Movatterモバイル変換


[0]ホーム

URL:


CN109712083A - A single image dehazing method based on convolutional neural network - Google Patents

A single image dehazing method based on convolutional neural network
Download PDF

Info

Publication number
CN109712083A
CN109712083ACN201811492894.5ACN201811492894ACN109712083ACN 109712083 ACN109712083 ACN 109712083ACN 201811492894 ACN201811492894 ACN 201811492894ACN 109712083 ACN109712083 ACN 109712083A
Authority
CN
China
Prior art keywords
layer
image
matrix
convolutional neural
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811492894.5A
Other languages
Chinese (zh)
Other versions
CN109712083B (en
Inventor
张登银
钱雯
朱虹
陈灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication UniversityfiledCriticalNanjing Post and Telecommunication University
Priority to CN201811492894.5ApriorityCriticalpatent/CN109712083B/en
Publication of CN109712083ApublicationCriticalpatent/CN109712083A/en
Application grantedgrantedCritical
Publication of CN109712083BpublicationCriticalpatent/CN109712083B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Abstract

The present invention proposes a kind of single image to the fog method based on convolutional neural networks, this method constructs input of the training set as depth convolutional neural networks model first, network model includes shallow-layer neural network model and deep-neural-network model, shallow-layer network model is used to extract and merge the feature of foggy image RGB color, exports the scene depth figure for foggy image;Deep layer network model carries out the operation such as multiple dimensioned mapping, Chi Hua, convolution on the basis of shallow-layer network model, to scene depth figure, exports the transmittance figure for foggy image.Finally, fog free images can be restored by transmissivity, air light value and atmospherical scattering model.The present invention is extracted and is merged by the feature to atomization image RGB color, construct shallow-layer convolutional neural networks model, foundation neural network model end to end is connect with multiple dimensioned deep-neural-network model, defogging sharpening can be realized under several scenes, can avoid image especially under dark environment and cross-color occur.

Description

Translated fromChinese
一种基于卷积神经网络的单幅图像去雾方法A single image dehazing method based on convolutional neural network

技术领域technical field

本发明涉及单幅图像去雾方法,具体为一种基于卷积神经网络的单幅图像去雾方法。The invention relates to a single image dehazing method, in particular to a single image dehazing method based on a convolutional neural network.

背景技术Background technique

由于垃圾焚烧、建筑扬尘、汽车尾气排放等原因,国内很多城市蒙上了雾霾的阴影。雾霾成为近年来受到大家持续关注的环境问题。雾霾天气拍摄的图像由于对比度、色彩饱和度下降,导致图片不清晰,影响图片的使用。比如,雾天交通监控视频拍摄模糊,致使图像在识别和处理过程中出现偏差,不利于准确记录交通信息。因此,提升雾天图像质量,降低雾霾天气对户外成像的影响,有着迫切的理论和实际需求。Due to waste incineration, construction dust, automobile exhaust emissions and other reasons, many cities in China have been clouded by smog. Smog has become an environmental problem that has received continuous attention in recent years. The images taken in haze weather are unclear due to the decrease in contrast and color saturation, which affects the use of images. For example, the foggy traffic surveillance video is blurred, causing deviations in the image recognition and processing process, which is not conducive to accurately recording traffic information. Therefore, there are urgent theoretical and practical demands to improve image quality in foggy weather and reduce the impact of foggy weather on outdoor imaging.

随着计算机技术的发展,视频和图像去雾算法受到了广泛的关注,并广泛应用于民用和军事领域,如遥感、目标检测和交通监控。With the development of computer technology, video and image dehazing algorithms have received extensive attention and are widely used in civil and military fields, such as remote sensing, target detection, and traffic monitoring.

目前,图像去雾算法主要可以分为三种类型:第一类是图像增强的去雾方法。该方法不考虑导致图像退化的原因,使图像去雾的问题转化为对比度增强的问题,经过增强后的图像具有更高的对比度,使得复原后的图像更符合人类的审美观念,但是处理后的图像存在信息丢失的问题,会出现失真现象。第二类是图像复原的去雾方法。该方法是从图像退化的角度出发进行分析,建立雾天成像的模型,推导出图像退化的过程,据此恢复出去雾后的图像,该方法使经过处理后的图像更加清晰、自然,细节损失较少。然而,去雾的效果与模型参数的选取有关,不精确的参数将直接影响复原后图像的效果。近年来,随着深度学习的不断发展,越来越多的被用于图像处理领域,比如图像分类、物体识别、人脸识别等,且获得了较好的效果。因此,基于深度学习的去雾算法可以被认为是第三类去雾算法。现有基于深度学习的图像去雾算法,有雾图像大都是通过无雾图像经由大气散射模型,随机设置参数人工合成;再将合成的有雾图像输入学习网络中,输出图像的透射率,最后经过逆推计算出无雾图像。卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,它通过权值共享和局部感受野,减少参数个数和连接数量,降低了神经网络的复杂度,具有很强的适应性。因此,CNN被广泛应用于图像处理研究,其在图像识别领域的应用是当下研究热点。At present, image dehazing algorithms can be mainly divided into three types: the first type is the dehazing method of image enhancement. This method does not consider the cause of image degradation, and turns the problem of image dehazing into a problem of contrast enhancement. The enhanced image has higher contrast, making the restored image more in line with human aesthetic concepts, but the processed image There is a problem of information loss in the image, and distortion will occur. The second category is the dehazing method for image restoration. This method analyzes from the perspective of image degradation, establishes a foggy imaging model, deduces the process of image degradation, and restores the image after dehazing. This method makes the processed image clearer and more natural, with loss of details. less. However, the effect of dehazing is related to the selection of model parameters, and inaccurate parameters will directly affect the effect of the restored image. In recent years, with the continuous development of deep learning, more and more are used in the field of image processing, such as image classification, object recognition, face recognition, etc., and have achieved good results. Therefore, the dehazing algorithm based on deep learning can be considered as the third type of dehazing algorithm. In the existing deep learning-based image dehazing algorithms, most of the foggy images are artificially synthesized by using the haze-free image through the atmospheric scattering model and randomly setting parameters; The fog-free image is calculated by inverse calculation. Convolutional Neural Network (CNN) is a deep learning model, which reduces the number of parameters and connections through weight sharing and local receptive fields, reduces the complexity of neural networks, and has strong adaptability . Therefore, CNN is widely used in image processing research, and its application in the field of image recognition is a current research hotspot.

基于图像复原的去雾算法虽然效果相对较好,但由于简化的物理模型是基于大气是单散射且介质均匀的条件下,不具有普适性,如不均匀雾或天空区域,且在阴暗的环境中易造成颜色失真。Although the dehazing algorithm based on image restoration has a relatively good effect, it is not universal because the simplified physical model is based on the condition that the atmosphere is single scattering and the medium is homogeneous, such as uneven fog or sky area, and in the dark It is easy to cause color distortion in the environment.

发明内容SUMMARY OF THE INVENTION

发明目的:为解决上述技术问题,本发明提出一种新的基于卷积神经网络和多通道颜色信息融合的图像去雾方法,以达到图像去雾的目的。Purpose of the invention: In order to solve the above technical problems, the present invention proposes a new image dehazing method based on convolutional neural network and multi-channel color information fusion, so as to achieve the purpose of image dehazing.

技术方案:为实现上述技术效果,本发明提出的技术方案为:Technical scheme: In order to realize the above-mentioned technical effect, the technical scheme proposed by the present invention is:

一种基于卷积神经网络的单幅图像去雾方法,包括依次执行的步骤(1)至(9):A single image dehazing method based on convolutional neural network, comprising steps (1) to (9) performed in sequence:

(1)构建训练样本和测试样本:获取若干无雾图像,在无雾图像上添加不同浓度的雾,得到有雾图像,将有雾图像和无雾图像转换成HDF5格式的图像块,并按照预设比例分别将有雾图像的图像块和无雾图像的图像块分为两部分,一部分作为训练样本,另一部分作为测试样本;(1) Construct training samples and test samples: obtain several fog-free images, add fog of different concentrations to the fog-free images to obtain foggy images, convert the foggy and fog-free images into image blocks in HDF5 format, and follow The preset ratio divides the image block of the foggy image and the image block of the non-fog image into two parts, one part is used as a training sample, and the other part is used as a test sample;

(2)构建多尺度深度卷积网络模型,所述多尺度深度卷积网络模型包括浅层卷积神经网络和深层卷积神经网络;(2) building a multi-scale deep convolutional network model, the multi-scale deep convolutional network model includes a shallow convolutional neural network and a deep convolutional neural network;

浅层卷积神经网络包括:依次级联的输入层、卷积层、全连接层、池化层和输出层;其中,输入层将输入图像块i映射到R、G、B颜色空间,卷积层采用高斯滤波器对输入图像块的R、G、B颜色通道的值分别进行卷积,卷积后的结果为The shallow convolutional neural network includes: an input layer, a convolutional layer, a fully connected layer, a pooling layer, and an output layer that are cascaded in sequence; the input layer maps the input image block i to the R, G, and B color spaces, and the volume The product layer uses a Gaussian filter to convolve the values of the R, G, and B color channels of the input image block respectively, and the result after convolution is

其中,Ic表示输入图像块R、G、B颜色空间的某一颜色通道的像素值矩阵,W1和B1分别表示对应的卷积网络的权重系数矩阵和偏差矩阵;Wherein, Ic represents the pixel value matrix of a certain color channel of the input image block R, G, B color space, W1 and B1 respectively represent the weight coefficient matrix and the deviation matrix of the corresponding convolutional network;

全连接层对上述卷积层的结果进行合并,合并后的结果为:The fully connected layer combines the results of the above convolutional layers, and the combined result is:

池化层对全连接层的结果进行下采样后,可得到输入图像块的高维特征向量F2After the pooling layer downsamples the results of the fully connected layer, the high-dimensional feature vector F2 of the input image block can be obtained:

其中,F2(x)表示输入图像块中像素点x处的特征值,Ω(x)是输入图像块中以像素点x为中心的某一区域;将池化层的结果F2通过输出层输出至深层卷积神经网络,F2即为输入图像块的场景深度矩阵;Among them, F2 (x) represents the feature value at the pixel point x in the input image block, Ω(x) is a certain area centered on the pixel point x in the input image block; the result of the pooling layer F2 is output through the outputThe layer is output to the deep convolutional neural network, and F2 is the scene depth matrix of the input image block;

深层卷积神经网络包括:输入层、多尺度映射单元、多尺度连接层、池化层、卷积层、BReLU激励层和输出层;The deep convolutional neural network includes: input layer, multi-scale mapping unit, multi-scale connection layer, pooling layer, convolution layer, BReLU excitation layer and output layer;

其中,输入层接收浅层卷积神经网络输出的高维特征向量F2;多尺度映射单元将F2映射为Among them, the input layer receives the high-dimensional feature vector F2 output by the shallow convolutional neural network; the multi-scale mapping unit maps F2 as

其中,W3为多尺度映射单元中3组不同尺度的卷积网络分别对应的权重系数矩阵,B3为偏差矩阵,*代表卷积操作;Among them, W3 is the weight coefficient matrix corresponding to three groups of convolutional networks of different scales in the multi-scale mapping unit, B3 is the deviation matrix, and * represents the convolution operation;

多尺度连接层对上述多尺度映射单元的输出结果进行合并得到F3The multi-scale connection layer combines the output results of the above multi-scale mapping units to obtain F3 :

其中,分别为所述3组不同尺度的卷积网络的输出结果;in, are the output results of the three groups of convolutional networks of different scales;

然后,池化层对多尺度连接层的输出进行下采样,池化层的输出为F4Then, the pooling layer downsamples the output of the multi-scale connection layer, and the output of the pooling layer isF4 :

卷积层将池化层的结果F4映射为F5The convolutional layer maps the result of the pooling layer,F4 , toF5 :

F5=W5*F4+B5F5 =W5 *F4 +B5

其中,W5为多尺度映射单元中卷积网络的权重系数矩阵,B5为偏差矩阵,*代表卷积操作;Among them, W5 is the weight coefficient matrix of the convolution network in the multi-scale mapping unit, B5 is the deviation matrix, and * represents the convolution operation;

BReLU激励层利用双边修正线性单元BReLU激活函数对卷积层的输出结果F5进行非线性回归,得到F6The BReLU activation layer uses the bilateral modified linear unit BReLU activation function to perform nonlinear regression on the output result F5 of the convolution layer, and obtains F6 :

F6(x)=min(amax,F5(x))F6 (x)=min(amax ,F5 (x))

其中,amax为双边修正线性单元BReLU激活函数的上幅值;Among them, amax is the upper amplitude value of the bilateral modified linear unit BReLU activation function;

最后,令t=F6,输出层输出t,t即为输入图像块的透射率矩阵;Finally, let t=F6 , the output layer outputs t, and t is the transmittance matrix of the input image block;

(3)构建损失函数:(3) Construct the loss function:

当只有单个训练样本i时,损失函数为:When there is only a single training sample i, the loss function is:

当有多个训练样本时,损失函数为:When there are multiple training samples, the loss function is:

其中,ti表示训练样本i的透射图,n是训练样本的个数,λ表示衰减参数,Wji表示训练样本i的权值系数矩阵Wj表示训练样本i的实际透射率矩阵;Among them, ti represents the transmission map of the training sample i, n is the number of training samples, λ represents the attenuation parameter, Wji represents the weight coefficient matrix Wj of the training sample i, represents the actual transmittance matrix of training sample i;

(4)对每个Wji,用平均值为0和标准偏差为0.001的高斯分布随机初始化Wji中的各项分量;初始化Bji为0,Bji表示训练样本i的偏差矩阵Bj;初始化ΔWji=0,ΔBji=0;(4) For each Wji , use a Gaussian distribution with an average value of 0 and a standard deviation of 0.001 to randomly initialize the components in Wji ; initialize Bji to 0, and Bji represents the deviation matrix Bj of the training sample i; Initialize ΔWji =0, ΔBji =0;

(5)对每个样本i,利用反向传播算法求出Wji和Bji的偏导:(5) For each sample i, use the backpropagation algorithm to find the partial derivatives of Wji and Bji : and

求出Wji和Bji的变化量:Find the amount of change in Wji and Bji :

(6)更新:(6) Update:

(7)将更新后的Wji和Bji代入损失函数,重复执行步骤(5)至(7),直至损失函数的值最小,至此,所述多尺度深度卷积网络模型训练完毕,转入步骤(8);(7) Substitute the updated Wji and Bji into the loss function, and repeat steps (5) to (7) until the value of the loss function is the smallest. step (8);

(8)将新的有雾图像输入训练好的多尺度深度卷积网络模型,得到的输出结果作为该新的有雾图像的初始透射率;(8) Input the new foggy image into the trained multi-scale deep convolutional network model, and the obtained output is used as the initial transmittance of the new foggy image;

(9)估计出新的有雾图像拍摄时的大气光强A;根据大气散射模型恢复相应的无雾图像。(9) Estimate the atmospheric light intensity A when the new foggy image is taken; restore the corresponding fog-free image according to the atmospheric scattering model.

进一步的,所述根据大气散射模型计算得到,大气散射模型为:Further, the said According to the calculation of the atmospheric scattering model, the atmospheric scattering model is:

其中,I表示训练样本i的光强矩阵,J表示原始的无雾图像中与训练样本i相对应的图像块的光强矩阵,A为训练样本i相应的有雾图像拍摄时的大气光强度A。Among them, I represents the light intensity matrix of the training sample i, J represents the light intensity matrix of the image block corresponding to the training sample i in the original haze-free image, and A is the atmospheric light intensity when the foggy image corresponding to the training sample i was taken. A.

进一步的,所述估计有雾图像拍摄时的大气光强A的方法为:Further, the method for estimating the atmospheric light intensity A when the foggy image is photographed is:

估计有雾图像的暗通道图:Estimate the dark channel map for a hazy image:

其中,Idark表示有雾图像的像素矩阵I的暗通道图估计结果,Ic表示I的某一颜色通道的值,y表示像素点;Among them, Idark represents the dark channel map estimation result of the pixel matrix I of the foggy image, Ic represents the value of a certain color channel of I, and y represents the pixel point;

对获得的暗通道图的像素值进行降序排序,选取排在前千分之一的像素点作为候选点,将候选点对应到有雾图像中的相应位置,在有雾图像中计算候选点相应位置的亮度值,将计算出的最大亮度值作为大气光强估计值A。Sort the pixel values of the obtained dark channel map in descending order, select the top one thousandth pixel point as the candidate point, correspond the candidate point to the corresponding position in the foggy image, and calculate the corresponding position of the candidate point in the foggy image. The brightness value of the location, and the calculated maximum brightness value is used as the estimated value of atmospheric light intensity A.

有益效果:与现有技术相比,本发明具有以下优势:Beneficial effect: Compared with the prior art, the present invention has the following advantages:

1、本发明与基于物理模型的图像复原算法相比,特别是经典的暗通道先验,本发明利用样本集的多样性以及网络结构的普适性,对介质不均匀以及雾化图像中的平坦区域都具有较好的去雾效果;1. Compared with the image restoration algorithm based on the physical model, the present invention, especially the classical dark channel prior, utilizes the diversity of the sample set and the universality of the network structure, and can effectively solve the problem of uneven medium and fog images. Flat areas have better dehazing effect;

2、本发明通过对雾化图像RGB颜色空间三个通道的信息进行融合,设计端到端的深层卷积神经网络,避免了阴暗环境下去雾造成的颜色失真;2. The present invention designs an end-to-end deep convolutional neural network by fusing the information of the three channels of the RGB color space of the foggy image, so as to avoid color distortion caused by fog removal in a dark environment;

3、本发明了将卷积神经网络与图像先验信息相结合,可以更加准确的估计有雾图像的媒介透射率,可以获得更好的去雾效果,去雾后的图像更加真实自然。3. The present invention combines the convolutional neural network with the image prior information, which can more accurately estimate the medium transmittance of the foggy image, obtain a better dehazing effect, and the image after dehazing is more real and natural.

附图说明Description of drawings

图1为发明所述一种基于卷积神经网络的单幅图像去雾方法的流程图;Fig. 1 is a flow chart of a method for dehazing a single image based on a convolutional neural network according to the invention;

图2为本发明中浅层卷积神经网络的结构图;2 is a structural diagram of a shallow convolutional neural network in the present invention;

图3为本发明中深层卷积神经网络的结构图。FIG. 3 is a structural diagram of a deep convolutional neural network in the present invention.

具体实施方式Detailed ways

下面结合附图和实施例对本发明作更进一步的说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.

图1所示为本发明所述一种基于卷积神经网络的单幅图像去雾方法的流程图,该方法包括:FIG. 1 is a flowchart of a method for dehazing a single image based on a convolutional neural network according to the present invention, and the method includes:

步骤1、获取PASCAL VOC数据集以及在网上下载的无雾图像作为训练样本中的无雾图像集;Step 1. Obtain the PASCAL VOC dataset and the haze-free images downloaded on the Internet as the haze-free image set in the training sample;

步骤2、利用柏林噪声(Perlin Noise)为步骤1中的无雾图像集添加不同浓度的雾,得到有雾图像集;将有雾图像集和无雾图像集中的图像裁剪成64*64的图像块,再转换成HDF5的数据格式存储,然后分别将有雾图像的图像块和无雾图像的图像块按比例分成两部分,一部分作为训练样本,另一部分作为测试样本,便于训练;为了能够适应不同天气条件下的雾浓度,学习到不同雾浓度图像的特征,对无雾图像集合成了浓度分别为10,20,30,40,50,60,70,80,90,100的雾,得到有雾图像集;挑选有雾图像和无雾图像2506对作为训练样本,剩余502对作为测试样本;Step 2. Use Perlin Noise to add fog of different concentrations to the fog-free image set in step 1 to obtain a foggy image set; crop the images in the foggy image set and the fog-free image set into 64*64 images Then convert the image block of the foggy image and the image block of the non-fog image into two parts in proportion, one part is used as a training sample, and the other part is used as a test sample, which is convenient for training; in order to adapt to Fog density under different weather conditions, the characteristics of images with different fog density are learned, and the fog-free images are assembled with fog concentrations of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, respectively, and get Foggy image set; select 2506 pairs of foggy images and non-fog images as training samples, and the remaining 502 pairs as test samples;

步骤3、将步骤2中HDF5格式的训练样本作为输入,设计端到端的多尺度深度卷积网络模型;所述多尺度深度卷积网络模型包括浅层卷积神经网络和深层卷积神经网络;Step 3. Design an end-to-end multi-scale deep convolutional network model with the training samples in HDF5 format in step 2 as input; the multi-scale deep convolutional network model includes a shallow convolutional neural network and a deep convolutional neural network;

浅层卷积神经网络的结构如图2所示,浅层卷积神经网络包括:1个输入层,1个卷积层,1个全连接层,1个池化层和1个输出层。The structure of the shallow convolutional neural network is shown in Figure 2. The shallow convolutional neural network includes: 1 input layer, 1 convolutional layer, 1 fully connected layer, 1 pooling layer and 1 output layer.

其中,卷积层包括32个的高斯滤波器,输入图像块RGB颜色空间的三个通道分别与平行的32个高斯滤波器进行卷积,使得每一个输入图像块被一个高维特征向量所代表:Among them, the convolution layer includes 32 Gaussian filters, and the three channels of the RGB color space of the input image block are convolved with 32 parallel Gaussian filters, so that each input image block is represented by a high-dimensional feature vector. :

其中,Ic表示输入图像块R、G、B颜色空间的某一颜色通道的像素值矩阵,W1和B1分别表示对应的卷积网络的权重系数矩阵和偏差矩阵;Wherein, Ic represents the pixel value matrix of a certain color channel of the input image block R, G, B color space, W1 and B1 respectively represent the weight coefficient matrix and the deviation matrix of the corresponding convolutional network;

全连接层对上述卷积层的结果进行合并,合并后的结果为:The fully connected layer combines the results of the above convolutional layers, and the combined result is:

其中,∩表示连接操作;Among them, ∩ represents the connection operation;

池化层对全连接层输出的高维特征向量进行下采样,采用Max pooling方法,滤波器大小为3*3,可得到输入图像块的高维特征向量F2The pooling layer downsamples the high-dimensional feature vector output by the fully-connected layer, adopts the Max pooling method, the filter size is 3*3, and the high-dimensional feature vector F2 of the input image block can be obtained:

其中,F2(x)表示输入图像块中像素点x处的特征值,Ω(x)是输入图像块中以像素点x为中心的某一区域;Among them, F2 (x) represents the feature value at the pixel point x in the input image block, and Ω(x) is a certain area centered on the pixel point x in the input image block;

将池化层的结果F2通过输出层输出至深层卷积神经网络,F2即为输入图像块的场景深度矩阵;The result of the pooling layer F2 is output to the deep convolutional neural network through the output layer, and F2 is the scene depth matrix of the input image block;

深层卷积神经网络的结构如图3所示,包括:输入层、多尺度映射单元、多尺度连接层、池化层、卷积层、BReLU激励层和输出层;The structure of the deep convolutional neural network is shown in Figure 3, including: input layer, multi-scale mapping unit, multi-scale connection layer, pooling layer, convolution layer, BReLU excitation layer and output layer;

其中,输入层接收浅层卷积神经网络输出的高维特征向量F2;多尺度映射单元将F2映射为Among them, the input layer receives the high-dimensional feature vector F2 output by the shallow convolutional neural network; the multi-scale mapping unit maps F2 as

其中,W3为多尺度映射单元中3组不同尺度的卷积网络分别对应的权重系数矩阵,B3为偏差矩阵,*代表卷积操作;Among them, W3 is the weight coefficient matrix corresponding to three groups of convolutional networks of different scales in the multi-scale mapping unit, B3 is the deviation matrix, and * represents the convolution operation;

多尺度连接层对上述多尺度映射单元的输出结果进行合并得到F3The multi-scale connection layer combines the output results of the above multi-scale mapping units to obtain F3 :

其中,分别为所述3组不同尺度的卷积网络的输出结果;in, are the output results of the three groups of convolutional networks of different scales;

然后,池化层对多尺度连接层的输出进行下采样,池化层的输出为F4Then, the pooling layer downsamples the output of the multi-scale connection layer, and the output of the pooling layer isF4 :

卷积层将池化层的结果F4映射为F5The convolutional layer maps the result of the pooling layer,F4 , toF5 :

F5=W5*F4+B5F5 =W5 *F4 +B5

其中,W5为多尺度映射单元中卷积网络的权重系数矩阵,B5为偏差矩阵,*代表卷积操作;Among them, W5 is the weight coefficient matrix of the convolution network in the multi-scale mapping unit, B5 is the deviation matrix, and * represents the convolution operation;

BReLU激励层利用双边修正线性单元BReLU激活函数对卷积层的输出结果F5进行非线性回归,得到F6The BReLU activation layer uses the bilateral modified linear unit BReLU activation function to perform nonlinear regression on the output result F5 of the convolution layer, and obtains F6 :

F6(x)=min(amax,F5(x))F6 (x)=min(amax ,F5 (x))

其中,amax为双边修正线性单元BReLU激活函数的上幅值;双边修正线性单元BReLU激活函数的梯度函数为:Among them, amax is the upper amplitude value of the activation function of the bilateral modified linear unit BReLU; the gradient function of the activation function of the bilateral modified linear unit BReLU is:

最后,令t=F6,输出层输出t,t即为输入图像块的透射率矩阵;Finally, let t=F6 , the output layer outputs t, and t is the transmittance matrix of the input image block;

步骤4:构建损失函数:Step 4: Build the loss function:

当只有单个训练样本i时,损失函数为:When there is only a single training sample i, the loss function is:

当有多个训练样本时,损失函数为:When there are multiple training samples, the loss function is:

其中,ti表示训练样本i的透射图,n是训练样本的个数,λ表示衰减参数,Wji表示训练样本i的权值系数矩阵Wj表示训练样本i的实际透射率矩阵;所述根据大气散射模型计算得到,大气散射模型为:Among them, ti represents the transmission map of the training sample i, n is the number of training samples, λ represents the attenuation parameter, Wji represents the weight coefficient matrix Wj of the training sample i, represents the actual transmittance matrix of training sample i; the According to the calculation of the atmospheric scattering model, the atmospheric scattering model is:

其中,I表示训练样本i的光强矩阵,J表示原始的无雾图像中与训练样本i相对应的图像块的光强矩阵,A为训练样本i相应的有雾图像拍摄时的大气光强度A。在损失函数中,等式右侧第一项是均方差项,第二项是规则项。可以看出,规则项和偏置Bji无关,仅能控制权重的大小,因此也称为权重衰减项。权重衰减项中权重的衰减参数λ可以用来决定两项在损失函数中的比重。训练的关键就是通过不断调整权重Wji和偏置Bji,获得最小的损失函数。Among them, I represents the light intensity matrix of the training sample i, J represents the light intensity matrix of the image block corresponding to the training sample i in the original haze-free image, and A is the atmospheric light intensity when the foggy image corresponding to the training sample i was taken. A. in the loss function , the first term on the right-hand side of the equation is the mean square error term, the second term is the rule item. It can be seen that the rule term has nothing to do with the bias Bji , and can only control the size of the weight, so it is also called the weight decay term. The decay parameter λ of the weight in the weight decay term can be used to determine the weight of the two terms in the loss function. The key to training is to obtain the smallest loss function by continuously adjusting the weight Wji and the bias Bji .

训练时,首先对所有的权重Wji和偏置Bji参数进行初始化。网络模型每层的权重均使用平均值为0和标准偏差为0.001的高斯分布随机初始化滤波器权重,初始偏置设置为0。During training, all weights Wji and bias Bji parameters are initialized first. The weights of each layer of the network model are randomly initialized with a Gaussian distribution with a mean of 0 and a standard deviation of 0.001, and the initial bias is set to 0.

初始化完成后,使用随机梯度下降算法来更新权重Wji和偏置Bji。更新规则分别服从公式如下:After initialization, the stochastic gradient descent algorithm is used to update the weights Wji and biases Bji . The update rules respectively obey the following formulas:

式中,α表示学习速率。上述两个公式中的偏导数可以由反向传播算法求出,即对损失函数公式分别求对权Wji和偏置Bji的偏导:where α represents the learning rate. The partial derivatives in the above two formulas can be obtained by the back-propagation algorithm, that is, the partial derivatives of the weight Wji and the bias Bji are obtained respectively for the loss function formula:

其中,反向传播算法主要步骤是:首先将给定样本进行前向传递,得到全部网络神经节点的输出值,然后计算出总误差,并用总误差对某个节点进行求偏导,可得到该节点对最终输出的影响。Among them, the main steps of the back-propagation algorithm are: firstly forward the given sample to obtain the output values of all neural nodes in the network, then calculate the total error, and use the total error to take a partial derivative of a node to obtain the The effect of the node on the final output.

因此,完整的网络模型训练步骤如下:Therefore, the complete network model training steps are as follows:

对网络各层参数进行初始化;Initialize the parameters of each layer of the network;

对每个样本i:For each sample i:

a:利用反向传播求出a: Use backpropagation to find and

b:求出参数Wji和Bji的变化量:b: Find the variation of parameters Wji and Bji :

c:完成参数更新:c: Complete parameter update:

d:将更新的权重Wji和偏置Bji代入损失函数,重复执行步骤a至步骤d,直至损失函数最小,更新结束,进入步骤5。在训练过程中使用Nvidia Ge Force GTX 1050 8G GPU进行加速。d: Substitute the updated weight Wji and bias Bji into the loss function, repeat step a to step d, until the loss function is the smallest, the update is over, and go to step 5. Use an Nvidia Ge Force GTX 1050 8G GPU for acceleration during training.

步骤5:将新的有雾图像输入训练好的多尺度深度卷积网络模型,得到的输出结果作为该新的有雾图像的初始透射率;Step 5: Input the new foggy image into the trained multi-scale deep convolutional network model, and the obtained output is used as the initial transmittance of the new foggy image;

步骤6:估计出新的有雾图像拍摄时的大气光强A;根据大气散射模型恢复相应的无雾图像。其中,估计有雾图像拍摄时的大气光强A的方法为:Step 6: Estimate the atmospheric light intensity A when the new foggy image is taken; restore the corresponding fog-free image according to the atmospheric scattering model. Among them, the method of estimating the atmospheric light intensity A when the foggy image is taken is:

估计有雾图像的暗通道图:Estimate the dark channel map for a hazy image:

其中,Idark表示有雾图像的像素矩阵I的暗通道图估计结果,Ic表示I的某一颜色通道的值,y表示像素点。Among them, Idark represents the dark channel image estimation result of the pixel matrix I of the foggy image, Ic represents the value of a certain color channel of I, and y represents the pixel point.

对获得的暗通道图的像素值进行降序排序,选取排在前千分之一的像素点作为候选点,将候选点对应到有雾图像中的相应位置,在有雾图像中计算候选点相应位置的亮度值,将计算出的最大亮度值作为大气光强估计值A。Sort the pixel values of the obtained dark channel map in descending order, select the top one thousandth pixel point as the candidate point, correspond the candidate point to the corresponding position in the foggy image, and calculate the corresponding position of the candidate point in the foggy image. The brightness value of the location, and the calculated maximum brightness value is used as the estimated value of atmospheric light intensity A.

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only the preferred embodiment of the present invention, it should be pointed out that: for those skilled in the art, without departing from the principle of the present invention, several improvements and modifications can also be made, and these improvements and modifications are also It should be regarded as the protection scope of the present invention.

Claims (3)

Translated fromChinese
1.一种基于卷积神经网络的单幅图像去雾方法,其特征在于,包括依次执行的步骤(1)至(9):1. a single image dehazing method based on convolutional neural network, is characterized in that, comprises the steps (1) to (9) that carry out successively:(1)构建训练样本和测试样本:获取若干无雾图像,在无雾图像上添加不同浓度的雾,得到有雾图像,将有雾图像和无雾图像转换成HDF5格式的图像块,并按照预设比例分别将有雾图像的图像块和无雾图像的图像块分为两部分,一部分作为训练样本,另一部分作为测试样本;(1) Construct training samples and test samples: obtain several fog-free images, add fog of different concentrations to the fog-free images to obtain foggy images, convert the foggy and fog-free images into image blocks in HDF5 format, and follow The preset ratio divides the image block of the foggy image and the image block of the non-fog image into two parts, one part is used as a training sample, and the other part is used as a test sample;(2)构建多尺度深度卷积网络模型,所述多尺度深度卷积网络模型包括浅层卷积神经网络和深层卷积神经网络;(2) building a multi-scale deep convolutional network model, the multi-scale deep convolutional network model includes a shallow convolutional neural network and a deep convolutional neural network;浅层卷积神经网络包括:依次级联的输入层、卷积层、全连接层、池化层和输出层;其中,输入层将输入图像块i映射到R、G、B颜色空间,卷积层采用高斯滤波器对输入图像块的R、G、B颜色通道的值分别进行卷积,卷积后的结果为The shallow convolutional neural network includes: an input layer, a convolutional layer, a fully connected layer, a pooling layer, and an output layer that are cascaded in sequence; the input layer maps the input image block i to the R, G, and B color spaces, and the volume The product layer uses a Gaussian filter to convolve the values of the R, G, and B color channels of the input image block respectively, and the result after convolution is其中,Ic表示输入图像块R、G、B颜色空间的某一颜色通道的像素值矩阵,W1和B1分别表示对应的卷积网络的权重系数矩阵和偏差矩阵;Wherein, Ic represents the pixel value matrix of a certain color channel of the input image block R, G, B color space, W1 and B1 respectively represent the weight coefficient matrix and the deviation matrix of the corresponding convolutional network;全连接层对上述卷积层的结果进行合并,合并后的结果为:The fully connected layer combines the results of the above convolutional layers, and the combined result is:池化层对全连接层的结果进行下采样后,可得到输入图像块的高维特征向量F2After the pooling layer downsamples the results of the fully connected layer, the high-dimensional feature vector F2 of the input image block can be obtained:其中,F2(x)表示输入图像块中像素点x处的特征值,Ω(x)是输入图像块中以像素点x为中心的某一区域;将池化层的结果F2通过输出层输出至深层卷积神经网络,F2即为输入图像块的场景深度矩阵;Among them, F2 (x) represents the feature value at the pixel point x in the input image block, Ω(x) is a certain area centered on the pixel point x in the input image block; the result of the pooling layer F2 is output through the outputThe layer is output to the deep convolutional neural network, and F2 is the scene depth matrix of the input image block;深层卷积神经网络包括:输入层、多尺度映射单元、多尺度连接层、池化层、卷积层、BReLU激励层和输出层;The deep convolutional neural network includes: input layer, multi-scale mapping unit, multi-scale connection layer, pooling layer, convolution layer, BReLU excitation layer and output layer;其中,输入层接收浅层卷积神经网络输出的高维特征向量F2;多尺度映射单元将F2映射为Among them, the input layer receives the high-dimensional feature vector F2 output by the shallow convolutional neural network; the multi-scale mapping unit maps F2 as其中,W3为多尺度映射单元中3组不同尺度的卷积网络分别对应的权重系数矩阵,B3为偏差矩阵,*代表卷积操作;Among them, W3 is the weight coefficient matrix corresponding to three groups of convolutional networks of different scales in the multi-scale mapping unit, B3 is the deviation matrix, and * represents the convolution operation;多尺度连接层对上述多尺度映射单元的输出结果进行合并得到F3The multi-scale connection layer combines the output results of the above multi-scale mapping units to obtain F3 :其中,分别为所述3组不同尺度的卷积网络的输出结果;in, are the output results of the three groups of convolutional networks of different scales;然后,池化层对多尺度连接层的输出进行下采样,池化层的输出为F4Then, the pooling layer downsamples the output of the multi-scale connection layer, and the output of the pooling layer isF4 :卷积层将池化层的结果F4映射为F5The convolutional layer maps the result of the pooling layer,F4 , toF5 :F5=W5*F4+B5F5 =W5 *F4 +B5其中,W5为多尺度映射单元中卷积网络的权重系数矩阵,B5为偏差矩阵,*代表卷积操作;Among them, W5 is the weight coefficient matrix of the convolution network in the multi-scale mapping unit, B5 is the deviation matrix, and * represents the convolution operation;BReLU激励层利用双边修正线性单元BReLU激活函数对卷积层的输出结果F5进行非线性回归,得到F6The BReLU activation layer uses the bilateral modified linear unit BReLU activation function to perform nonlinear regression on the output result F5 of the convolution layer, and obtains F6 :F6(x)=min(amax,F5(x))F6 (x)=min(amax , F5 (x))其中,amax为双边修正线性单元BReLU激活函数的上幅值;Among them, amax is the upper amplitude value of the bilateral modified linear unit BReLU activation function;最后,令t=F6,输出层输出t,t即为输入图像块的透射率矩阵;Finally, let t=F6 , the output layer outputs t, and t is the transmittance matrix of the input image block;(3)构建损失函数:(3) Construct the loss function:当只有单个训练样本i时,损失函数为:When there is only a single training sample i, the loss function is:当有多个训练样本时,损失函数为:When there are multiple training samples, the loss function is:其中,ti表示训练样本i的透射图,n是训练样本的个数,λ表示衰减参数,Wji表示训练样本i的权值系数矩阵Wj表示训练样本i的实际透射率矩阵;Among them, ti represents the transmission map of the training sample i, n is the number of training samples, λ represents the attenuation parameter, Wji represents the weight coefficient matrix Wj of the training sample i, represents the actual transmittance matrix of training sample i;(4)对每个Wji,用平均值为0和标准偏差为0.001的高斯分布随机初始化Wji中的各项分量;初始化Bji为0,Bji表示训练样本i的偏差矩阵Bj;初始化ΔWji=0,ΔBji=0;(4) For each Wji , use a Gaussian distribution with an average value of 0 and a standard deviation of 0.001 to randomly initialize the components in Wji ; initialize Bji to 0, and Bji represents the deviation matrix Bj of the training sample i; Initialize ΔWji =0, ΔBji =0;(5)对每个样本i,利用反向传播算法求出Wji和Bji的偏导:(5) For each sample i, use the backpropagation algorithm to find the partial derivatives of Wji and Bji : and求出Wji和Bji的变化量:Find the amount of change in Wji and Bji :(6)更新:(6) Update:(7)将更新后的Wji和Bji代入损失函数,重复执行步骤(5)至(7),直至损失函数的值最小,至此,所述多尺度深度卷积网络模型训练完毕,转入步骤(8);(7) Substitute the updated Wji and Bji into the loss function, and repeat steps (5) to (7) until the value of the loss function is the smallest. step (8);(8)将新的有雾图像输入训练好的多尺度深度卷积网络模型,得到的输出结果作为该新的有雾图像的初始透射率;(8) Input the new foggy image into the trained multi-scale deep convolutional network model, and the obtained output is used as the initial transmittance of the new foggy image;(9)估计出新的有雾图像拍摄时的大气光强A;根据大气散射模型恢复相应的无雾图像。(9) Estimate the atmospheric light intensity A when the new foggy image is taken; restore the corresponding fog-free image according to the atmospheric scattering model.2.根据权利要求1所述的一种基于卷积神经网络的单幅图像去雾方法,其特征在于,所述根据大气散射模型计算得到,大气散射模型为:2. a kind of single image dehazing method based on convolutional neural network according to claim 1, is characterized in that, described According to the calculation of the atmospheric scattering model, the atmospheric scattering model is:其中,I表示训练样本i的光强矩阵,J表示原始的无雾图像中与训练样本i相对应的图像块的光强矩阵,A为训练样本i相应的有雾图像拍摄时的大气光强度A。Among them, I represents the light intensity matrix of the training sample i, J represents the light intensity matrix of the image block corresponding to the training sample i in the original haze-free image, and A is the atmospheric light intensity when the foggy image corresponding to the training sample i was taken. A.3.根据权利要求2所述的一种基于卷积神经网络的单幅图像去雾方法,其特征在于,所述估计有雾图像拍摄时的大气光强A的方法为:3. a kind of single image dehazing method based on convolutional neural network according to claim 2, is characterized in that, the method for the atmospheric light intensity A when described estimation hazy image is photographed is:估计有雾图像的暗通道图:Estimate the dark channel map for a hazy image:其中,Idark表示有雾图像的像素矩阵I的暗通道图估计结果,Ic表示I的某一颜色通道的值,y表示像素点;Among them, Idark represents the dark channel map estimation result of the pixel matrix I of the foggy image, Ic represents the value of a certain color channel of I, and y represents the pixel point;对获得的暗通道图的像素值进行降序排序,选取排在前千分之一的像素点作为候选点,将候选点对应到有雾图像中的相应位置,在有雾图像中计算候选点相应位置的亮度值,将计算出的最大亮度值作为大气光强估计值A。Sort the pixel values of the obtained dark channel map in descending order, select the top one thousandth pixel point as the candidate point, correspond the candidate point to the corresponding position in the foggy image, and calculate the corresponding position of the candidate point in the foggy image. The brightness value of the location, and the calculated maximum brightness value is used as the estimated value of atmospheric light intensity A.
CN201811492894.5A2018-12-062018-12-06Single image defogging method based on convolutional neural networkActiveCN109712083B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201811492894.5ACN109712083B (en)2018-12-062018-12-06Single image defogging method based on convolutional neural network

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201811492894.5ACN109712083B (en)2018-12-062018-12-06Single image defogging method based on convolutional neural network

Publications (2)

Publication NumberPublication Date
CN109712083Atrue CN109712083A (en)2019-05-03
CN109712083B CN109712083B (en)2021-02-12

Family

ID=66255491

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201811492894.5AActiveCN109712083B (en)2018-12-062018-12-06Single image defogging method based on convolutional neural network

Country Status (1)

CountryLink
CN (1)CN109712083B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110097522A (en)*2019-05-142019-08-06燕山大学A kind of single width Method of defogging image of outdoor scenes based on multiple dimensioned convolutional neural networks
CN110310238A (en)*2019-06-182019-10-08华南农业大学 A Single Image Rain Removal Method Based on Compressed Reward and Punishment Neural Network Reusing Original Information
CN110363727A (en)*2019-07-242019-10-22中国人民解放军火箭军工程大学 Image Dehazing Method Based on Multi-scale Dark Channel Prior Cascade Deep Neural Network
CN110570363A (en)*2019-08-052019-12-13浙江工业大学 Image dehazing method based on Cycle-GAN with pyramid pooling and multi-scale discriminator
CN110930320A (en)*2019-11-062020-03-27南京邮电大学Image defogging method based on lightweight convolutional neural network
CN111192219A (en)*2020-01-022020-05-22南京邮电大学 An Image Dehazing Method Based on Improved Inverse Atmospheric Scattering Model Convolutional Network
CN111369472A (en)*2020-03-122020-07-03北京字节跳动网络技术有限公司Image defogging method and device, electronic equipment and medium
CN111507914A (en)*2020-04-102020-08-07北京百度网讯科技有限公司Training method, repairing method, device, equipment and medium of face repairing model
CN111539250A (en)*2020-03-122020-08-14上海交通大学 A neural network-based image fog density estimation method, system and terminal
CN111681180A (en)*2020-05-252020-09-18厦门大学 A priori-driven deep learning image dehazing method
CN111814753A (en)*2020-08-182020-10-23深延科技(北京)有限公司Target detection method and device under foggy weather condition
CN112364136A (en)*2021-01-122021-02-12平安国际智慧城市科技股份有限公司Keyword generation method, device, equipment and storage medium
CN112365476A (en)*2020-11-132021-02-12南京信息工程大学Fog visibility detection method based on dual-channel deep network
CN112950589A (en)*2021-03-032021-06-11桂林电子科技大学Dark channel prior defogging algorithm of multi-scale convolution neural network
CN112991225A (en)*2021-04-142021-06-18集美大学Sea surface target image defogging method
CN113191980A (en)*2021-05-122021-07-30大连海事大学Underwater image enhancement method based on imaging model
CN113658059A (en)*2021-07-272021-11-16西安理工大学 A dehazing enhancement method for remote sensing images based on deep learning
CN113706395A (en)*2020-05-212021-11-26无锡科美达医疗科技有限公司Image defogging method based on antagonistic neural network
CN113763259A (en)*2021-02-182021-12-07北京沃东天骏信息技术有限公司 Image dehazing method and device
CN115587946A (en)*2022-10-122023-01-10中电莱斯信息系统有限公司 A remote sensing image defogging method based on multi-scale network
CN115689932A (en)*2022-11-092023-02-03重庆邮电大学Image defogging method based on deep neural network
CN119599911A (en)*2024-11-212025-03-11河南铭视科技股份有限公司 A multi-scale image defogging method suitable for camera devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8350933B2 (en)*2009-04-082013-01-08Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd.Method, apparatus and computer program product for single image de-hazing
CN106127702A (en)*2016-06-172016-11-16兰州理工大学 An Image Dehazing Algorithm Based on Deep Learning
CN107749052A (en)*2017-10-242018-03-02中国科学院长春光学精密机械与物理研究所Image defogging method and system based on deep learning neutral net
CN107958465A (en)*2017-10-232018-04-24华南农业大学 A Single Image Dehazing Method Based on Deep Convolutional Neural Network
KR20180050832A (en)*2016-11-072018-05-16한국과학기술원Method and system for dehazing image using convolutional neural network
CN108550130A (en)*2018-04-232018-09-18南京邮电大学A kind of multiple dimensioned transmission plot fusion method of image pyramid model

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8350933B2 (en)*2009-04-082013-01-08Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd.Method, apparatus and computer program product for single image de-hazing
CN106127702A (en)*2016-06-172016-11-16兰州理工大学 An Image Dehazing Algorithm Based on Deep Learning
KR20180050832A (en)*2016-11-072018-05-16한국과학기술원Method and system for dehazing image using convolutional neural network
CN107958465A (en)*2017-10-232018-04-24华南农业大学 A Single Image Dehazing Method Based on Deep Convolutional Neural Network
CN107749052A (en)*2017-10-242018-03-02中国科学院长春光学精密机械与物理研究所Image defogging method and system based on deep learning neutral net
CN108550130A (en)*2018-04-232018-09-18南京邮电大学A kind of multiple dimensioned transmission plot fusion method of image pyramid model

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOLUN CAI,ET AL.: "DehazeNet: An End-to-End System for Single Image Haze Removal", 《IEEE TRANSACTIONS ON IMAGE PROCESSING》*
彭耀旺: "图像去雾技术的研究", 《中国优秀硕士学位论文全文数据库信息科技辑》*
徐岩 等: "基于多特征融合的卷积神经网络图像去雾算法", 《激光与光电子学进展》*

Cited By (32)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110097522A (en)*2019-05-142019-08-06燕山大学A kind of single width Method of defogging image of outdoor scenes based on multiple dimensioned convolutional neural networks
CN110310238A (en)*2019-06-182019-10-08华南农业大学 A Single Image Rain Removal Method Based on Compressed Reward and Punishment Neural Network Reusing Original Information
CN110363727B (en)*2019-07-242020-06-12中国人民解放军火箭军工程大学 Image dehazing method based on multi-scale dark channel prior cascaded deep neural network
CN110363727A (en)*2019-07-242019-10-22中国人民解放军火箭军工程大学 Image Dehazing Method Based on Multi-scale Dark Channel Prior Cascade Deep Neural Network
CN110570363A (en)*2019-08-052019-12-13浙江工业大学 Image dehazing method based on Cycle-GAN with pyramid pooling and multi-scale discriminator
CN110930320B (en)*2019-11-062022-08-16南京邮电大学Image defogging method based on lightweight convolutional neural network
CN110930320A (en)*2019-11-062020-03-27南京邮电大学Image defogging method based on lightweight convolutional neural network
CN111192219A (en)*2020-01-022020-05-22南京邮电大学 An Image Dehazing Method Based on Improved Inverse Atmospheric Scattering Model Convolutional Network
CN111192219B (en)*2020-01-022022-07-26南京邮电大学Image defogging method based on improved inverse atmospheric scattering model convolution network
CN111369472A (en)*2020-03-122020-07-03北京字节跳动网络技术有限公司Image defogging method and device, electronic equipment and medium
CN111539250A (en)*2020-03-122020-08-14上海交通大学 A neural network-based image fog density estimation method, system and terminal
CN111539250B (en)*2020-03-122024-02-27上海交通大学Image fog concentration estimation method, system and terminal based on neural network
CN111369472B (en)*2020-03-122021-04-23北京字节跳动网络技术有限公司Image defogging method and device, electronic equipment and medium
CN111507914A (en)*2020-04-102020-08-07北京百度网讯科技有限公司Training method, repairing method, device, equipment and medium of face repairing model
CN111507914B (en)*2020-04-102023-08-08北京百度网讯科技有限公司Training method, repairing method, device, equipment and medium for face repairing model
CN113706395A (en)*2020-05-212021-11-26无锡科美达医疗科技有限公司Image defogging method based on antagonistic neural network
CN111681180B (en)*2020-05-252022-04-26厦门大学Priori-driven deep learning image defogging method
CN111681180A (en)*2020-05-252020-09-18厦门大学 A priori-driven deep learning image dehazing method
CN111814753A (en)*2020-08-182020-10-23深延科技(北京)有限公司Target detection method and device under foggy weather condition
CN112365476B (en)*2020-11-132023-12-08南京信息工程大学Fog day visibility detection method based on double-channel depth network
CN112365476A (en)*2020-11-132021-02-12南京信息工程大学Fog visibility detection method based on dual-channel deep network
CN112364136A (en)*2021-01-122021-02-12平安国际智慧城市科技股份有限公司Keyword generation method, device, equipment and storage medium
CN113763259A (en)*2021-02-182021-12-07北京沃东天骏信息技术有限公司 Image dehazing method and device
CN112950589A (en)*2021-03-032021-06-11桂林电子科技大学Dark channel prior defogging algorithm of multi-scale convolution neural network
CN112991225A (en)*2021-04-142021-06-18集美大学Sea surface target image defogging method
CN112991225B (en)*2021-04-142025-04-11集美大学Defogging method for sea surface target image
CN113191980A (en)*2021-05-122021-07-30大连海事大学Underwater image enhancement method based on imaging model
CN113658059A (en)*2021-07-272021-11-16西安理工大学 A dehazing enhancement method for remote sensing images based on deep learning
CN113658059B (en)*2021-07-272024-03-26西安理工大学Remote sensing image defogging enhancement method based on deep learning
CN115587946A (en)*2022-10-122023-01-10中电莱斯信息系统有限公司 A remote sensing image defogging method based on multi-scale network
CN115689932A (en)*2022-11-092023-02-03重庆邮电大学Image defogging method based on deep neural network
CN119599911A (en)*2024-11-212025-03-11河南铭视科技股份有限公司 A multi-scale image defogging method suitable for camera devices

Also Published As

Publication numberPublication date
CN109712083B (en)2021-02-12

Similar Documents

PublicationPublication DateTitle
CN109712083B (en)Single image defogging method based on convolutional neural network
CN110930320B (en)Image defogging method based on lightweight convolutional neural network
CN111192219B (en)Image defogging method based on improved inverse atmospheric scattering model convolution network
CN106910175B (en) A single image dehazing algorithm based on deep learning
CN108269244B (en) An Image Dehazing System Based on Deep Learning and Prior Constraints
CN110555465B (en)Weather image identification method based on CNN and multi-feature fusion
CN110570371A (en) An image defogging method based on multi-scale residual learning
CN110517203B (en)Defogging method based on reference image reconstruction
CN110363727B (en) Image dehazing method based on multi-scale dark channel prior cascaded deep neural network
CN108805839A (en)Combined estimator image defogging method based on convolutional neural networks
CN106600560A (en)Image defogging method for automobile data recorder
CN116137023B (en) Low-light image enhancement method based on background modeling and detail enhancement
CN114881875A (en)Single image defogging network based on U-Net structure and residual error network and defogging method thereof
CN110197505A (en)Remote sensing images binocular solid matching process based on depth network and semantic information
CN113284070A (en)Non-uniform fog image defogging algorithm based on attention transfer mechanism
Ma et al.Image-based air pollution estimation using hybrid convolutional neural network
CN109509156A (en)A kind of image defogging processing method based on generation confrontation model
CN115546046A (en)Single image defogging method fusing frequency and content characteristics
CN113160286A (en)Near-infrared and visible light image fusion method based on convolutional neural network
CN112419163B (en)Single image weak supervision defogging method based on priori knowledge and deep learning
CN112164010A (en)Multi-scale fusion convolution neural network image defogging method
CN112070691A (en) A U-Net-based Image Dehazing Method
CN115619677A (en) An Image Dehazing Method Based on Improved CycleGAN
CN113256538B (en) An unsupervised rain removal method based on deep learning
CN115861113A (en) A Semi-supervised Dehazing Method Based on Fusion Depth Map and Feature Mask

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp