, wherein the data includes one or more of the following: a block diagram representing the structure and tunable parameters of the component; a cost function for generating electricity; a component-specific constraints; typical load profiles for loads; and the health of the component.10.一种用于配置和参数化能量控制系统的系统,所述系统包括:10. A system for configuring and parameterizing an energy control system, the system comprising:多个部件;multiple parts;包括计算机可读指令的存储器;以及memory including computer readable instructions; and处理装置,用于执行所述计算机可读指令,所述计算机可读指令用于执行一种方法,所述方法包括:A processing device for executing the computer-readable instructions for executing a method, the method comprising:由所述处理装置接收多个数字双胞胎,其中,所述多个数字双胞胎中的每个数字双胞胎与多个部件中的部件相关联;receiving, by the processing device, a plurality of digital twins, wherein each digital twin of the plurality of digital twins is associated with a component of the plurality of components;至少部分地基于所述多个数字双胞胎,由所述处理装置计算用于所述多个部件中的每个部件的配置和参数化信息;以及calculating, by the processing device, configuration and parameterization information for each of the plurality of components based at least in part on the plurality of digital twins; and由所述处理装置将所述配置和参数化信息发送到所述多个部件的各个部件,以使所述多个部件中的至少一个部件能够实现所述配置和参数化信息,以控制所述多个部件中的至少一个部件。The configuration and parameterization information is sent by the processing device to each of the plurality of components to enable at least one of the plurality of components to implement the configuration and parameterization information to control the at least one of the plurality of components.11.根据权利要求10所述的系统,其中,所述方法还包括:11. The system of claim 10, wherein the method further comprises:由所述处理装置将所述配置和参数化信息发送到二级控制器,以使所述二级控制器能够至少部分地基于所述配置和参数化信息来实现电压和频率控制方案。The configuration and parameterization information is sent by the processing device to a secondary controller to enable the secondary controller to implement a voltage and frequency control scheme based at least in part on the configuration and parameterization information.12.根据权利要求10所述的系统,其中,所述方法还包括:12. The system of claim 10, wherein the method further comprises:由所述处理装置将所述配置和参数化信息发送到三级控制器,以使所述三级控制器能够至少部分地基于所述配置和参数化信息来实现功率调度方案。The configuration and parameterization information is sent by the processing device to a tertiary controller to enable the tertiary controller to implement a power scheduling scheme based at least in part on the configuration and parameterization information.13.根据权利要求12所述的系统,其中,所述功率调度方案为成本最优功率调度方案。13. The system of claim 12, wherein the power scheduling scheme is a cost-optimal power scheduling scheme.14.根据权利要求10所述的系统,其中,所述方法还包括:14. The system of claim 10, wherein the method further comprises:由所述处理装置对所述多个部件中的至少一个部件执行校准测试,以针对该部件生成数字双胞胎。A calibration test is performed by the processing device on at least one part of the plurality of parts to generate a digital twin for the part.15.根据权利要求10所述的系统,其中,所述方法还包括:15. The system of claim 10, wherein the method further comprises:在接收所述多个数字双胞胎之后,由所述处理装置验证所述多个数字双胞胎中的至少一个数字双胞胎。After receiving the plurality of digital twins, at least one digital twin of the plurality of digital twins is verified by the processing device.16.根据权利要求10所述的系统,其中,所述方法还包括:16. The system of claim 10, wherein the method further comprises:在计算所述配置和参数化信息之前,由所述处理装置组合所述多个数字双胞胎,其中,计算所述配置和参数化信息是至少部分地基于组合的多个数字双胞胎。The plurality of digital twins are combined by the processing device prior to computing the configuration and parameterization information, wherein computing the configuration and parameterization information is based at least in part on the combined plurality of digital twins.17.根据权利要求10所述的系统,其中,每个所述数字双胞胎包括关于与每个数字双胞胎相关联的部件的数据,并且其中,所述数据包括以下项中的一者或多者:表示所述部件的结构和可调参数的框图;发电的成本函数;部件专用约束;负荷的典型负荷曲线;以及所述部件的健康状况。17. The system of claim 10, wherein each of the digital twins includes data about components associated with each digital twin, and wherein the data includes one or more of: A block diagram representing the structure and tunable parameters of the component; the cost function for power generation; component-specific constraints; a typical load profile for the load; and the health of the component.18.一种用于配置和参数化能量控制系统的方法,所述方法包括:18. A method for configuring and parameterizing an energy control system, the method comprising:由处理装置接收多个数字双胞胎,其中,所述多个数字双胞胎中的每个数字双胞胎与多个部件中的部件相关联;receiving, by the processing device, a plurality of digital twins, wherein each digital twin of the plurality of digital twins is associated with a component of the plurality of components;由所述处理装置至少部分地基于所述多个数字双胞胎计算用于二级控制器和三级控制器中的至少一者的配置和参数化信息;以及computing, by the processing device, configuration and parameterization information for at least one of the secondary controller and the tertiary controller based at least in part on the plurality of digital twins; and由所述处理装置将所述配置和参数化信息发送到所述二级控制器和所述三级控制器中的至少一者,以使所述二级控制器和所述三级控制器中的至少一者能够实现所述配置和参数化信息。The configuration and parameterization information is sent by the processing device to at least one of the secondary controller and the tertiary controller, so that the secondary controller and the tertiary controller At least one of the configuration and parameterization information can be implemented.19.根据权利要求18所述的方法,其中,发送还包括:将所述配置和参数化信息发送到所述二级控制器,以使所述二级控制器能够至少部分地基于所述配置和参数化信息来实现电压和频率控制方案。19. The method of claim 18, wherein sending further comprises sending the configuration and parameterization information to the secondary controller to enable the secondary controller to base at least in part on the configuration and parameterization information to implement voltage and frequency control schemes.20.根据权利要求18所述的方法,其中,发送还包括:将所述配置和参数化信息发送到所述三级控制器,以使得所述三级控制器能够至少部分地基于所述配置和参数化信息来实现功率调度方案,其中,所述功率调度方案为成本最优电力调度方案。20. The method of claim 18, wherein sending further comprises sending the configuration and parameterization information to the tertiary controller to enable the tertiary controller to base at least in part on the configuration and parameterized information to implement a power scheduling scheme, wherein the power scheduling scheme is a cost-optimized power scheduling scheme.
CN201780077551.XA2016-12-152017-09-21The configuration and parametrization of energy management systemPendingCN110249348A (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US201662434475P2016-12-152016-12-15
US62/434,4752016-12-15
PCT/US2017/052672WO2018111368A1 (en)2016-12-152017-09-21Configuration and parameterization of energy control system

Publications (1)

Publication NumberPublication Date
CN110249348Atrue CN110249348A (en)2019-09-17

Family

ID=60037700

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201780077551.XAPendingCN110249348A (en)2016-12-152017-09-21The configuration and parametrization of energy management system

Country Status (4)

CountryLink
US (1)US20210118067A1 (en)
EP (1)EP3539063A1 (en)
CN (1)CN110249348A (en)
WO (1)WO2018111368A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN120069238A (en)*2025-04-282025-05-30福建省榕圣建设发展有限公司Energy consumption optimizing system for remote operation of tower crane

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US12276420B2 (en)2016-02-032025-04-15Strong Force Iot Portfolio 2016, LlcIndustrial internet of things smart heating systems and methods that produce and use hydrogen fuel
US11360447B2 (en)*2017-02-102022-06-14Johnson Controls Technology CompanyBuilding smart entity system with agent based communication and control
US10515098B2 (en)2017-02-102019-12-24Johnson Controls Technology CompanyBuilding management smart entity creation and maintenance using time series data
US11280509B2 (en)*2017-07-172022-03-22Johnson Controls Technology CompanySystems and methods for agent based building simulation for optimal control
US12184444B2 (en)2017-02-102024-12-31Johnson Controls Technology CompanySpace graph based dynamic control for buildings
US11994833B2 (en)2017-02-102024-05-28Johnson Controls Technology CompanyBuilding smart entity system with agent based data ingestion and entity creation using time series data
US11042144B2 (en)2017-03-242021-06-22Johnson Controls Technology CompanyBuilding management system with dynamic channel communication
US10962945B2 (en)2017-09-272021-03-30Johnson Controls Technology CompanyBuilding management system with integration of data into smart entities
US11120012B2 (en)2017-09-272021-09-14Johnson Controls Tyco IP Holdings LLPWeb services platform with integration and interface of smart entities with enterprise applications
US11669914B2 (en)2018-05-062023-06-06Strong Force TX Portfolio 2018, LLCAdaptive intelligence and shared infrastructure lending transaction enablement platform responsive to crowd sourced information
US11550299B2 (en)2020-02-032023-01-10Strong Force TX Portfolio 2018, LLCAutomated robotic process selection and configuration
CA3098670A1 (en)*2018-05-062019-11-14Strong Force TX Portfolio 2018, LLCMethods and systems for improving machines and systems that automate execution of distributed ledger and other transactions in spot and forward markets for energy, compute, storage and other resources
US12412120B2 (en)2018-05-062025-09-09Strong Force TX Portfolio 2018, LLCSystems and methods for controlling rights related to digital knowledge
US11544782B2 (en)2018-05-062023-01-03Strong Force TX Portfolio 2018, LLCSystem and method of a smart contract and distributed ledger platform with blockchain custody service
US20200133254A1 (en)2018-05-072020-04-30Strong Force Iot Portfolio 2016, LlcMethods and systems for data collection, learning, and streaming of machine signals for part identification and operating characteristics determination using the industrial internet of things
CN108919760B (en)*2018-07-052020-01-24长安大学 A dynamic linkage control method for autonomous production process of intelligent workshop based on digital twin
EP3827316A1 (en)*2018-08-232021-06-02Siemens AktiengesellschaftAutomatic setup of digital twins for industrial controllers
EP3671374B1 (en)2018-12-212025-02-05ABB Schweiz AGMethod and system for determining system settings for an industrial system
CA3126601A1 (en)2019-01-132020-07-16Strong Force Iot Portfolio 2016, LlcMethods, systems, kits and apparatuses for monitoring and managing industrial settings
EP3686695A1 (en)*2019-01-242020-07-29ABB Schweiz AGModularized model predictive control for industrial plants
CN110059359A (en)*2019-03-212019-07-26江苏东方国信工业互联网有限公司System and method for controlling furnace body process based on big data analysis
JP7751822B2 (en)*2019-11-252025-10-09ストロング フォース アイオーティ ポートフォリオ 2016,エルエルシー Intelligent vibration digital twin system and method for industrial environments
US11982993B2 (en)2020-02-032024-05-14Strong Force TX Portfolio 2018, LLCAI solution selection for an automated robotic process
US20210376612A1 (en)*2020-05-262021-12-02University Of Florida Research Foundation, IncorporatedSmart energy management systems and methods for power system resiliency
DE102020208502A1 (en)*2020-07-072022-01-13Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating a fuel cell system
EP4002033A1 (en)*2020-11-202022-05-25Siemens Industry Software NVGenerating a digital twin, method, system, computer program product
CN113779769A (en)*2021-08-182021-12-10国网浙江省电力有限公司舟山供电公司 A cable test digital twin system and its working method
DE102021211110A1 (en)*2021-10-012023-04-06Robert Bosch Gesellschaft mit beschränkter Haftung Method for providing data for operating a building
KR20240128684A (en)2021-11-232024-08-26스트롱 포스 이이 포트폴리오 2022, 엘엘씨 AI-based energy edge platform, system and method
CN114492116A (en)*2022-01-042022-05-13南京南瑞继保电气有限公司 A transformer state analysis method, system, device and storage medium
US12332620B2 (en)2022-04-272025-06-17Tmrw Group IpSystem and method of energy supply chain management and optimization through an energy virtual twin
CN115114342B (en)*2022-08-262022-11-15乘木科技(珠海)有限公司Digital twin multi-source data anomaly monitoring method and system
CN115373278B (en)*2022-10-252023-01-06北京安帝科技有限公司Industrial control service abnormity prediction response system and method based on digital twin drive
US20240319774A1 (en)*2023-03-202024-09-26NEC Laboratories Europe GmbHEnergy consumption optimization in digital twin applications
CN116722571B (en)*2023-08-042024-02-02深圳康普盾科技股份有限公司Energy storage management method, system and medium based on digital twin
CN118731829B (en)*2024-09-022024-11-08南京米特科技股份有限公司 A digital twin method for monitoring abnormality of electric energy meters
CN118842102B (en)*2024-09-232024-12-20国网甘肃省电力公司电力科学研究院Digital twin-driven wind power cluster scheduling optimization method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20140025220A1 (en)*2012-07-192014-01-23Solarcity CorporationTechniques for controlling energy generation and storage systems
CN104205087A (en)*2012-02-042014-12-10英派尔科技开发有限公司Core-level dynamic voltage and frequency scaling in a chip multiprocessor
US20160333854A1 (en)*2015-05-152016-11-17General Electric CompanyDigital Twin Interface for Operating Wind Farms
CN107209545A (en)*2015-02-132017-09-26英特尔公司Power management is performed in polycaryon processor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8401709B2 (en)*2009-11-032013-03-19Spirae, Inc.Dynamic distributed power grid control system
US8731729B2 (en)*2012-04-232014-05-20Honeywell International, IncMethod for microgrid controls development
US20170091791A1 (en)*2015-09-252017-03-30General Electric CompanyDigital power plant system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104205087A (en)*2012-02-042014-12-10英派尔科技开发有限公司Core-level dynamic voltage and frequency scaling in a chip multiprocessor
US20140025220A1 (en)*2012-07-192014-01-23Solarcity CorporationTechniques for controlling energy generation and storage systems
CN107209545A (en)*2015-02-132017-09-26英特尔公司Power management is performed in polycaryon processor
US20160333854A1 (en)*2015-05-152016-11-17General Electric CompanyDigital Twin Interface for Operating Wind Farms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN120069238A (en)*2025-04-282025-05-30福建省榕圣建设发展有限公司Energy consumption optimizing system for remote operation of tower crane

Also Published As

Publication numberPublication date
EP3539063A1 (en)2019-09-18
US20210118067A1 (en)2021-04-22
WO2018111368A1 (en)2018-06-21

Similar Documents

PublicationPublication DateTitle
CN110249348A (en)The configuration and parametrization of energy management system
US10928784B2 (en)Central plant optimization system with streamlined data linkage of design and operational data
Zhang et al.Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid
Xu et al.Multiagent-based reinforcement learning for optimal reactive power dispatch
Bürger et al.A polyhedral approximation framework for convex and robust distributed optimization
Liu et al.Day-ahead optimal operation for multi-energy residential systems with renewables
RU2601957C2 (en)Method and apparatus for controlling energy services based on market data
Shiltz et al.Integration of automatic generation control and demand response via a dynamic regulation market mechanism
Zheng et al.Distributed real-time dispatch of integrated electricity and heat systems with guaranteed feasibility
Bucher et al.On quantification of flexibility in power systems
US11322976B1 (en)Diagnostic techniques for monitoring physical devices and resolving operational events
JP6575939B2 (en) System and method for analyzing vibration stability in a power transmission system
Sardou et al.Coordinated operation of natural gas and electricity networks with microgrid aggregators
US20160048150A1 (en)Method and apparatus for optimal power flow with voltage stability for large-scale electric power systems
Widergren et al.Transactive systems simulation and valuation platform trial analysis
US20220140611A1 (en)Microgrid control design system
Rinaldi et al.Distributed observers for state estimation in power grids
Markoska et al.Towards smart buildings performance testing as a service
Yan et al.Grid integration of wind generation considering remote wind farms: Hybrid Markovian and interval unit commitment
JP6830784B2 (en) Information information system
CN118889487A (en) A method and device for handling stability of a pumped storage unit
JP7448749B2 (en) Distributed voltage control for power networks
Wang et al.Integrating control and fault-tolerant wireless network design for small modular nuclear reactors
KR20220117432A (en)Power system, method and apparatus for clustering of power system
CN113887005A (en)Simulation modeling method and device for alternating current-direct current power system

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
WD01Invention patent application deemed withdrawn after publication

Application publication date:20190917

WD01Invention patent application deemed withdrawn after publication

[8]ページ先頭

©2009-2025 Movatter.jp