Movatterモバイル変換


[0]ホーム

URL:


CN110075890A - A kind of bimetallic layered hydroxide chelating Ti3C2Compound and its preparation method and application - Google Patents

A kind of bimetallic layered hydroxide chelating Ti3C2Compound and its preparation method and application
Download PDF

Info

Publication number
CN110075890A
CN110075890ACN201910489682.XACN201910489682ACN110075890ACN 110075890 ACN110075890 ACN 110075890ACN 201910489682 ACN201910489682 ACN 201910489682ACN 110075890 ACN110075890 ACN 110075890A
Authority
CN
China
Prior art keywords
mxene
chelated
preparation
feco
ldh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910489682.XA
Other languages
Chinese (zh)
Inventor
姜毅
田明
夏立新
徐英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning UniversityfiledCriticalLiaoning University
Priority to CN201910489682.XApriorityCriticalpatent/CN110075890A/en
Publication of CN110075890ApublicationCriticalpatent/CN110075890A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开一种双金属层状氢氧化物螯合Ti3C2‑MXene催化剂及其制备方法和应用,涉及电化学技术领域。一种双金属层状氢氧化物螯合Ti3C2‑MXene催化剂的制备方法包括如下步骤:以Ti3AlC2‑MAX为原料,用LiF+HCl剥离法,获得Ti3C2‑MXene。将铁和钴的氢氧化物与Ti3C2‑MXene混合,在Ar气保护下,加热120℃保持3h,通过离心和60℃真空干燥获得FeCo‑LDH/Ti3C2‑MXene。本发明制备双金属层状氢氧化物复合物操作简单安全,以负载FeCo‑LDH/Ti3C2‑MXene复合物的玻碳电极为工作电极,研究电催化阴极水氧化析氢过程,起始电位较低,氢气产生量较大。

The invention discloses a bimetallic layered hydroxide chelated Ti3C2-MXene catalyst, a preparation method and application thereof, and relates to the technical field of electrochemistry. A method for preparing a bimetallic layered hydroxide chelated Ti3 C2 ‑MXene catalyst comprises the following steps: using Ti3 AlC2 ‑MAX as a raw material, and using a LiF+HCl stripping method to obtain Ti3 C2 ‑MXene. Iron and cobalt hydroxides were mixed with Ti3 C2 ‑MXene, heated at 120 °C for 3 h under the protection of Ar gas, and FeCo‑LDH/Ti3 C2 ‑MXene was obtained by centrifugation and vacuum drying at 60 °C. The preparation of the bimetallic layered hydroxide composite is simple and safe in operation, and the glassy carbon electrode loaded with FeCo-LDH/Ti3 C2 -MXene composite is used as the working electrode to study the electrocatalytic cathodic water oxidation hydrogen evolution process, and the initial potential Lower, greater hydrogen production.

Description

Translated fromChinese
一种双金属层状氢氧化物螯合Ti3C2复合物及其制备方法和应用A kind of bimetallic layered hydroxide chelated Ti3C2 compound and its preparation method andapplication

技术领域technical field

本发明属于电催化领域,具体为铁钴层状氢氧化物鳌合在二维层状Ti3C2-MXene上获得FeCo-LDH/Ti3C2-MXene材料,可提高电催化阴极析氢效果。The invention belongs to the field of electrocatalysis, in particular, FeCo-LDH/Ti3 C2 -MXene material is obtained by chelation of iron-cobalt layered hydroxide on two-dimensional layered Ti3 C2 -MXene, which can improve the hydrogen evolution effect of electrocatalytic cathode .

背景技术Background technique

在能源日益紧缺的当代社会,能源的高效转化成为一个热门且重要的问题。氢被认为是一种重要的替代化石燃料的清洁能源,可以通过电催化水裂解制得。通过电催化的方式电催化,获得氢能源,对如今减缓能源危机起着重要的促进作用。然而电催化获取氢能源的过程会面临许多问题,例如如何达到较低的过电位和较高的电催化速率以及如何克服缓慢动力学等。铂是析氢反应中最有效的催化剂。然而铂的稀缺性和高成本严重阻碍了铂在电解槽制氢中的广泛应用。In the contemporary society where energy is increasingly scarce, the efficient conversion of energy has become a hot and important issue. Hydrogen is considered as an important clean energy alternative to fossil fuels and can be produced by electrocatalytic water splitting. Electrocatalysis through electrocatalysis to obtain hydrogen energy plays an important role in alleviating the energy crisis today. However, the process of electrocatalytic hydrogen energy harvesting will face many problems, such as how to achieve low overpotential and high electrocatalytic rate and how to overcome the slow kinetics. Platinum is the most efficient catalyst in the hydrogen evolution reaction. However, the scarcity and high cost of platinum have seriously hindered the widespread application of platinum in electrolyzer hydrogen production.

MXene是一种新型的二维早期过渡金属碳化物/氮化物,具有优良的电化学储能性能、电负性和较高导电性。在剥离MAX(Ti3AlC2)过程中,Mn+1Xn层之间的A原子被各种官能团取代,产生具有羟基,氧或氟基团终止表面的MXene纳米片在传统的二维原子晶体如石墨烯,层状过渡金属二硫化物(LTMD)和双金属氢氧化物(LDH)中难以实现这一优点。因此,MXene可能是化学功能化石墨烯的优良替代品,与双金属层状氢氧化物结合,加快速电荷转移,强界面之间耦合,促进电催化的催化历程。MXene is a novel two-dimensional early transition metal carbide/nitride with excellent electrochemical energy storage performance, electronegativity and high conductivity. During exfoliation of MAX(Ti3 AlC2 ), the A atoms between the Mn+1 Xn layers were substituted by various functional groups, resulting in MXene nanosheets with hydroxyl, oxygen or fluorine group terminated surfaces in the traditional two-dimensional This advantage is difficult to achieve in atomic crystals such as graphene, layered transition metal dichalcogenides (LTMDs) and double metal hydroxides (LDHs). Therefore, MXene may be an excellent substitute for chemically functionalized graphene, combined with bimetallic layered hydroxides, to accelerate fast charge transfer, strong interfacial coupling, and facilitate electrocatalytic catalytic processes.

发明内容SUMMARY OF THE INVENTION

为了解决上述技术问题,本发明的目的之一是通过使铁钴的层状氢氧化物与MXene相结合,获得FeCo-LDH/Ti3C2-MXene材料。In order to solve the above technical problems, one of the objectives of the present invention is to obtain FeCo-LDH/Ti3 C2 -MXene material by combining iron-cobalt layered hydroxide with MXene.

本发明的目的之二是将FeCo-LDH/Ti3C2-MXene材料应用于电催化水分解技术领域,在电催化阴极析氢过程具有较低的起始电位和较大的氢气析出量,表现出较好的催化效果。The second object of the present invention is to apply the FeCo-LDH/Ti3 C2 -MXene material to the technical field of electrocatalytic water splitting, which has a lower initial potential and a larger amount of hydrogen evolution in the electrocatalytic cathode hydrogen evolution process, and exhibits better catalytic effect.

为了实现上述目的,本发明采用的技术方案是:一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂,所述的双金属层状氢氧化物螯合Ti3C2-MXene催化剂是FeCo-LDH/Ti3C2-MXene。In order to achieve the above object, the technical solution adopted in the present invention is: a double metal layered hydroxide chelated Ti3 C2 -MXene catalyst, the double metal layered hydroxide chelated Ti3 C2 -MXene The catalyst is FeCo-LDH/Ti3 C2 -MXene.

上述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,包括如下步骤,The above-mentioned preparation method of a bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst comprises the following steps,

1)Ti3C2-MXene的制备:将Ti3AlC2-MAX与LiF、盐酸混合,室温搅拌72-80h后,加去离子水,离心,洗掉杂质,取下层沉淀,向下层沉淀中加入去离子水,摇匀,超声分散,离心,收集上层液,抽滤,真空干燥,得Ti3C2-MXene粉末;1) Preparation of Ti3 C2 -MXene: Mix Ti3 AlC2 -MAX with LiF and hydrochloric acid, stir at room temperature for 72-80 hours, add deionized water, centrifuge, wash off impurities, take the lower layer of precipitation, and put it in the lower layer of precipitation Add deionized water, shake well, ultrasonically disperse, centrifuge, collect the supernatant, filter with suction, and dry in vacuum to obtain Ti3 C2 -MXene powder;

2)FeCo-LDH/Ti3C2-MXene的制备:将Ti3C2-MXene粉末加入到双金属的碱溶液中,超声分散,在Ar气保护下加热搅拌3h,所得悬浊液经过离心,真空干燥,得FeCo-LDH/Ti3C2-MXene复合物。2) Preparation of FeCo-LDH/Ti3 C2 -MXene: Add Ti3 C2 -MXene powder into bimetallic alkali solution, ultrasonically disperse, heat and stir for 3 hours under the protection of Ar gas, and the obtained suspension is centrifuged , vacuum-dried to obtain FeCo-LDH/Ti3 C2 -MXene composite.

优选地,上述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,步骤1)中,所述三元层状材料MAX相是Ti3AlC2Preferably, in the above-mentioned method for preparing a bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst, in step 1), the MAX phase of the ternary layered material is Ti3 AlC2 .

述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,步骤1)中,按质液比,Ti3AlC2-MAX:LiF:HCl为1g:1-5g:5-15mL。The preparation method of a kind of bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst, in step 1), according to mass-liquid ratio, Ti3 AlC2 -MAX: LiF: HCl is 1g: 1-5g : 5-15mL.

优选地,上述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,步骤2)中,所述双金属的氢氧化物溶液是有氯化铁和醋酸钴的氢氧化钾溶液。Preferably, in the preparation method of the above-mentioned bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst, in step 2), the hydroxide solution of the bimetal contains ferric chloride and cobalt acetate potassium hydroxide solution.

优选地,上述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,步骤2)中,按物质的量比,Fe:Co:KOH=0.5-1:1-5:5-10。Preferably, in the preparation method of the above-mentioned bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst, in step 2), according to the ratio of substances, Fe:Co:KOH=0.5-1:1- 5:5-10.

优选地,上述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,步骤2)中,按物质的量比,Fe:Co:KOH=0.5:2:6。Preferably, in step 2) of the above-mentioned method for preparing a bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst, the molar ratio of Fe:Co:KOH=0.5:2:6.

优选地,上述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,步骤2)中,所述的加热温度为120℃。Preferably, in step 2) of the above-mentioned method for preparing a bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst, the heating temperature is 120°C.

上述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂在电催化阴极析氢过程中的应用。The application of the above-mentioned bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst in the electrocatalytic cathode hydrogen evolution process.

上述的应用,方法如下:The above application, the method is as follows:

1)FeCo-LDH/Ti3C2-MXene修饰电极的制备:将权利要求1所述的双金属层状氢氧化物螯合Ti3C2催化剂分散在无水乙醇和Nafion的混合液中,超声分散后,室温下搅拌反应1-2h,得悬浊液;将悬浊液滴涂到玻碳电极上,在烘箱40℃干燥后,得FeCo-LDH/Ti3C2-MXene修饰电极;1) Preparation of FeCo-LDH/Ti3 C2 -MXene modified electrode: the bimetallic layered hydroxide chelated Ti3 C2 catalyst according to claim 1 is dispersed in the mixed solution of absolute ethanol and Nafion, After ultrasonic dispersion, stir and react at room temperature for 1-2 hours to obtain a suspension; drop-coat the suspension onto a glassy carbon electrode and dry it in an oven at 40°C to obtain a FeCo-LDH/Ti3 C2 -MXene modified electrode;

2)以FeCo-LDH/Ti3C2-MXene修饰电极为工作电极,以铂丝或铂网作为对电极,以Ag/AgCl为参比电极,构成三电极体系,电催化阴极析氢。2) The FeCo-LDH/Ti3 C2 -MXene modified electrode is used as the working electrode, platinum wire or platinum mesh is used as the counter electrode, and Ag/AgCl is used as the reference electrode to form a three-electrode system to electrocatalyze the cathodic hydrogen evolution.

本发明的有益效果是:The beneficial effects of the present invention are:

1、本发明制备Ti3C2-MXene的方法,操作简单安全,以Ti3AlC2-MAX为原料,通过剥离Al,反复洗涤离心,获得上层液为中的少层的Ti3C2-MXene,方法简便高效。1. The method for preparing Ti3 C2 -MXene of the present invention is simple and safe to operate. Ti3 AlC2 -MAX is used as a raw material, and by stripping Al, repeated washing and centrifugation, Ti3 C2 - MXene, the method is simple and efficient.

2、本发明制备的FeCo-LDH/Ti3C2-MXene复合物,Fe和Co双金属以层状氢氧化物的形式负载于少层的Ti3C2-MXene上,采用的双金属为氯化铁和醋酸钴,成本低。2. In the FeCo-LDH/Ti3 C2 -MXene composite prepared in the present invention, Fe and Co bimetals are supported on the few-layer Ti3 C2 -MXene in the form of layered hydroxides, and the bimetals used are Ferric chloride and cobalt acetate, low cost.

3、本发明中,以负载FeCo-LDH/Ti3C2-MXene材料的玻碳电极为工作电极,在电催化阴极析氢过程具有较低的起始电位和较大的氢气析出量,表现出较好的催化效果。3. In the present invention, the glassy carbon electrode loaded with FeCo-LDH/Ti3 C2 -MXene material is used as the working electrode, which has a lower initial potential and a larger amount of hydrogen evolution in the electrocatalytic cathode hydrogen evolution process, showing Better catalytic effect.

附图说明Description of drawings

图1是实例例1中制备的Ti3C2-MXene的原料Ti3AlC2-MAX的扫描电镜图(SEM)。FIG. 1 is a scanning electron micrograph (SEM) of Ti3 AlC2 -MAX, the raw material of Ti3 C2 -MXene prepared in Example 1.

图2是实施例1中制备的Ti3C2-MXene材料的透射电镜图(TEM)。FIG. 2 is a transmission electron microscope image (TEM) of the Ti3 C2 -MXene material prepared in Example 1. FIG.

图3是实施例1中制备的FeCo-LDH/Ti3C2-MXene复合材料的扫描电镜图(SEM)。FIG. 3 is a scanning electron micrograph (SEM) of the FeCo-LDH/Ti3 C2 -MXene composite material prepared in Example 1. FIG.

图4是实施例2中双金属层状氢氧化物、Ti3C2-MXene、FeCo-LDH以及FeCo-LDH/Ti3C2-MXene复合物的线性扫描伏安对比图。Fig. 4 is a comparison graph of linear sweep voltammetry of double metal layered hydroxide, Ti3 C2 -MXene, FeCo-LDH and FeCo-LDH/Ti3 C2 -MXene composite in Example 2.

图5是实施例2中FeCo-LDH/Ti3C2-MXene和FeCo-LDH的I-t关系图。Fig. 5 is the It relationship diagram of FeCo-LDH/Ti3 C2 -MXene and FeCo-LDH in Example 2.

具体实施方式Detailed ways

下文参照所附实施图例详细描述本发明的实施方案,此实施方案是为了更明确地理解本发明,但本发明并不限于此实施方案。The embodiment of the present invention will be described in detail below with reference to the accompanying drawings, and this embodiment is for a clearer understanding of the present invention, but the present invention is not limited to this embodiment.

实施例1Example 1

(一)FeCo-LDH/Ti3C2-MXene的制备(1) Preparation of FeCo-LDH/Ti3 C2 -MXene

包括如下步骤:Including the following steps:

1、Ti3C2-MXene的制备:1. Preparation of Ti3 C2 -MXene:

1)于50mL离心管中称取0.2g Ti3AlC2-MAX,缓慢加入0.2g LiF和98%盐酸2ml,室温搅拌72h后,加入去离子水,将获得的反应液进行离心(10000rpm,10min)6次,弃上清液。1) Weigh 0.2g Ti3 AlC2 -MAX in a 50mL centrifuge tube, slowly add 0.2g LiF and 2ml 98% hydrochloric acid, stir at room temperature for 72h, add deionized water, and centrifuge the obtained reaction solution (10000rpm, 10min ) 6 times, discard the supernatant.

2)向离心管中的沉淀物中加入40mL去离子水,摇匀,使沉淀与去离子水混合均匀,将离心管放入大功率超声机中超声分散(750W,10min),取出继续离心(3500rpm,10min)收集上层液,抽滤真空干燥,得少层Ti3C2-MXene。2) Add 40 mL of deionized water to the sediment in the centrifuge tube, shake well to mix the sediment and deionized water evenly, put the centrifuge tube into a high-power ultrasonic machine for ultrasonic dispersion (750W, 10min), take it out and continue centrifuging ( 3500 rpm, 10 min) to collect the supernatant, filter and dry in vacuo to obtain a few-layer Ti3 C2 -MXene.

2、FeCo-LDH/Ti3C2-MXene的制备2. Preparation of FeCo-LDH/Ti3 C2 -MXene

1)称量0.0811g氯化铁、0.531g醋酸钴和0.336g氢氧化钾,加入2mL去离子,超声1) Weigh 0.0811g ferric chloride, 0.531g cobalt acetate and 0.336g potassium hydroxide, add 2mL deionized, ultrasonic

溶解,得分散液。Dissolved to obtain a dispersion.

2)称取5mg少层Ti3C2-MXene粉末,加入步骤1)所得的分散液中。2) Weigh 5 mg of few-layer Ti3 C2 -MXene powder and add it into the dispersion obtained in step 1).

3)将步骤2)所得的溶液混合均匀,倒入Shleck瓶中,Ar气保护下,于120℃加热搅3h;所得反应物放入离心管中,离心(9000转,5min)三次。放入真空干燥箱中,60℃干燥24h,得到粉末状物质,即为FeCo-LDH/Ti3C2-MXene催化剂。3) Mix the solution obtained in step 2) evenly, pour it into a Shleck bottle, heat and stir at 120° C. for 3 h under the protection of Ar gas; put the obtained reactant into a centrifuge tube, and centrifuge (9000 rpm, 5 min) three times. Put it into a vacuum drying oven and dry at 60° C. for 24 hours to obtain a powdery substance, which is the FeCo-LDH/Ti3 C2 -MXene catalyst.

(二)检测(2) Detection

1、图1为Ti3AlC2-MAX的扫描电镜图,由图1可见Ti3AlC2-MAX切面可见层状结构。1. Figure 1 is a scanning electron microscope image of Ti3 AlC2 -MAX. From Figure 1, it can be seen that a layered structure can be seen in the section of Ti3 AlC2 -MAX.

2、图2为少层的Ti3C2-MXene的透射电镜图,由图2可见,本发明中制备的Ti3C2-MXene是很薄的单层片状物质。2. Figure 2 is a transmission electron microscope image of Ti3 C2 -MXene with few layers. It can be seen from Figure 2 that the Ti3 C2 -MXene prepared in the present invention is a very thin single-layer sheet.

3、图3为制备的FeCo-LDH/Ti3C2-MXene材料的扫描电镜图,由图3可见,少层的Ti3C2-MXene片状的表面负载了FeCo双金属层状氢氧化物。3. Figure 3 is the scanning electron microscope image of the prepared FeCo-LDH/Ti3 C2 -MXene material. It can be seen from Figure 3 that the surface of the few-layer Ti3 C2 -MXene sheet is loaded with FeCo bimetallic layered hydroxide things.

对比例1Comparative Example 1

(一)FeCo-LDH催化剂的制备(1) Preparation of FeCo-LDH catalyst

称量0.0811g氯化铁、0.531g醋酸钴和0.3361g氢氧化钾,加入2mL去离子水,Ar气氛围中加热120℃,保持3h;所得反应物放入离心管中,离心(9000转,5min)三次,用水反复洗涤。放入冷冻干燥机冷冻,得到粉末状物质FeCo-LDH。Weigh 0.0811g of ferric chloride, 0.531g of cobalt acetate and 0.3361g of potassium hydroxide, add 2mL of deionized water, heat at 120°C in Ar atmosphere, and keep for 3h; 5min) three times, and washed repeatedly with water. Put it into a lyophilizer to freeze to obtain a powdered substance FeCo-LDH.

实施例2不同修饰电极对电催化阳极水氧化的影响Example 2 Effects of Different Modified Electrodes on Electrocatalytic Anode Water Oxidation

(一)电极制备(1) Electrode preparation

分别取4mg实施例1制备的FeCo-LDH/Ti3C2-MXene粉末、Ti3C2-MXene粉末和对比例1制备的FeCo-LDH和Co(OH)2催化剂,分别加入995μl无水乙醇和5μl Nafion,超声分散5min,搅拌1h。所得混合液分别用移液枪转移5μl到玻碳电极上,常温下干燥,使溶剂挥发完全,获得涂覆不同材料的玻碳电极。Take 4 mg of FeCo-LDH/Ti3 C2 -MXene powder prepared in Example 1, Ti3 C2 -MXene powder and FeCo-LDH and Co(OH)2 catalysts prepared in Comparative Example 1, respectively, and add 995 μl of absolute ethanol and 5μl Nafion, ultrasonically dispersed for 5min, and stirred for 1h. The resulting mixture was transferred to glassy carbon electrodes in 5 μl with a pipette gun, and dried at room temperature to completely evaporate the solvent to obtain glassy carbon electrodes coated with different materials.

(二)电化学性能检测(2) Electrochemical performance testing

本实验所有测试,均采用上海辰华公司的CHI660E电化学工作站。All the tests in this experiment were performed on the CHI660E electrochemical workstation of Shanghai Chenhua Company.

检测线性扫描伏安(LSV)的旋转速率为1600rpm,扫描速率为10mV s-1。以涂覆不同催化剂的玻碳电极为工作电极,Pt丝作为对电极,Ag/AgCl为参比电极在H型电解池中构成三电极体系。进行电化学测试,测试结果如图4所示。本发明中所有在Ag/AgCl电极上测量的电位,根据Evs RHE=Evs Ag/AgCl+0.059pH+0.198转换为相对于RHE的电位。The rotation rate for detecting linear sweep voltammetry (LSV) was 1600 rpm, and the scan rate was 10 mV s-1 . The glassy carbon electrode coated with different catalysts is used as the working electrode, the Pt wire is used as the counter electrode, and the Ag/AgCl is used as the reference electrode to form a three-electrode system in the H-type electrolytic cell. Electrochemical tests were carried out, and the test results are shown in Figure 4. All potentials measured on Ag/AgCl electrodes in the present invention are converted into potentials relative to RHE according to Evs RHE = Evs Ag/AgCl + 0.059pH + 0.198.

图4为Evs Ag/AgCl为-1.0V—-1.8V之间的线性扫描伏安图,由图可见在四种不同的催化剂FeCo-LDH/Ti3C2-MXene,FeCo-LDH,Co(OH)2,Ti3C2-MXene的起始电位Evs Ag/AgCl分别为:-0.24V,-0.40V,-0.52V,-0.53V,FeCo-LDH/Ti3C2-MXene的起始电位最低,为Evs Ag/AgCl=-0.24V,四种催化剂中FeCo-LDH/Ti3C2-MXene的Ej=10mAcm-2的电压最低为-0.35V。在相同电压下,FeCo-LDH/Ti3C2-MXene的电流密度最大,氢气产生量最大,因此性能最优越。Figure 4 is the linear sweep voltammogram of Evs Ag/AgCl between -1.0V—-1.8V. It can be seen from the figure that four different catalysts FeCo-LDH/Ti3 C2 -MXene, FeCo-LDH, Co (OH)2 , the onset potential E of Ti3 C2 -MXenevs Ag/AgCl are: -0.24V, -0.40V, -0.52V, -0.53V, FeCo-LDH/Ti3 C2 -MXene The lowest onset potential is Evs Ag/AgCl =-0.24V, and the lowest voltage of Ej=10mAcm-2 of FeCo-LDH/Ti3 C2 -MXene among the four catalysts is -0.35V. Under the same voltage, FeCo-LDH/Ti3 C2 -MXene has the largest current density and the largest hydrogen generation, so the performance is the best.

实施例3 FeCo-LDH/Ti3C2-MXene作为催化析氢材料的催化稳定性测试Example 3 Catalytic stability test of FeCo-LDH/Ti3 C2 -MXene as catalytic hydrogen evolution material

(一)电极的制备(1) Preparation of electrodes

分别取4mg实施例1制备的FeCo-LDH/Ti3C2-MXene粉末和对比例1制备的FeCo-LDH,分别加入995μl无水乙醇和5μl Nafion,超声分散5min,搅拌1h。所得混合液分别用移液枪转移5μl到玻碳电极上,常温下干燥,使溶剂挥发完全,获得FeCo-LDH/Ti3C2-MXene修饰电极和FeCo-LDH修饰电极。Take 4 mg of FeCo-LDH/Ti3 C2 -MXene powder prepared in Example 1 and FeCo-LDH prepared in Comparative Example 1, respectively, add 995 μl absolute ethanol and 5 μl Nafion, ultrasonically disperse for 5 minutes, and stir for 1 hour. Transfer 5 μl of the obtained mixture to a glassy carbon electrode with a pipette gun, and dry at room temperature to completely evaporate the solvent to obtain a FeCo-LDH/Ti3 C2 -MXene modified electrode and a FeCo-LDH modified electrode.

(三)电化学性能测试(3) Electrochemical performance test

分别以得FeCo-LDH/Ti3C2-MXene修饰电极和FeCo-LDH修饰电极作为工作电极,Pt丝作为对电极,Ag/AgCl为参比电极构成三电极体系,以1M的KOH溶液作为电解质,在CHI760D电化学工作站上使用标准三电极系统在H型电解池中,在1M KOH中评估电催化剂对阴极析氢性能效果。结果如图5所示,线性扫描伏安(LSV)在1600rpm的旋转速率、扫描速率为10mV s-1所测得。本发明中所有在Ag/AgCl电极上测量的电位,根据Evs RHE=Evs Ag/AgCl+0.059pH+0.198转换为相对于RHE的电位。The obtained FeCo-LDH/Ti3 C2 -MXene modified electrode and FeCo-LDH modified electrode were used as working electrodes, Pt wire was used as counter electrode, Ag/AgCl was used as reference electrode to form a three-electrode system, and 1M KOH solution was used as electrolyte , using a standard three-electrode system on a CHI760D electrochemical workstation in an H-type electrolytic cell to evaluate the effect of the electrocatalyst on the hydrogen evolution performance of the cathode in 1M KOH. The results are shown in Fig. 5. The linear sweep voltammetry (LSV) was measured at a rotation rate of 1600 rpm and a scan rate of 10 mV s−1 . All potentials measured on Ag/AgCl electrodes in the present invention are converted into potentials relative to RHE according to Evs RHE = Evs Ag/AgCl + 0.059pH + 0.198.

图5为电压设定为Evs Ag/AgCl为-1.4V时,FeCo-LDH和FeCo-LDH/Ti3C2-MXene的时间(t)与电流(i)的关系图像,由图5可见,在相同电压下,以FeCo-LDH/Ti3C2-MXene为催化剂的电流较大,电流比较稳定,说明催化剂的耐久性比较好。Figure 5 is the image of the relationship between time (t) and current (i) of FeCo-LDH and FeCo-LDH/Ti3 C2 -MXene when the voltage is set to Evs Ag/AgCl at -1.4V, which can be seen from Figure 5 , under the same voltage, the current of FeCo-LDH/Ti3 C2 -MXene catalyst is larger, and the current is relatively stable, indicating that the durability of the catalyst is better.

Claims (10)

Translated fromChinese
1.一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂,其特征在于,所述的双金属层状氢氧化物螯合Ti3C2-MXene催化剂是FeCo-LDH/Ti3C2-MXene。1. A double metal layered hydroxide chelated Ti3 C2 -MXene catalyst, characterized in that the double metal layered hydroxide chelated Ti3 C2 -MXene catalyst is FeCo-LDH/Ti 3C2-MXene .2.权利要求1所述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,其特征在于,包括如下步骤,2. the preparation method of a kind of bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst as claimed in claim 1, is characterized in that, comprises the steps,1)Ti3C2-MXene的制备:将MAX相与LiF、盐酸混合,室温搅拌72-80h后,加去离子水,离心,洗掉杂质,取下层沉淀,向下层沉淀中加入去离子水,摇匀,超声分散,离心,收集上层液,抽滤,真空干燥,得Ti3C2-MXene粉末;1) Preparation of Ti3 C2 -MXene: Mix the MAX phase with LiF and hydrochloric acid, stir at room temperature for 72-80 hours, add deionized water, centrifuge, wash off impurities, remove the lower layer of precipitation, and add deionized water to the lower layer of precipitation , shake well, ultrasonically disperse, centrifuge, collect the supernatant, filter with suction, and dry in vacuum to obtain Ti3 C2 -MXene powder;2)FeCo-LDH/Ti3C2-MXene的制备:将Ti3C2-MXene粉末加入到双金属的碱溶液中,超声分散,在Ar气保护下加热搅拌3h,所得悬浊液经过离心,真空干燥,得FeCo-LDH/Ti3C2-MXene复合物。2) Preparation of FeCo-LDH/Ti3 C2 -MXene: Add Ti3 C2 -MXene powder into bimetallic alkali solution, ultrasonically disperse, heat and stir for 3 hours under the protection of Ar gas, and the obtained suspension is centrifuged , vacuum-dried to obtain FeCo-LDH/Ti3 C2 -MXene composite.3.根据权利要求2所述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,其特征在于,步骤1)中,所述三元层状材料MAX相是Ti3AlC2-MAX。3. the preparation method of a kind of bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst according to claim 2, is characterized in that, in step 1), described ternary layered material MAX phase isTi3AlC2- MAX.4.根据权利要求3所述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,其特征在于,步骤1)中,按质液比,Ti3AlC2-MAX:LiF:98%的HCl为1g:1-5g:5-15mL。4. the preparation method of a kind of bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst according to claim 3, is characterized in that, in step 1), according to mass-to-liquid ratio, Ti3 AlC2 - MAX: LiF: 98% HCl 1g: 1-5g: 5-15mL.5.根据权利要求2所述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,其特征在于,步骤2)中,所述双金属的氢氧化物溶液是有氯化铁和醋酸钴的氢氧化钾溶液。5. the preparation method of a kind of bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst according to claim 2, is characterized in that, in step 2), the hydroxide solution of described bimetal is Potassium hydroxide solution with ferric chloride and cobalt acetate.6.根据权利要求5所述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,其特征在于,步骤2)中,按物质的量比,Fe:Co:KOH=0.5-1:1-5:5-10。6. the preparation method of a kind of bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst according to claim 5, is characterized in that, in step 2), by the amount ratio of substance, Fe: Co: KOH=0.5-1:1-5:5-10.7.根据权利要求6所述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,其特征在于,步骤2)中,按物质的量比,Fe:Co:KOH=0.5:2:6。7. the preparation method of a kind of bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst according to claim 6, is characterized in that, in step 2), by the amount ratio of substance, Fe: Co: KOH=0.5:2:6.8.根据权利要求2所述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂的制备方法,其特征在于,步骤2)中,所述的加热温度为120℃。8 . The method for preparing a bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst according to claim 2 , wherein in step 2), the heating temperature is 120° C.9.权利要求1所述的一种双金属层状氢氧化物螯合Ti3C2-MXene催化剂在电催化阴极析氢过程中的应用。9. The application of a bimetallic layered hydroxide chelated Ti3 C2 -MXene catalyst according to claim 1 in the electrocatalytic cathode hydrogen evolution process.10.根据权利要求9所述的应用,其特征在于,方法如下:10. The application according to claim 9, wherein the method is as follows:1)FeCo-LDH/Ti3C2-MXene修饰电极的制备:将权利要求1所述的双金属层状氢氧化物螯合Ti3C2催化剂分散在无水乙醇和Nafion的混合液中,超声分散后,室温下搅拌反应1-2h,得悬浊液;将悬浊液滴涂到玻碳电极上,在烘箱40℃干燥后,得FeCo-LDH/Ti3C2-MXene修饰电极;1) Preparation of FeCo-LDH/Ti3 C2 -MXene modified electrode: the bimetallic layered hydroxide chelated Ti3 C2 catalyst according to claim 1 is dispersed in the mixed solution of absolute ethanol and Nafion, After ultrasonic dispersion, stir and react at room temperature for 1-2 hours to obtain a suspension; drop-coat the suspension onto a glassy carbon electrode and dry it in an oven at 40°C to obtain a FeCo-LDH/Ti3 C2 -MXene modified electrode;2)以FeCo-LDH/Ti3C2-MXene修饰电极为工作电极,以铂丝或铂网作为对电极,以Ag/AgCl为参比电极,构成三电极体系,电催化阴极析氢。2) The FeCo-LDH/Ti3 C2 -MXene modified electrode is used as the working electrode, platinum wire or platinum mesh is used as the counter electrode, and Ag/AgCl is used as the reference electrode to form a three-electrode system to electrocatalyze the cathodic hydrogen evolution.
CN201910489682.XA2019-06-062019-06-06A kind of bimetallic layered hydroxide chelating Ti3C2Compound and its preparation method and applicationPendingCN110075890A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201910489682.XACN110075890A (en)2019-06-062019-06-06A kind of bimetallic layered hydroxide chelating Ti3C2Compound and its preparation method and application

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201910489682.XACN110075890A (en)2019-06-062019-06-06A kind of bimetallic layered hydroxide chelating Ti3C2Compound and its preparation method and application

Publications (1)

Publication NumberPublication Date
CN110075890Atrue CN110075890A (en)2019-08-02

Family

ID=67423790

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201910489682.XAPendingCN110075890A (en)2019-06-062019-06-06A kind of bimetallic layered hydroxide chelating Ti3C2Compound and its preparation method and application

Country Status (1)

CountryLink
CN (1)CN110075890A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110404588A (en)*2019-08-202019-11-05大连理工大学 An ultra-thin layered FeNi-LDH-FePc@MXene bifunctional catalyst and its preparation method
CN110648864A (en)*2019-09-302020-01-03常州大学Manufacturing method of flexible low-temperature-resistant water system supercapacitor
CN110965076A (en)*2019-12-062020-04-07吉林大学 A kind of preparation method of bifunctional three-dimensional layered core-shell structure water electrolysis electrode
CN111323506A (en)*2020-03-232020-06-23湖南农业大学 A method for the determination of plant hormones in high-fat plant samples
CN111632614A (en)*2020-05-112020-09-08湖北臻润环境科技股份有限公司 Three-dimensional petal-shaped NiAl-LDH/Ti3C2 composite photocatalyst and its preparation method and application
CN111905785A (en)*2020-08-252020-11-10浙江工业大学 A single-layer MXeneTi3C2 supported Pt catalyst and its preparation method and application
CN112342565A (en)*2020-10-232021-02-09天津市大陆制氢设备有限公司High-efficiency Fe-Co layered double hydroxide coupled nickel-molybdenum hydroxide hydrogen evolution electrode and preparation method thereof
CN112978868A (en)*2021-03-032021-06-18同济大学Cobalt-iron layered double hydroxide @ titanium carbide electrode material and preparation method and application thereof
CN113371765A (en)*2021-07-222021-09-10重庆邮电大学Preparation method of electromagnetic wave-absorbing material based on modification of MXene by NiFe layered double-metal oxide and product thereof
CN113540419A (en)*2021-07-122021-10-22燕山大学Co-LDH/MXene composite material and preparation method and application thereof
CN113588751A (en)*2021-07-282021-11-02青岛科技大学MXene @ CoAl-LDH nano composite membrane modified electrode and preparation method thereof and pesticide detection method
CN113813957A (en)*2020-06-192021-12-21台州学院Bimetal composite catalyst, preparation method and application thereof, working electrode and battery system
KR20220018108A (en)*2020-08-052022-02-15연세대학교 산학협력단Defective holey nanocomposite
CN114196988A (en)*2021-12-142022-03-18黑龙江大学 A kind of preparation method of bimetallic sulfide/MXene composite for electrolysis of water and oxygen evolution
CN114481202A (en)*2022-01-172022-05-13浙江工业大学 A kind of ultrathin heterointerface Ti3C2Tx/LDH and preparation method thereof
CN114807993A (en)*2022-03-152022-07-29北京能泰高科环保技术有限公司System and process for preparing hydrogen by photovoltaic electrolysis desalination of salt-containing wastewater
CN114932734A (en)*2022-06-062022-08-23广东国科电磁防护科技有限公司Electromagnetic shielding multilayer composite film and processing technology thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2005246181A (en)*2004-03-022005-09-15Japan Science & Technology Agency Ti-C material, method for producing the same, photocatalyst, electrochemical photovoltaic cell
CN107151001A (en)*2017-05-182017-09-12清华-伯克利深圳学院筹备办公室A kind of method for preparing high-quality large scale two-dimensional material
CN108511733A (en)*2018-05-162018-09-07中国科学院金属研究所A kind of MXene/ bimetallic oxides composite material and preparation method and lithium ion battery negative material
CN109201103A (en)*2018-10-172019-01-15大连理工大学A kind of full electrolysis water catalyst of monolithic porous economic benefits and social benefits base metal and synthetic method
CN109701572A (en)*2019-01-242019-05-03辽宁大学 FeCo/MXene composite and its preparation method and application
CN109833893A (en)*2019-03-182019-06-04山东大学A kind of compound phosphorus doping tungsten oxide photoelectric of titanium carbide and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2005246181A (en)*2004-03-022005-09-15Japan Science & Technology Agency Ti-C material, method for producing the same, photocatalyst, electrochemical photovoltaic cell
CN107151001A (en)*2017-05-182017-09-12清华-伯克利深圳学院筹备办公室A kind of method for preparing high-quality large scale two-dimensional material
CN108511733A (en)*2018-05-162018-09-07中国科学院金属研究所A kind of MXene/ bimetallic oxides composite material and preparation method and lithium ion battery negative material
CN109201103A (en)*2018-10-172019-01-15大连理工大学A kind of full electrolysis water catalyst of monolithic porous economic benefits and social benefits base metal and synthetic method
CN109701572A (en)*2019-01-242019-05-03辽宁大学 FeCo/MXene composite and its preparation method and application
CN109833893A (en)*2019-03-182019-06-04山东大学A kind of compound phosphorus doping tungsten oxide photoelectric of titanium carbide and preparation method thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110404588A (en)*2019-08-202019-11-05大连理工大学 An ultra-thin layered FeNi-LDH-FePc@MXene bifunctional catalyst and its preparation method
CN110648864A (en)*2019-09-302020-01-03常州大学Manufacturing method of flexible low-temperature-resistant water system supercapacitor
CN110965076A (en)*2019-12-062020-04-07吉林大学 A kind of preparation method of bifunctional three-dimensional layered core-shell structure water electrolysis electrode
CN111323506A (en)*2020-03-232020-06-23湖南农业大学 A method for the determination of plant hormones in high-fat plant samples
CN111323506B (en)*2020-03-232023-01-17湖南农业大学 A method for the determination of phytohormones in high-fat plant samples
CN111632614A (en)*2020-05-112020-09-08湖北臻润环境科技股份有限公司 Three-dimensional petal-shaped NiAl-LDH/Ti3C2 composite photocatalyst and its preparation method and application
CN113813957B (en)*2020-06-192023-07-25台州学院Bimetal composite catalyst, preparation method and application thereof, working electrode and battery system
CN113813957A (en)*2020-06-192021-12-21台州学院Bimetal composite catalyst, preparation method and application thereof, working electrode and battery system
KR20220018108A (en)*2020-08-052022-02-15연세대학교 산학협력단Defective holey nanocomposite
KR102427234B1 (en)2020-08-052022-08-01연세대학교 산학협력단Defective holey nanocomposite
CN111905785A (en)*2020-08-252020-11-10浙江工业大学 A single-layer MXeneTi3C2 supported Pt catalyst and its preparation method and application
CN111905785B (en)*2020-08-252023-02-28浙江工业大学 A kind of monolayer MXeneTi3C2 supports Pt catalyst and its preparation method and application
CN112342565A (en)*2020-10-232021-02-09天津市大陆制氢设备有限公司High-efficiency Fe-Co layered double hydroxide coupled nickel-molybdenum hydroxide hydrogen evolution electrode and preparation method thereof
CN112978868A (en)*2021-03-032021-06-18同济大学Cobalt-iron layered double hydroxide @ titanium carbide electrode material and preparation method and application thereof
CN113540419B (en)*2021-07-122022-06-28燕山大学 A kind of Co-LDH/MXene composite material and its preparation method and application
CN113540419A (en)*2021-07-122021-10-22燕山大学Co-LDH/MXene composite material and preparation method and application thereof
CN113371765A (en)*2021-07-222021-09-10重庆邮电大学Preparation method of electromagnetic wave-absorbing material based on modification of MXene by NiFe layered double-metal oxide and product thereof
CN113588751A (en)*2021-07-282021-11-02青岛科技大学MXene @ CoAl-LDH nano composite membrane modified electrode and preparation method thereof and pesticide detection method
CN113588751B (en)*2021-07-282024-01-26青岛科技大学MXene@CoAl-LDH nano composite membrane modified electrode, preparation method thereof and application of modified electrode in pesticide detection
CN114196988A (en)*2021-12-142022-03-18黑龙江大学 A kind of preparation method of bimetallic sulfide/MXene composite for electrolysis of water and oxygen evolution
CN114196988B (en)*2021-12-142024-03-22黑龙江大学Preparation method of bimetallic sulfide/MXene complex for oxygen evolution of electrolyzed water
CN114481202A (en)*2022-01-172022-05-13浙江工业大学 A kind of ultrathin heterointerface Ti3C2Tx/LDH and preparation method thereof
CN114807993A (en)*2022-03-152022-07-29北京能泰高科环保技术有限公司System and process for preparing hydrogen by photovoltaic electrolysis desalination of salt-containing wastewater
CN114932734A (en)*2022-06-062022-08-23广东国科电磁防护科技有限公司Electromagnetic shielding multilayer composite film and processing technology thereof
CN114932734B (en)*2022-06-062022-11-18广东国科电磁防护科技有限公司Electromagnetic shielding multilayer composite film and processing technology thereof

Similar Documents

PublicationPublication DateTitle
CN110075890A (en)A kind of bimetallic layered hydroxide chelating Ti3C2Compound and its preparation method and application
CN108480656B (en) A kind of preparation method and application of thickness-controllable bismuth nanosheet and its alloy
CN109252180B (en) A kind of ternary MOF nanosheet array material, preparation method and application thereof
CN105514450B (en)Nitrogen-doped graphene/difunctional VPO catalysts of ferronickel houghite and its preparation method and application
CN107442138A (en)A kind of preparation method of the compound Electrocatalytic Activity for Hydrogen Evolution Reaction material of molybdenum disulfide/carbon cloth
CN110327942A (en)The flower-shaped MoS of lamella micron2/Ni3S2/ NiFe-LDH/NF material and its synthetic method and application
CN108411324A (en)The sulfur and nitrogen co-doped graphene-supported cobalt sulfide nickel catalytic material of one kind and preparation and application
CN110038604A (en)CuCo/Ti3C2TxComposite material and preparation method and application
CN109295476B (en) A kind of synthetic method of sheet-like Co2P-carbon cloth composite material and its application
CN110373685B (en)NiS2-MoS2PVEIB/PPy/GO material and HER electrocatalytic modified electrode based on same
CN109234756B (en)Composite material with ruthenium in monoatomic dispersion, preparation method and application thereof
CN112191260B (en) A kind of preparation method of carbon nitride nanosheet-titanium carbide-graphene three-dimensional composite electrode catalyst
CN110721713B (en)Mo 2 C catalytic material and preparation method and application thereof
CN107887613A (en)Oxygen reduction electrode and preparation method and application based on three-dimensional netted nitrogen phosphorus sulphur codope porous carbon materials
CN110327946B (en)Molybdenum disulfide/nickel selenide composite material and preparation method and application thereof
CN110711583A (en) A kind of high-efficiency electrocatalyst material with three-dimensional structure, preparation method and application thereof
CN113502487B (en) A kind of preparation method of high activity bifunctional oxygen electrocatalyst
CN105731437A (en)Exotic-atom-doped graphene, and preparation method and application thereof
CN106824190B (en)WO (WO) 3-x Nanometer catalyst and its preparation and application
JP2015091578A (en)Catalyst for oxygen electrochemical reduction
Chang et al.Enhancement of alkaline water splitting activity by Co–P coating on a copper oxide nanowire
CN110473713A (en)The preparation method of the electrode of super capacitor composite material and preparation method of toughening and asymmetric all-solid-state supercapacitor
CN109763139B (en) α-Co(OH)2/PPy/GO nanosheets and their modified electrodes for OER electrocatalysis
CN115354359A (en)Preparation of uranium-loaded cobaltosic oxide nanosheet and application of uranium-loaded cobaltosic oxide nanosheet in electrocatalytic alkaline oxygen evolution reaction
CN112853377A (en)Preparation method and application of bifunctional metal-free nitrogen-doped carbon catalyst

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
RJ01Rejection of invention patent application after publication
RJ01Rejection of invention patent application after publication

Application publication date:20190802


[8]ページ先頭

©2009-2025 Movatter.jp