Movatterモバイル変換


[0]ホーム

URL:


CN109496143B - Preoperative planning and related intraoperative registration for surgical systems - Google Patents

Preoperative planning and related intraoperative registration for surgical systems
Download PDF

Info

Publication number
CN109496143B
CN109496143BCN201680087996.1ACN201680087996ACN109496143BCN 109496143 BCN109496143 BCN 109496143BCN 201680087996 ACN201680087996 ACN 201680087996ACN 109496143 BCN109496143 BCN 109496143B
Authority
CN
China
Prior art keywords
model
dimensional
patient
bone
resection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680087996.1A
Other languages
Chinese (zh)
Other versions
CN109496143A (en
Inventor
J·K·奥托
A·Z·阿巴西
M·埃基茨
D·佩雷斯
S·穆
X·李
T-C·常
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mako Surgical Corp
Original Assignee
Mako Surgical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mako Surgical CorpfiledCriticalMako Surgical Corp
Publication of CN109496143ApublicationCriticalpatent/CN109496143A/en
Application grantedgrantedCritical
Publication of CN109496143BpublicationCriticalpatent/CN109496143B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

Aspects of the present disclosure relate to a method of generating resection plane data for planning an arthroplasty procedure on a patient's bone. The method can comprise the following steps: obtaining patient data associated with at least a portion of a patient's bone, the patient data captured using a medical imaging machine; generating a three-dimensional patient bone model from the patient data, the patient bone model comprising a polygonal surface mesh; identifying locations of back-side points on the polygonal surface mesh; creating a three-dimensional shape centered at or near the location; identifying a rearmost vertex of all vertices of a polygonal surface mesh enclosed by the three-dimensional shape; using the rearmost vertex as a factor for determining the rear resection depth; and generating resection data using the posterior resection depth, the resection data configured to be used by a navigation system during the arthroplasty procedure.

Description

Translated fromChinese
术前规划和对手术系统的相关术中配准Preoperative planning and relative intraoperative registration of the surgical system

技术领域technical field

本公开涉及医疗系统和方法。更具体地,本公开涉及手术的术前规划和相关信息的配准以供计算机化手术系统使用。The present disclosure relates to medical systems and methods. More particularly, the present disclosure relates to preoperative planning of surgery and registration of related information for use by computerized surgical systems.

背景技术Background technique

现代整形外科关节置换手术通常涉及手术的至少一定程度的术前规划,以便提高特定手术的有效性和效率。特别地,术前规划可以提高骨切除和植入物放置的准确性,同时减少手术的总时间和患者关节打开和暴露的时间。Modern orthopaedic joint replacement procedures typically involve at least some degree of preoperative planning of the procedure in order to increase the effectiveness and efficiency of the particular procedure. In particular, preoperative planning can improve the accuracy of bone resection and implant placement, while reducing the total time of surgery and the time the patient's joint is opened and exposed.

在执行整形外科关节置换手术中使用机器人系统可以大大减少特定手术的术中时间。越来越多地,手术的有效性可能基于术前规划阶段使用的工具、系统和方法。The use of robotic systems in performing orthopaedic joint replacement procedures can greatly reduce the intraoperative time for certain procedures. Increasingly, the effectiveness of surgery may be based on the tools, systems and methods used during the preoperative planning phase.

术前规划涉及的步骤的示例可包括确定:植入物大小、位置和取向;切除平面和深度;进入手术部位的轨迹;和其他事项。在某些情况下,术前规划可包括生成患者(一个或多个)骨骼的三维(“3D”)、患者特异性模型以进行关节置换。3D患者模型可以用作视觉辅助,用于规划植入物大小、植入物取向、植入物位置以及相应的切除平面和深度以及其他参数的各种可能性。Examples of steps involved in preoperative planning may include determining: implant size, location, and orientation; resection plane and depth; trajectory into the surgical site; and other matters. In certain instances, preoperative planning may include generating a three-dimensional ("3D"), patient-specific model of the patient's skeleton(s) for joint replacement. The 3D patient model can be used as a visual aid for various possibilities for planning implant size, implant orientation, implant location and corresponding resection plane and depth, among other parameters.

虽然术前规划的某些方面的框架可能在本领域中是已知的,但是需要工具、系统和方法来进一步改进术前规划的某些方面以进一步提高机器人和机器人辅助的整形外科关节置换手术的效率和有效性。While frameworks for certain aspects of preoperative planning may be known in the art, tools, systems, and methods are needed to further improve certain aspects of preoperative planning to further improve robotic and robotic-assisted orthopaedic joint replacement surgery efficiency and effectiveness.

发明内容SUMMARY OF THE INVENTION

本公开的各方面可以涉及一种生成切除平面数据以用于规划患者骨骼上的关节成形手术的方法。该方法可以包括:获得与患者骨骼的至少一部分相关联的患者数据,患者数据使用医学成像机器而捕获;从患者数据生成三维患者骨骼模型,患者骨骼模型包括多边形表面网格;识别多边形表面网格上的后侧点的位置;创建以该位置为中心或中心在该位置附近的三维形状;识别可以被三维形状包围的多边形表面网格的所有顶点的最后侧顶点;使用最后侧顶点作为用于确定后侧切除深度的因素;使用后侧切除深度生成切除数据,所述切除数据被配置为在关节成形手术期间由导航系统使用。Aspects of the present disclosure may relate to a method of generating resection plane data for use in planning an arthroplasty procedure on a patient's bone. The method may include: obtaining patient data associated with at least a portion of the patient's skeleton, the patient data captured using a medical imaging machine; generating a three-dimensional patient skeleton model from the patient data, the patient skeleton model including a polygonal surface mesh; identifying the polygonal surface mesh location of the back point on the 3D shape; create a 3D shape centered at or near this location; identify the rearmost vertex of all vertices of a polygonal surface mesh that can be enclosed by the 3D shape; use the rearmost vertex as the Factors determining posterior resection depth; using the posterior resection depth to generate resection data configured for use by a navigation system during an arthroplasty procedure.

在某些情况下,三维患者骨骼模型可以是三维患者股骨模型。In some cases, the three-dimensional patient bone model may be a three-dimensional patient femur model.

在某些情况下,该方法还可以包括:识别第一三维骨骼模型上的第一后侧点的第一位置;并且将第一三维骨骼模型上的第一位置映射到三维患者骨骼模型上的位置。所述第一位置与所述位置在位置上相关。In some cases, the method may further include: identifying a first location of the first posterior point on the first three-dimensional bone model; and mapping the first location on the first three-dimensional bone model to a location on the three-dimensional patient bone model Location. The first location is positionally related to the location.

在某些情况下,所述第一三维骨骼模型可以是一般骨模型。In some cases, the first three-dimensional bone model may be a general bone model.

在某些情况下,所述三维形状可以包括半径为约7毫米的球体。In some cases, the three-dimensional shape may comprise a sphere with a radius of about 7 millimeters.

在某些情况下,半径可以乘以缩放因子。In some cases, the radius can be multiplied by a scaling factor.

在某些情况下,所述缩放因子可以是所述三维患者骨骼模型与一般骨骼模型之间的内侧-外侧或前-后大小差异之一。In some cases, the scaling factor may be one of a medial-lateral or anterior-posterior size difference between the three-dimensional patient bone model and a general bone model.

在某些情况下,多边形表面网格可以是三角形表面网格。In some cases, polygonal surface meshes may be triangular surface meshes.

在某些情况下,三维形状可包括球体。In some cases, the three-dimensional shape may include a sphere.

在某些情况下,所述导航系统在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。In some cases, the navigation system operates in conjunction with an autonomous robot or surgeon assisting device when performing an arthroplasty procedure.

本公开的各方面可以涉及一种生成切除平面数据以用于规划患者骨骼上的关节成形手术的方法。该方法可以包括:获得与患者骨骼的至少一部分相关联的患者数据,所述患者数据使用医学成像机器而捕获;从患者数据生成三维患者骨骼模型,所述患者骨骼模型包括多边形表面网格;识别多边形表面网格上的远端点的位置;创建以该位置为中心或中心在该位置附近的三维形状;识别由所述三维形状包围的多边形表面网格的所有顶点的最远端顶点;确定所述最远端顶点是否太靠近所述三维形状的边界;如果所述最远端顶点可能不太靠近所述三维形状的边界,则使用所述最远端顶点作为确定远端切除深度的基础;和使用所述远端切除深度生成切除数据,所述切除数据被配置为在关节成形手术期间由导航系统使用。Aspects of the present disclosure may relate to a method of generating resection plane data for use in planning an arthroplasty procedure on a patient's bone. The method may include: obtaining patient data associated with at least a portion of the patient's skeleton, the patient data captured using a medical imaging machine; generating a three-dimensional patient skeleton model from the patient data, the patient skeleton model including a polygonal surface mesh; identifying the location of the distal point on the polygonal surface mesh; create a 3D shape centered at or near the location; identify the most distal vertex of all vertices of the polygonal surface mesh enclosed by the 3D shape; determine Whether the distal-most vertex is too close to the boundary of the 3D shape; if the distal-most vertex is likely not too close to the boundary of the 3-D shape, use the distal-most vertex as a basis for determining the distal resection depth and generating resection data using the distal resection depth, the resection data being configured for use by a navigation system during an arthroplasty procedure.

在某些情况下,三维形状可包括相对于所述三维患者骨骼模型定向成使得Rx内侧-外侧延伸、Ry前-后延伸并且Rz远侧-近侧延伸的椭圆体。在某些情况下,Rx可以是约7毫米,Ry可以是约10毫米,Rz可以是约7毫米。In some cases, the three-dimensional shape may include an ellipsoid oriented relative to the three-dimensional patient bone model such that Rx extends medial-laterally, Ry extends anterior-posteriorly, and Rz extends distally-proximal. In some cases, Rx can be about 7 millimeters, Ry can be about 10 millimeters, and Rz can be about 7 millimeters.

在某些情况下,如果所述最远端顶点的位置对于椭圆体函数:f=x^2/a^2+y^2/b^2+z^2/c^2可能大于0.65,则所述最远端顶点可能太靠近椭圆体的边界,其中,x可以是所述第一位置和所述最远端顶点之间在x方向上的差,y可以是所述第一位置和所述最远端顶点之间在y方向上的差,并且z可以是所述第一位置和所述最远端顶点之间在z方向的差,a可以为Rx,b可以为Ry,并且c可以为Rz。In some cases, if the position of the most distal vertex for the ellipsoid function: f=x^2/a^2+y^2/b^2+z^2/c^2 may be greater than 0.65, then The most distal vertex may be too close to the boundary of the ellipsoid, where x may be the difference in the x direction between the first position and the most distal vertex, and y may be the first position and all the difference in the y direction between the farthest vertices, and z may be the difference in the z direction between the first position and the farthest vertex, a may be Rx, b may be Ry, and c Can be Rz.

在某些情况下,三维患者骨骼模型可以是三维患者股骨模型。In some cases, the three-dimensional patient bone model may be a three-dimensional patient femur model.

在某些情况下,三维形状可包括椭圆体、球体、棱柱、立方体或圆柱体。In some cases, three-dimensional shapes may include ellipsoids, spheres, prisms, cubes, or cylinders.

在某些情况下,导航系统在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。In some cases, the navigation system operates in conjunction with autonomous robots or surgeon aids when performing arthroplasty procedures.

本公开的各方面可以涉及一种生成切除平面数据以用于规划患者骨骼上的关节成形手术的方法。该方法可以包括:获得与患者骨骼的至少一部分相关联的患者数据,患者数据使用医学成像机器而捕获;从患者数据生成三维患者骨骼模型,所述患者骨骼模型包括多边形表面网格;识别所述多边形表面网格上的远端点的位置;创建以该位置为中心或中心在该位置附近的第一三维形状;识别由所述第一三维形状包围的多边形表面网格的所有顶点的最远端顶点;确定所述最远端顶点是否可以位于骨赘上;使用所述最远端顶点或所述最远端顶点的调整位置作为用于基于所述最远端顶点是否位于骨赘上来确定远端切除深度的基础;和使用所述远端切除深度生成切除数据,所述切除数据被配置为在关节成形手术期间由导航系统使用。Aspects of the present disclosure may relate to a method of generating resection plane data for use in planning an arthroplasty procedure on a patient's bone. The method may include: obtaining patient data associated with at least a portion of the patient's skeleton, the patient data captured using a medical imaging machine; generating a three-dimensional patient skeletal model from the patient data, the patient skeletal model comprising a polygonal surface mesh; identifying the the location of the far point on the polygonal surface mesh; create a first 3D shape centered at or near this location; identify the furthest point of all vertices of the polygonal surface mesh enclosed by the first 3D shape end vertex; determine whether the distal-most vertex can be located on an osteophyte; use the distal-most vertex or the adjusted position of the distal-most vertex as a method for determining whether the distal-most vertex is located on an osteophyte a basis for a distal resection depth; and using the distal resection depth to generate resection data configured for use by a navigation system during an arthroplasty procedure.

在某些情况下,确定所述最远端顶点是否可以位于骨赘上可包括创建位于所述最远端顶点与所述位置之间的第二三维形状。In some cases, determining whether the distal-most vertex can be located on an osteophyte may include creating a second three-dimensional shape between the distal-most vertex and the location.

在某些情况下,该方法可以进一步包括识别由所述第二三维形状包围的多边形表面网格的特定顶点,并使用与所述特定顶点相关联的信息来确定所述远端顶点是否可以位于骨赘上。In some cases, the method may further include identifying a particular vertex of a polygonal surface mesh enclosed by the second three-dimensional shape, and using the information associated with the particular vertex to determine whether the distal vertex can be located at on osteophytes.

在某些情况下,所述信息可以是与从关节表面突出的骨赘的存在相关联的方向上的最小值和最大值。In some cases, the information may be the minimum and maximum values in the direction associated with the presence of osteophytes protruding from the articular surface.

在某些情况下,该方法可以进一步包括识别由所述第二三维形状包围的多边形表面网格的特定顶点,并使用在特定坐标方向上由所述第二三维形状包围的所述特定顶点之一的最小顶点值以及在该特定坐标方向上由所述第二三维形状包围的另一个特定顶点的最大顶点值来确定所述远端顶点是否可以位于骨赘上。In some cases, the method may further include identifying specific vertices of a polygonal surface mesh enclosed by the second three-dimensional shape, and using one of the specific vertices enclosed by the second three-dimensional shape in a particular coordinate direction The smallest vertex value of one and the largest vertex value of another specific vertex enclosed by the second three-dimensional shape in the specific coordinate direction determine whether the distal vertex can be located on the osteophyte.

在某些情况下,该方法可以进一步包括确定所述最大顶点值和所述最小顶点值之间的差,并使用该差来确定骨赘的存在。In some cases, the method may further include determining a difference between the maximum vertex value and the minimum vertex value, and using the difference to determine the presence of osteophytes.

在某些情况下,所述第二三维形状可以包括具有约2毫米的半径的球体并且朝向距所述最远端顶点的位置1毫米居中。In some cases, the second three-dimensional shape may comprise a sphere having a radius of about 2 millimeters and centered toward alocation 1 millimeter from the distal-most vertex.

在某些情况下,该方法可以进一步包括识别由所述球体的边界包围的多边形表面网格的特定顶点,并确定在特定坐标方向上由所述边界包围的特定顶点之一的最大顶点值与在该特定坐标方向上由所述边界包围的另一个特定顶点的最小顶点值之间的差。In some cases, the method may further include identifying specific vertices of a polygonal surface mesh bounded by a boundary of the sphere, and determining a maximum vertex value of one of the specific vertices bounded by the boundary in a specific coordinate direction that is the same as the The difference between the minimum vertex values of another specific vertex enclosed by the boundary in the specific coordinate direction.

在某些情况下,该方法可以进一步包括使用所述差来确定是增大还是减小球体的大小。In some cases, the method may further include using the difference to determine whether to increase or decrease the size of the sphere.

在某些情况下,第一三维形状可包括椭圆体。在某些情况下,第二三维形状可包括球体。In some cases, the first three-dimensional shape may comprise an ellipsoid. In some cases, the second three-dimensional shape may comprise a sphere.

在某些情况下,导航系统在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。In some cases, the navigation system operates in conjunction with autonomous robots or surgeon aids when performing arthroplasty procedures.

本公开的各方面可以涉及一种生成切除平面数据以用于规划患者骨骼上的关节成形手术的方法。该方法可以包括:获得与患者骨骼的至少一部分相关的患者数据;从患者数据生成三维患者骨骼模型,所述患者骨骼模型在三维坐标系中定向并且包括多边形表面网格;识别三维坐标系中与切除平面相关联的特定方向;识别多边形表面网格上的位置;在该位置处或该位置附近创建表面;识别在特定方向上延伸超出该表面最远的多边形表面网格的所有顶点中的特定顶点;使用该特定顶点作为用于确定特定切除深度的因素;和使用所述特定切除深度生成切除数据,所述特定切除数据被配置为在关节成形手术期间由导航系统使用。Aspects of the present disclosure may relate to a method of generating resection plane data for use in planning an arthroplasty procedure on a patient's bone. The method may include: obtaining patient data related to at least a portion of the patient's bone; generating a three-dimensional patient bone model from the patient data, the patient bone model oriented in a three-dimensional coordinate system and including a polygonal surface mesh; a specific direction associated with a cut plane; identify a location on a polygonal surface mesh; create a surface at or near that location; identify a specific one of all vertices of a polygonal surface mesh that extends farthest beyond the surface in a specific direction a vertex; using the specific vertex as a factor for determining a specific resection depth; and generating resection data using the specific resection depth, the specific resection data being configured for use by the navigation system during an arthroplasty procedure.

在某些情况下,表面可以是平面。In some cases, the surface can be flat.

在某些情况下,表面可以是三维形状。在某些情况下,三维形状可以是球体、椭圆体、棱柱或立方体。In some cases, the surface can be a three-dimensional shape. In some cases, the three-dimensional shape can be a sphere, ellipsoid, prism, or cube.

在某些情况下,该方法还可以包括识别第一三维骨骼模型上的第一后侧点的第一位置;并且将所述第一三维骨骼模型上的所述第一位置映射到所述三维患者骨骼模型上的所述位置。所述第一位置可以与所述位置在位置上相关。In some cases, the method may further include identifying a first location of a first posterior point on a first three-dimensional skeletal model; and mapping the first location on the first three-dimensional skeletal model to the three-dimensional The location on the patient's skeletal model. The first position may be positionally related to the position.

在某些情况下,第一三维骨骼模型可以是一般骨骼模型。In some cases, the first three-dimensional skeletal model may be a general skeletal model.

在某些情况下,表面可包括半径约为7毫米的球体。在某些情况下,半径可以乘以缩放因子。在某些情况下,缩放因子可以是所述三维患者骨骼模型与一般骨骼模型之间的内侧-外侧或前-后大小差异之一。In some cases, the surface may comprise a sphere with a radius of about 7 millimeters. In some cases, the radius can be multiplied by a scaling factor. In some cases, the scaling factor may be one of the medial-lateral or anterior-posterior size differences between the three-dimensional patient bone model and the general bone model.

在某些情况下,导航系统在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。In some cases, the navigation system operates in conjunction with autonomous robots or surgeon aids when performing arthroplasty procedures.

本公开的各方面可以涉及一种生成切除平面和检查点定位数据以用于规划患者骨骼上的关节成形手术的方法。该方法可以包括:获得与患者骨骼的至少一部分相关联的患者数据,所述患者数据使用医学成像机器而捕获;从患者数据生成三维患者骨骼模型,所述患者骨骼模型包括多边形表面网格;识别所述患者骨骼模型上的第一检查点的第一位置;识别切除平面相对于所述患者骨骼模型的第二位置,所述切除平面限定所述患者骨骼模型上在切除后要被暴露的切除表面;确定从所述第一位置到所述切除表面上的点的最短有符号距离矢量;使用与所述最短有符号距离矢量相关联的信息来确定所述第一检查点的所述第一位置是否太靠近所述切除平面的所述第二位置;和Aspects of the present disclosure may relate to a method of generating resection plane and checkpoint positioning data for use in planning an arthroplasty procedure on a patient's bone. The method may include: obtaining patient data associated with at least a portion of the patient's skeleton, the patient data captured using a medical imaging machine; generating a three-dimensional patient skeleton model from the patient data, the patient skeleton model including a polygonal surface mesh; identifying a first location of a first checkpoint on the patient bone model; identifying a second location of a resection plane relative to the patient bone model, the resection plane defining a resection on the patient bone model to be exposed after resection surface; determining a shortest signed distance vector from the first location to a point on the resection surface; using information associated with the shortest signed distance vector to determine the first inspection point of the first inspection point whether the location is too close to the second location of the resection plane; and

使用所述信息生成切除和检查点定位数据,所述切除和检查点定位数据被配置成在关节成形手术期间由导航系统使用。The information is used to generate resection and checkpoint positioning data that is configured for use by a navigation system during an arthroplasty procedure.

在某些情况下,该方法可以进一步包括识别所述切除表面的法线,所述法线远离所述患者骨骼模型延伸并垂直于所述切除表面。In some cases, the method may further include identifying a normal to the resection surface, the normal extending away from the patient bone model and perpendicular to the resection surface.

在某些情况下,该方法可以进一步包括:当所述法线和所述最短有符号距离矢量指向相反方向时,确定所述第一检查点的所述第一位置太靠近所述切除平面的所述第二位置。In some cases, the method may further include determining that the first location of the first inspection point is too close to the resection plane when the normal and the shortest signed distance vector point in opposite directions the second position.

在某些情况下,患者骨骼模型可以是股骨模型。在某些情况下,患者骨骼模型可以是胫骨模型。In some cases, the patient bone model may be a femur model. In some cases, the patient bone model can be a tibia model.

在某些情况下,该方法可以进一步包括:当所述法线和所述最短有符号距离矢量指向相同方向并且所述最短有符号距离矢量的大小小于或等于约4.50毫米时,确定所述检查点的位置太靠近所述切除平面。In some cases, the method may further include determining the check when the normal and the shortest signed distance vector point in the same direction and the magnitude of the shortest signed distance vector is less than or equal to about 4.50 millimeters The position of the point is too close to the cut plane.

在某些情况下,患者骨骼模型可以是股骨模型。在某些情况下,患者骨骼模型可以是胫骨模型。In some cases, the patient bone model may be a femur model. In some cases, the patient bone model can be a tibia model.

在某些情况下,导航系统在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。In some cases, the navigation system operates in conjunction with autonomous robots or surgeon aids when performing arthroplasty procedures.

本公开的各方面可以涉及一种生成植入物位置和取向数据以用于规划患者骨骼上的关节成形手术的方法,所述患者骨骼包括外侧股骨区域、近端股骨区域和后侧股骨区域。该方法可以包括:获得与患者骨骼的至少一部分相关联的患者数据;从患者数据生成三维患者股骨模型,所述患者股骨模型包括表面边界和皮质区域,所述患者股骨模型处于三维坐标系中,其中X轴在内侧-外侧方向上,Y轴在前-后方向上,其中+Y轴指向所述股骨后侧区域,并且Z轴在上-下方向上,其中+Z轴指向所述股骨近端区域;获得包括前凸缘部分的三维股骨植入物模型,所述前凸缘部分具有上边缘和前侧骨切除接触表面,所述前侧骨切除接触表面是平面的并且邻近所述上边缘;确定所述股骨植入物模型相对于所述患者股骨模型的位置和取向;延伸与所述前侧骨切除接触表面共面的触觉平面,该触觉平面包括位于所述股骨植入物模型的前凸缘部分的上边缘上方的上边界;识别所述触觉平面的上边界上的一系列点;沿Y轴投影从所述一系列点中的每一个到所述患者股骨模型的表面边界的对应表面的矢量;基于所述矢量中的最小矢量的长度和方向确定发生切口;和基于所述股骨植入物模型相对于所述患者股骨模型的所确定的位置和取向,生成植入部件位置和取向数据,所述植入部件位置和取向数据被配置成在关节成形手术期间由导航系统使用。Aspects of the present disclosure may relate to a method of generating implant position and orientation data for planning an arthroplasty procedure on a patient's bone including a lateral femoral region, a proximal femoral region, and a posterior femoral region. The method can include: obtaining patient data associated with at least a portion of the patient's skeleton; generating a three-dimensional patient femur model from the patient data, the patient femur model including surface boundaries and cortical regions, the patient femur model being in a three-dimensional coordinate system, where the X axis is in the medial-lateral direction, the Y axis is in the anterior-posterior direction, where the +Y axis points to the posterior region of the femur, and the Z axis is in the superior-inferior direction, where the +Z axis points to the proximal femur region obtaining a three-dimensional femoral implant model comprising an anterior flange portion having a superior edge and an anterior bone resection contact surface, the anterior bone resection contact surface being planar and adjacent to the superior edge; Determining the position and orientation of the femoral implant model relative to the patient's femur model; extending a tactile plane coplanar with the anterior bone resection contact surface, the tactile plane including an anterior aspect of the femoral implant model the upper boundary above the upper edge of the flange portion; identifying a series of points on the upper boundary of the haptic plane; projecting the correspondence along the Y axis from each of the series of points to the surface boundary of the patient femur model a vector of the surface; determining an incision occurs based on the length and direction of the smallest of the vectors; and generating an implant component position and Orientation data, the implant component position and orientation data is configured to be used by the navigation system during an arthroplasty procedure.

在某些情况下,在以下情况下发生切口:所述矢量中的最小矢量的长度可以等于或大于0毫米;并且所述矢量中的最小矢量的方向可以与坐标系的+Y轴相反。In some cases, a cutout occurs when: the length of the smallest of the vectors may be equal to or greater than 0 millimeters; and the direction of the smallest of the vectors may be opposite the +Y axis of the coordinate system.

在某些情况下,在以下情况下不发生切口:所述矢量中的最小矢量的长度可以大于0毫米;并且所述矢量中的最小矢量的方向可以与坐标系的+Y轴方向相同。In some cases, the notch does not occur if: the length of the smallest of the vectors may be greater than 0 mm; and the direction of the smallest of the vectors may be the same as the +Y-axis direction of the coordinate system.

在某些情况下,长度可以基于可感知的切口深度。In some cases, the length may be based on the perceived depth of the incision.

在某些情况下,所述一系列点沿着所述触觉平面的上边界等间隔。在某些情况下,所述一系列点基于所述患者股骨模型的皮质区域处或其附近的曲率半径等间隔。在某些情况下,所述一系列点基于可感知切口的临床上相关的深度等间隔。在某些情况下,所述一系列点基于以下内容等间隔:所述患者股骨模型的皮质区域处或其附近的曲率半径;和可感知切口的临床上相关的深度。在某些情况下,所述一系列点等间隔约3.15毫米。In some cases, the series of points are equally spaced along the upper boundary of the haptic plane. In some cases, the series of points are equally spaced based on a radius of curvature at or near the cortical region of the patient's femur model. In some cases, the series of points are equally spaced based on the clinically relevant depth of the appreciable incision. In some cases, the series of points is equally spaced based on: the radius of curvature at or near the cortical region of the patient's femur model; and the clinically relevant depth of the perceptible incision. In some cases, the series of points are equally spaced about 3.15 millimeters apart.

在某些情况下,可以使用医学成像机器捕获患者数据。In some cases, patient data can be captured using medical imaging machines.

在某些情况下,导航系统在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。In some cases, the navigation system operates in conjunction with autonomous robots or surgeon aids when performing arthroplasty procedures.

本公开的各方面可以涉及一种生成植入物位置和取向数据以用于规划患者骨骼上的关节成形手术的方法,所述患者骨骼包括外侧股骨区域、近端股骨区域和后侧股骨区域。该方法可以包括:获得与患者骨骼的至少一部分相关联的患者数据,所述患者数据使用医学成像机器而捕获;从患者数据生成三维患者股骨模型;获得包括前凸缘部分的三维股骨植入物模型,所述前凸缘部分具有相关联的触觉切除对象,所述触觉切除对象具有上边界边缘;确定所述股骨植入物模型相对于所述患者股骨模型的位置和取向;基于所述上边界边缘和所述三维患者股骨模型的相交确定发生切口;和基于所述股骨植入物模型相对于所述患者股骨模型的所确定的位置和取向生成植入部件位置和取向数据,所述植入部件位置和取向数据被配置成在关节成形手术期间由导航系统使用。Aspects of the present disclosure may relate to a method of generating implant position and orientation data for planning an arthroplasty procedure on a patient's bone including a lateral femoral region, a proximal femoral region, and a posterior femoral region. The method may include: obtaining patient data associated with at least a portion of the patient's bone, the patient data captured using a medical imaging machine; generating a three-dimensional patient femur model from the patient data; obtaining a three-dimensional femoral implant including an anterior flange portion a model, the anterior flange portion having an associated tactile resection object having an upper bounding edge; determining the position and orientation of the femoral implant model relative to the patient femur model; based on the upper Intersection of the boundary edge and the three-dimensional patient femur model determines that an incision occurs; and generating implant component position and orientation data based on the determined position and orientation of the femoral implant model relative to the patient femur model, the implant Inlet component position and orientation data is configured for use by the navigation system during an arthroplasty procedure.

在某些情况下,三维患者股骨模型可以包括表面边界和皮质区域,所述患者股骨模型处于三维坐标系中,其中X轴在内侧-外侧方向上,Y轴在前-后方向上,其中+Y轴指向所述后侧股骨区域,并且Z轴在上-下方向上,其中+Z轴指向所述近端股骨区域;该方法还包括:识别所述触觉切除对象的上边界边缘上的一系列点;沿Y轴投影从所述一系列点中的每一个到所述患者股骨模型的表面边界的对应表面的矢量;和基于所述矢量中的最小矢量的长度和方向确定发生切口。In some cases, a three-dimensional patient femur model can include surface boundaries and cortical regions, the patient femur model being in a three-dimensional coordinate system with the X-axis in the medial-lateral direction and the Y-axis in the anterior-posterior direction, with +Y the axis points to the posterior femoral region, and the Z axis is in the supra-inferior direction, wherein the +Z axis points to the proximal femoral region; the method further comprises: identifying a series of points on the upper border edge of the tactile resection object ; a vector projecting along the Y axis from each of the series of points to a corresponding surface of the surface boundary of the patient's femur model; and determining the occurrence of an incision based on the length and direction of the smallest of the vectors.

在某些情况下,在以下情况下发生切口:所述矢量中的最小矢量的长度可以等于或大于0毫米;并且所述矢量中的最小矢量的方向可以与坐标系的+Y轴相反。In some cases, a cutout occurs when: the length of the smallest of the vectors may be equal to or greater than 0 millimeters; and the direction of the smallest of the vectors may be opposite the +Y axis of the coordinate system.

在某些情况下,在以下情况下不发生切口:所述矢量中的最小矢量的长度可以大于0毫米;并且所述矢量中的最小矢量的方向可以与坐标系的+Y轴相同。In some cases, no nicking occurs if: the length of the smallest of the vectors may be greater than 0 mm; and the direction of the smallest of the vectors may be the same as the +Y axis of the coordinate system.

在某些情况下,长度可以基于可感知的切口深度。In some cases, the length may be based on the perceived depth of the incision.

在某些情况下,所述一系列点沿着所述上边界边缘等间隔。在某些情况下,所述一系列点基于所述患者股骨模型的皮质区域处或其附近的曲率半径等间隔。在某些情况下,所述一系列点基于可感知切口的临床上相关的深度等间隔。在某些情况下,所述一系列点基于以下内容等间隔:所述患者股骨模型的皮质区域处或其附近的曲率半径;和可感知切口的临床上相关的深度。在某些情况下,所述一系列点等间隔约3.15毫米。In some cases, the series of points are equally spaced along the upper boundary edge. In some cases, the series of points are equally spaced based on a radius of curvature at or near the cortical region of the patient's femur model. In some cases, the series of points are equally spaced based on the clinically relevant depth of the appreciable incision. In some cases, the series of points is equally spaced based on: the radius of curvature at or near the cortical region of the patient's femur model; and the clinically relevant depth of the perceptible incision. In some cases, the series of points are equally spaced about 3.15 millimeters apart.

在某些情况下,导航系统在执行所述关节成形手术时与自主机器人或外科医生辅助设备协力操作。In some cases, the navigation system operates in conjunction with an autonomous robot or surgeon aid in performing the arthroplasty procedure.

本公开的各方面可以涉及一种生成切除数据以用于规划在软骨中至少部分地覆盖的患者骨骼上的关节成形手术的方法。该方法可以包括:接收包括骨骼模型表面的三维患者骨骼模型,所述三维患者骨骼模型通过导航系统与患者骨骼的位置和取向相关,所述三维患者骨骼模型处于三维坐标系中;识别所述三维患者骨骼模型的骨骼模型表面上的目标区域以进行术中配准;基于在与所述三维骨骼模型的骨骼模型表面上的目标区域内的点对应的位置中患者骨骼上的软骨的术中对准,接收第一多个点的位置数据;至少部分地基于第一多个点的位置数据确定切除深度;和使用所述切除深度生成切除数据,所述切除数据被配置为在关节成形手术期间由导航系统使用。Aspects of the present disclosure may relate to a method of generating resection data for planning an arthroplasty procedure on a patient's bone at least partially covered in cartilage. The method may include: receiving a three-dimensional patient bone model including a bone model surface, the three-dimensional patient bone model being related to the position and orientation of the patient's bone by a navigation system, the three-dimensional patient bone model being in a three-dimensional coordinate system; identifying the three-dimensional target area on the bone model surface of the patient's bone model for intraoperative registration; based on intraoperative registration of the cartilage on the patient's bone in locations corresponding to points within the target area on the bone model surface of the three-dimensional bone model receiving position data for the first plurality of points; determining a depth of resection based at least in part on the position data for the first plurality of points; and using the depth of resection to generate resection data, the resection data configured to be used during an arthroplasty procedure Used by the navigation system.

在某些情况下,该方法还可以包括将所述第一多个点的位置数据映射到所述三维坐标系中。In some cases, the method may also include mapping the location data of the first plurality of points into the three-dimensional coordinate system.

在某些情况下,确定切除深度可以包括确定所述第一多个点与所述骨骼模型表面上的所述目标区域之间的深度差。In some cases, determining a depth of resection may include determining a difference in depth between the first plurality of points and the target area on the surface of the bone model.

在某些情况下,该方法可以进一步包括通过将所述深度差加到仅骨骼的切除深度来确定所述切除深度。In some cases, the method may further include determining the resection depth by adding the depth difference to a bone-only resection depth.

在某些情况下,可以通过增加所述深度差向远端调整仅骨骼的切除深度。In some cases, the bone-only resection depth can be adjusted distally by increasing the depth difference.

在某些情况下,确定切除深度可以包括基于基于所述第一多个点改变仅骨骼的切除深度。In some cases, determining the resection depth may include changing the bone-only resection depth based on the first plurality of points.

在某些情况下,可以基于所述第一多个点向远端调整所述仅骨骼的切除深度。In some cases, the bone-only resection depth may be adjusted distally based on the first plurality of points.

在某些情况下,所述患者骨骼可包括股骨,并且所述三维患者骨骼模型可包括三维患者股骨模型。In some cases, the patient bone can include a femur, and the three-dimensional patient bone model can include a three-dimensional patient femur model.

在某些情况下,所述目标区域可包括所述三维患者股骨模型的内侧或外侧髁中的至少一个的关节区域。In some cases, the target area may include an articulation area of at least one of a medial or lateral condyle of the three-dimensional patient femur model.

在某些情况下,所述患者骨骼可包括胫骨,并且所述三维患者骨骼模型可包括三维患者胫骨模型。In some cases, the patient bone can include a tibia, and the three-dimensional patient bone model can include a three-dimensional patient tibia model.

在某些情况下,所述切除深度包括胫骨的近端切除深度,并且可以基于所述第一多个点的位置数据向近端调节所述近端切除深度。In some cases, the resection depth includes a proximal resection depth of the tibia, and the proximal resection depth can be adjusted proximally based on the position data of the first plurality of points.

在某些情况下,所述目标区域可包括所述三维患者胫骨模型的内侧或外侧胫骨平台中的至少一个的关节区域。In some cases, the target area may include an articulation area of at least one of a medial or lateral tibial plateau of the three-dimensional patient tibial model.

在某些情况下,三维患者骨骼模型可以是仅骨骼模型。In some cases, the three-dimensional patient bone model may be a bone-only model.

在某些情况下,可以从患者骨骼的医学图像生成三维患者骨骼模型。In some cases, a three-dimensional patient skeleton model can be generated from a medical image of the patient's skeleton.

在某些情况下,导航系统在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。In some cases, the navigation system operates in conjunction with autonomous robots or surgeon aids when performing arthroplasty procedures.

本公开的各方面可以涉及一种生成切除数据以用于规划膝关节上的关节成形手术的方法,所述膝关节包括患者的股骨和胫骨。该方法可以包括:接收在共同的三维坐标系中以第一预先规划的取向相对于彼此定向的三维股骨模型和三维股骨植入物模型,所述三维股骨模型对应于患者的股骨,所述三维股骨植入物模型包括内侧髁表面和外侧髁表面;接收在共同的三维坐标系中以第二预先规划的取向相对于彼此定向的三维胫骨模型和三维胫骨植入物模型,所述三维胫骨模型对应于患者的胫骨,所述三维胫骨植入物模型包括内侧关节表面和外侧关节表面,所述三维股骨模型和所述三维胫骨模型根据患者股骨和胫骨的姿势经由导航系统相对于彼此定向;接收对应于第一姿势中股骨和胫骨的第一位置和取向的第一位置和取向数据;计算第一姿势中所述三维股骨植入物模型的内侧髁表面与所述三维胫骨植入物模型上或与之相关联的第一点之间的第一有符号距离;计算第一姿势中所述三维股骨植入物模型的外侧髁表面与所述三维胫骨植入物模型上或与之相关联的第二点之间的第二有符号距离;基于所述第一和第二有符号距离确定或调整切除深度;和使用所述切除深度生成切除数据,所述切除数据被配置为在关节成形手术期间由导航系统使用。Aspects of the present disclosure may relate to a method of generating resection data for planning an arthroplasty procedure on a knee joint including a patient's femur and tibia. The method may include receiving a three-dimensional femoral model and a three-dimensional femoral implant model oriented relative to each other in a common three-dimensional coordinate system in a first pre-planned orientation, the three-dimensional femoral model corresponding to the patient's femur, the three-dimensional A femoral implant model includes a medial condyle surface and a lateral condyle surface; receiving a three-dimensional tibial model and a three-dimensional tibial implant model oriented relative to each other in a common three-dimensional coordinate system in a second pre-planned orientation, the three-dimensional tibial model Corresponding to a patient's tibia, the three-dimensional tibial implant model includes a medial articular surface and a lateral articular surface, the three-dimensional femoral model and the three-dimensional tibial model oriented relative to each other via a navigation system according to the posture of the patient's femur and tibia; receiving first position and orientation data corresponding to the first position and orientation of the femur and the tibia in the first posture; calculating the medial condyle surface of the three-dimensional femoral implant model in the first posture and on the three-dimensional tibial implant model a first signed distance between a first point or a first point associated therewith; calculating the lateral condyle surface of the 3D femoral implant model in a first pose and on or associated with the 3D tibial implant model a second signed distance between second points of Used by the navigation system during surgery.

在某些情况下,三维股骨模型和三维胫骨模型是从患者膝关节的医学图像生成的。In some cases, the 3D femur model and the 3D tibia model are generated from medical images of the patient's knee joint.

在某些情况下,第一姿势可以是膝关节伸展。In some cases, the first posture may be knee extension.

在某些情况下,所述第一点可位于所述三维胫骨植入物模型的内侧关节表面上,并且所述第二点可位于所述三维胫骨植入物模型的外侧关节表面上。In some cases, the first point can be located on a medial articular surface of the three-dimensional tibial implant model, and the second point can be located on a lateral articular surface of the three-dimensional tibial implant model.

在某些情况下,通过全局搜索最近距离算法计算第一和第二有符号距离。In some cases, the first and second signed distances are calculated by a global search closest distance algorithm.

在某些情况下,全局搜索最近距离算法识别与内侧和外侧髁表面以及内侧和外侧关节表面中的每一个相关联的参考顶点。In some cases, the global search closest distance algorithm identifies reference vertices associated with each of the medial and lateral condylar surfaces and the medial and lateral articular surfaces.

在某些情况下,该方法可以进一步包括:接收对应于在与所述第一姿势不同的第二姿势中的股骨和胫骨的第二位置和取向的第二位置和取向数据;计算所述第二姿势中所述三维股骨植入物模型的内侧髁表面与所述三维胫骨植入物模型的内侧关节表面之间的第三有符号距离;和计算所述第二姿势中所述三维股骨植入物模型的外侧髁表面与所述三维胫骨植入物模型的外侧关节表面之间的第四有符号距离。In some cases, the method may further include: receiving second position and orientation data corresponding to a second position and orientation of the femur and tibia in a second posture different from the first posture; calculating the first position and orientation a third signed distance between the medial condyle surface of the three-dimensional femoral implant model and the medial articular surface of the three-dimensional tibial implant model in two poses; and calculating the three-dimensional femoral graft in the second pose A fourth signed distance between the lateral condyle surface of the implant model and the lateral articular surface of the three-dimensional tibial implant model.

在某些情况下,第二姿势可以是屈曲。In some cases, the second posture may be flexion.

在某些情况下,通过全局搜索最近距离算法计算第一、第二、第三和第四有符号距离。In some cases, the first, second, third and fourth signed distances are calculated by a global search closest distance algorithm.

在某些情况下,通过全局搜索最近距离算法计算第一和第二有符号距离,并且通过增量搜索最近距离算法计算第三和第四有符号距离。In some cases, the first and second signed distances are calculated by a global search closest distance algorithm, and the third and fourth signed distances are calculated by an incremental search closest distance algorithm.

在某些情况下,所述全局搜索最近距离算法识别与所述内侧和外侧髁表面以及所述内侧和外侧关节表面中的每一个相关联的参考顶点,并且所述增量搜索最近距离算法被用于与所述内侧和外侧髁表面的参考顶点相邻的特定顶点,以确定是否有任何特定顶点分别比参考顶点更靠近对应的内侧或外侧关节表面。In some cases, the global search closest distance algorithm identifies reference vertices associated with each of the medial and lateral condyle surfaces and the medial and lateral articular surfaces, and the incremental search closest distance algorithm is For specific vertices adjacent to the reference vertices of the medial and lateral condyle surfaces to determine if any specific vertex is closer to the corresponding medial or lateral articular surface, respectively, than the reference vertex.

在某些情况下,所述三维股骨植入物模型可以包括包含顶点的第一三角形表面网格,所述三维胫骨植入物模型包括包含面的第二三角形表面网格,其中,计算所述三维股骨植入物模型的顶点和所述三维胫骨植入物模型的面之间的所述第一和第二有符号距离。In some cases, the three-dimensional femoral implant model may include a first triangular surface mesh containing vertices, the three-dimensional tibial implant model may include a second triangular surface mesh containing faces, wherein computing the The first and second signed distances between the vertex of the three-dimensional femoral implant model and the face of the three-dimensional tibial implant model.

在某些情况下,与要在关节成形手术中使用的物理胫骨植入物的内侧和关节表面相比,所述三维胫骨植入物模型的内侧和外侧关节表面被修改为较平坦或较少凹进以确定所述切除深度。In some cases, the medial and lateral articular surfaces of the three-dimensional tibial implant model are modified to be flatter or less than the medial and articular surfaces of the physical tibial implant to be used in an arthroplasty procedure Recessed to determine the depth of resection.

在某些情况下,所述第一点可位于与所述三维胫骨植入物模型相关联的胫骨切除平面的内侧部分上,并且所述第二点可位于与所述三维胫骨植入物模型相关联的胫骨切除平面的外侧部分上。In some cases, the first point may be located on a medial portion of a tibial resection plane associated with the three-dimensional tibial implant model, and the second point may be located in association with the three-dimensional tibial implant model on the lateral portion of the associated tibial resection plane.

在某些情况下,导航系统在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。In some cases, the navigation system operates in conjunction with autonomous robots or surgeon aids when performing arthroplasty procedures.

本公开的各方面可以涉及一种生成切除数据以用于规划在由患者的第一骨骼和第二骨骼形成的关节上的关节成形手术的方法。该方法可以包括:接收在共同的三维坐标系中以第一预先规划的取向相对于彼此定向的第一三维骨骼模型和第一三维植入物模型,所述第一三维骨骼模型对应于患者的所述第一骨骼,所述第一三维植入物模型包括第一植入物关节表面;接收在共同的三维坐标系中以第二预先规划的取向相对于彼此定向的第二三维骨骼模型和第二三维植入物模型,所述第二三维骨骼模型对应于患者的第二骨骼,所述第二三维植入物模型包括第二植入物关节表面,所述第一三维骨骼模型和所述第二三维骨骼模型通过导航系统根据患者的第一骨骼和第二骨骼的姿势相对于彼此定向;接收对应于第一姿势中所述第一骨骼和所述第二骨骼的第一位置和取向的第一位置和取向数据;计算所述第一姿势中所述第一三维植入物模型的第一植入物关节表面与所述第二三维植入物模型上或与之关联的第一点之间的第一有符号距离;基于第一距离确定或调整切除深度;和使用所述切除深度生成切除数据,所述切除数据被配置为在关节成形手术期间由导航系统使用。Aspects of the present disclosure may relate to a method of generating resection data for planning an arthroplasty procedure on a joint formed by a first bone and a second bone of a patient. The method may include receiving a first three-dimensional bone model and a first three-dimensional implant model oriented relative to each other in a common three-dimensional coordinate system in a first pre-planned orientation, the first three-dimensional bone model corresponding to the patient's the first bone, the first three-dimensional implant model including a first implant articular surface; receiving a second three-dimensional bone model oriented relative to each other in a second pre-planned orientation in a common three-dimensional coordinate system; and A second three-dimensional implant model, the second three-dimensional bone model corresponding to a second bone of the patient, the second three-dimensional implant model including the second implant articular surface, the first three-dimensional bone model and all the second three-dimensional skeletal model is oriented relative to each other by the navigation system according to the posture of the first and second bones of the patient; receiving a first position and orientation corresponding to the first and second bones in the first posture first position and orientation data; computing a first implant articular surface of the first three-dimensional implant model in the first pose and a first implant articular surface on or associated with the second three-dimensional implant model a first signed distance between points; determining or adjusting a resection depth based on the first distance; and using the resection depth to generate resection data configured for use by a navigation system during an arthroplasty procedure.

在某些情况下,关节可以是膝关节、踝关节、肘关节或腕关节中的一种。In some cases, the joint may be one of a knee, ankle, elbow, or wrist.

在某些情况下,第一骨骼可以是股骨,并且第二骨骼可以是胫骨。In some cases, the first bone can be the femur and the second bone can be the tibia.

在某些情况下,所述第一点可位于与所述第二三维植入物模型相关联的近端胫骨切除平面的一部分上。In some cases, the first point may lie on a portion of a proximal tibial resection plane associated with the second three-dimensional implant model.

在某些情况下,所述第一三维植入物模型可包括内侧髁表面和外侧髁表面,所述第二三维植入物模型可包括内侧关节表面和外侧关节表面,所述第一有符号距离在内侧髁表面和所述第一点之间确定。In some cases, the first three-dimensional implant model can include a medial condyle surface and a lateral condyle surface, the second three-dimensional implant model can include a medial articular surface and a lateral articular surface, and the first signed The distance is determined between the medial condyle surface and the first point.

在某些情况下,该方法可以进一步包括计算所述第一姿势中所述外侧髁表面和所述第二三维植入物模型上或与之相关联的第二点之间的第二有符号距离。In some cases, the method may further include calculating a second signed point between the lateral condyle surface in the first pose and a second point on or associated with the second three-dimensional implant model distance.

在某些情况下,所述第一点可位于所述第二三维植入物模型的内侧关节表面上,并且所述第二点可位于所述第二三维植入物模型的外侧关节表面上。In some cases, the first point can be located on a medial articular surface of the second three-dimensional implant model, and the second point can be located on a lateral articular surface of the second three-dimensional implant model .

在某些情况下,与要在关节成形手术中使用的物理植入物的内侧和关节表面相比,所述第二三维植入物模型的内侧和外侧关节表面被修改为较平坦或较少凹进以确定所述切除深度。In some cases, the medial and lateral articular surfaces of the second three-dimensional implant model are modified to be flatter or less than the medial and articular surfaces of the physical implant to be used in an arthroplasty procedure Recessed to determine the depth of resection.

在某些情况下,通过全局搜索最近距离算法计算第一和第二有符号距离。In some cases, the first and second signed distances are calculated by a global search closest distance algorithm.

在某些情况下,全局搜索最近距离算法识别与内侧和外侧髁表面以及内侧和外侧关节表面中的每一个相关联的参考顶点。In some cases, the global search closest distance algorithm identifies reference vertices associated with each of the medial and lateral condylar surfaces and the medial and lateral articular surfaces.

在某些情况下,该方法可以进一步包括:接收对应于在与所述第一姿势不同的第二姿势中的所述第一骨骼和所述第二骨骼的第二位置和取向的第二位置和取向数据;计算所述第二姿势中所述第一三维植入物模型的内侧髁表面与所述第二三维植入物模型的内侧关节表面之间的第三有符号距离;和计算所述第二姿势中所述第一三维植入物模型的外侧髁表面与所述第二三维植入物模型的外侧关节表面之间的第四有符号距离。In some cases, the method may further include: receiving a second position corresponding to a second position and orientation of the first bone and the second bone in a second pose different from the first pose and orientation data; calculating a third signed distance between the medial condyle surface of the first three-dimensional implant model and the medial articular surface of the second three-dimensional implant model in the second pose; and calculating the total A fourth signed distance between the lateral condyle surface of the first three-dimensional implant model and the lateral articular surface of the second three-dimensional implant model in the second posture.

在某些情况下,通过全局搜索最近距离算法计算第一、第二、第三和第四有符号距离。In some cases, the first, second, third and fourth signed distances are calculated by a global search closest distance algorithm.

在某些情况下,通过全局搜索最近距离算法计算第一和第二有符号距离,并且通过增量搜索最近距离算法计算第三和第四有符号距离。In some cases, the first and second signed distances are calculated by a global search closest distance algorithm, and the third and fourth signed distances are calculated by an incremental search closest distance algorithm.

在某些情况下,所述全局搜索最近距离算法识别与所述内侧和外侧髁表面以及所述内侧和外侧关节表面中的每一个相关联的参考顶点,并且所述增量搜索最近距离算法可以被用于与所述内侧和外侧髁表面的参考顶点相邻的特定顶点,以确定是否有任何特定顶点分别比所述参考顶点更靠近对应的内侧或外侧关节表面。In some cases, the global search closest distance algorithm identifies reference vertices associated with each of the medial and lateral condyle surfaces and the medial and lateral articular surfaces, and the incremental search closest distance algorithm may Specific vertices adjacent to the reference vertices of the medial and lateral condyle surfaces are used to determine whether any specific vertex is closer to the corresponding medial or lateral articular surface, respectively, than the reference vertex.

在某些情况下,导航系统在执行所述关节成形手术时与自主机器人或外科医生辅助设备协力操作。In some cases, the navigation system operates in conjunction with an autonomous robot or surgeon aid in performing the arthroplasty procedure.

虽然公开了多个实施例,但是根据以下具体实施方式,本公开的其他实施例对于本领域技术人员来说将变得显而易见,该具体实施方式示出并描述了本公开的说明性实施例。如将认识到的,本文讨论的实施例能够在各个方面进行修改,所有这些都不脱离本公开的精神和范围。因此,附图和具体实施方式本质上被认为是说明性的而非限制性的。While various embodiments are disclosed, other embodiments of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the present disclosure. As will be realized, the embodiments discussed herein are capable of modifications in various respects, all without departing from the spirit and scope of the present disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.

附图说明Description of drawings

图1是手术系统的图示。Figure 1 is an illustration of a surgical system.

图2是示出关节成形术的手术规划和执行的流程图。2 is a flow chart illustrating surgical planning and execution of an arthroplasty.

图3A和3B示出了关节成形术期间的触觉引导。3A and 3B illustrate tactile guidance during arthroplasty.

图4A和4B分别示出了一般胫骨的近端和一般股骨的远端的三维计算机模型,其中每个三维模型表示根据大小和形状的其相应骨类型的统计平均。Figures 4A and 4B show three-dimensional computer models of the proximal end of a typical tibia and the distal end of a typical femur, respectively, where each three-dimensional model represents a statistical average of its corresponding bone type in terms of size and shape.

图5A-5C分别示出了患者胫骨(即,患者胫骨模型)的三维计算机模型的近端的冠状、轴向或横向和矢状视图。5A-5C show, respectively, coronal, axial or transverse, and sagittal views of the proximal end of a three-dimensional computer model of a patient's tibia (ie, a patient's tibia model).

图6A-6C分别示出了患者股骨(即,患者股骨模型)的三维计算机模型的远端的冠状、轴向或横向和矢状视图。6A-6C show coronal, axial or transverse, and sagittal views, respectively, of the distal end of a three-dimensional computer model of a patient's femur (ie, a patient's femur model).

图7是三维患者股骨计算机模型的后髁区域的三角形表面网格的放大视图,并且示出了调整从三维一般股骨计算机模型被映射到患者股骨模型上的患者股骨模型上的后部点的位置的方法。7 is an enlarged view of the triangular surface mesh of the posterior condyle region of the three-dimensional patient femur computer model and showing the adjustment of the position of the posterior points on the patient's femur model mapped from the three-dimensional general femur computer model onto the patient's femur model Methods.

图8是示出调整患者股骨模型上的映射的后部点的放置的方法的流程图。8 is a flow chart illustrating a method of adjusting the placement of the mapped posterior points on the patient's femur model.

图9A是三维患者股骨计算机模型的远端髁区域的三角形表面网格的放大视图,并且示出了调整从三维一般股骨计算机模型被映射到患者股骨模型上的患者股骨模型上的远端点的位置的方法。9A is an enlarged view of the triangular surface mesh of the distal condyle region of the three-dimensional patient femur computer model and showing adjustment of the distal points on the patient's femur model mapped from the three-dimensional general femur computer model to the patient's femur model method of location.

图9B是图9A中采用的椭圆体的放大等距视图。Figure 9B is an enlarged isometric view of the ellipsoid employed in Figure 9A.

图9C是与图9A和9B相同的椭圆体加上在微调映射的远端点的放置的过程中采用的球体。Figure 9C is the same ellipsoid as Figures 9A and 9B plus the sphere employed in fine-tuning the placement of the distal points of the mapping.

图10A-10C是概述调整患者股骨模型上的映射的远端点的放置的方法的流程图,所述远端点已经从一般股骨模型映射到患者股骨模型的髁。10A-10C are flowcharts outlining a method of adjusting the placement of mapped distal points on a patient femur model that have been mapped from a general femur model to the patient's femur model's condyles.

图11是候选胫骨植入物(即,胫骨植入物模型)的三维计算机模型的远端前视图,示出了其骨切除接触表面,该表面与其胫骨平台远远相对。11 is a distal anterior view of a three-dimensional computer model of a candidate tibial implant (ie, a tibial implant model) showing its bone resection contact surface that is far opposite its tibial plateau.

图12A-12C分别示出了叠加在患者胫骨的三维计算机模型(即,患者胫骨模型)的近端上的胫骨植入物模型的冠状、轴向或横向和矢状视图。12A-12C show coronal, axial or transverse and sagittal views, respectively, of a tibial implant model superimposed on the proximal end of a three-dimensional computer model of a patient's tibia (ie, a patient's tibia model).

图13是候选股骨植入物(即,股骨植入物模型)的三维计算机模型的矢状视图,示出了其远端骨切除接触表面连同相邻的前倒角切除接触表面、后倒角切除接触表面、前切除接触表面和后切除接触表面,这些切除接触表面靠近股骨植入物模型的内侧和外侧髁表面。Figure 13 is a sagittal view of a three-dimensional computer model of a candidate femoral implant (ie, a femoral implant model) showing its distal bone resection contact surface along with adjacent anterior chamfer resection contact surfaces, posterior chamfer Cutaway contact surfaces, anterior cutaway contact surfaces, and posterior cutaway contact surfaces are close to the medial and lateral condylar surfaces of the femoral implant model.

图14A-14C分别示出了叠加在患者股骨的三维计算机模型(即,患者股骨模型)的远端上的股骨植入物模型的冠状、轴向或横向和矢状视图。14A-14C show coronal, axial or transverse, and sagittal views, respectively, of a femoral implant model superimposed on the distal end of a three-dimensional computer model of a patient's femur (ie, a patient's femur model).

图15A-15C是提议要切除的胫骨模型并示出了提议的胫骨切除的各种视图。15A-15C are various views of a proposed tibia model for resection and showing the proposed tibial resection.

图16A-16C是提议要切除的股骨模型并示出了提议的股骨切除(包括远端切除)的各种视图。16A-16C are various views of a proposed femoral bone model for resection and showing proposed femoral resections, including distal resections.

图17是股骨植入物模型的股骨关节表面和胫骨植入物模型的胫骨关节表面的等距视图。17 is an isometric view of the femoral articular surface of the femoral implant model and the tibial articular surface of the tibial implant model.

图18和19分别是全局搜索最近距离算法的宽阶段搜索级和窄阶段搜索级的算法流程图。Figures 18 and 19 are the algorithm flow charts of the wide-stage search stage and the narrow-stage search stage of the global search closest distance algorithm, respectively.

图20A和20B分别是定位于患者股骨模型上使得前股骨皮质被切口的股骨植入物模型的前远端视图和矢状横截面视图。Figures 20A and 20B are anterior distal and sagittal cross-sectional views, respectively, of the femoral implant model positioned on the patient's femur model such that the anterior femoral cortex is incised.

图21示出了为患者股骨模型建立的坐标系。Figure 21 shows the coordinate system established for the patient femur model.

图22A-22C分别是候选股骨植入物模型的后部、矢状-后部和矢状视图,其中在该股骨植入物模型上叠加有触觉平面的轮廓。22A-22C are posterior, sagittal-posterior, and sagittal views, respectively, of a candidate femoral implant model with the outline of the tactile plane superimposed on the femoral implant model.

图23是股骨植入物模型的前凸缘部分的上边缘和触觉平面的上边界的放大前视图,一系列等距间隔的参考点沿触觉平面的上边界延伸。23 is an enlarged front view of the upper edge of the anterior flange portion of the femoral implant model and the upper boundary of the tactile plane along which a series of equally spaced reference points extend.

图24是前股骨皮质切口情况的示意图。Figure 24 is a schematic illustration of the condition of the anterior femoral cortical incision.

图25A和25B分别是患者股骨模型和其上的候选股骨植入物模型在无切口和有切口布置中的横截面矢状视图。Figures 25A and 25B are cross-sectional sagittal views of a patient femur model and a candidate femoral implant model thereon in an incision-free and incision arrangement, respectively.

图26A是在术中配准过程中使用的检查点的侧视图。Figure 26A is a side view of a checkpoint used during intraoperative registration.

图26B是膝关节的侧视图,其具有位于股骨上的检查点,其中导航探针接触检查点。26B is a side view of a knee joint with a checkpoint on the femur with a navigation probe touching the checkpoint.

图26C示出了叠加在患者股骨的三维计算机模型(即,患者股骨模型)的远端上的股骨植入物模型的冠状视图,其中检查点位于患者股骨模型上。26C shows a coronal view of a femoral implant model superimposed on the distal end of a three-dimensional computer model of a patient's femur (ie, a patient's femur model) with checkpoints located on the patient's femur model.

图26D示出了叠加在患者胫骨的三维计算机模型(即,患者胫骨模型)的近端上的胫骨植入物模型的冠状视图,其中检查点位于患者胫骨模型上。Figure 26D shows a coronal view of a tibial implant model superimposed on the proximal end of a three-dimensional computer model of a patient's tibia (ie, a patient's tibia model) with checkpoints located on the patient's tibia model.

图26E示出了检查点位置验证过程中的步骤。Figure 26E shows the steps in the checkpoint location verification process.

图26F是股骨和胫骨切除平面的矢状视图,其中切除平面相对于检查点坐落得“深”。Figure 26F is a sagittal view of the femoral and tibial resection planes, where the resection planes sit "deep" relative to the checkpoint.

图26G是股骨和胫骨切除平面的矢状视图,其中切除平面相对于检查点“凸出”。Figure 26G is a sagittal view of the femoral and tibial resection planes with the resection plane "bulging" relative to the inspection point.

图26H是示出与各种切除关联的误差的表。Figure 26H is a table showing errors associated with various excisions.

图26I是股骨切除平面的矢状视图,示出了由于后切除中的误差导致的前倒角误差的影响。Figure 26I is a sagittal view of the femoral resection plane showing the effect of anterior chamfering errors due to errors in the posterior resection.

图26J是股骨切除平面的矢状视图,示出了由于远端切除中的误差导致的前倒角误差的影响。Figure 26J is a sagittal view of the femoral resection plane showing the effect of anterior chamfering errors due to errors in the distal resection.

图27A和27B分别是术前规划的股骨植入物和患者骨骼模型的矢状视图,以及术前规划的胫骨植入物和患者骨骼模型的矢状视图。Figures 27A and 27B are sagittal views of a preoperatively planned femoral implant and patient skeletal model, and sagittal views of a preoperatively planned tibial implant and patient skeletal model, respectively.

图28A和28B分别是如图1中的系统的显示器上所示的患者股骨模型的轴向或横向视图和后视图。28A and 28B are an axial or lateral view and a posterior view, respectively, of the patient's femur model as shown on the display of the system of FIG. 1 .

图29A和29B分别是图28A和28B各自的界标捕获区域的放大视图,其中在每个捕获区域上描绘了一系列配准点。Figures 29A and 29B are enlarged views of the respective landmark capture regions of Figures 28A and 28B, respectively, with a series of registration points depicted on each capture region.

图30是具有可以实现本文所讨论的各种系统和方法的一个或多个计算单元的示例计算系统。30 is an example computing system having one or more computing units that may implement the various systems and methods discussed herein.

具体实施方式Detailed ways

本文公开了用于通过手术系统100执行的关节成形术外科手术的术前规划。术前规划包括限定骨切除深度并识别股骨前皮质的不可接受的切口是否与提出的骨切除深度和候选植入物的提出的姿势关联。假设术前规划的骨切除深度和植入物姿势没有不可接受的股骨前皮质切口且经外科医生批准,则可通过术中将实际患者骨骼的软骨髁表面与术前规划中采用的患者骨骼模型配准来更新骨切除深度以计及软骨厚度。通过如此地计及软骨厚度,实际植入物在通过手术系统100植入时将使得其各自的髁表面定位成代替实际患者骨骼的切除的软骨髁表面。Disclosed herein is preoperative planning for an arthroplasty surgical procedure performed by thesurgical system 100 . Preoperative planning includes defining the bone resection depth and identifying if an unacceptable incision in the anterior femoral cortex correlates with the proposed bone resection depth and the proposed posture of the candidate implant. Assuming no unacceptable anterior femoral cortical incision for the preoperatively planned bone resection depth and implant position and approved by the surgeon, intraoperatively comparing the cartilaginous condylar surface of the actual patient's bone with the patient's skeletal model used in the preoperative planning Registration to update bone resection depth to account for cartilage thickness. By thus accounting for cartilage thickness, the actual implant, when implanted bysurgical system 100, will have its respective condyle surfaces positioned to replace the resected cartilaginous condyle surfaces of the actual patient's bone.

在开始详细讨论术前规划和术中配准软骨髁表面之前,现在将在下面给出手术系统及其操作的概述。Before beginning a detailed discussion of preoperative planning and intraoperative registration of the cartilaginous condylar surface, an overview of the surgical system and its operation will now be given below.

I.手术系统概述I. Overview of the Surgical System

为了开始对手术系统的详细讨论,参考图1。从图1可以理解,手术系统100包括导航系统42、计算机50和触觉设备60。导航系统跟踪患者的骨骼(即,胫骨10、股骨11),以及在手术期间使用的手术工具(例如,指向设备、探针、切割工具),以允许外科医生在截骨术期间在显示器56上可视化骨骼和工具。To begin a detailed discussion of the surgical system, reference is made to FIG. 1 . As can be appreciated from FIG. 1 ,surgical system 100 includes navigation system 42 ,computer 50 andhaptic device 60 . The navigation system tracks the patient's bones (ie,tibia 10, femur 11), and surgical tools (eg, pointing devices, probes, cutting tools) used during surgery to allow the surgeon on the display 56 during the osteotomy Visualize bones and tools.

导航系统42可以是被配置为跟踪骨骼的姿势(即,位置和取向)的任何类型的导航系统。例如,导航系统42可以包括非机械跟踪系统、机械跟踪系统或非机械跟踪系统和机械跟踪系统的任何组合。导航系统42包括检测设备44,检测设备44获得对象关于检测设备44的参考坐标系的姿势。当对象在参考坐标系中移动时,检测设备跟踪对象的姿势以检测对象的移动。Navigation system 42 may be any type of navigation system configured to track the pose (ie, position and orientation) of the skeleton. For example, the navigation system 42 may include a non-mechanical tracking system, a mechanical tracking system, or any combination of a non-mechanical tracking system and a mechanical tracking system. The navigation system 42 includes adetection device 44 which obtains the pose of the object with respect to the reference coordinate system of thedetection device 44 . As the object moves in the reference coordinate system, the detection device tracks the pose of the object to detect the movement of the object.

在一个实施例中,导航系统42包括如图1所示的非机械跟踪系统。非机械跟踪系统是具有检测设备44和可跟踪元件(例如导航标记46)的光学跟踪系统,所述可跟踪元件设置在被跟踪对象上并且能够由检测设备44检测。在一个实施例中,检测设备44包括基于可见光的检测器,例如MicronTracker(Claron Technology公司,多伦多,加拿大),其检测可跟踪元件上的图案(例如,棋盘图案)。在另一个实施例中,检测设备44包括立体相机对,该立体相机对对红外辐射敏感并可定位在将执行关节成形术的手术室中。可跟踪元件以安全且稳定的方式附接到被跟踪对象,并且包括具有与被跟踪对象的已知几何关系的标记阵列。众所周知,可跟踪元件可以是有源的(例如,发光二极管或LED)或无源的(例如,反射球、棋盘图案等)并且具有独特的几何形状(例如,标记的独特几何布置),替代地,在有源、有线或无线标记的情况下,具有独特的发射(firing)模式。在手术中,检测设备44检测可跟踪元件的位置,并且手术系统100(例如,检测设备44使用嵌入式电子设备)基于可跟踪元件的位置、独特几何形状和与被跟踪对象的已知几何关系的来计算被跟踪对象的姿势。跟踪系统42包括用于用户期望跟踪的每个对象的可跟踪元件,例如位于骨10上的导航标记46。在触觉地引导的机器人辅助手术期间,导航系统还可以包括触觉设备标记48(以跟踪触觉设备60的全局或总体位置)、末端执行器标记54(以跟踪触觉设备60的远端)以及徒手导航探针55用于配准过程。In one embodiment, the navigation system 42 includes a non-mechanical tracking system as shown in FIG. 1 . A non-mechanical tracking system is an optical tracking system having adetection device 44 and trackable elements (eg, navigation markers 46 ) that are disposed on the tracked object and that can be detected by thedetection device 44 . In one embodiment,detection device 44 includes a visible light-based detector, such as a MicronTracker (Claron Technology, Inc., Toronto, Canada), which detects patterns (eg, checkerboard patterns) on the trackable elements. In another embodiment, thedetection device 44 includes a pair of stereo cameras that are sensitive to infrared radiation and that can be positioned in the operating room where the arthroplasty is to be performed. The trackable element is attached to the tracked object in a safe and stable manner and includes an array of markers having a known geometric relationship to the tracked object. As is well known, the trackable elements can be active (eg, light emitting diodes or LEDs) or passive (eg, reflective balls, checkerboard patterns, etc.) and have a unique geometry (eg, a unique geometric arrangement of markers), alternatively , with a unique firing pattern in the case of active, wired or wireless markers. During surgery,detection device 44 detects the position of the trackable element, and surgical system 100 (eg,detection device 44 uses embedded electronics) based on the position of the trackable element, the unique geometry, and the known geometric relationship to the object being tracked to calculate the pose of the tracked object. Tracking system 42 includes trackable elements for each object the user desires to track, such asnavigation markers 46 located onbone 10 . During tactilely guided robotic-assisted surgery, the navigation system may also include haptic device markers 48 (to track the global or general position of haptic device 60), end effector markers 54 (to track the distal end of haptic device 60), andfreehand navigation Probe 55 is used for the registration process.

如图1所示,手术系统100还包括处理电路,在附图中表示为计算机50。处理电路包括处理器和存储器设备。处理器可以实现为通用处理器、专用集成电路(ASIC)、一个或多个现场可编程门阵列(FPGA)、一组处理部件、专用处理器或其他合适的电子处理部件。存储器设备(例如,存储器、存储器单元、存储设备等)是用于存储用于完成或促进本申请中描述的各种过程、层和功能的数据和/或计算机代码的一个或多个设备(例如,RAM、ROM、闪存、硬盘存储装置等)。存储器设备可以是或包括易失性存储器或非易失性存储器。存储器设备可以包括数据库部件、目标代码部件、脚本部件或用于支持本申请中描述的各种行为和信息结构的任何其他类型的信息结构。根据示例性实施例,存储器设备经由处理电路可通信地连接到处理器,并且包括用于执行(例如,通过处理电路和/或处理器)本文描述的一个或多个过程的计算机代码。As shown in FIG. 1 ,surgical system 100 also includes processing circuitry, represented in the figure ascomputer 50 . The processing circuit includes a processor and a memory device. A processor may be implemented as a general purpose processor, an application specific integrated circuit (ASIC), one or more field programmable gate arrays (FPGA), a set of processing components, a special purpose processor, or other suitable electronic processing components. A memory device (e.g., memory, memory unit, storage device, etc.) is one or more devices (e.g., , RAM, ROM, flash memory, hard disk storage devices, etc.). The memory device may be or include volatile memory or non-volatile memory. The memory device may include database components, object code components, script components, or any other type of information structure for supporting the various behaviors and information structures described in this application. According to an exemplary embodiment, a memory device is communicatively connected to the processor via processing circuitry and includes computer code for performing (eg, by the processing circuitry and/or the processor) one or more of the processes described herein.

计算机50被配置为与导航系统42和触觉设备60通信。此外,计算机50可以接收与截骨手术相关的信息并执行与截骨手术的执行相关的各种功能。例如,计算机50可以根据需要具有软件以执行与图像分析、手术规划、配准、导航、图像引导和触觉引导相关的功能。更具体地,导航系统可以在执行关节成形术时与自主机器人或外科医生辅助设备(触觉设备)协力操作。Computer 50 is configured to communicate with navigation system 42 andhaptic device 60 . In addition, thecomputer 50 may receive information related to the osteotomy and perform various functions related to the performance of the osteotomy. For example,computer 50 may have software to perform functions related to image analysis, surgical planning, registration, navigation, image guidance, and haptic guidance, as desired. More specifically, the navigation system may operate in conjunction with an autonomous robot or surgeon aid (haptic device) when performing an arthroplasty.

计算机50接收患者的解剖结构的图像,在该解剖结构上将执行关节成形手术。参考图2,在执行关节成形术之前,使用任何已知的成像技术扫描患者的解剖结构,例如用医学成像机捕获的CT或MRI(步骤801)。虽然本公开参考了利用诸如CT或MRI机器的医学成像机器捕获或生成的医学图像,但是其他生成医学图像的方法也是可能的并且在本文中设想。例如,骨骼的图像可以通过例如扫描或记录骨表面的形貌的手持扫描或成像设备的医学成像机器在术中生成。因此,术语医学成像机器旨在包括位于成像中心的相对大的设备以及术中使用的手持成像设备。Computer 50 receives images of the patient's anatomy on which an arthroplasty procedure is to be performed. Referring to Figure 2, prior to performing an arthroplasty, the patient's anatomy is scanned using any known imaging technique, such as CT or MRI captured with a medical imaging machine (step 801). Although this disclosure refers to medical images captured or generated using medical imaging machines, such as CT or MRI machines, other methods of generating medical images are possible and contemplated herein. For example, images of bone can be generated intraoperatively by medical imaging machines such as hand-held scanning or imaging devices that scan or record the topography of the bone surface. Thus, the term medical imaging machine is intended to include relatively large equipment located at imaging centers as well as handheld imaging equipment used intraoperatively.

接下来,然后分割扫描数据以获得患者解剖结构的三维表示。例如,在执行膝关节成形术之前,创建股骨和胫骨的三维表示。使用该三维表示并作为规划过程的一部分,可以选择股骨和胫骨界标,并且计算患者的股骨-胫骨对齐以及提议的股骨和胫骨植入物的取向和放置,这可以对于模型和大小通过计算机50进行选择。股骨和胫骨界标可以包括股骨头中心、远端滑车沟、髁间隆起的中心、胫骨-踝中心和内侧胫骨棘等。股骨-胫骨对齐是股骨机械轴线(即,从股骨头中心到远端滑车沟的线)和胫骨机械轴线(即,从踝中心到髁间隆起中心的线)之间的角度。基于患者当前的股骨-胫骨对齐和通过关节成形手术实现的期望的股骨-胫骨对齐,并进一步包括提议的股骨和胫骨植入物的大小、模型和放置,包括与提议的植入物的植入关联的期望延伸、内翻-外翻角、以及内-外旋转,计算机50被编程为计算提议的植入物的期望植入或至少辅助植入提议的植入物的术前规划,包括在执行关节成形手术过程的过程中要通过触觉设备60进行的切除(步骤803)。通过步骤803实现的术前规划被提供给外科医生以供审查、调整和批准,并且根据外科医生的指示更新术前规划(步骤802)。Next, the scan data is then segmented to obtain a three-dimensional representation of the patient's anatomy. For example, before performing knee arthroplasty, create three-dimensional representations of the femur and tibia. Using this three-dimensional representation and as part of the planning process, femoral and tibial landmarks can be selected and the patient's femoral-tibial alignment and proposed orientation and placement of femoral and tibial implants calculated, which can be done bycomputer 50 for the model and size choose. Femoral and tibial landmarks may include the center of the femoral head, the distal trochlear groove, the center of the intercondylar eminence, the center of the tibial-ankle, the medial tibial spine, and the like. Femoral-tibial alignment is the angle between the femoral mechanical axis (ie, the line from the center of the femoral head to the distal trochlear groove) and the tibial mechanical axis (ie, the line from the center of the ankle to the center of the intercondylar eminence). Based on the patient's current femoral-tibial alignment and the desired femoral-tibial alignment achieved by the arthroplasty procedure, and further including the size, model, and placement of the proposed femoral and tibial implants, including implantation with the proposed implants Associated with the desired extension, varus-valgus angle, and varus-valgus rotation, thecomputer 50 is programmed to calculate the desired implantation of the proposed implant or at least assist in preoperative planning for implantation of the proposed implant, including at Resection to be performed by thehaptic device 60 during an arthroplasty procedure (step 803). The preoperative planning achieved bystep 803 is provided to the surgeon for review, adjustment and approval, and the preoperative planning is updated according to the surgeon's instructions (step 802).

由于计算机50用于根据步骤803开发手术规划,所以应当理解,用户可以在手术规划期间的任何阶段与计算机50交互以输入信息并修改手术规划的任何部分。手术规划包括多个规划的虚拟边界。虚拟边界可以表示在关节成形手术期间在骨10,11中形成的孔和/或切口。一旦开发了手术规划,触觉设备60就用于辅助用户在骨10,11中创建规划的孔和切口。将在下面更全面地解释术前规划,特别是关于骨切除深度规划和前股骨干切口的预防。Sincecomputer 50 is used to develop the surgical plan according to step 803, it should be understood that the user may interact withcomputer 50 at any stage during surgical planning to enter information and modify any portion of the surgical plan. Surgical planning includes multiple planned virtual boundaries. The virtual boundaries may represent holes and/or cuts made in thebones 10, 11 during an arthroplasty procedure. Once the surgical plan has been developed, thehaptic device 60 is used to assist the user in creating the planned holes and incisions in thebones 10,11. Preoperative planning is explained more fully below, particularly with regard to bone resection depth planning and prevention of anterior femoral shaft incisions.

在骨10,11中钻孔和创建切口或切除可以在触觉地引导的交互式机器人系统的辅助下完成,所述交互式机器人系统例如为2011年8月30日授权、标题为“Haptic GuidanceSystem and Method(触觉引导系统和方法)”的美国专利No.8,010,180中描述的触觉引导系统,并且将其全部内容通过引用结合于此。当外科医生操纵机器人手臂借助高速钻、矢状锯或其他合适的工具在骨中钻孔或执行切割时,该系统提供触觉反馈以引导外科医生将孔和切口造型成适当的形状,这被预先编程到机器人手臂的控制系统中。触觉引导和反馈将在下面更全面地解释。Drilling and creating incisions or resections inbones 10, 11 can be accomplished with the aid of a tactilely guided interactive robotic system, for example, entitled "Haptic Guidance System and A haptic guidance system as described in US Patent No. 8,010,180 to Method (Haptic Guidance System and Method)", which is hereby incorporated by reference in its entirety. As the surgeon manipulates the robotic arm to drill holes or perform cuts in the bone with the aid of a high-speed drill, sagittal saw, or other suitable tool, the system provides tactile feedback to guide the surgeon to shape the holes and cuts into the proper shape, which is pre-defined programmed into the control system of the robot arm. Haptic guidance and feedback are explained more fully below.

在手术规划期间,计算机50还接收与在关节成形手术期间要植入的股骨和胫骨植入物有关的信息。例如,用户可以使用输入设备52(例如键盘、鼠标等)将所选择的股骨和胫骨植入物的参数输入到计算机50中。替代地,计算机50可以包含预先建立的各种植入物及其参数的数据库,并且用户可以从数据库中选择所选择的植入物。在又一个实施例中,植入物可以基于患者特异性手术规划而定制设计。在手术规划的任何阶段期间可以进行对植入物的选择。During surgical planning, thecomputer 50 also receives information regarding the femoral and tibial implants to be implanted during the arthroplasty procedure. For example, the user may enter the parameters of the selected femoral and tibial implants into thecomputer 50 using the input device 52 (eg, keyboard, mouse, etc.). Alternatively, thecomputer 50 may contain a pre-established database of various implants and their parameters, and the user may select the selected implant from the database. In yet another embodiment, the implant may be custom designed based on patient-specific surgical planning. The selection of implants can be made during any stage of surgical planning.

手术规划还可以基于植入物的至少一个参数或植入物的参数的函数。因为可以在手术规划过程的任何阶段选择植入物,所以可以在计算机50确定规划的虚拟边界之前或之后选择植入物。如果首先选择植入物,则规划的虚拟边界可以基于至少部分地基于植入物的参数。例如,可以基于与植入关节成形术植入物的期望手术结果关联的期望的内翻-外翻股骨-胫骨对齐、延伸、内-外旋转或者任何其他因素来规划表示要在骨10,11中形成的孔或切口的规划的虚拟边界之间的距离(或任何其他关系)。以这种方式,手术规划的实施将导致切除的骨表面和孔的正确对齐,以允许所选择的植入物实现期望的手术结果。替代地,计算机50可以在植入物选择之前开发手术规划,包括规划的虚拟边界。在这种情况下,可以至少部分地基于规划的虚拟边界来选择(例如,输入、选择或设计)植入物。例如,可以基于规划的虚拟边界来选择植入物,使得手术规划的执行将导致切除的骨表面和孔的正确对齐,以允许所选择的植入物实现期望的手术结果。Surgical planning may also be based on at least one parameter of the implant or a function of a parameter of the implant. Because the implant can be selected at any stage of the surgical planning process, the implant can be selected before or after thecomputer 50 determines the virtual boundaries of the plan. If an implant is selected first, the planned virtual boundaries may be based at least in part on parameters based on the implant. For example, representations to be placed in the bone can be planned based on the desired varus-valgus femoral-tibial alignment, extension, medial-external rotation, or any other factor associated with the desired surgical outcome of implanting an arthroplasty implant. The distance (or any other relationship) between the planned virtual boundaries of the holes or cuts formed in the . In this manner, the implementation of surgical planning will result in the correct alignment of the resected bone surfaces and holes to allow the selected implant to achieve the desired surgical outcome. Alternatively,computer 50 may develop a surgical plan, including virtual boundaries of the plan, prior to implant selection. In this case, the implant may be selected (eg, entered, selected, or designed) based at least in part on the planned virtual boundaries. For example, implants can be selected based on the planned virtual boundaries such that execution of the surgical plan will result in the correct alignment of the resected bone surfaces and holes to allow the selected implant to achieve the desired surgical outcome.

虚拟边界存在于虚拟空间中并且可以表示在物理(即,真实)空间中存在或将要创建的特征。虚拟边界对应于物理空间中的工作边界,其能够与物理空间中的对象交互。例如,工作边界可以与耦接到触觉设备60的手术工具58交互。尽管本文中通常将手术规划描述为包括表示孔和切除的虚拟边界,但是手术规划可以包括表示对骨10,11的其他修改的虚拟边界。此外,虚拟边界可以对应于能够与物理空间中的对象交互的物理空间中的任何工作边界。Virtual boundaries exist in virtual space and can represent features that exist or are to be created in physical (ie, real) space. A virtual boundary corresponds to a working boundary in physical space, which can interact with objects in physical space. For example, the working boundary may interact withsurgical tool 58 coupled tohaptic device 60 . Although surgical plans are generally described herein as including virtual boundaries representing holes and resections, surgical plans may include virtual boundaries representing other modifications to thebones 10 , 11 . Furthermore, the virtual boundary may correspond to any working boundary in the physical space that is capable of interacting with objects in the physical space.

再次参考图2,在手术规划之后并且在执行关节成形手术之前,使用任何已知的配准技术将物理解剖结构(例如,骨10,11)配准到解剖结构的虚拟表示(例如,术前三维表示)(步骤804)。可能的配准技术包括在上面引用的美国专利No.8,010,180中描述的基于点的配准技术,或者如2012年7月30日提交、标题为“Radiographic Imaging Device(射线成像设备)”的美国专利申请序列No.13/562,163中描述的利用手持射线成像设备的2D/3D配准,并且上述美国专利申请全部内容通过引用结合于此。患者解剖结构的配准允许在外科手术期间进行准确导航(步骤805),这使得每个虚拟边界能够对应于物理空间中的工作边界。例如,参考图3A和3B,表示胫骨10中的切除的虚拟边界62显示在计算机或其他显示器63上,并且虚拟边界62对应于物理空间69中的工作边界66,例如外科手术室中的手术部位。工作边界66的一部分又对应于胫骨10中的切除的规划位置。Referring again to Figure 2, following surgical planning and prior to performing an arthroplasty procedure, the physical anatomy (eg,bones 10, 11) is registered to a virtual representation of the anatomy (eg, preoperatively) using any known registration technique three-dimensional representation) (step 804). Possible registration techniques include the point-based registration technique described in the above-cited US Patent No. 8,010,180, or as in US Patent No. 8,010,180, filed July 30, 2012, entitled "Radiographic Imaging Device" 2D/3D registration using a handheld radiography device is described in Application Serial No. 13/562,163, and the entire contents of the aforementioned US patent application are incorporated herein by reference. Registration of the patient's anatomy allows accurate navigation during surgery (step 805), which enables each virtual boundary to correspond to a working boundary in physical space. For example, referring to Figures 3A and 3B, avirtual boundary 62 representing a resection in thetibia 10 is displayed on a computer orother display 63, and thevirtual boundary 62 corresponds to a working boundary 66 in aphysical space 69, such as a surgical site in a surgical operating room . A portion of the working boundary 66 in turn corresponds to the planned location of the resection in thetibia 10 .

虚拟边界并且因此相应的工作边界可以是任何配置或形状。参考图3A,表示将在胫骨10中创建的近端切除的虚拟边界62可以是适于在胫骨10中创建近端切除期间辅助用户的任何配置。在胫骨10的虚拟表示内示出的虚拟边界62的部分表示要通过手术工具移除的骨。可以为要被钻或铣削到胫骨10中的孔生成类似的虚拟边界,以便于在切除的胫骨10上植入胫骨植入物。虚拟边界(并且因此相应的工作边界)可以包括完全包围和围绕三维体积的一个或多个表面。在替代实施例中,虚拟和工作边界不完全包围三维体积,而是包括“有效(active)”表面和“开放”部分。例如,表示胫骨中的近端切除的虚拟边界62可具有基本上矩形的盒形“有效”表面62a和连接到矩形盒形部分的塌陷漏斗或三角形盒形“有效”表面62b,以及“开放”部分64。在一个实施例中,虚拟边界62可以被创建有塌陷漏斗,如于2011年12月29日提交、标题为“Systems and Methods for Selectively Activating HapticGuide Zones(用于选择性启用触觉引导区的系统和方法)”美国申请序列号No.13/340,668所述,并且其全部内容通过引用并入本文。对应于虚拟边界62的工作边界66具有与虚拟边界62相同的配置。换句话说,引导胫骨10中的近端切除的工作边界66可具有基本上矩形的盒形“有效”表面66a和连接到矩形盒形部分的塌陷漏斗或三角形盒形“有效”表面66b,具有“开放”部分67。The virtual boundary and thus the corresponding working boundary can be of any configuration or shape. Referring to FIG. 3A , thevirtual boundary 62 representing the proximal resection to be created in thetibia 10 may be any configuration suitable for assisting the user during creation of the proximal resection in thetibia 10 . The portion of thevirtual boundary 62 shown within the virtual representation of thetibia 10 represents the bone to be removed by surgical tools. Similar virtual boundaries can be created for holes to be drilled or milled into thetibia 10 to facilitate implantation of a tibial implant over the resectedtibia 10 . The virtual boundary (and thus the corresponding working boundary) may include one or more surfaces that completely enclose and surround the three-dimensional volume. In an alternative embodiment, the virtual and working boundaries do not completely enclose the three-dimensional volume, but instead include "active" surfaces and "open" portions. For example, avirtual boundary 62 representing a proximal resection in the tibia may have a substantially rectangular box-shaped "active"surface 62a and a collapsed funnel or triangular box-shaped "active"surface 62b connected to the rectangular box portion, and an "open"Section 64. In one embodiment, thevirtual boundary 62 may be created with a collapse funnel, as submitted on Dec. 29, 2011, titled "Systems and Methods for Selectively Activating HapticGuide Zones (Systems and Methods for Selectively Activating Haptic Guide Zones) )" described in US Application Serial No. 13/340,668, the entire contents of which are incorporated herein by reference. The working boundary 66 corresponding to thevirtual boundary 62 has the same configuration as thevirtual boundary 62 . In other words, the working boundary 66 that guides the proximal resection in thetibia 10 may have a substantially rectangular box-shaped "effective"surface 66a and a collapsed funnel or triangular box-shaped "effective"surface 66b connected to the rectangular box-shaped portion, with "Open" section 67.

在另外的实施例中,表示骨10中的切除的虚拟边界62仅包括基本上矩形的盒形部分62a。仅具有矩形盒形部分的虚拟边界的一端可以具有“开放”顶部,使得相应工作边界的开放顶部与骨10的外表面重合。替代地,如图3A和3B所示,对应于虚拟边界部分62a的矩形盒形工作边界部分66a可以延伸超过骨10的外表面。In further embodiments, thevirtual boundary 62 representing the resection in thebone 10 includes only the substantially rectangular box-shapedportion 62a. Only one end of a virtual boundary with a rectangular box portion may have an "open" top, such that the open top of the corresponding working boundary coincides with the outer surface of thebone 10 . Alternatively, as shown in FIGS. 3A and 3B , a rectangular box-shaped workingboundary portion 66a corresponding tovirtual boundary portion 62a may extend beyond the outer surface ofbone 10 .

在一些实施例中,表示通过骨的一部分的切除的虚拟边界62可以具有基本上平面的形状,有或没有厚度。替代地,虚拟边界62可以是弯曲的或具有不规则的形状。在虚拟边界62被描绘为线形状或平面形状并且虚拟边界62也具有厚度的情况下,虚拟边界62可以比用于在骨中创建切除的手术工具稍厚,使得工具可以在当位于骨内时,被约束在工作边界66的有效表面内。可以规划这样的线性或平面虚拟边界62,使得相应的工作边界66以漏斗或其他适当的形状延伸超过骨10的外表面,以在手术工具58靠近骨10时辅助外科医生。可以基于手术工具58和工作边界的有效表面之间的关系向用户提供引导和反馈(如下所述)。In some embodiments, thevirtual boundary 62 representing the resection through a portion of the bone may have a substantially planar shape, with or without thickness. Alternatively, thevirtual boundary 62 may be curved or have an irregular shape. Where thevirtual border 62 is depicted as a line shape or a planar shape and thevirtual border 62 also has a thickness, thevirtual border 62 may be slightly thicker than the surgical tool used to create the resection in the bone so that the tool can be , constrained within the effective surface of the working boundary 66 . Such linear or planarvirtual boundaries 62 may be planned such that corresponding working boundaries 66 extend beyond the outer surface ofbone 10 in a funnel or other suitable shape to assist the surgeon assurgical tool 58 approachesbone 10 . Guidance and feedback may be provided to the user based on the relationship between thesurgical tool 58 and the active surface of the working boundary (as described below).

手术规划还可以包括虚拟边界以便于进入和退出触觉控制,包括手术工具的自动对齐,如于2012年12月21日提交、标题为“Systems and Methods for Haptic Control ofa Surgical Tool(用于手术工具的触觉控制的系统和方法)”的美国申请序列号No.13/725,348所述,并且其全部内容通过引用结合于此。Surgical planning can also include virtual boundaries to facilitate entry and exit of haptic controls, including automatic alignment of surgical tools, as presented on December 21, 2012 under the title "Systems and Methods for Haptic Control of a Surgical Tool". Systems and Methods for Haptic Control)" US Application Serial No. 13/725,348, which is hereby incorporated by reference in its entirety.

可以基于与患者的骨密度相关的信息来开发包括虚拟边界的手术规划。使用从CT、MRI或患者解剖结构的其他成像获得的数据计算患者的骨密度。在一个实施例中,对代表人骨并具有已知钙含量的校准对象进行成像,以获得图像强度值与骨密度测量值之间的对应关系。然后可以应用该对应关系将患者解剖结构的各个图像的强度值转换成骨密度测量值。然后对患者解剖结构的各个图像以及骨密度测量值的相应地图进行分割,并用于创建患者解剖结构的三维表示(即,模型),包括患者的骨密度信息。然后可以对模型执行图像分析,例如有限元分析(FEA),以评估其结构完整性。A surgical plan including virtual boundaries can be developed based on information related to the patient's bone density. The patient's bone density is calculated using data obtained from CT, MRI, or other imaging of the patient's anatomy. In one embodiment, a calibration object representing human bone and having a known calcium content is imaged to obtain a correspondence between image intensity values and bone density measurements. This correspondence can then be applied to convert the intensity values of the individual images of the patient's anatomy into bone density measurements. Individual images of the patient's anatomy and corresponding maps of bone density measurements are then segmented and used to create a three-dimensional representation (ie, a model) of the patient's anatomy, including the patient's bone density information. Image analysis, such as finite element analysis (FEA), can then be performed on the model to assess its structural integrity.

评估患者解剖结构的结构完整性的能力提高了关节成形术规划的有效性。例如,如果患者骨骼的某些部分看起来较不致密(即骨质疏松),则可以规划孔、切除和植入物放置以使骨骼的弱化部分骨折的风险最小化。此外,也可以在术前针对结构完整性评估实施手术规划(例如,术后骨和植入物布置)之后骨和植入物组合的规划结构,以改善手术规划。在该实施例中,规划孔和/或切口,并且在执行关节成形术和植入手术之后操纵骨模型和植入物模型以表示患者的骨和植入物布置。可以考虑影响术后骨和植入物布置的结构完整性的各种其他因素,例如患者的体重和生活方式。分析术后骨骼和植入物布置的结构完整性以确定该布置在术后是否在结构上是可靠的并且在运动学上是能够发挥功能的。如果分析揭示结构缺陷或运动学忧虑,则可以修改手术规划以实现期望的术后结构完整性和功能。The ability to assess the structural integrity of a patient's anatomy increases the effectiveness of arthroplasty planning. For example, if parts of a patient's bone appear to be less dense (ie, osteoporotic), holes, resections, and implant placement can be planned to minimize the risk of fractures in the weakened part of the bone. In addition, the planned structure of the bone and implant combination can also be performed preoperatively for structural integrity assessment after surgical planning (eg, postoperative bone and implant placement) to improve surgical planning. In this embodiment, the holes and/or incisions are planned, and the bone and implant models are manipulated to represent the patient's bone and implant placement after the arthroplasty and implantation procedures are performed. Various other factors that affect the structural integrity of postoperative bone and implant placement can be considered, such as the patient's weight and lifestyle. The structural integrity of the post-operative bone and implant placement was analyzed to determine whether the placement was structurally sound and kinematically functional post-operatively. If analysis reveals structural defects or kinematic concerns, surgical planning can be modified to achieve the desired postoperative structural integrity and function.

一旦完成手术规划,外科医生可以在触觉设备60的辅助下执行关节成形手术(步骤806)。通过触觉设备60,手术系统100向外科医生提供触觉引导和反馈,以帮助外科医生准确地实施手术规划。与常规关节成形术技术相比,关节成形手术期间的触觉引导和反馈允许更好地控制手术工具,从而导致植入物的更准确的对齐和放置。此外,触觉引导和反馈旨在消除将K线(K-wire)和荧光检查用于规划目的的需要。相反,使用患者解剖结构的三维表示来创建和验证手术规划,并且触觉设备在手术期间提供引导。Once surgical planning is complete, the surgeon may perform an arthroplasty procedure with the assistance of haptic device 60 (step 806). Through thehaptic device 60, thesurgical system 100 provides the surgeon with haptic guidance and feedback to help the surgeon accurately implement surgical planning. Compared to conventional arthroplasty techniques, tactile guidance and feedback during arthroplasty procedures allow for better control of surgical tools, resulting in more accurate alignment and placement of implants. Additionally, tactile guidance and feedback are designed to eliminate the need to use K-wires and fluoroscopy for planning purposes. Instead, surgical plans are created and validated using a three-dimensional representation of the patient's anatomy, and haptic devices provide guidance during surgery.

“触觉”是指接触的感觉,并且触觉领域涉及向手术者提供触觉和/或力反馈的人类交互设备。触觉反馈通常包括触觉感受,例如振动。力反馈(也称为“猛扭(wrench)”)是指以力(例如,运动阻力)和/或扭矩的形式的反馈。猛扭例如包括力、扭矩或力和扭矩的组合形式的反馈。触觉反馈还可以包括停用或改变提供给手术工具的动力量,其可以向用户提供触觉和/或力反馈。"Haptic" refers to the sensation of contact, and the field of haptics involves human interaction devices that provide tactile and/or force feedback to the operator. Haptic feedback typically includes tactile sensations, such as vibrations. Force feedback (also known as "wrench") refers to feedback in the form of force (eg, resistance to motion) and/or torque. Torsion includes, for example, feedback in the form of force, torque, or a combination of force and torque. Haptic feedback may also include deactivating or changing the amount of power provided to the surgical tool, which may provide tactile and/or force feedback to the user.

手术系统100基于手术工具58和至少一个工作边界之间的关系向外科医生提供触觉反馈。手术工具58和工作边界之间的关系可以是手术工具58和可以由导航系统获得并且由手术系统100使用以提供触觉反馈的工作边界之间的任何合适的关系。例如,该关系可以是手术工具58相对于一个或多个工作边界的位置、取向、姿势、速度或加速度。该关系还可以是手术工具58相对于一个或多个工作边界的位置、取向、姿势、速度和加速度的任何组合。手术工具58和工作边界之间的“关系”还可以涉及由手术工具58和工作边界之间的另一关系产生的量或测量值。换句话说,“关系”可以是另一关系的函数。作为具体示例,手术工具58和工作边界之间的“关系”可以是由手术工具58和工作边界之间的位置关系产生的触觉力的大小。Thesurgical system 100 provides haptic feedback to the surgeon based on the relationship between thesurgical tool 58 and the at least one working boundary. The relationship between thesurgical tool 58 and the working boundary may be any suitable relationship between thesurgical tool 58 and the working boundary that may be obtained by the navigation system and used by thesurgical system 100 to provide haptic feedback. For example, the relationship may be the position, orientation, posture, velocity, or acceleration of thesurgical tool 58 relative to one or more working boundaries. The relationship may also be any combination of position, orientation, posture, velocity, and acceleration ofsurgical tool 58 relative to one or more working boundaries. The "relationship" between thesurgical tool 58 and the working boundary may also relate to a quantity or measurement resulting from another relationship between thesurgical tool 58 and the working boundary. In other words, a "relationship" can be a function of another relationship. As a specific example, the "relationship" between thesurgical tool 58 and the working boundary may be the magnitude of the haptic force produced by the positional relationship between thesurgical tool 58 and the working boundary.

在手术期间,外科医生操纵触觉设备60以引导耦接到设备的手术工具58。手术系统100通过触觉设备60向用户提供触觉反馈,以在创建规划的孔、切口或对便于植入股骨和胫骨植入物所需的对患者骨骼的其他修改期间辅助外科医生。例如,手术系统100可以通过基本上防止或约束手术工具58不越过工作边界来辅助外科医生。手术系统100可以通过任何数量和组合的触觉反馈机制来约束手术工具不越过工作边界,包括通过提供触觉反馈,通过提供力反馈,和/或通过改变提供给手术工具的动力量。如本文所用,“约束(constrain)”用于描述限制移动的趋势。因此,手术系统可以通过向触觉设备60施加相反的力来直接约束手术工具58,这倾向于限制手术工具58的移动。手术系统还可以通过提供触觉反馈以提示用户改变他或她的动作来间接地约束手术工具58,因为提醒用户改变他或她的动作倾向于限制手术工具58的移动。在又一实施例中,手术系统100可以通过限制给手术工具58动力来约束手术工具58,其也趋向于限制工具的移动。During surgery, the surgeon manipulates thehaptic device 60 to guide thesurgical tool 58 coupled to the device.Surgical system 100 provides haptic feedback to the user throughhaptic device 60 to assist the surgeon during the creation of planned holes, incisions, or other modifications to the patient's bone required to facilitate implantation of femoral and tibial implants. For example,surgical system 100 may assist a surgeon by substantially preventing or restrainingsurgical tool 58 from overrunning a working boundary.Surgical system 100 may constrain the surgical tool from overrunning the working boundary by any number and combination of haptic feedback mechanisms, including by providing haptic feedback, by providing force feedback, and/or by varying the amount of power provided to the surgical tool. As used herein, "constrain" is used to describe a tendency to restrict movement. Thus, the surgical system can directly constrain thesurgical tool 58 by applying opposing forces to thehaptic device 60, which tends to limit movement of thesurgical tool 58. The surgical system may also indirectly restrain thesurgical tool 58 by providing haptic feedback to prompt the user to change his or her motion, since prompting the user to change his or her motion tends to limit the movement of thesurgical tool 58 . In yet another embodiment, thesurgical system 100 may restrain thesurgical tool 58 by limiting power to thesurgical tool 58, which also tends to limit movement of the tool.

在各种实施例中,当手术工具58靠近工作边界时、在手术工具58与工作边界接触时和/或在手术工具58已穿透工作边界预定深度之后,手术系统100向用户提供触觉反馈。外科医生可以体验触觉反馈,例如,作为振动,作为抵抗或主动地反对触觉设备的进一步移动的猛扭,或者作为基本上阻止触觉设备的进一步移动的固体“壁”。用户可以替代地体验触觉反馈,作为由提供给手术工具58的动力的改变引起的触觉感受(例如,振动的改变),或者由提供给工具的动力的停止而产生的触觉感受。如果在手术工具58钻孔、切割或以其他方式直接在骨骼上操作时改变或停止给手术工具的动力,则外科医生将以抵抗进一步移动的形式感受到触觉反馈,因为该工具不再能够钻孔、切割或以其他方式移动通过骨。在一个实施例中,在手术工具58和工作边界之间接触时,改变(例如,减少给工具的动力)或停止(例如,工具被停用)给手术工具的动力。替代地,当手术工具58靠近工作边界时,可以改变(例如减少)提供给手术工具58的动力。In various embodiments,surgical system 100 provides haptic feedback to the user whensurgical tool 58 approaches the working boundary, whensurgical tool 58 is in contact with the working boundary, and/or aftersurgical tool 58 has penetrated the working boundary a predetermined depth. The surgeon may experience haptic feedback, for example, as a vibration, as a jerk that resists or actively opposes further movement of the haptic device, or as a solid "wall" that substantially prevents further movement of the haptic device. The user may alternatively experience haptic feedback as a haptic sensation (eg, a change in vibration) caused by a change in power provided to thesurgical tool 58, or as a haptic sensation resulting from a cessation of power provided to the tool. If the power to thesurgical tool 58 is changed or stopped while drilling, cutting, or otherwise operating directly on the bone, the surgeon will experience haptic feedback in the form of resistance to further movement because the tool is no longer able to drill Hole, cut, or otherwise move through bone. In one embodiment, power to the surgical tool is changed (eg, power to the tool is reduced) or stopped (eg, the tool is deactivated) upon contact between thesurgical tool 58 and the working boundary. Alternatively, the power provided to thesurgical tool 58 may be altered (eg, reduced) as thesurgical tool 58 approaches the working boundary.

在另一个实施例中,手术系统100可以通过提供触觉反馈来引导手术工具58朝向或沿着工作边界来辅助外科医生创建规划的孔、切口和对骨骼的其他修改。作为一个示例,手术系统100可以基于手术工具58的尖端与工作边界的最近坐标之间的位置关系向触觉设备60提供力。这些力可使手术工具58靠近最近的工作边界。一旦手术工具58基本上接近或接触工作边界,手术系统100可以施加力,该力倾向于引导手术工具58沿着工作边界的一部分移动。在另一个实施例中,力倾向于引导手术工具58从工作边界的一部分移动到工作边界的另一部分(例如,从工作边界的漏斗形部分移动到工作边界的矩形盒形部分)。In another embodiment, thesurgical system 100 may assist the surgeon in creating planned holes, cuts, and other modifications to the bone by providing haptic feedback to guide thesurgical tool 58 toward or along the working boundary. As one example,surgical system 100 may provide force tohaptic device 60 based on the positional relationship between the tip ofsurgical tool 58 and the nearest coordinates of the working boundary. These forces can bring thesurgical tool 58 closer to the nearest working boundary. Oncesurgical tool 58 is substantially near or in contact with the working boundary,surgical system 100 may apply a force that tends to guidesurgical tool 58 to move along a portion of the working boundary. In another embodiment, the force tends to guide the movement of thesurgical tool 58 from one portion of the working boundary to another portion of the working boundary (eg, from a funnel-shaped portion of the working boundary to a rectangular box-shaped portion of the working boundary).

在又一个实施例中,手术系统100被配置成通过提供触觉反馈以将手术工具从一个工作边界引导到另一个工作边界来辅助外科医生创建规划的孔、切口和对骨骼的修改。例如,当用户将手术工具58朝向工作边界66引导时,外科医生可以体验趋向于将手术工具58拉向工作边界66的力。当用户随后从由工作边界66围绕的空间移除手术工具58,并且操纵触觉设备60使得手术工具58靠近第二工作边界(未示出)时,外科医生可以体验从工作边界66推离并朝向第二工作边界的力。In yet another embodiment, thesurgical system 100 is configured to assist a surgeon in creating planned holes, cuts, and modifications to bones by providing haptic feedback to guide surgical tools from one working boundary to another. For example, as the user guides thesurgical tool 58 toward the working boundary 66 , the surgeon may experience a force that tends to pull thesurgical tool 58 toward the working boundary 66 . When the user then removessurgical tool 58 from the space surrounded by working boundary 66, and manipulateshaptic device 60 so thatsurgical tool 58 approaches a second working boundary (not shown), the surgeon may experience a push away from working boundary 66 and toward The force of the second working boundary.

本文所述的触觉反馈可以与手术系统100对工作边界的修改协力操作。虽然在本文中作为对“工作边界”的修改进行了讨论,但是应该理解,手术系统100修改虚拟边界,该虚拟边界对应于工作边界。对工作边界进行修改的一些示例包括:1)工作边界的重新配置(例如,形状或大小的改变),以及2)激活和停用整个工作边界或工作边界的部分(例如,转换将“开放”部分转换为“有效”表面以及将“有效”表面转换为“开放”部分)。类似于触觉反馈,对工作边界的修改可以由手术系统100基于手术工具58与一个或多个工作边界之间的关系来执行。对工作边界的修改通过促进各种不同动作(例如手术工具58朝向骨骼的移动和通过手术工具58切割骨骼)进一步在关节成形手术期间辅助用户创建所需的孔和切口。The haptic feedback described herein can operate in conjunction with the modification of the working boundary by thesurgical system 100 . Although discussed herein as a modification of the "working boundary," it should be understood that thesurgical system 100 modifies the virtual boundary, which corresponds to the working boundary. Some examples of modifications to the working boundary include: 1) reconfiguration of the working boundary (eg, a change in shape or size), and 2) activating and deactivating the entire working boundary or parts of the working boundary (eg, the transition will "open" parts to "valid" surfaces and "valid" surfaces to "open" parts). Similar to haptic feedback, modifications to working boundaries may be performed bysurgical system 100 based on the relationship betweensurgical tool 58 and one or more working boundaries. Modifications to the working boundaries further assist the user in creating the desired holes and incisions during an arthroplasty procedure by facilitating various actions such as movement of thesurgical tool 58 towards the bone and cutting of the bone by thesurgical tool 58 .

在一个实施例中,对工作边界的修改促进手术工具58朝向骨10的移动。在外科手术期间,因为通过导航系统跟踪患者的解剖结构,所以手术系统100与患者解剖结构的移动相对应移动整个工作边界66。除了该基线移动之外,工作边界66的一些部分可以被重新成形和/或重新配置以便于手术工具58朝向骨10移动。作为一个示例,手术系统可以基于手术工具58和工作边界66之间的关系在外科手术期间相对于矩形盒形部分66a倾斜工作边界66的漏斗形部分66b。因此,可以在外科手术期间动态地修改工作边界66,使得当手术工具58靠近骨10时手术工具58保持在由工作边界66的部分66b围绕的空间内。In one embodiment, the modification to the working boundary facilitates movement of thesurgical tool 58 toward thebone 10 . During a surgical procedure, as the patient's anatomy is tracked by the navigation system, thesurgical system 100 moves the entire working boundary 66 in correspondence with movement of the patient's anatomy. In addition to this baseline movement, portions of working boundary 66 may be reshaped and/or reconfigured to facilitate movement ofsurgical tool 58 towardbone 10 . As one example, the surgical system may tilt the funnel-shapedportion 66b of the working boundary 66 relative to the rectangular box-shapedportion 66a during a surgical procedure based on the relationship between thesurgical tool 58 and the working boundary 66 . Accordingly, the working boundary 66 may be dynamically modified during a surgical procedure such that thesurgical tool 58 remains within the space surrounded by theportion 66b of the working boundary 66 as thesurgical tool 58 approaches thebone 10 .

在另一实施例中,激活和停用工作边界或工作边界的一些部分。当手术工具58靠近骨10时,激活和停用整个工作边界可以辅助用户。例如,当外科医生靠近第一工作边界66或者当手术工具58位于由第一工作边界66围绕的空间内的时间期间,可以停用第二工作边界(未示出)。类似地,在外科医生完成第一相应切除的创建并且准备创建第二切除之后,可以停用第一工作边界66。在一个实施例中,在手术工具58进入通向第二工作边界的漏斗部分内的区域但仍在第一漏斗部分66b外部之后,可以停用工作边界66。激活工作边界的一部分将先前开放的部分(例如,开放顶部67)转换为工作边界的有效表面。相反,停用工作边界的一部分将工作边界的先前有效表面(例如,工作边界66的端部部分66c)转换为“开放”部分。In another embodiment, the working boundary or portions of the working boundary are activated and deactivated. Activating and deactivating the entire working boundary may assist the user as thesurgical tool 58 approaches thebone 10 . For example, the second working boundary (not shown) may be deactivated during times when the surgeon is near the first working boundary 66 or when thesurgical tool 58 is within the space surrounded by the first working boundary 66 . Similarly, the first working boundary 66 may be deactivated after the surgeon has completed the creation of the first corresponding resection and is ready to create the second resection. In one embodiment, the working boundary 66 may be deactivated after thesurgical tool 58 enters an area within the funnel portion leading to the second working boundary but still outside thefirst funnel portion 66b. Activating a portion of the working boundary converts the previously open portion (eg, the open top 67 ) into an active surface of the working boundary. Conversely, deactivating a portion of the working boundary converts a previously active surface of the working boundary (eg,end portion 66c of working boundary 66) to an "open" portion.

在外科手术期间,手术系统100可以动态地完成激活和停用整个工作边界或其一些部分。换句话说,手术系统100可以被编程为在外科手术期间确定触发虚拟边界或虚拟边界的一些部分的激活和停用的因素和关系的存在。在另一个实施例中,用户可以与手术系统100交互(例如,通过使用输入装置52)以表示关节成形术过程的各个阶段的开始或完成,从而触发工作边界或其部分以激活或停用。During a surgical procedure, thesurgical system 100 can dynamically accomplish activating and deactivating the entire working boundary or portions thereof. In other words,surgical system 100 may be programmed to determine the existence of factors and relationships that trigger activation and deactivation of virtual boundaries or portions of virtual boundaries during a surgical procedure. In another embodiment, a user may interact with surgical system 100 (eg, by using input device 52) to indicate the beginning or completion of various stages of an arthroplasty procedure, thereby triggering a working boundary or portion thereof to activate or deactivate.

鉴于如上所述的手术系统100的操作和功能,现在讨论将转向术前规划要通过手术系统100执行的手术的方法,然后详细讨论将术前规划配准到患者的实际骨骼并且还到手术系统100的适用部件的方法。In view of the operation and functionality ofsurgical system 100 as described above, the discussion will now turn to methods of pre-operative planning of a procedure to be performed bysurgical system 100, followed by a detailed discussion of registering the pre-operative plan to the patient's actual skeleton and also to thesurgical system 100 methods of applicable parts.

触觉设备60可被描述为外科医生辅助设备或工具,因为设备60由外科医生操纵以执行各种切除、钻孔等。在某些实施例中,设备60可以是自主机器人,而不是辅助外科医生的。也就是说,与触觉边界相反,可以限定用于切除骨骼和钻孔的工具路径,因为自主机器人仅可以沿着预定的工具路径操作,使得不需要触觉反馈。在某些实施例中,设备60可以是具有至少一个自由度的切割设备,其与导航系统42协力操作。例如,切割工具可包括在工具上具有跟踪器的旋转锉刀(burr)。切割工具可以由外科医生自由操纵和手持。在这样的情况下,触觉反馈可以限于在满足虚拟边界时停止旋转的锉刀。这样,设备60将被广义地视为包含本申请中描述的任何设备以及其他设备。Haptic device 60 may be described as a surgeon aid or tool in thatdevice 60 is manipulated by the surgeon to perform various resections, drilling, and the like. In some embodiments,device 60 may be an autonomous robot rather than an auxiliary surgeon. That is, in contrast to haptic boundaries, tool paths for bone resection and drilling can be defined, since the autonomous robot can only operate along predetermined tool paths, so that no haptic feedback is required. In some embodiments,device 60 may be a cutting device having at least one degree of freedom that operates in conjunction with navigation system 42 . For example, a cutting tool may include a burr with a tracker on the tool. The cutting tool can be freely manipulated and held by the surgeon. In such a case, the haptic feedback may be limited to the file that stops rotating when the virtual boundary is met. As such,device 60 is to be broadly considered to encompass any of the devices described in this application, as well as other devices.

II.关节成形手术的术前规划II. Preoperative Planning for Arthroplasty Surgery

本文公开的术前规划过程包括骨切除深度确定和前骨干切口评估。骨切除深度确定包括相对于患者的远端股骨和近端胫骨的三维计算机模型选择和定位候选股骨和胫骨植入物的三维计算机模型,以确定将实现关节成形手术的合意的手术结果的植入物的位置和取向。作为这种评估的一部分,计算必要的胫骨和股骨切除的深度,以及这些切除的平面的取向。The preoperative planning process disclosed herein includes bone resection depth determination and anterior diaphyseal incision assessment. Bone resection depth determination involves selecting and positioning three-dimensional computer models of candidate femoral and tibial implants relative to three-dimensional computer models of the patient's distal femur and proximal tibia to determine implantation that will achieve a desirable surgical outcome for the arthroplasty procedure position and orientation of objects. As part of this evaluation, the depth of the necessary tibial and femoral resections, and the orientation of the planes of these resections, are calculated.

前骨干切口评估包括确定当相对于在骨切除深度确定期间提议的股骨三维模型定位和定向植入物三维模型时,所选择的股骨植入物的三维模型的前凸缘部分是否将与患者远端股骨的三维模型的前骨干相交。两个模型的这种相交指示前股骨干的切口,这必须避免。Anterior diaphyseal incision assessment consists of determining whether the anterior flange portion of the selected 3D model of the femoral implant will be distant from the patient when positioning and orienting the implant 3D model relative to the proposed 3D model of the femur during bone resection depth determination Intersection of the anterior diaphysis of the 3D model of the end femur. This intersection of the two models indicates an incision of the anterior femoral shaft, which must be avoided.

以下详细并依次讨论这两个术前规划过程中的每一个。Each of these two preoperative planning processes is discussed in detail and in turn below.

A.骨切除深度A. Depth of bone resection

图4A和4B分别示出了一般胫骨200的近端和一般股骨202的远端的三维计算机模型200,202。在某些实施例中,每个三维模型表示根据大小和形状其相应的骨骼类型的统计平均。例如,在一个实施例中,一般胫骨模型200是对许多(例如,数千或数万)实际胫骨的医学图像(例如,CT、MRI、X射线等)关于大小和形状进行分析的结果,并且该分析用于生成一般胫骨模型200,其是许多实际胫骨的统计平均。类似地,一般股骨模型202是关于大小和形状分析许多(例如,数千或数万)实际股骨的医学图像(例如,CT、MRI、X射线等)的结果,并且该分析用于生成一般股骨模型202,其是许多实际股骨的统计平均。4A and 4B show three-dimensional computer models 200, 202 of the proximal end of ageneric tibia 200 and the distal end of ageneric femur 202, respectively. In some embodiments, each three-dimensional model represents a statistical average of its corresponding bone type in terms of size and shape. For example, in one embodiment, thegeneric tibia model 200 is the result of analyzing many (eg, thousands or tens of thousands) of medical images (eg, CT, MRI, X-ray, etc.) of the actual tibia for size and shape, and This analysis is used to generate ageneral tibia model 200, which is a statistical average of many actual tibias. Similarly, thegeneral femur model 202 is the result of analyzing many (eg, thousands or tens of thousands) of medical images (eg, CT, MRI, X-ray, etc.) of the actual femur with respect to size and shape, and this analysis is used to generate thegeneral femur Model 202, which is a statistical average of many actual femurs.

在某些实施例中,每个三维模型表示来自骨骼目录或库的随机选择的骨骼。骨骼库可以包括实际骨骼(例如,尸体)的计算机模型和/或医学骨模型的计算机模型等。虽然模型200,202可以是任何这样的骨模型,但是出于本公开的目的,将参考一般胫骨200和一般股骨202,其根据大小和形状分别表示胫骨和股骨的统计平均。如图4A所示,在一般胫骨模型200上识别目标点204,208。在某些实施例中,如图4A所示,胫骨外侧髁隐窝206上的最远端凹陷点204和胫骨内侧髁隐窝210上的最远端凹陷点208被识别并且与一般胫骨模型200一起电子地存储。这样的最远端凹陷的胫骨髁点204,208通常将在相应的胫骨髁隐窝206,210中内侧-外侧和前侧-后侧居中。最远端凹陷的胫骨髁点204,208可以在一般胫骨模型200上描绘为圆形或球形点,如图4A所示。在某些实施例中,目标点204,208可以位于胫骨模型200的其他部分上。例如,在某些实施例中,目标点204,208可以是一般胫骨模型200上最近端地凸出或最近端地延伸的点。另外,在某些实施例中,目标点204,208可以是髁的中心,或者可以是位于距前缘的某个分数(例如,2/3)的点,其可以表示一般胫骨模型200上植入的胫骨插入物上的低点。在不脱离本公开的范围的情况下,这些和其他点204,208也是可能的。出于本公开的目的,将参考胫骨外侧髁隐窝206上的最远端凹陷点204和胫骨内侧髁隐窝210上的最远端凹陷点208。In some embodiments, each three-dimensional model represents a randomly selected bone from a bone catalog or library. The bone library may include computer models of actual bones (eg, cadavers) and/or computer models of medical bone models, among others. While themodels 200, 202 may be any such bone models, for the purposes of this disclosure, reference will be made to ageneral tibia 200 and ageneral femur 202, which represent statistical averages of the tibia and femur, respectively, in terms of size and shape. As shown in FIG. 4A , target points 204 , 208 are identified on thegeneric tibia model 200 . In certain embodiments, as shown in FIG. 4A , thedistal-most depression point 204 on the lateraltibial condyle recess 206 and thedistal-most depression point 208 on the medialtibial condyle recess 210 are identified and compared with thegeneral tibial model 200 electronically stored together. Such distal most recessed tibial condyle points 204 , 208 will typically be centered medial-lateral and anterior-posterior in the corresponding tibial condyle recesses 206 , 210 . The distal most concave tibial condyle points 204, 208 may be depicted as circular or spherical points on thegeneral tibial model 200, as shown in Figure 4A. In some embodiments, the target points 204 , 208 may be located on other portions of thetibial model 200 . For example, in some embodiments, the target points 204 , 208 may be points on thegeneral tibial model 200 that bulge proximally or extend proximally. Additionally, in some embodiments, the target points 204 , 208 may be the centers of the condyles, or may be points located at some fraction (eg, 2/3) from the anterior edge, which may represent implanted implants on thegeneral tibial model 200 Low point on tibial insert. These andother points 204, 208 are also possible without departing from the scope of the present disclosure. For the purposes of this disclosure, reference will be made to thedistal-most depression point 204 on the lateraltibial condyle recess 206 and thedistal-most depression point 208 on the medialtibial condyle recess 210 .

如图4B所示,股骨外侧髁216上的最远端点212和最后侧点214以及股骨内侧髁222上的最远端点218和最后侧点220被识别并且与一般股骨模型202一起电子地存储。在最远端股骨髁点212,218和最后侧股骨髁点214,220可以在一般股骨模型202上被描绘为圆形或球形点,如图4B所示。在图4B中,当模型202在矢状平面中处于零度旋转时,在一般股骨模型202上识别远端点212,218和后侧点214,220。也就是说,股骨模型202处于未屈曲的位置或取向。然而,一般股骨模型202可以在矢状平面中旋转,以针对要植入在股骨上的股骨部件的规划屈曲进行调整。在某些实施例中,一般股骨模型202可以在矢状平面中旋转两度以及其他度数,并且可以在该屈曲取向中在模型202上识别远端点212,218和后侧点214,220。As shown in FIG. 4B , the mostdistal points 212 and 214 on the lateralfemoral condyle 216 and the mostdistal points 218 and 220 on the medialfemoral condyle 222 are identified and electronically along with the generalfemoral model 202 storage. The distal-most femoral condyle points 212, 218 and the posterior-most femoral condyle points 214, 220 may be depicted as circular or spherical points on the generalfemoral model 202, as shown in Figure 4B. In FIG. 4B ,distal points 212 , 218 andposterior points 214 , 220 are identified on thegeneric femur model 202 when themodel 202 is at zero degrees of rotation in the sagittal plane. That is, thefemoral model 202 is in an unflexed position or orientation. However, the genericfemoral model 202 can be rotated in the sagittal plane to adjust for the planned flexion of the femoral component to be implanted on the femur. In certain embodiments, the generalfemoral model 202 may be rotated two degrees in the sagittal plane, as well as other degrees, anddistal points 212, 218 andposterior points 214, 220 may be identified on themodel 202 in this flexion orientation.

如上文在手术系统概述中所讨论的,将患者胫骨和股骨的医学图像分割,然后将其汇集到患者胫骨和股骨的三维网格或计算机模型中。图5A-5C分别示出了患者胫骨的三维计算机模型(即,患者胫骨模型224)的近端的冠状、轴向或横向和矢状视图,并且图6A-6C分别示出了患者股骨的三维计算机模型(即,患者股骨模型226)的远端的冠状、轴向或横向和矢状视图。虽然患者胫骨和股骨的三维计算机模型被描述为通过分割医学图像(例如,CT、MRI)而生成,但是可以预见可以采用其他生成患者模型的方法。例如,患者骨骼模型或其部分可以通过在骨的一个或多个区域中配准骨或软骨表面而在术中生成。这样的过程可以生成一个或多个骨表面轮廓。因此,本文描述的各种方法旨在涵盖由分割的医学图像(例如,CT、MRI)以及术中成像方法等生成的三维骨骼模型。As discussed above in the surgical system overview, medical images of the patient's tibia and femur are segmented and then assembled into a three-dimensional mesh or computer model of the patient's tibia and femur. Figures 5A-5C show coronal, axial or transverse and sagittal views, respectively, of the proximal end of a three-dimensional computer model of the patient's tibia (ie, the patient's tibia model 224), and Figures 6A-6C respectively show three-dimensional views of the patient's femur Coronal, axial or transverse and sagittal views of the distal end of the computer model (ie, patient femur model 226). Although three-dimensional computer models of the patient's tibia and femur are described as being generated by segmenting medical images (eg, CT, MRI), it is envisioned that other methods of generating patient models may be employed. For example, a patient bone model or portion thereof can be generated intraoperatively by registering a bone or cartilage surface in one or more regions of the bone. Such a process can generate one or more bone surface profiles. Accordingly, the various methods described herein are intended to encompass three-dimensional bone models generated from segmented medical images (eg, CT, MRI) as well as intraoperative imaging methods, among others.

1.微调患者胫骨模型上的最远端凹陷的胫骨髁点1. Fine-tune the most distal recessed tibial condyle point on the patient's tibia model

从图4A和5A-5C的比较可以理解,一般胫骨模型200的最远端凹陷的胫骨髁点204,208已被导入或映射到患者胫骨模型224的对应位置上。仿射变换用于将点204,208从一般胫骨模型200映射到患者胫骨模型224。更具体地,通过首先使用已经计算的仿射变换对目标点204,208进行变换并且然后找到从每个变换的目标点到患者胫骨模型224的分割表面的最近表面点,来自一般胫骨模型200的目标点204,208被映射到患者胫骨模型224上/中。结果如从图5A-5C中可以理解的那样,最远端凹陷的胫骨髁点204,208最终被定位在患者胫骨模型224的外侧和内侧胫骨髁上的最远端凹陷的位置处或非常靠近该位置。在一些实施例和实例中,可以根据一般和患者模型200,224之间的内侧-外侧缩放因子来缩放点204,208的位置。可以使用替代的前面提到的目标点204,208(例如,髁的中心、最近端凸出的外侧髁等)来类似地实现变换过程。一般而言,可以将一般骨骼模型上的(一个或多个)任何目标点变换为患者特异性骨模型,使得目标点204,208最终被定位在患者特异性骨模型上的期望位置处或非常靠近患者特异性骨模型上的期望位置。As can be appreciated from a comparison of FIGS. 4A and 5A-5C , the distal most concave tibial condyle points 204 , 208 of thegeneral tibial model 200 have been imported or mapped to corresponding locations on the patient'stibial model 224 . An affine transformation is used to map thepoints 204 , 208 from thegeneral tibia model 200 to thepatient tibia model 224 . More specifically, the target points from thegeneral tibia model 200 are obtained by first transforming the target points 204, 208 using the already computed affine transformations and then finding the closest surface point from each transformed target point to the segmented surface of the patient'stibia model 224. 204 , 208 are mapped onto/in thepatient tibia model 224 . Results As can be appreciated from Figures 5A-5C, the distal most concave tibial condyle points 204, 208 are ultimately positioned at or very close to the location of the most distal concave condyles on the lateral and medial tibial condyles of the patient'stibial model 224. . In some embodiments and examples, the positions of thepoints 204 , 208 may be scaled according to a medial-lateral scaling factor between the general andpatient models 200 , 224 . The transformation process can be similarly accomplished using the alternative previously mentionedtarget points 204, 208 (eg, center of the condyle, proximal most convex lateral condyle, etc.). In general, any target point(s) on the general bone model can be transformed into a patient-specific bone model such that the target points 204, 208 are ultimately positioned at the desired location on the patient-specific bone model or very close to the patient Desired position on the specific bone model.

应注意,一般模型200和患者胫骨模型224可共享共同坐标系以帮助初始对齐。患者胫骨模型224的原点可以是由CT标界过程限定的胫骨的顶部中心。系统或用户可以限定这些点。一般模型200可具有由系统或用户以与患者胫骨模型224所做的相同方式选择的预定原点。It should be noted that thegeneral model 200 and thepatient tibia model 224 may share a common coordinate system to aid in initial alignment. The origin of thepatient tibia model 224 may be the top center of the tibia as defined by the CT delineation procedure. The system or the user can define these points. Thegeneric model 200 may have a predetermined origin selected by the system or the user in the same manner as thepatient tibia model 224 does.

通过识别患者胫骨模型224上的真实局部最小值、识别患者胫骨模型224上的真实局部最大值、识别边缘位置(例如,前缘)、识别切向点并找到表面与某个斜率匹配的点等可以实现远端地凹陷的胫骨髁点204,208的微调。远端地凹陷的胫骨髁点204,208的附加或替代微调可以使用关于股骨描述的类似方法和功能。By identifying true local minima on the patient'stibia model 224, identifying true local maxima on the patient'stibia model 224, identifying edge locations (eg, leading edges), identifying tangential points and finding points where the surface matches a certain slope, etc. Fine-tuning of the distally recessed tibial condyle points 204, 208 can be achieved. Additional or alternative fine-tuning of the distally recessed tibial condyle points 204, 208 may use similar methods and functions described with respect to the femur.

患者胫骨模型224和其上的点204,208可以在显示器54上描绘为能够旋转和移动的三维计算机模型。附加地或替代地,患者胫骨模型224和其上的点204,208可以以三个不同视图描绘在显示器54上,即,冠状视图、轴向视图或横向视图以及如图5A-5C中分别所示的矢状视图。在点204,208中的一个或多个被模型224的骨结构隐藏的情况下,例如,如图5A和5C中的情况,被隐藏点204,208可以被描绘为半透明或者在指示该点存在的另一描绘中描绘,但位于视图中的某个骨结构后面。在点204,208中的一个或多个被模型224的骨结构隐藏的某些实施例中,骨模型224可以被描绘为半透明的,因此点204,208在挡住的骨结构后面是可识别的。在点204,208中的一个或多个在视图中完全可见的情况下(换句话说,不被模型224的骨结构隐藏),如图5B中的情况,则可见点204,208可以描绘为实心的完全可见点,以指示点不被模型224的骨结构隐藏,而在视图中完全可见。The patient'stibia model 224 and thepoints 204, 208 thereon may be depicted on thedisplay 54 as a three-dimensional computer model capable of rotation and movement. Additionally or alternatively, thepatient tibia model 224 and thepoints 204, 208 thereon may be depicted on thedisplay 54 in three different views, namely a coronal view, an axial view or a transverse view and as shown in FIGS. 5A-5C, respectively. Sagittal view. In the event that one or more of thepoints 204, 208 are hidden by the bony structure of themodel 224, eg, as in the case of Figures 5A and 5C, thehidden points 204, 208 may be depicted as translucent or in another indicating the presence of the point Depicted in depiction, but behind a bony structure in view. In certain embodiments where one or more of thepoints 204, 208 are hidden by the bony structure of themodel 224, thebone model 224 may be depicted as translucent so that thepoints 204, 208 are recognizable behind the occluded bony structure. Where one or more of thepoints 204, 208 are fully visible in view (in other words, not hidden by the bony structure of the model 224), as in the case of Figure 5B, then thevisible points 204, 208 may be depicted as solid fully visible point to indicate that the point is not hidden by the bone structure of themodel 224, but is fully visible in the view.

当适当地定位在患者胫骨模型224上时,这些点204,208可以充当骨切除深度点,用于计算患者胫骨的骨切除深度,作为如本文所述的术前规划的关节成形手术的一部分,其将允许选择的胫骨植入物(连同选择的股骨植入物)在实际植入物植入患者的胫骨和股骨上时实现期望的手术结果。When properly positioned on the patient'stibia model 224, thesepoints 204, 208 may serve as bone resection depth points for calculating the bone resection depth of the patient's tibia as part of a preoperatively planned arthroplasty procedure as described herein, which will The selected tibial implant (along with the selected femoral implant) is allowed to achieve the desired surgical outcome when the actual implant is implanted on the patient's tibia and femur.

一旦目标点(例如最远端凹陷的胫骨髁点204,208)已经如上所述适当地定位在患者胫骨模型224上,这些点204,208就可以与候选胫骨植入物300的三维计算机模型或与这样的植入物300关联的数据一起使用,以术前计算需要在实际患者骨骼中进行的相关骨切除,从而接收实际胫骨植入物,以取得在实际的关节成形手术期间通过将实际胫骨植入物植入到实际的患者骨骼上的期望的手术结果。Once the target points (eg, the most distal recessed tibial condyle points 204, 208) have been properly positioned on the patient'stibial model 224 as described above, thesepoints 204, 208 can be compared with the three-dimensional computer model of thecandidate tibial implant 300 or with such an implant. The data associated with theimplant 300 are used together to pre-operatively calculate the relevant bone resections that need to be made in the actual patient's bone to receive the actual tibial implant to obtain the results obtained by implanting the actual tibial implant during the actual arthroplasty The desired surgical outcome into the actual patient skeleton.

图11是候选胫骨植入物(即,胫骨植入物模型300)的三维计算机模型的远端前视图,示出了其骨切除接触表面302,该表面与其胫骨平台304远远相对。从图12A-12C中可以理解(图12A-12C分别示出了叠加在患者胫骨的三维计算机模型(即,患者胫骨模型224)的近端上的胫骨植入物模型300的冠状、轴向或横向和矢状视图),点204,208中的一个或两个可以与植入物模型300的胫骨平台304的关节表面上的类似或等同的最远端凹陷的胫骨髁点或区域对齐,从而限定沿着植入物模型300的骨切除接触表面302延伸的提议的胫骨切除306。根据切除深度和平面取向来限定所限定的提议胫骨切除306。当然,通过术前和/或在一些实施例中术中的外科医生输入,通过相对于点204,208远端地或近端地改变切除深度,将候选胫骨植入物模型300的尺寸改变为更小或更大的尺寸,改变提议的切除306的平面取向以计及期望的内翻-外翻、内-外或延伸-屈曲旋转,以使两个点204,208或仅单个点204,208对应于植入物模型300的胫骨平台304的外侧和内侧关节表面上的类似点,可以调整或修改所限定的提议胫骨切除306,这取决于是否寻求解剖学(自然)对齐或寻求更传统的机械轴线对齐。FIG. 11 is a distal front view of a three-dimensional computer model of a candidate tibial implant (ie, tibial implant model 300 ) showing its boneresection contact surface 302 that is far opposite itstibial plateau 304 . As can be appreciated from Figures 12A-12C (Figures 12A-12C respectively illustrate coronal, axial or Lateral and sagittal views), one or both of thepoints 204, 208 may be aligned with a similar or equivalent distal most concave tibial condyle point or area on the articular surface of thetibial plateau 304 of theimplant model 300, thereby defining a The proposedtibial resection 306 extends against the boneresection contact surface 302 of theimplant model 300. The defined proposedtibial resection 306 is defined according to the resection depth and plane orientation. Of course, the size of the candidatetibial implant model 300 is altered to be smaller by preoperative and/or intraoperative surgeon input in some embodiments by varying the depth of resection distally or proximally relative topoints 204, 208 or larger size, changing the plane orientation of the proposedresection 306 to account for the desired varus-valgus, varus-lateral or extension-flexion rotation so that either twopoints 204, 208 or only asingle point 204, 208 corresponds to the implant Similar points on the lateral and medial articular surfaces of thetibial plateau 304 of themodel 300 may adjust or modify the defined proposedtibial resection 306, depending on whether an anatomical (natural) alignment is sought or a more traditional mechanical axis alignment is sought.

图12A-12C示出了仅单个点204,208与植入物模型300的胫骨平台304的关节表面上的类似点或区域对齐的情况。例如,如在图12A和12C中可以看到,外侧点204与植入物模型300的胫骨平台304的外侧关节表面上的类似点或区域对齐,但是内侧点208未与植入物模型300的胫骨平台上的相似点或区域对齐。因此,如从图12B可以理解的,内侧点208以虚线示出,以表示它在计算机显示器54上显现为透明的,因为其凹陷在植入物模型300的体积内,而外侧点208显示为实心圆,以表示由于位于植入物模型300的胫骨平台的外侧关节表面上,它在计算机显示器上将显示为实心的。要注意,胫骨植入物模型300可以被透明地描绘,使得通过植入物模型300可以看到切除深度。在点的单个匹配的情况下,其恰好在侧面上,植入物模型300的骨切除接触表面302的取向并且因此提议的切除平面306的取向随后通过保持侧向点的匹配来确定,同时实现提议的切除平面306相对于患者腿部(股骨或胫骨)的轴线(例如,胫骨机械轴线或腿部机械轴线)的期望角度。一旦外科医生批准了胫骨切除平面306的提议的深度和取向,就可以将相关数据提供给手术系统100以供导航系统在手术期间引导触觉设备60时使用,并且可以在术中向外科医生表示切除的患者胫骨模型224,如图15A-15C所示,图15A-15C是被提议要进行切除的胫骨模型224的各种视图,并且示出了提议的胫骨切除306。12A-12C illustrate a situation where only asingle point 204 , 208 is aligned with a similar point or area on the articular surface of thetibial plateau 304 of theimplant model 300 . For example, as can be seen in FIGS. 12A and 12C , thelateral point 204 is aligned with a similar point or area on the lateral articular surface of thetibial plateau 304 of theimplant model 300 , but themedial point 208 is not aligned with theimplant model 300 Similar points or areas on the tibial plateau are aligned. Thus, as can be understood from Figure 12B, themedial point 208 is shown in dashed lines to indicate that it appears transparent on thecomputer display 54 because it is recessed within the volume of theimplant model 300, while thelateral point 208 is shown as A solid circle to indicate that it will appear solid on a computer monitor due to being located on the lateral articular surface of the tibial plateau of theimplant model 300 . Note that thetibial implant model 300 may be depicted transparently so that the depth of resection can be seen through theimplant model 300 . In the case of a single match of points, which are exactly on the side, the orientation of the boneresection contact surface 302 of theimplant model 300 and thus the orientation of the proposedresection plane 306 is then determined by maintaining the match of the lateral points, while achieving The desired angle of the proposedresection plane 306 relative to the axis of the patient's leg (femur or tibia) (eg, tibial mechanical axis or leg mechanical axis). Once the proposed depth and orientation of thetibial resection plane 306 has been approved by the surgeon, relevant data can be provided to thesurgical system 100 for use by the navigation system in guiding thehaptic device 60 during surgery, and the resection can be represented to the surgeon intraoperatively Thepatient tibia model 224 is shown in FIGS. 15A-15C , which are various views of thetibia model 224 proposed for resection, and show the proposedtibial resection 306 .

虽然前面对于限定提议的胫骨切除平面306的讨论是在将候选胫骨植入物300叠加在胫骨模型224上并且在视觉上在系统100的计算机显示器54上显示这样的叠加的情况下进行的,但在其他实施例中,这样的过程可以通过表示候选胫骨植入物300的数据进行,而不需要候选胫骨植入物的三维表示或其在计算机显示器54上的实际视觉表示。While the preceding discussion of defining the proposedtibial resection plane 306 was made with thecandidate tibial implant 300 superimposed on thetibial model 224 and such superposition visually displayed on thecomputer display 54 of thesystem 100, In other embodiments, such a process may be performed with data representing thecandidate tibial implant 300 without requiring a three-dimensional representation of the candidate tibial implant or its actual visual representation on thecomputer display 54 .

2.微调患者股骨模型上最前侧和最远端股骨髁点2. Fine-tune the most anterior and most distal femoral condyle points on the patient's femur model

从图4B和6A-6C的比较可以理解,一般股骨模型202的最远端股骨髁点212,218和最后侧股骨髁点214,220已被导入或映射到患者股骨模型226的对应位置上。如参考胫骨变换所讨论的,使用仿射变换将点212,214,218,220从一般股骨模型202映射到患者股骨模型226。结果并且如从图6A-6C可以理解的,最远侧股骨髁点212,218最终被定位在患者股骨模型226的外侧和内侧股骨髁上的最远端位置处或非常靠近该位置。类似地,最后侧股骨髁点214,220最终被定位在患者股骨模型226的外侧股骨髁和内侧股骨髁上的最后侧位置处或非常靠近该位置。在一些实施例和实例中,点212,214,218,220的位置可以根据一般和患者模型202,226之间的内侧-外侧缩放因子来缩放。在一些实施例和实例中,仿射变换可以包含缩放功能。As can be understood from a comparison of FIGS. 4B and 6A-6C , the most distal femoral condyle points 212 , 218 and the most posterior femoral condyle points 214 , 220 of thegeneral femur model 202 have been imported or mapped to corresponding locations on thepatient femur model 226 . As discussed with reference to the tibial transformation, thepoints 212 , 214 , 218 , 220 are mapped from thegeneral femur model 202 to thepatient femur model 226 using an affine transformation. As a result and as can be understood from Figures 6A-6C, the distal most femoral condyle points 212, 218 are ultimately positioned at or very close to the most distal location on the lateral and medial femoral condyles of the patient'sfemoral model 226. Similarly, the posterior femoral condyle points 214 , 220 are ultimately positioned at or very close to the posteriormost location on the lateral and medial femoral condyles of the patient'sfemur model 226 . In some embodiments and examples, the positions of thepoints 212 , 214 , 218 , 220 may be scaled according to a medial-lateral scaling factor between the general andpatient models 202 , 226 . In some embodiments and instances, the affine transformation may include a scaling function.

应注意,一般模型202和患者股骨模型226可共享共同坐标系以帮助初始对齐。用于全膝关节成形术的患者股骨模型226的原点可以是远端滑车沟,如CT标界过程所限定。用于部分膝关节成形术的患者股骨模型226的原点可以是内侧和外侧上髁之间的中点中心,如CT标界过程所限定。系统或用户可以限定这些点。一般模型202可具有由系统或用户以与患者股骨模型226所做的相同方式选择的预定原点。It should be noted that thegeneral model 202 and thepatient femur model 226 may share a common coordinate system to aid in initial alignment. The origin of the patientfemoral model 226 for total knee arthroplasty may be the distal trochlear groove, as defined by the CT demarcation procedure. The origin of the patientfemoral model 226 for partial knee arthroplasty may be the center of the midpoint between the medial and lateral epicondyles, as defined by the CT demarcation procedure. The system or the user can define these points. Thegeneric model 202 may have a predetermined origin selected by the system or the user in the same manner as thepatient femur model 226 .

在一个实施例中,股骨髁表面上的“最远端”和“最后侧”点在以由外科医生评审和指导的两个屈曲度或以另一屈曲度放置的股骨植入物的意义上使用。而且,对于胫骨模型224的点204,208或股骨模型226的点212,214,218,220中的任何一个,这些点不应放置在骨赘上或模型上的不太可能在术前规划中被外科医生参考或使用或任何其他表面上。确定点204,208,212,214,218,220是否位于骨赘上将在下面讨论。In one embodiment, the "most distal" and "most posterior" points on the surface of the femoral condyle are in the sense of a femoral implant placed in two degrees of flexion or another degree of flexion as reviewed and directed by the surgeon use. Also, for any of thepoints 204, 208 of thetibial model 224 or thepoints 212, 214, 218, 220 of thefemoral model 226, these points should not be placed on osteophytes or on the model that are unlikely to be referenced or used by the surgeon in preoperative planning or any on other surfaces. Determining whetherpoints 204, 208, 212, 214, 218, 220 lie on osteophytes will be discussed below.

一旦点212,214,218,220最初通过仿射变换从一般股骨模型202映射到患者股骨模型226上,患者股骨模型226上的点212,214,218,220的位置就通过以现在描述的方式起作用的算法调整到最终位置。Once thepoints 212, 214, 218, 220 are initially mapped from thegeneral femur model 202 onto thepatient femur model 226 by affine transformation, the positions of thepoints 212, 214, 218, 220 on thepatient femur model 226 are adjusted to the final positions by algorithms that function in the manner now described.

以距股骨机械轴线坐标空间的两个屈曲度放置虚拟植入物坐标系。该坐标系的前-后和近端-远端方向用于以下关于股骨切除深度点的讨论中。A virtual implant coordinate system is placed at two degrees of flexion from the femoral mechanical axis coordinate space. The anterior-posterior and proximal-distal directions of this coordinate system are used in the following discussion of femoral resection depth points.

如关于图7和8的紧接的以下段落中详细讨论的,对于两个后侧点214,220中的每一个,算法在每个点214,220的初始位置周围进行搜索,并且每个点214,220的最终调整的位置被确定为与居中于每个点214,220的初始位置处或其附近的球体相交的所有三角形表面网格面的最后侧顶点。在一个实施例中,如果患者股骨模型226关于内侧-外侧大小基本匹配一般股骨模型202,则球体230的半径为7毫米。如果由于患者股骨模型226和一般股骨模型202之间的内侧-外侧大小差异而需要缩放,那么根据两个模型202,226之间的缩放,球体230可以在半径上缩放为大于或小于7毫米。As discussed in detail in the immediately following paragraphs with respect to Figures 7 and 8, for each of the twoposterior points 214, 220, the algorithm searches around the initial position of eachpoint 214, 220, and the final adjustment of eachpoint 214, 220 The position of is determined as the rearmost vertex of all triangular surface mesh faces that intersect the sphere centered at or near the initial position of eachpoint 214, 220. In one embodiment, if thepatient femur model 226 substantially matches thegeneral femur model 202 with respect to the medial-lateral size, the radius of thesphere 230 is 7 millimeters. If scaling is required due to medial-lateral size differences between thepatient femur model 226 and thegeneral femur model 202, then depending on the scaling between the twomodels 202, 226, thesphere 230 can be scaled to be greater or less than 7 mm in radius.

因此,如从图7和8可以理解的(图7和8分别是三维患者股骨计算机模型226的后髁区域的三角形表面网格228的放大视图和概述调整映射的后侧点214,220在患者股骨模型226上的放置的方法的流程图),后侧点214,220从一般股骨模型202映射到患者股骨模型226的髁[方框250]。在一般股骨模型202和患者股骨模型226之间确定内侧-外侧和前-后缩放因子,并且存储这些缩放因子以供以后使用[方框252]。对于患者股骨模型上的每个后侧点214,220,虚拟球体230以点214,220为中心,球体230具有7毫米乘以内侧-外侧缩放因子的半径R[方框254]。Thus, as can be understood from Figures 7 and 8 (Figures 7 and 8 are, respectively, a magnified view of thetriangular surface mesh 228 of the posterior condylar region of the three-dimensional patientfemur computer model 226 and an overview to adjust the mappedposterior points 214, 220 in the patient femur model 226), the posterior points 214, 220 are mapped from thegeneral femur model 202 to the condyles of the patient's femur model 226 [block 250]. Medial-lateral and anterior-posterior scaling factors are determined between thegeneral femur model 202 and thepatient femur model 226, and these scaling factors are stored for later use [block 252]. For eachposterior point 214, 220 on the patient's femur model, avirtual sphere 230 is centered on thepoint 214, 220, thesphere 230 has a radius R of 7 mm times the medial-lateral scaling factor [block 254].

如图7所示,在箭头A所示的位置处指示从一般股骨模型202映射到患者股骨模型226上的后侧点214的初始位置。如图7中所示,后侧点214位于通过仿射变换计算的表面网格228上。然而,在其他变换的情况下,点214可以与三角形表面网格228向外间隔开或者在三角形表面网格228内凹陷。后侧点214的箭头A处的初始位置被球体230包围,如上所述,球体230可以具有7毫米的半径或其他半径,这取决于两个模型202,226之间的M-L缩放。球体230与多个三角形面232和表面网格228的顶点相交,并且算法如虚线箭头所示地将后侧点214调整(即,移动)到顶点,该顶点是与球体230相交的任何三角形面232的任何顶点的最后侧[方框256]。后侧点214在患者股骨模型226上的所产生的经调整最终位置由图7中的箭头B指示。然后基于后侧点214的调整的最终位置确定后侧切除深度[方框258]。然后,手术系统100可以使用后侧切除深度生成切除数据。切除数据可以在关节成形手术的术中部分期间使用,并且可以用作用于控制触觉设备60或手术机器人的触觉边界。附加地或替代地,在关节成形手术期间,手术机器人可以使用切除数据。附加地或替代地,在关节成形手术期间,导航系统可以利用切除数据。导航系统可以在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。自主机器人,例如具有至少两个自由度(例如,旋转锉刀和平移能力)的切割设备可以执行关节成形手术,其中切除数据被用作用于执行切除的工具路径。外科医生辅助设备,例如本文所述的触觉设备60或具有至少一个自由度的切割工具(例如,由外科医生移动或平移的旋转锉刀),可以执行关节成形手术,其中切除数据作为虚拟或触觉边界,用于控制或限制切割工具的某些移动(例如,切除深度)。因此,图8中的步骤可以描述生成切除平面数据以用于在患者骨上规划关节成形手术的方法。As shown in FIG. 7 , the initial location of theposterior point 214 mapped from thegeneric femur model 202 onto thepatient femur model 226 is indicated at the location shown by arrow A. As shown in FIG. 7 , thebackside point 214 lies on thesurface mesh 228 computed by the affine transformation. However, in the case of other transformations, thepoints 214 may be spaced outward from thetriangular surface mesh 228 or recessed within thetriangular surface mesh 228 . The initial position at arrow A of theback point 214 is surrounded by asphere 230, which may have a radius of 7 millimeters or other radii, as described above, depending on the M-L scaling between the two models 202,226. Thesphere 230 intersects a plurality oftriangular faces 232 and vertices of thesurface mesh 228, and the algorithm adjusts (ie, moves) thebackside point 214 as indicated by the dashed arrow to the vertex, which is any triangular face that intersects thesphere 230 232 the rearmost side of any vertex [block 256]. The resulting adjusted final position of theposterior point 214 on thepatient femur model 226 is indicated by arrow B in FIG. 7 . The posterior resection depth is then determined based on the adjusted final position of the posterior point 214 [block 258]. Thesurgical system 100 may then generate resection data using the posterior resection depth. The resection data can be used during the intraoperative portion of the arthroplasty procedure and can be used as a haptic boundary for controlling thehaptic device 60 or surgical robot. Additionally or alternatively, the surgical robot may use the resection data during an arthroplasty procedure. Additionally or alternatively, the navigation system may utilize resection data during an arthroplasty procedure. Navigation systems can operate in conjunction with autonomous robots or surgeon aids when performing arthroplasty procedures. An autonomous robot, such as a cutting device with at least two degrees of freedom (eg, rasping and translation capabilities) can perform an arthroplasty procedure, where the resection data is used as the tool path for performing the resection. Surgeon-assisted devices, such as thehaptic device 60 described herein, or a cutting tool with at least one degree of freedom (eg, a burr that is moved or translated by the surgeon), can perform an arthroplasty procedure with the resection data as a virtual or haptic boundary , to control or limit some movement of the cutting tool (eg depth of cut). Thus, the steps in FIG. 8 may describe a method of generating resection plane data for planning an arthroplasty procedure on a patient's bone.

虽然在本公开中描述了球体230,但是可以预见可以采用其他三维形状来代替球体。例如,可以使用椭圆体、棱柱或盒以及其他三维形状而没有限制并且不脱离本公开的范围。附加地或替代地,本文可以使用例如没有厚度的平面或表面的二维形状。Although thesphere 230 is described in this disclosure, it is envisioned that other three-dimensional shapes may be used in place of the sphere. For example, ellipsoids, prisms or boxes, and other three-dimensional shapes may be used without limitation and without departing from the scope of the present disclosure. Additionally or alternatively, two-dimensional shapes such as planes or surfaces without thickness may be used herein.

虽然用于识别最后侧点214在患者股骨模型226上的位置的技术不是迭代的,但在某些实施例中,找到位置可以是迭代过程。在某些情况下,后端的骨表面可以是相对健康的并且没有患病。因此,确定最后侧点214的位置可以用非迭代方法完成。Although the technique used to identify the location of therearmost point 214 on the patient'sfemur model 226 is not iterative, in some embodiments, finding the location may be an iterative process. In some cases, the bony surface of the posterior end may be relatively healthy and free of disease. Thus, determining the position of therearmost point 214 can be accomplished with a non-iterative method.

如在关于图8-10C的紧接的以下段落中详细讨论的,对于两个远端点212,218中的每一个,算法在每个点212,218的初始位置周围进行搜索,并且每个点212,218的最终调整的位置被确定为位于居中于每个点214,220的初始位置处或其附近的椭圆体240内部的所有表面网格顶点的最远端,其中X在内侧-外侧方向上,Y在前-后方向上,并且Z在近端-远端方向上。随着算法通过其迭代进行,椭圆体240的大小被动态调整,这取决于:(1)找到的最远端点是否靠近椭圆体240的边界;以及(2)找到的点周围的区域的近端-远端跨度是否很大,指示该点靠近髁的内侧-外侧边缘或靠近骨赘。在每次椭圆体迭代调整之后找到新的最远端点,直到通过找到最终最远端点212,218来满足该过程。As discussed in detail in the immediately following paragraphs with respect to FIGS. 8-10C , for each of the twodistal points 212 , 218 , the algorithm searches around the initial location of eachpoint 212 , 218 and the final location of eachpoint 212 , 218 The adjusted position is determined to be the farthest end of all surface mesh vertices inside theellipsoid 240 centered at or near the initial position of eachpoint 214, 220, where X is in the medial-lateral direction and Y is anterior-posterior up, and Z is in the proximal-distal direction. As the algorithm progresses through its iterations, the size of theellipsoid 240 is dynamically adjusted, depending on: (1) whether the farthest point found is near the boundary of theellipsoid 240; and (2) the proximity of the area around the point found Whether the distal-distal span is large, indicating that the point is close to the medial-lateral edge of the condyle or to an osteophyte. A new farthest point is found after each ellipsoid iterative adjustment until the process is satisfied by finding the finalfarthest point 212 , 218 .

应注意,虽然本公开描述了椭圆体240,但是可以预见可以采用其他三维形状来代替椭圆体。例如,可以使用球体、棱柱或盒以及其他三维形状而没有限制并且不脱离本公开的范围。附加地或替代地,本文可以使用例如没有厚度的平面或表面的二维形状。It should be noted that although this disclosure describes theellipsoid 240, it is envisioned that other three-dimensional shapes may be employed in place of the ellipsoid. For example, spheres, prisms or boxes, and other three-dimensional shapes may be used without limitation and without departing from the scope of the present disclosure. Additionally or alternatively, two-dimensional shapes such as planes or surfaces without thickness may be used herein.

关于如下详述并且紧接在上面提到的算法的操作,如果远端点太靠近椭圆体边界,则这意味着在椭圆体外部存在更远端的点并且搜索椭圆体被扩大。从下面的讨论中可以明显看出,这个过程基本上被重复,在搜索体积的大小和形状上有一些变化(即,椭圆体和后面使用的球体,如下所述),并检查过程,直到最远端点位于搜索体积内而不是其边缘上。此外,从下面的讨论中可以明显看出,对过程的检查之一是过程的当前迭代的半短轴RZ是否具有从距过程的前一次迭代的半短轴RZ的最远端点的过度跳跃。如果是这样,则假设搜索体积包含骨赘。响应于该骨赘,则通过减小搜索体积过度跳跃的量,然后找到最远端点。Regarding the operation of the algorithm detailed below and mentioned immediately above, if the distal point is too close to the ellipsoid boundary, this means that there are more distal points outside the ellipsoid and the search ellipsoid is enlarged. As is evident from the discussion below, this process is essentially repeated, with some variation in the size and shape of the search volume (i.e., ellipsoid and sphere used later, as described below), and examining the process until the most The far point lies within the search volume rather than on its edge. Furthermore, as is evident from the discussion below, one of the checks of the process is whether the semi-minor axis RZ of the current iteration of the process has a distance from the most distal point of the semi-minor axis RZ of the previous iteration of the process Jump too much. If so, the search volume is assumed to contain osteophytes. In response to this osteophyte, the most distal point is then found by reducing the search volume overshoot by the amount.

在一个实施例中,如果患者股骨模型226关于内侧-外侧大小基本上匹配一般股骨模型202,则椭圆体的半短轴(Rx和Rz)相等,并且每个椭圆体的半短轴(Rx和Rz)均为7毫米。如果由于患者股骨模型226和一般股骨模型202之间的内侧-外侧大小差异而需要缩放,则椭圆体的半短轴可以被缩放大于或小于7毫米,这取决于两个模型202,226之间的M-L缩放。类似地,如果患者股骨模型226关于前-后大小基本上匹配一般股骨模型202,则椭圆体的半长轴(Ry)为10毫米。如果由于患者股骨模型226和一般股骨模型202之间的前-后大小差异而需要缩放,则椭圆体的半长轴可以被缩放大于或小于10毫米,这取决于两个模型202,226之间的A-P缩放。In one embodiment, if thepatient femur model 226 substantially matches thegeneral femur model 202 with respect to the medial-lateral size, the semi-minor axes (Rx andRz ) of the ellipsoids are equal, and the semi-minor axes of each ellipsoid (Rx andRz ) are both 7 mm. If scaling is required due to medial-lateral size differences between thepatient femur model 226 and thegeneral femur model 202, the semi-minor axis of the ellipsoid can be scaled by more or less than 7 mm, depending on the ML between the twomodels 202, 226 zoom. Similarly, if thepatient femur model 226 substantially matches thegeneral femur model 202 with respect to anterior-posterior size, the semi-major axis (Ry ) of the ellipsoid is 10 millimeters. If scaling is required due to anterior-posterior size differences between thepatient femur model 226 and thegeneral femur model 202, the semi-major axis of the ellipsoid can be scaled by more or less than 10 mm, depending on the AP between the twomodels 202, 226 zoom.

因此,如从图8可以理解并且继续图9A和10,它们分别是三维患者股骨计算机模型226的远端髁区域的三角形表面网格228的放大视图,以及概述调整患者股骨模型226上映射的远端点212,218的放置的方法的流程图,远端点212,218从一般股骨模型202映射到患者股骨模型226的髁[方框250]。在一般股骨模型202和患者股骨模型226之间确定内侧-外侧和前-后缩放因子,并且存储这些缩放因子以供以后使用[方框252]。如图9A中所示并且在图10A中概述,对于患者股骨模型上的每个远端点212,218,虚拟椭圆体240以点212,218为中心,椭圆体240具有RX和RZ的半短轴以及半长轴RY,其中RX和RZ各自等于7毫米乘以前-后缩放因子,并且RY等于10毫米乘以前-后缩放因子[方框260]。这些轴RX、RZ和RY在图9B中示出,图9B是图9A中采用的椭圆体240的放大等距视图。Thus, as can be understood from FIG. 8 and continuing with FIGS. 9A and 10 , which are enlarged views of thetriangular surface mesh 228 of the distal condyle region of the three-dimensional patientfemur computer model 226 , and an overview of adjusting the distal end mapped on thepatient femur model 226 , respectively A flowchart of a method of placement ofendpoints 212, 218, thedistal points 212, 218 are mapped from thegeneral femur model 202 to the condyles of the patient's femur model 226 [block 250]. Medial-lateral and anterior-posterior scaling factors are determined between thegeneral femur model 202 and thepatient femur model 226, and these scaling factors are stored for later use [block 252]. As shown in Figure 9A and outlined in Figure 10A, for eachdistal point 212, 218 on the patient's femur model, avirtual ellipsoid 240 is centered on thepoint 212, 218, theellipsoid 240 has semi-minor axes of RX and RZ and Semi-major axis RY , where RX and RZ are each equal to 7 millimeters multiplied by the pre-post scaling factor, and RY is equal to 10 millimeters multiplied by the pre-post scaling factor [block 260]. These axes RX , RZ and RY are shown in FIG. 9B , which is an enlarged isometric view of theellipsoid 240 employed in FIG. 9A .

如图9A中所示,从一般股骨模型202映射到患者股骨模型226上的远端点212的初始位置在箭头A所示的位置处指示,该位置在三角形表面网格228上。如前所述,取决于所采用的特定变换,不同的变换可以将初始远端点212定位成与三角形表面网格228向外间隔开或者凹陷在三角形表面网格228内。表面网格228上的远端点212的箭头A处的初始位置被椭圆体240围绕,如上所述,椭圆体240可具有半短轴RX,RZ以及半长轴RY,每个半短轴RX,RZ半径为7毫米或其他长度,这取决于两个模型202,226之间的A-P缩放,半长轴RY为10毫米或其他长度,这取决于两个模型202,226之间的A-P缩放。椭圆体240包含表面网格228的三角形面232的多个顶点242,并且算法找到椭圆体240内部的所有顶点242的最远端顶点,其是图9A中由箭头B识别的顶点242[方框262]。算法然后评估图9A中由箭头B识别的最远端顶点214是否太靠近椭圆体240的边界[方框264]。As shown in FIG. 9A , the initial location of thedistal point 212 mapped from thegeneric femur model 202 onto thepatient femur model 226 is indicated at the location shown by arrow A, which is on thetriangular surface mesh 228 . As previously discussed, different transformations may position the initialdistal point 212 spaced outward from thetriangular surface mesh 228 or recessed within thetriangular surface mesh 228, depending on the particular transformation employed. The initial position at arrow A ofdistal point 212 onsurface mesh 228 is surrounded byellipsoid 240, which may have semi-minor axesRx ,RZ , and semi-major axes,Ry , as described above, each half. Minor axis RX , RZradii of 7 mm or other lengths depending on AP scaling between the two models AP scaling. Theellipsoid 240 contains a plurality ofvertices 242 of the triangular faces 232 of thesurface mesh 228, and the algorithm finds the most distal vertex of allvertices 242 inside theellipsoid 240, which is thevertex 242 identified by arrow B in FIG. 262]. The algorithm then evaluates whether the mostdistal vertex 214 identified by arrow B in Figure 9A is too close to the boundary of the ellipsoid 240 [block 264].

在一个实施例中,当将所识别的最远端顶点242的位置应用于椭圆体函数:f=x2/a2+y2/b2+z2/c2时,如果所识别的最远端顶点242的函数结果大于0.65(无量纲),则算法将识别的最远端顶点242(在图9A中由箭头B指示)限定为太靠近椭圆体240的边界。在椭圆体函数中,x为Tx-Px,其中Tx是目标点(图9C中的A)的x坐标,并且Px是计算的新远端点(图9C中的B)的x坐标。也就是说,x是在x方向上从椭圆的中心到计算的新远端点P的距离。类似地,椭圆体函数中的y和z也是一样。也就是说,y为Ty-Py,其中Ty是目标点的y坐标,并且Py是计算的新远端点的y坐标。并且,z为Tz-Pz,其中Tz是目标点的z坐标,并且Pz是计算的新远端点的z坐标。在椭圆体函数中:a是半径,Rx=7毫米(椭圆的总ML宽度为14毫米);b是半径,Ry=10毫米(椭圆的总AP长度为20毫米);并且,c是半径,Rz=7毫米(椭圆的总高度为14毫米)。In one embodiment, when applying the identified position of the mostdistal vertex 242 to the ellipsoid function: f=x2 /a2 +y2 /b2 +z2 /c2 , if the identified mostdistal vertex 242 position is If the function result for thedistal vertex 242 is greater than 0.65 (dimensionless), the algorithm defines the identified most distal vertex 242 (indicated by arrow B in FIG. 9A ) as being too close to the boundary of theellipsoid 240 . In the ellipsoid function, x is Tx-Px, where Tx is the x-coordinate of the target point (A in Figure 9C) and Px is the x-coordinate of the calculated new distal point (B in Figure 9C). That is, x is the distance in the x direction from the center of the ellipse to the calculated new distal point P. Similarly, the same goes for y and z in the ellipsoid function. That is, y is Ty-Py, where Ty is the y-coordinate of the target point, and Py is the y-coordinate of the calculated new distal point. And, z is Tz-Pz, where Tz is the z coordinate of the target point, and Pz is the calculated z coordinate of the new distal point. In the ellipsoid function: a is the radius, Rx = 7 mm (the total ML width of the ellipse is 14 mm); b is the radius, Ry = 10 mm (the total AP length of the ellipse is 20 mm); and, c is the radius, Rz = 7 mm (the total height of the ellipse is 14 mm).

0.65的值相当于距椭圆边缘约1.5毫米。最终,如果所识别的最远端顶点242不太靠近椭圆体240的边界(例如,距边缘1.5毫米),则如图9A中的虚线箭头所示,远端点212移动到在图9A中由箭头B指示为最远端顶点的所识别的最远端顶点242[方框266],远端点212在患者股骨模型226上的作为结果的调整的最终位置如图9A中的箭头B所示。然后可以使用该调整的远端点212的最终位置来计算远端切除深度[方框267]。远端切除深度可以用于生成切除数据,其可以由手术系统100用作用于控制触觉设备60或手术机器人的触觉边界。附加地或替代地,在关节成形手术期间,手术机器人可以使用切除数据。附加地或替代地,在关节成形手术期间,导航系统可以利用切除数据。导航系统可以在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。自主机器人(例如,具有至少两个自由度(例如,旋转锉刀和平移能力)的切割设备)可以执行关节成形手术,其中切除数据被用作用于执行切除的工具路径。外科医生辅助设备(例如本文所述的触觉设备60或具有至少一个自由度的切割工具(例如,由外科医生移动或平移的旋转锉刀))可以执行关节成形手术,其中切除数据作为虚拟的或触觉边界,用于控制或限制切割工具的某些移动(例如,切除深度)。因此,本文描述的用于确定最远端点的位置的方法可以描述用于生成切除平面数据以用于规划对于患者骨骼的关节成形手术的方法。A value of 0.65 corresponds to about 1.5mm from the edge of the ellipse. Finally, if the identified mostdistal vertex 242 is not too close to the boundary of the ellipsoid 240 (eg, 1.5 mm from the edge), then as indicated by the dashed arrow in Figure 9A, thedistal point 212 moves to Arrow B indicates the identified distal-most vertex 242 [block 266] which is the distal-most vertex, the resulting adjusted final position of thedistal point 212 on the patient'sfemur model 226 is shown by arrow B in Figure 9A . This adjusted final position of thedistal point 212 may then be used to calculate the distal resection depth [block 267]. The distal resection depth can be used to generate resection data, which can be used by thesurgical system 100 as a haptic boundary for controlling thehaptic device 60 or surgical robot. Additionally or alternatively, the surgical robot may use the resection data during an arthroplasty procedure. Additionally or alternatively, the navigation system may utilize resection data during an arthroplasty procedure. Navigation systems can operate in conjunction with autonomous robots or surgeon aids when performing arthroplasty procedures. An autonomous robot (eg, a cutting device with at least two degrees of freedom (eg, rasping and translation capabilities)) can perform an arthroplasty procedure, where the resection data is used as the tool path for performing the resection. Surgeon-assisted devices such as thehaptic device 60 described herein or a cutting tool with at least one degree of freedom (eg, a burr that is moved or translated by the surgeon) can perform an arthroplasty procedure with the resection data as virtual or haptic Boundaries, used to control or limit certain movements of the cutting tool (for example, depth of cut). Accordingly, the methods described herein for determining the location of the most distal points may describe methods for generating resection plane data for planning an arthroplasty procedure on a patient's bone.

另一方面,如从图10A、10B和9C(图9A和9B的相同椭圆体240)可以理解的那样,如果识别的最远端顶点242(由图9A和9C中的箭头B指示)太靠近椭圆体240的边界,则如图9C所示,球体中心点250被识别,其为从箭头B所示的所识别的最远端顶点242朝向椭圆体中心(即,图9A和9C中箭头A所示的初始最远端点212)一毫米[方框268]。如图9C所示,球体252以球体中心点250为中心并具有2毫米的半径[方框270]。对于与球体252的边界相交的三角形表面网格228的所有三角形面232,找到上-下或SI跨度,其中SI跨度为:Zspan=(Zmax-Zmin)[方框272]。应注意,Zspan是从最高点到最低点在Z方向(近端-远端)上的跨度高度。On the other hand, as can be understood from Figures 10A, 10B and 9C (thesame ellipsoid 240 of Figures 9A and 9B), if the identified most distal vertex 242 (indicated by arrow B in Figures 9A and 9C) is too close The boundary of theellipsoid 240, then as shown in FIG. 9C, thesphere center point 250 is identified, which is from the identified mostdistal vertex 242 shown by arrow B toward the center of the ellipsoid (ie, arrow A in FIGS. 9A and 9C ). The initial distal-most point 212) shown is one millimeter [block 268]. As shown in Figure 9C,sphere 252 is centered onsphere center point 250 and has a radius of 2 mm [box 270]. For alltriangular faces 232 of thetriangular surface mesh 228 that intersect the boundary of thesphere 252, find the up-down or SI span, where the SI span is: Zspan=(Zmax-Zmin) [block 272]. It should be noted that Zspan is the span height in the Z direction (proximal-distal) from the highest point to the lowest point.

以另一种方式描述SI跨度,对于包含在球体252内的所有三角形面232,具有最小Z值(即,最低高度)的顶点242从具有最大Z值(即,最高高度)的顶点242中减去。因此,SI跨度沿着一个坐标方向(例如,z)测量三角形面232与球体252的最大相交点与三角形面232与球体252的最小相交点之间的差。由此,可以确定沿着特定坐标方向的最小值和最大值之间的变化或差异可以预测骨赘的存在,骨赘通常从骨表面突然突出。Describing the SI span another way, for alltriangular faces 232 contained within thesphere 252, thevertex 242 with the smallest Z value (ie, the lowest height) is subtracted from thevertex 242 with the largest Z value (ie, the highest height). go. Thus, the SI span measures the difference between the maximum intersection point oftriangular face 232 andsphere 252 and the minimum intersection point oftriangular face 232 andsphere 252 along one coordinate direction (eg, z). From this, a change or difference between a minimum and a maximum value along a particular coordinate direction can be determined and can predict the presence of osteophytes, which usually protrude abruptly from the bone surface.

进行检查以查看Zspan是否大于1.5毫米或者椭圆体240的当前迭代的半长轴RY是否大于A-P缩放因子的15倍[方框274]。如果满足[方框274]的任一条件并且椭圆体240的当前迭代的每个半短轴RX,RZ各自不大于3毫米,则远端点212移动到所识别的球体中心点250,并且远端点212的该最终调整位置用于计算远端切除深度[方框276]。以这种方式,Zspan用于识别Z方向上的峰值(例如,骨赘)。并且,如果系统检测到峰值(即Zspan>1.5毫米),则系统将调整搜索以试图找到峰值外的最高高度。A check is made to see ifZspan is greater than 1.5 mm or if the semi-major axis RY of the current iteration of theellipsoid 240 is greater than 15 times the AP scaling factor [block 274]. If any of the conditions of [Block 274] are met and each of the semi-minor axesRx ,Rz of the current iteration of theellipsoid 240 is not greater than 3 mm each, then thedistal point 212 is moved to the identifiedsphere center point 250, And this final adjusted position of thedistal point 212 is used to calculate the distal resection depth [block 276]. In this way, Zspan is used to identify peaks (eg, osteophytes) in the Z direction. And, if the system detects a peak (ie, Zspan > 1.5 mm), the system will adjust the search to try to find the highest height outside the peak.

替代地,如果满足[方框274]的任一条件,但椭圆体240的当前迭代的半短轴RX,RZ每个都大于3毫米,则创建新的椭圆体以具有:半短轴RX(新),其比迭代中前一个椭圆体的半短轴RX小一毫米(即,RX(新)=RX-1毫米);半短轴RZ(新),其比迭代中前一个椭圆体的半短轴RZ小一毫米(即,RZ(新)=RZ-1毫米);和半长轴RY(新),其比迭代中前一个椭圆体的半长轴RY小一毫米(即,RY(新)=RY-1毫米),并且过程返回到图10A的[方框262]以用新的椭圆体进行另一次迭代[方框278]。Alternatively, if any of the conditions of [Block 274] are met, but the semi-minor axes RX , RZ of the current iteration of theellipsoid 240 are each greater than 3 mm, then a new ellipsoid is created to have:RX(new) , which is one millimeter less than the semi-minor axis RX of the previous ellipsoid in the iteration (ie,RX(new) =RX -1 mm); the semi-minor axisRZ(new) , which is smaller than The semi-minor axis RZ of the previous ellipsoid in the iteration is one millimeter smaller (ie, RZ(new) = RZ -1 mm); and the semi-major axis RY(new) , which is smaller than the semi-major axis of the previous ellipsoid in the iteration The semi-major axisRY is one millimeter smaller (ie,RY(new) =RY -1 millimeter), and the process returns to [Block 262] of FIG. 10A for another iteration with the new ellipsoid [Block 278] ].

最后,如果[方框274]的条件都不满足,则球体252的半径增加到4毫米,并且对于与球体252的边界相交的三角形表面网格228的所有三角形面232找到SI跨度,其中SI跨度为:Zspan=(Zmax-Zmin),并且该过程在图10C中的[方框282]处继续[方框280]。进行检查以查看与新的4毫米半径的球体252关联的Zspan是否大于2毫米[方框282]。如果满足[方框282]的条件,则远端点212移动到所识别的球体中心点250,并且远端点212的该最终调整位置用于计算远端切除深度[方框284]。Finally, if none of the conditions of [block 274] are met, the radius of thesphere 252 is increased to 4 mm, and the SI span is found for alltriangular faces 232 of thetriangular surface mesh 228 that intersect the boundary of thesphere 252, where the SI span is: Zspan=(Zmax-Zmin), and the process continues [Block 280] at [Block 282] in Figure 1OC. A check is made to see if the Zspan associated with the new4mm radius sphere 252 is greater than 2mm [block 282]. If the conditions of [Block 282] are met, thedistal point 212 is moved to the identifiedsphere center point 250, and this final adjusted position of thedistal point 212 is used to calculate the distal resection depth [Block 284].

虽然在本公开中描述了球体252,但是可以预见可以采用其他三维形状来代替球体。例如,可以使用椭圆体、棱柱或盒以及其他三维形状而没有限制并且不脱离本公开的范围。附加地或替代地,本文可以使用例如没有厚度的平面或表面的二维形状。Although thesphere 252 is described in this disclosure, it is envisioned that other three-dimensional shapes may be used in place of the sphere. For example, ellipsoids, prisms or boxes, and other three-dimensional shapes may be used without limitation and without departing from the scope of the present disclosure. Additionally or alternatively, two-dimensional shapes such as planes or surfaces without thickness may be used herein.

如果不满足[方框282]的条件,则进行检查以查看当前半短轴RX,RZ的值是否先前在早先的迭代中被访问过[方框286]。如果先前访问了当前半短轴RX,RZ的值,则远端点212移动到所识别的球体中心点250,并且远端点212的该最终调整位置用于计算远端切除深度[方框288]。If the conditions of [block 282] are not met, a check is made to see if the value of the current semi-minor axisRx ,Rz has been previously accessed in an earlier iteration [block 286]. If the current semi-minor axisRx ,Rz values were previously accessed, thedistal point 212 is moved to the identifiedsphere center point 250, and this final adjusted position of thedistal point 212 is used to calculate the distal resection depth [square Box 288].

另一方面,如果先前没有访问当前半短轴RX,RZ的值,则创建新的椭圆体以具有:半短轴RX(新),其比迭代中前一个椭圆体的半短轴RX大2毫米(即,RX(新)=RX+2毫米);半短轴RZ(新),其比迭代中前一个椭圆体的半短轴RZ大2毫米(即,RZ(新)=RZ+2毫米);以及半长轴RY(新),其比迭代中前一个椭圆体的半长轴RY大两毫米(即,RY(新)=RY+2毫米),并且该过程返回到图10A的[方框262],以用新的椭圆体进行另一次迭代[方框290]。On the other hand, if the value of the current semi-minor axis RX , RZ has not been previously accessed, a new ellipsoid is created to have: a semi-minor axis RX(new) which is smaller than the semi-minor axis of the previous ellipsoid in the iteration RX is 2 mm larger (ie, RX(new) = RX +2 mm); the semi-minor axis RZ(new) , which is 2 mm larger than the semi-minor axis RZ of the previous ellipsoid in the iteration (ie, RZ(new) = RZ + 2 mm); and a semi-major axis RY(new) that is two millimeters greater than the semi-major axis RY of the previous ellipsoid in the iteration (ie, RY(new) = RY +2 mm), and the process returns to [Block 262] of FIG. 10A for another iteration with the new ellipsoid [Block 290].

先前描述的过程可有用于在确定所识别的最远端顶点242(由图9A中的箭头B指示)时检测是否遇到骨赘或其他不规则骨骼特征。因为骨赘可能从患者股骨模型226的表面突出,所以最远端顶点242可能位于骨赘上。但是,为了将远端点212从一般股骨模型202映射到患者股骨模型226上,忽略患者股骨模型226上骨赘的存在可能是有益的,因为骨赘表面在确定切除深度时可能是不相关的。也就是说,由于切除深度是最远端顶点242的函数,因此不应由于存在不规则的骨骼特征来改变最远端顶点242。因此,先前描述的过程可总结如下。The previously described process may be useful for detecting whether osteophytes or other irregular bone features are encountered when determining the mostdistal vertex 242 identified (indicated by arrow B in Figure 9A). Because osteophytes may protrude from the surface of the patient'sfemur model 226, the mostdistal apex 242 may be located on the osteophytes. However, in order to map thedistal point 212 from thegeneral femur model 202 to thepatient femur model 226, it may be beneficial to ignore the presence of osteophytes on thepatient femur model 226 because the osteophyte surface may be irrelevant in determining the depth of resection . That is, since the depth of resection is a function of the mostdistal vertex 242, the mostdistal vertex 242 should not be altered due to the presence of irregular bone features. Therefore, the previously described process can be summarized as follows.

远端点212的初始位置从一般股骨模型202映射到患者股骨模型226上,其在图9A中由箭头A指出的位置处指示。基于先前描述的参数创建椭圆体240。基于先前描述的参数在椭圆体240内识别最远端顶点242。如果最远端顶点242不太靠近椭圆体240的边界的边缘,则最远端顶点242被用于计算远端切除深度,如参考[方框267]所讨论。如果最远端顶点242太靠近椭圆体240的边界的边缘,则必须确定最远端顶点242是否位于骨赘上,这在某些实施例中通过先前描述的Zspan计算来进行。如果最远端顶点242位于骨赘上,则减小椭圆体的大小并且该过程如前所述继续。最后,如果最远端顶点242不位于骨赘上,则增加椭圆体的大小并且该过程如前所述继续。增加或减小椭圆大小的过程可以多次发生。例如,如果最远端点靠近椭圆的边缘并且确定不位于骨赘上,则椭圆大小可以继续增加,直到它遇到骨赘或被确定为靠近边缘。The initial location of thedistal point 212 is mapped from thegeneric femur model 202 onto thepatient femur model 226, which is indicated at the location indicated by arrow A in Figure 9A. Theellipsoid 240 is created based on the parameters previously described. The mostdistal vertex 242 is identified within theellipsoid 240 based on the parameters previously described. If the mostdistal vertex 242 is not too close to the edge of the boundary of theellipsoid 240, then the mostdistal vertex 242 is used to calculate the distal resection depth, as discussed with reference to [Block 267]. If the mostdistal vertex 242 is too close to the edge of the boundary of theellipsoid 240, it must be determined whether the mostdistal vertex 242 is located on an osteophyte, which in some embodiments is done by the Zspan calculation described earlier. If thedistal-most vertex 242 is on an osteophyte, the size of the ellipsoid is reduced and the process continues as previously described. Finally, if the mostdistal vertex 242 is not located on the osteophyte, the size of the ellipsoid is increased and the process continues as previously described. The process of increasing or decreasing the size of the ellipse can happen multiple times. For example, if the most distal point is near the edge of the ellipse and is determined not to lie on an osteophyte, the ellipse size may continue to increase until it encounters an osteophyte or is determined to be near the edge.

患者股骨模型226和其上的点212,214,218,220可以在显示器54上描绘为能够旋转和移动的三维计算机模型。附加地或替代地,患者股骨模型226和其上的点212,214,218,220可以以三个不同视图在显示器54上描绘,即,三个不同视图为冠状视图、轴向视图或横向视图以及矢状视图,分别如图6A-6C所示。在点212,214,218,220中的一个或多个被模型226的骨结构隐藏的情况下,例如,如图6A中的点214,220和图6C中的点218的情况,被隐藏的点可以是被描绘为半透明或呈指示点存在的另一描绘,但位于视图中的一些骨结构后面。在某些实施例中,可以透明地描绘患者股骨模型226,使得即使被患者股骨模型226的表面遮挡,点212,214,218,220也是可见的。在点212,214,218,220中的一个或多个在视图中完全可见(换句话说,未被模型226的骨结构隐藏)的情况下,如图6A中的点212,218、图6B中的点212,214,218,220和图6C中的点212,214,220的情况,可见点204,208可被描绘为实心的完全可见点,以指示点不被模型226的骨结构隐藏,而是在视图中完全可见。Thepatient femur model 226 and thepoints 212, 214, 218, 220 thereon may be depicted on thedisplay 54 as a three-dimensional computer model capable of rotation and movement. Additionally or alternatively, thepatient femur model 226 and thepoints 212, 214, 218, 220 thereon may be depicted on thedisplay 54 in three different views, namely, a coronal, axial or transverse view, and a sagittal view, respectively. As shown in Figures 6A-6C. In the event that one or more of thepoints 212, 214, 218, 220 are hidden by the bone structure of themodel 226, eg, as is the case withpoints 214, 220 in Figure 6A andpoint 218 in Figure 6C, the hidden points may be depicted as translucent Or another depiction that indicates the presence of a point, but behind some bony structures in the view. In some embodiments, thepatient femur model 226 may be depicted transparently such that thepoints 212 , 214 , 218 , 220 are visible even if occluded by the surface of thepatient femur model 226 . In the case where one or more of thepoints 212, 214, 218, 220 are fully visible in the view (in other words, not hidden by the bone structure of the model 226), such aspoints 212, 218 in Fig. 6A, points 212, 214, 218, 220 in Fig. 6B and in Fig. 6C In the case ofpoints 212, 214, 220,visible points 204, 208 may be depicted as solid fully visible points to indicate that the points are not hidden by the bone structure of themodel 226, but are fully visible in view.

当适当地定位在股骨模型226上时,这些点212,214,218,220可以充当骨切除深度点,以用于计算患者股骨的骨切除深度,作为如本文所述的术前规划的关节成形手术的一部分,这将允许选择的股骨植入物(与选择的胫骨植入物结合)在将实际植入物植入患者的胫骨和股骨上时实现期望的手术结果。When properly positioned on thefemur model 226, thesepoints 212, 214, 218, 220 can serve as bone resection depth points for use in calculating the bone resection depth of the patient's femur as part of a preoperatively planned arthroplasty procedure as described herein, which will The selected femoral implant (in combination with the selected tibial implant) is allowed to achieve the desired surgical outcome when the actual implant is implanted on the patient's tibia and femur.

一旦最后侧点214,220和最远端点212,218已经如上所述正确地定位在患者股骨模型226上,这些点212,214,218,220就可以与候选股骨植入物320的三维计算机模型或与这样的植入物320关联的数据一起使用,以术前计算需要在实际患者骨骼中进行的关联骨骼切除以接收实际的股骨植入物,从而在实际的关节成形手术期间通过将实际的股骨植入植入到实际的患者骨骼上来实现期望的手术结果。Once the mostlateral points 214 , 220 and mostdistal points 212 , 218 have been correctly positioned on thepatient femur model 226 as described above, thesepoints 212 , 214 , 218 , 220 may be associated with the three-dimensional computer model of the candidatefemoral implant 320 or with such animplant 320 data to preoperatively calculate the associated bone resections that need to be made in the actual patient bone to receive the actual femoral implant, thereby implanting the actual femoral implant into the actual patient during the actual arthroplasty procedure Bone up to achieve the desired surgical outcome.

图13是候选股骨植入物(即,股骨植入物模型320)的三维计算机模型的矢状视图,示出了其远端骨切除接触表面322连同相邻的前倒角切除接触表面324、后倒角切除接触表面326、前切除接触表面328和后切除接触表面330,这些切除接触表面靠近股骨植入物模型320的332的内侧和外侧髁表面。Figure 13 is a sagittal view of a three-dimensional computer model of a candidate femoral implant (ie, femoral implant model 320) showing its distal boneresection contact surface 322 along with the adjacent anterior chamferresection contact surface 324, Posterior chamferedresection contact surface 326 , anteriorresection contact surface 328 , and posteriorresection contact surface 330 are proximate the medial and lateral condyle surfaces of 332 offemoral implant model 320 .

从图14A-14C可以理解,其分别示出了叠加在患者股骨的三维计算机模型(即,患者股骨模型226)的远端上的股骨植入物模型320的冠状、轴向或横向和矢状视图,点212,214,218,220中的一个、两个、三个或四个可以与股骨植入物模型320的关节表面332上的相似或等同的最近端和最远端股骨髁点或区域对齐,从而限定提议的远端股骨切除334,其沿着植入物模型300的远端骨切除接触表面322延伸。在一些实施例中,所限定的提议的切除还可以包括对应于候选股骨植入物模型320的各种其他骨切除接触表面324,326,328,330的提议的骨切除,如从图13和14C的比较可以理解。As can be appreciated from Figures 14A-14C, which show coronal, axial or transverse, and sagittal, respectively, of afemoral implant model 320 superimposed on the distal end of a three-dimensional computer model of a patient's femur (ie, patient femur model 226). Views, one, two, three or four of thepoints 212, 214, 218, 220 may be aligned with similar or equivalent proximal-most and distal-most femoral condyle points or regions on thearticular surface 332 of thefemoral implant model 320, thereby defining the proposal The distalfemoral resection 334 extends along the distal boneresection contact surface 322 of theimplant model 300. In some embodiments, the defined proposed resections may also include proposed bone resections corresponding to various other bone resection contact surfaces 324, 326, 328, 330 of the candidatefemoral implant model 320, as can be understood from a comparison of Figures 13 and 14C.

根据切除深度和平面取向来限定所限定的提议的远端股骨切除334。当然,通过相对于点212,214,218,220远端或近端地改变切除深度,将候选股骨植入物模型320的大小改变为更小或更大的大小,改变提议的远端切除334的平面取向以计及期望的内翻-外翻、内-外或伸展-屈曲旋转,使得所有四个点212,214,218,220或仅单对点对应于股骨植入物模型320的外侧和内侧关节表面332上的类似点,可以通过术前和/或在一些实施例中通过术中的外科医生输入来调整或修改所限定的提议的远端股骨切除334,这取决于是否寻求解剖学(自然)对齐或寻求更传统的机械轴线对齐。The defined proposed distalfemoral resection 334 is defined according to the resection depth and plane orientation. Of course, changing the size of the candidatefemoral implant model 320 to a smaller or larger size by changing the depth of resection distally or proximally relative topoints 212, 214, 218, 220 changes the plane orientation of the proposeddistal resection 334 to account for Desired varus-valgus, varus-valgus or extension-flexion rotations such that all fourpoints 212, 214, 218, 220, or only a single pair of points correspond to similar points on the lateral and medialarticular surfaces 332 of thefemoral implant model 320, can be obtained by The defined proposed distalfemoral resection 334 is adjusted or modified preoperatively and/or in some embodiments by intraoperative surgeon input, depending on whether an anatomical (natural) alignment is sought or a more traditional mechanical axis is sought Align.

图14A-14C示出了仅一对点212,214与股骨植入物模型320的关节表面332之一上的类似点对或区域对齐的情况。例如,如在图12A-12C中可以看到,外侧点212,214与股骨植入物模型320的关节表面334上的类似点或区域对齐,但是内侧点218,220不与植入物模型320的关节表面332上它们的相似的内侧点或区域对齐。在只有这些点对匹配的情况下,这恰好位于外侧面,植入物模型320的远端骨切除接触表面322的取向,并且因此,提议的切除平面334的取向,随后通过保持外侧点的匹配同时实现提议的远端切除平面334相对于患者的腿部、股骨或胫骨的轴线(例如,股骨机械轴线或腿部机械轴线)的期望角度来确定。一旦外科医生批准了提议的股骨切除平面334的深度和方向,就可以将关联数据提供给手术系统100以供导航系统在手术期间引导触觉设备60使用,并且被切除的患者股骨模型226可以在术中表示给外科医生,如图16A-16C所示,其是提议要被切除的股骨模型226的各种视图,并且示出了提议的股骨切除,包括远端切除334。14A-14C illustrate a situation where only one pair ofpoints 212 , 214 is aligned with a similar pair of points or regions on one of thearticular surfaces 332 of thefemoral implant model 320 . For example, as can be seen in FIGS. 12A-12C , the lateral points 212 , 214 are aligned with similar points or regions on thearticular surface 334 of thefemoral implant model 320 , but themedial points 218 , 220 are not aligned with thearticular surface 332 of theimplant model 320 . Align on their similar inner points or regions. With only these point pairs matching, which is exactly on the lateral side, the orientation of the distal boneresection contact surface 322 of theimplant model 320, and therefore, the orientation of the proposedresection plane 334, is then followed by maintaining the matching of the lateral points Determining the desired angle of the proposeddistal resection plane 334 relative to the axis of the patient's leg, femur, or tibia (eg, the mechanical axis of the femur or the mechanical axis of the leg) is accomplished while achieving. Once the depth and orientation of the proposedfemoral resection plane 334 has been approved by the surgeon, the associated data can be provided to thesurgical system 100 for use by the navigation system to guide thehaptic device 60 during surgery, and the resectedpatient femur model 226 can be 16A-16C, which are various views of thefemur model 226 proposed to be resected, and show the proposed femoral resection, including thedistal resection 334.

虽然前面关于限定提议的股骨切除平面334的讨论是在将候选股骨植入物320叠加在股骨模型226上并且在视觉上在系统100的计算机显示器54上显示这样的叠加的情况下进行的,但是在一些实施例中,这样的过程可以通过表示候选股骨植入物320的数据进行,不需要候选股骨植入物的三维表示或其在计算机显示器54上的实际视觉表示。While the foregoing discussion of defining the proposedfemoral resection plane 334 was made with the candidatefemoral implant 320 superimposed on thefemoral model 226 and such superposition visually displayed on thecomputer display 54 of thesystem 100, the In some embodiments, such a process may be performed with data representing the candidatefemoral implant 320 without requiring a three-dimensional representation of the candidate femoral implant or its actual visual representation on thecomputer display 54 .

3.调整关节间隙的提议切除深度3. Adjustment of the proposed resection depth for the joint space

为了计及当在对患者的关节成形术期间植入实际植入物时将导致期望的手术结果的术前规划的植入物模型224,226之间的适当的关节间隙间距,骨切除通过手术系统100根据上面在本具体实施方式的第I(A)(1)和I(A)(2)小节中概述的术前规划进行,计算两个间隙距离作为切除深度的术前规划的一部分。两个计算的间隙距离是以下之间的最小有符号距离:股骨植入物模型320的内侧髁表面332和胫骨植入物模型300的内侧关节表面304;以及股骨植入物模型320的外侧髁表面332和胫骨植入物模型300的外侧关节表面304。图17是股骨植入物模型320的股骨关节表面332和胫骨植入物模型300的胫骨关节表面304的等距视图。虽然本公开聚焦于形成膝关节的骨骼,但是本文的教导同样适用于形成其他关节的骨骼,例如踝关节、肘关节或腕关节。To account for the appropriate joint space spacing between the preoperatively plannedimplant models 224 , 226 that will result in the desired surgical outcome when the actual implant is implanted during an arthroplasty to the patient, the bone is removed by thesurgical system 100 . Proceeding according to the preoperative planning outlined above in subsections I(A)(1) and I(A)(2) of this embodiment, the two gap distances were calculated as part of the preoperative planning for the depth of resection. The two calculated clearance distances are the minimum signed distances between: themedial condyle surface 332 of thefemoral implant model 320 and the medialarticular surface 304 of thetibial implant model 300 ; and the lateral condyle of thefemoral implant model 320Surface 332 and lateralarticular surface 304 oftibial implant model 300 . FIG. 17 is an isometric view of the femoralarticular surface 332 of thefemoral implant model 320 and the tibialarticular surface 304 of thetibial implant model 300 . Although the present disclosure focuses on the bones forming the knee joint, the teachings herein are equally applicable to the bones forming other joints, such as the ankle, elbow, or wrist joint.

对于位于由胫骨植入物模型300的关节表面304的面、内部边缘和内部顶点限定的正Voronoi区域内的股骨髁植入物上的所有点,最小间隙距离被限定为正。对于位于负Voronoi区域内的股骨植入物模型320的关节表面332上的所有点,最小间隙距离被限定为负。仅需要考虑模型的关节表面之间的距离,因为这些是植入物在其上彼此接触的表面。The minimum clearance distance is defined as positive for all points on the femoral condyle implant that lie within the positive Voronoi region defined by the faces, inner edges, and inner vertices of thearticular surface 304 of thetibial implant model 300 . The minimum clearance distance is defined as negative for all points on thearticular surface 332 of thefemoral implant model 320 that lie within the negative Voronoi region. Only the distances between the articular surfaces of the model need to be considered, as these are the surfaces on which the implants touch each other.

为了实现可接受的准确度水平,在股骨植入物模型320的关节表面模型332的三角形表面网格的三角形面的顶点与胫骨植入物模型300的关节表面模型304的三角形表面网格的三角形面之间计算间隙距离,如图17所示。由于股骨关节表面模型320的精细分辨率,顶点到表面间隙距离十分接近地近似于真实的表面到表面间隙距离。To achieve an acceptable level of accuracy, the vertices of the triangular faces of the triangular surface mesh of thearticular surface model 332 of thefemoral implant model 320 are aligned with the triangles of the triangular surface mesh of thearticular surface model 304 of thetibial implant model 300 Calculate the gap distance between the faces, as shown in Figure 17. Due to the fine resolution of the femoralarticular surface model 320, the vertex-to-surface clearance distance closely approximates the true surface-to-surface clearance distance.

系统100可以采用两种不同的算法来计算关节间隙,第一种是全局搜索最近距离算法(“GSCDA”),第二种是增量搜索最近距离算法(“ISCDA”)。GSCDA保证找到任意表面之间的最小有符号距离。ISCDA是一种快速增量局部搜索算法,适用于凸面。Thesystem 100 may employ two different algorithms to calculate joint clearance, the first being a global search closest distance algorithm ("GSCDA") and the second an incremental search closest distance algorithm ("ISCDA"). GSCDA guarantees to find the smallest signed distance between arbitrary surfaces. ISCDA is a fast incremental local search algorithm for convex surfaces.

在本申请中,利用GSCDA计算第一关节姿势的间隙距离。它返回间隙距离和具有最近间隙距离的股骨植入物模型320的关节表面模型332的表面网格的顶点的索引。In this application, GSCDA is used to calculate the gap distance of the first joint pose. It returns the clearance distance and the index of the vertex of the surface mesh of thearticular surface model 332 of thefemoral implant model 320 with the closest clearance distance.

在本申请中,利用ISCDA计算第二关节姿势的间隙距离。在这样做时,它参考从第一关节姿势计算返回的顶点。随后的剩余关节姿势的所有间隙距离计算都以相同的方式进行;即,每个都使用ISCDA并参考来自先前关节姿势计算的顶点。In this application, ISCDA is used to calculate the clearance distance of the second joint posture. In doing so, it references the vertices returned from the first joint pose calculation. All subsequent clearance distance calculations for the remaining joint poses are done in the same way; that is, each uses ISCDA and references vertices from previous joint pose calculations.

将GSCDA算法用于单个姿势然后将ISCDA用于剩余姿势加速了间隙计算。对每个姿势使用GSCDA将需要额外的时间和计算资源,特别是要分析许多姿势的情况下。Using the GSCDA algorithm for a single pose and then ISCDA for the remaining poses speeds up the gap calculation. Using GSCDA for each pose will require additional time and computational resources, especially if many poses are to be analyzed.

在某些情况下,可以使用与解剖学或真实胫骨关节表面不同的胫骨表面轮廓。例如,如果胫骨关节表面几乎符合股骨关节表面,则在关节间隙计算中可以使用稍微变平的修改的胫骨关节表面。在胫骨表面轮廓非常符合股骨关节表面的某些情况下,轻微的前-后和/或内侧-外侧平移可能导致虚拟干扰状况,这使得计算的符号距离显示为“紧”或负。因此,如果胫骨稍微前-后和/或内侧-外侧平移,则姿势位置可以指示干扰位置,而实际上没有干扰状况。感知干扰的这样的测量可以向外科医生指示植入系统的股骨和胫骨部件应该被定位得更彼此远离以消除感知的干扰状况。为了抵消所感知的干扰,可以在股骨关节表面和略微平坦或略微凹入(即,比真实胫骨更平坦)的一般化胫骨表面之间计算符号距离。In some cases, a different tibial surface profile than the anatomical or true tibial articular surface may be used. For example, if the tibial articular surface nearly conforms to the femoral articular surface, a slightly flattened modified tibial articular surface can be used in the joint space calculation. In some cases where the tibial surface contour closely conforms to the femoral articular surface, slight anterior-posterior and/or medial-lateral translations may result in a virtual interference condition that makes the calculated signed distance appear "tight" or negative. Thus, if the tibia is translated slightly anterior-posteriorly and/or medially-laterally, the postural position may indicate a disturbing location, when there is actually no disturbing condition. Such a measure of perceived interference may indicate to the surgeon that the femoral and tibial components of the implanted system should be positioned farther from each other to eliminate the perceived interference condition. To counteract the perceived interference, a signed distance can be calculated between the femoral articular surface and the generalized tibial surface which is slightly flat or slightly concave (ie, flatter than the true tibia).

i.全局搜索最近距离算法(“GSCDA”)i. Global Search Closest Distance Algorithm ("GSCDA")

GSCDA可以分为图18的宽阶段搜索级和图19的窄阶段搜索级。为每个关节表面模型创建分层球体树。树以自下而上的方式构造,因此每个叶节点球体包围单个三角形面,并且每个父节点球体包围其子节点球体。在图18的宽阶段搜索级期间,GSCDA以宽度优先的方式遍历两个球体树,同时维持用于窄阶段搜索级的候选节点对的队列,这可以类似于犹他大学计算机科学系David E.Johnson和Elaine Cohen的A Framework for EfficientMinimum Distance Computations(1998)中描述的算法,其全部内容在此引入作为参考。每个节点对产生模型304,332之间的间隙距离的下限和上限估计。维持全局上限估计以修剪候选节点对。如果新的非叶节点对产生的下限估计大于全局上限估计,则在搜索期间丢弃该对。叶节点对被插入叶节点对列表中。如果未丢弃节点对,则其上限估计用于更新全局上限估计。当队列中不再有节点对时,终止宽阶段搜索。GSCDA can be divided into a wide-stage search stage of FIG. 18 and a narrow-stage search stage of FIG. 19 . Create a hierarchical sphere tree for each joint surface model. The tree is constructed in a bottom-up fashion, so each leaf node sphere encloses a single triangular face, and each parent node sphere encloses its child node sphere. During the wide-stage search stage of Figure 18, GSCDA traverses the two sphere trees in a breadth-first manner while maintaining a queue of candidate node pairs for the narrow-stage search stage, which can be similar to David E. Johnson, Department of Computer Science, University of Utah and Elaine Cohen, A Framework for EfficientMinimum Distance Computations (1998), the entire contents of which are incorporated herein by reference. Each node pair produces lower and upper estimates of the gap distance between themodels 304 , 332 . A global upper bound estimate is maintained to prune candidate node pairs. If a new pair of non-leaf nodes yields a lower bound estimate greater than the global upper bound estimate, the pair is discarded during the search. The leaf node pair is inserted into the leaf node pair list. If a node pair is not discarded, its upper bound estimate is used to update the global upper bound estimate. The wide-phase search is terminated when there are no more node pairs in the queue.

如图19中所反映的,窄阶段搜索级遍历叶节点对列表并计算在股骨髁部件叶节点中参考的顶点与在胫骨部件叶节点中参考的三角形面之间的间隙距离。选择具有最小间隙距离的顶点-三角形对作为解。算法返回间隙距离、三角形索引以及最近点对。As reflected in Figure 19, the narrow stage search stage traverses the leaf node pair list and computes the clearance distance between the vertex referenced in the femoral condyle component leaf node and the triangular face referenced in the tibial component leaf node. Select the vertex-triangle pair with the smallest clearance distance as the solution. The algorithm returns the gap distance, the triangle index, and the closest point pair.

窄阶段搜索使用Christer Ericson的Real-Time Collision Detection(2005)的5.1节中描述的点-三角距离计算方法,其全部内容通过引用结合于此。为了计及负间隙距离,修改算法,使得当最近点在三角形面上而不在三角形边缘或顶点上时,距离的符号由三角形法线与点和三角形上最近点之间的差矢量的内积的符号确定。Narrow stage search uses the point-triangle distance calculation method described in Section 5.1 of Christer Ericson's Real-Time Collision Detection (2005), which is hereby incorporated by reference in its entirety. To account for negative clearance distances, modify the algorithm so that when the closest point is on a triangle face and not on a triangle edge or vertex, the sign of the distance is given by the inner product of the triangle normal and the difference vector between the point and the closest point on the triangle Symbol OK.

当点位于胫骨部件模型的内部边缘和顶点的负Voronoi单元中时,该修改的算法不处理这种情况,因为当最近点位于模型的任何边缘或顶点上时它返回正距离。由于股骨髁部件模型的高分辨率,修改后的算法产生模型之间距离的合理近似,因为当最近点位于胫骨部件模型的内部边缘或顶点上时,附近会有股骨髁模型的顶点,对于其最近点位于胫骨部件模型的三角形面上。通过计算股骨髁关节表面的顶点与胫骨关节表面的三角面之间的距离来十分接近地近似间隙距离比计算从股骨髁关节表面的顶点到胫骨关节表面的顶点执行得更快。顶点到顶点的计算可以在准确度方面产生微小的改进,但是需要更多的计算时间,因此更慢。This modified algorithm does not handle the case when the point lies in the negative Voronoi elements of the interior edges and vertices of the tibial component model, as it returns a positive distance when the closest point lies on any edge or vertex of the model. Due to the high resolution of the femoral condyle model, the modified algorithm produces a reasonable approximation of the distance between the models, since when the closest point is on the inner edge or vertex of the tibial component model, there will be a vertex of the femoral condyle model nearby, for its The closest point is on the triangular face of the tibial component model. Approximate the clearance distance very closely by calculating the distance between the apex of the femoral condyle articular surface and the triangular face of the tibial articular surface performs faster than calculating from the apex of the femoral condyle articular surface to the apex of the tibial articular surface. Vertex-to-vertex calculations can yield small improvements in accuracy, but require more computational time and are therefore slower.

ii.增量搜索最近距离算法(“ISCDA”)ii. Incremental Search Closest Distance Algorithm (“ISCDA”)

ISCDA以股骨植入物模型320的关节表面模型332的三角形表面网格的三角形面的已知顶点开始,并且通过搜索当前顶点的所有相邻顶点来找到局部最近的顶点。当当前顶点的所有相邻顶点(第一和第二层)比当前顶点更远离胫骨植入物模型300的关节表面模型304的三角形表面网格的三角形面时,搜索终止。通过使用顶点的位置作为输入位置以深度优先的方式遍历胫骨植入物模型的球体树数据结构来计算间隙距离。The ISCDA starts with the known vertices of the triangular faces of the triangular surface mesh of thearticular surface model 332 of thefemoral implant model 320 and finds the locally closest vertex by searching all adjacent vertices of the current vertex. The search terminates when all adjacent vertices (first and second layers) of the current vertex are further from the triangular faces of the triangular surface mesh of thearticular surface model 304 of thetibial implant model 300 than the current vertex. The gap distance is calculated by traversing the spheroid tree data structure of the tibial implant model in a depth-first manner using the positions of the vertices as input positions.

一旦根据上述GSCDA和ISCDA的适当应用确定关节间隙距离,就可以应用关节间隙值以在必要时关于切除深度调整提议的股骨和胫骨切除平面。Once the joint space distance is determined based on the appropriate application of the GSCDA and ISCDA described above, the joint space value can be applied to adjust the proposed femoral and tibial resection planes with respect to the resection depth, if necessary.

iii.姿势捕获和术中关节间隙计算iii. Posture capture and intraoperative joint space calculation

一旦通过跟踪和导航系统跟踪患者股骨11和胫骨10,外科医生就可以借助手术系统100在术中捕获或记录胫骨10相对于股骨10的姿势(即,位置和取向)。更具体地,外科医生可以将患者的股骨11和胫骨10定位在具有不同屈曲角度值的一组姿势中,并且针对每个姿势捕获或以其他方式记录胫骨10相对于股骨11的测量位置和取向。如前所述,可以在显示屏上描绘具有股骨植入物模型的三维股骨模型和具有胫骨植入物模型的三维胫骨模型,并且模型的位置和取向可以与胫骨10和股骨11的物理位置和取向对应。Once the patient'sfemur 11 andtibia 10 are tracked by the tracking and navigation system, the surgeon can capture or record the posture (ie, position and orientation) of thetibia 10 relative to thefemur 10 intraoperatively with thesurgical system 100 . More specifically, the surgeon may position the patient'sfemur 11 andtibia 10 in a set of poses with different flexion angle values, and capture or otherwise record the measured position and orientation of thetibia 10 relative to thefemur 11 for each pose. . As previously mentioned, a three-dimensional femoral model with a femoral implant model and a three-dimensional tibial model with a tibial implant model can be depicted on the display screen, and the location and orientation of the models can be correlated with the physical locations of thetibia 10 andfemur 11 and Orientation corresponds.

然后,外科医生可以使用GSCDA针对其中一个姿势进行关节间隙计算。可以在伸展姿势(即,大约零度的屈曲角度)或屈曲姿势(即,大于零度的屈曲角度)上进行计算。然后,可以对其余姿势执行ISCDA计算。在某些实施例中,外科医生可以使用GSCDA针对所有姿势进行关节计算。The surgeon can then use GSCDA to perform joint space calculations for one of the poses. Calculations can be performed in an extended position (ie, a flexion angle of about zero degrees) or a flexion position (ie, a flexion angle of greater than zero degrees). Then, ISCDA calculations can be performed on the remaining poses. In some embodiments, the surgeon may use GSCDA to perform joint calculations for all poses.

作为示例,外科医生可以捕获对应于0度屈曲、30度屈曲、60度屈曲、90度屈曲和120度屈曲的五个姿势。对其中一个姿势(例如60度屈曲姿势)执行GSCDA计算。接下来,可以对下一个最近的姿势执行ISCDA计算。在该示例中,ISCDA的计算可以按以下顺序执行:90度,120度,然后30度和0度。在每个ISCDA序列的开始时,来自GSCDA计算的顶点索引用于搜索的初始化(即,在90度和30度)。在随后的步骤中,来自ISCDA计算的顶点索引从前一步骤使用(即,在120度处,来自90度的顶点索引,并且在0度处,来自30度的顶点索引)。As an example, a surgeon may capture five poses corresponding to 0 degrees of flexion, 30 degrees of flexion, 60 degrees of flexion, 90 degrees of flexion, and 120 degrees of flexion. Perform a GSCDA calculation for one of the poses (eg, the 60-degree flexion pose). Next, an ISCDA calculation can be performed on the next closest pose. In this example, the calculation of ISCDA can be performed in the following order: 90 degrees, 120 degrees, then 30 degrees and 0 degrees. At the beginning of each ISCDA sequence, vertex indices from GSCDA calculations are used for the initialization of the search (ie, at 90 and 30 degrees). In subsequent steps, the vertex indices from the ISCDA calculation are used from the previous step (ie, at 120 degrees, from the vertex indices of 90 degrees, and at 0 degrees, from the vertex indices of 30 degrees).

作为另一个例子,生成用于规划膝关节上的关节成形手术的切除数据的方法可以包括以下步骤。计算机可以接收在共同的三维坐标系中以第一预先规划的取向相对于彼此定向的三维股骨模型和三维股骨植入物模型。三维股骨模型可以对应于患者的股骨。三维股骨植入物模型可包括内侧髁表面和外侧髁表面。计算机还可以接收在共同的三维坐标系中以第二预先规划的取向相对于彼此定向的三维胫骨模型和三维胫骨植入物模型。三维胫骨模型可以对应于患者的胫骨。三维胫骨植入物模型可包括内侧关节表面和外侧关节表面。三维股骨模型和三维胫骨模型可以通过导航系统根据患者的股骨和胫骨的姿势相对于彼此定向。计算机还可以接收对应于第一姿势中股骨和胫骨的第一位置和取向的第一位置和取向数据。计算机还可以计算第一姿势中三维股骨植入物模型的内侧髁表面与三维胫骨植入物模型上或与之关联的第一点之间的第一有符号距离。计算机还可以计算第一姿势中三维股骨植入物模型的外侧髁表面与三维胫骨植入物模型上或与之关联的第二点之间的第二有符号距离。计算机可以基于第一和第二有符号距离确定或调整切除深度。计算机还可以使用切除深度生成切除数据,切除数据被配置为在关节成形手术期间由导航系统使用。As another example, a method of generating resection data for planning an arthroplasty surgery on a knee joint may include the following steps. The computer may receive the three-dimensional femoral model and the three-dimensional femoral implant model oriented relative to each other in a common three-dimensional coordinate system in a first pre-planned orientation. The three-dimensional femur model may correspond to the patient's femur. The three-dimensional femoral implant model may include a medial condyle surface and a lateral condyle surface. The computer may also receive the three-dimensional tibial model and the three-dimensional tibial implant model oriented relative to each other in a second pre-planned orientation in a common three-dimensional coordinate system. The three-dimensional tibia model may correspond to the patient's tibia. The three-dimensional tibial implant model may include a medial articular surface and a lateral articular surface. The three-dimensional femur model and the three-dimensional tibia model can be oriented relative to each other by the navigation system according to the posture of the patient's femur and tibia. The computer may also receive first position and orientation data corresponding to a first position and orientation of the femur and the tibia in the first posture. The computer may also calculate a first signed distance between the medial condyle surface of the three-dimensional femoral implant model in the first pose and a first point on or associated with the three-dimensional tibial implant model. The computer may also calculate a second signed distance between the lateral condyle surface of the three-dimensional femoral implant model in the first pose and a second point on or associated with the three-dimensional tibial implant model. The computer may determine or adjust the depth of resection based on the first and second signed distances. The computer may also use the depth of resection to generate resection data that is configured for use by the navigation system during the arthroplasty procedure.

B.避免前骨干切口B. Avoid Anterior Diaphyseal Incisions

一旦术前规划已经导致在具体实施方式的子节A中如上所述的提议的的骨切除,就可以检查候选股骨植入物模型的相关取向以查看是否将发生前股骨皮质的切口。在全膝关节成形术术前规划中,当术前规划股骨植入物模型320使得前凸缘402的顶部边缘400深入到患者股骨模型226的前股骨皮质404中时,发生前股骨皮质切口390。图20A和20B分别是定位于患者股骨模型226上使得前股骨皮质404被切口的股骨植入物模型320的前远侧视图和矢状横截面视图。在如图20A和20B所示植入实际股骨植入物的情况下,股骨皮质404的指示的切口390将是不期望的手术结果,因为切口在前股骨皮质中产生可导致股骨干骨折或髁上骨折的应力集中。Once preoperative planning has resulted in the proposed bone resection as described above in Subsection A of the Detailed Description, the relative orientation of the candidate femoral implant model can be examined to see if an incision of the anterior femoral cortex will occur. In preoperative planning for total knee arthroplasty, the anterior femoralcortical incision 390 occurs when thefemoral implant model 320 is preoperatively planned such that thetop edge 400 of theanterior flange 402 penetrates into the anteriorfemoral cortex 404 of the patient'sfemur model 226 . 20A and 20B are anterior distal and sagittal cross-sectional views, respectively, of thefemoral implant model 320 positioned on the patient'sfemur model 226 such that the anteriorfemoral cortex 404 is incised. In the case of an actual femoral implant implanted as shown in Figures 20A and 20B, theindicated incision 390 of thefemoral cortex 404 would be an undesired surgical outcome as the creation of an incision in the anterior femoral cortex could result in a femoral shaft fracture or condyle Stress concentration on fractures.

如图21所示,可以为患者股骨模型226建立坐标系408,其中X轴将在内侧-外侧方向上,其中+X轴指向外侧股骨,Y轴将在前-后方向上,其中+Y轴指向后侧股骨,并且Z轴将在上-下方向上,其中+Z方向指向近端股骨。As shown in Figure 21, a coordinatesystem 408 can be established for thepatient femur model 226, where the X axis will be in the medial-lateral direction, where the +X axis points to the lateral femur, and the Y axis will be in the anterior-posterior direction, where the +Y axis points Posterior to the femur, and the Z axis will be in the supra-inferior direction with the +Z direction pointing towards the proximal femur.

图22A-22C分别是候选股骨植入物模型320的后侧、矢状-后侧和矢状视图,其中触觉对象的轮廓410叠加在股骨植入物模型320上。候选股骨植入物模型320包括股骨植入物模型320的前凸缘部分414上的前侧骨切除接触表面412。模型320的前侧骨切除接触表面412和实际股骨植入物基本上是平面的并且配置成使得基本上平坦的表面与在关节成形手术期间在实际患者骨骼中生成的前侧骨切除表面接触。22A-22C are posterior, sagittal-posterior, and sagittal views, respectively, of a candidatefemoral implant model 320 with theoutline 410 of the haptic object superimposed on thefemoral implant model 320. Candidatefemoral implant model 320 includes anterior boneresection contact surface 412 onanterior flange portion 414 offemoral implant model 320 . The anterior boneresection contact surface 412 of themodel 320 and the actual femoral implant are substantially planar and configured such that the substantially flat surface contacts the anterior bone resection surface created in the actual patient bone during the arthroplasty procedure.

如图22B和22C所示,触觉对象410通常与股骨植入物模型320的前凸缘部分414的平面接触表面412共面。因此,触觉对象410基本上是股骨植入物模型320的前凸缘部分414的平面接触表面412的平面延伸。As shown in FIGS. 22B and 22C , thehaptic object 410 is generally coplanar with theplanar contact surface 412 of theanterior flange portion 414 of thefemoral implant model 320 . Thus, thehaptic object 410 is substantially a planar extension of theplanar contact surface 412 of theanterior flange portion 414 of thefemoral implant model 320 .

如图23所示,其是股骨植入物模型320的前凸缘部分414的上边缘和触觉平面410的上边界418的放大前视图,一系列等间隔的参考点416A-416K沿触觉平面的上边界418延伸。参考点416A和416K是一系列等间隔点416A-416K的端点。应注意,沿着上边界418的点416的数量可以多于或少于图23中所示的数量。更多的点416可以增加切口评估的准确度,但是增加点216也增加了计算时间。如下所述,这些参考点用于评估根据图21的坐标系沿着股骨解剖学结构Y方向测量的股骨前切口390的深度。23, which is an enlarged front view of the upper edge of theanterior flange portion 414 of thefemoral implant model 320 and theupper boundary 418 of thehaptic plane 410, a series of equally spacedreference points 416A-416K along the haptic plane Theupper boundary 418 extends.Reference points 416A and 416K are the endpoints of a series of equally spacedpoints 416A-416K. It should be noted that the number of points 416 along theupper boundary 418 may be more or less than that shown in FIG. 23 . More points 416 can increase the accuracy of the incision assessment, but addingpoints 216 also increases computation time. As described below, these reference points are used to assess the depth of the anteriorfemoral cut 390 as measured along the Y direction of the femoral anatomy according to the coordinate system of FIG. 21 .

算法中采用的参考点416A-416K的数量取决于结合候选股骨植入物模型320的大小的以下假设。例如,识别前股骨皮质切口的误差随着前股骨皮质的曲率半径减少或者随着等间隔的参考点416A-416K的数量减少而增加的可能性。不幸的是,简单地增加等间隔的参考点416A-416K的数量以减小点间距可能对算法的性能产生不利影响。The number ofreference points 416A-416K employed in the algorithm depends on the following assumptions in conjunction with the size of the candidatefemoral implant model 320 . For example, the error in identifying an incision in the anterior femoral cortex increases as the radius of curvature of the anterior femoral cortex decreases or as the number of equally spacedreference points 416A-416K decreases. Unfortunately, simply increasing the number of equally spacedreference points 416A-416K to reduce the point spacing may adversely affect the performance of the algorithm.

皮质区域本质上是凸出的,具有沿着股骨内侧向外侧移动的变化的曲率半径。因此,假设算法可能遇到的最小曲率半径将为10毫米,并且外科医生可能感觉到的最小临床相关切口深度为0.125毫米,则这两个假设产生3.15毫米的最小点间距。因此,从图24可以理解,图24是半径为10毫米的前股骨皮质切口情况390的示意图,触觉平面410的上边缘418具有一对间隔开3.15毫米的参考点416B-416C,一对点416B-416C恰好在切口下方(例如,0.001毫米),并且候选股骨植入物模型320具有前凸缘414,该前凸缘414具有最大可能大小为37.53毫米的上边缘,点间距小于或等于3.15毫米的可能的最大点数约为12(即,37.53/3.15=11.91≈12)。因此,如图23所示,采用了12个参考点416A-416K。当然,在采用其他大小的前凸缘的情况下,算法中采用的参考点的数量可以小于或大于12个等间隔参考点。The cortical area is convex in nature, with a varying radius of curvature moving along the medial to lateral aspect of the femur. Therefore, assuming that the minimum radius of curvature that the algorithm might encounter would be 10 mm, and that the minimum clinically relevant incision depth that the surgeon might perceive is 0.125 mm, these two assumptions yield a minimum point spacing of 3.15 mm. Thus, as can be understood from Figure 24, which is a schematic illustration of a 10 mm radius anterior femoralcortical incision condition 390, theupper edge 418 of thetactile plane 410 has a pair ofreference points 416B-416C spaced 3.15 mm apart, a pair ofpoints 416B - 416C is just below the incision (eg, 0.001 mm) and the candidatefemoral implant model 320 has ananterior flange 414 with an upper edge of the largest possible size of 37.53 mm with a point spacing of less than or equal to 3.15 mm The maximum possible number of points for is about 12 (ie, 37.53/3.15=11.91≈12). Therefore, as shown in FIG. 23, 12reference points 416A-416K are used. Of course, where other sizes of front flanges are used, the number of reference points used in the algorithm may be less than or greater than 12 equally spaced reference points.

从图23以及图25A和25B可以理解,这些分别是在其上无切口和切口布置中的患者股骨模型226和候选股骨植入物模型320的横截面矢状图,该算法沿着坐标系408的股骨解剖学结构Y轴从每个参考点416A-416K向患者股骨模型226的表面边界的投射矢量420。当满足以下两个条件时确定发生“切口”状态:(1)这些矢量420中最小的矢量的长度等于或大于0毫米;以及(2)这些矢量420中最小的矢量的方向与坐标系408的解剖学结构+Y相反,如图25B所示。一旦识别出的“切口”状态,系统100就可以提供音频和/或视觉警告并且“切口”的状态可以被显示为看起来与显示器56上的图20A和/20B中的任何一个非常相似。As can be appreciated from FIG. 23 and FIGS. 25A and 25B , these are the cross-sectional sagittal views of thepatient femur model 226 and the candidatefemoral implant model 320 in the no incision and incision arrangements, respectively, along the coordinatesystem 408 The femoral anatomy Y-axis is aprojection vector 420 from eachreference point 416A-416K to the surface boundary of thepatient femur model 226 . A "notch" condition is determined to occur when two conditions are met: (1) the length of the smallest of thesevectors 420 is equal to or greater than 0 millimeters; Anatomy +Y is the opposite, as shown in Figure 25B. Once the "cut out" state is identified, thesystem 100 may provide an audio and/or visual alert and the "cut out" state may be displayed to look very similar to any of FIGS. 20A and/20B on the display 56 .

当满足以下两个条件时,确定“无切口”的状态:(1)这些矢量420中的最小的矢量的长度大于0毫米;并且(2)这些矢量420中最小的矢量的方向与坐标系408的解剖学结构+Y相同,如图25A所示。一旦识别出“无切口”的状态,系统100就可以提供音频和/或视觉指示,并且可以显示“无切口”状态,使其看起来非常类似于显示器56上的图25A或图20A的无切口版本。The "no cut" state is determined when the following two conditions are met: (1) the length of the smallest of thesevectors 420 is greater than 0 mm; and (2) the direction of the smallest of thesevectors 420 is in the coordinatesystem 408 The anatomy of +Y is the same, as shown in Figure 25A. Once the "no cutout" state is identified, thesystem 100 can provide audio and/or visual indications, and can display the "no cutout" state to look very similar to the no cutout of FIG. 25A or FIG. 20A on the display 56 Version.

一旦外科医生已经批准、修改和批准根据本具体实施方式的子节A的术前规划所提议的骨切除,并验证没有与术前规划的骨切除相关联的前股骨皮质的不可接受的切口(根据本具体实施方式的小节B已经验证没有不可接受的切口),术前规划的骨切除就可以在术中与患者的实际骨骼和手术系统100配准,如现在将描述的那样。Once the surgeon has approved, modified, and approved the proposed bone resection according to the preoperative planning of subsection A of this embodiment, and verified that there is no unacceptable incision of the anterior femoral cortex associated with the preoperative planned bone resection ( According to subsection B of this embodiment, it has been verified that there are no unacceptable incisions), the preoperatively planned bone resection can be registered intraoperatively with the patient's actual bone andsurgical system 100, as will now be described.

一旦确定是否发生切口,手术系统100就可基于所确定的股骨植入物模型相对于患者股骨模型的位置和取向来生成植入部件位置和取向数据。植入部件位置和取向数据可以用于设置触觉边界,以在关节成形手术期间控制触觉设备60或手术机器人。因此,本文描述的步骤可以描述生成植入物位置和取向数据以用于规划患者骨骼上的关节成形手术的方法。Once it is determined whether an incision has occurred,surgical system 100 may generate implant component position and orientation data based on the determined position and orientation of the femoral implant model relative to the patient's femoral model. Implant component position and orientation data can be used to set haptic boundaries to control thehaptic device 60 or surgical robot during an arthroplasty procedure. Accordingly, the steps described herein may describe a method of generating implant position and orientation data for use in planning an arthroplasty procedure on a patient's bone.

切口评估的其他方法是可能的,例如,如果沿着触觉平面的上边界418在416A和416K之间延伸的线与患者股骨模型226的实心骨相交。在这种情况下,如果线确实与患者股骨模型226的实心骨相交,则发生切口。相反,如果线不与患者股骨模型226的实心骨相交,则不会发生切口。Other methods of incision assessment are possible, for example, if a line extending between 416A and 416K along theupper boundary 418 of the tactile plane intersects the solid bone of the patient'sfemur model 226 . In this case, if the line does intersect the solid bone of the patient'sfemur model 226, an incision occurs. Conversely, if the line does not intersect the solid bone of the patient'sfemur model 226, no incision will occur.

C.检查检查点与切除平面的靠近程度C. Check how close the inspection point is to the resection plane

在某些机器人辅助整形外科手术中,患者骨骼与机器人系统100的术中配准可涉及使用定位在患者的骨骼解剖学结构上的可移除检查点。如图26A所示,其是检查点600的侧视图,检查点600类似于骨锚或螺钉,用于冲击到患者的骨骼中。检查点600可包括位于近端的头端602和从头端602向远端延伸的轴604。头端602可包括开口或凹穴606,其具有圆锥形或截头圆锥形等形状的内表面608。凹穴604提供与配准仪器(例如,导航探针)的机械接口。检查点600的轴604可包括螺纹610和远端尖端612,用于将检查点600旋转地驱动到骨骼中。In certain robotic-assisted orthopaedic procedures, intraoperative registration of the patient's bone with therobotic system 100 may involve the use of removable checkpoints positioned on the patient's bone anatomy. As shown in Figure 26A, which is a side view of acheckpoint 600, which resembles a bone anchor or screw for impacting into the patient's bone.Checkpoint 600 may include a proximally locatedhead end 602 and ashaft 604 extending distally fromhead end 602 . Thehead end 602 may include an opening orpocket 606 having aninner surface 608 that is conical or frustoconical, or the like. Thepocket 604 provides a mechanical interface with a registration instrument (eg, a navigation probe). Theshaft 604 of thecheckpoint 600 may includethreads 610 and adistal tip 612 for rotationally driving thecheckpoint 600 into the bone.

如图26B所示,其是在全膝关节成形术中经历检查点识别步骤的患者骨骼(胫骨10,股骨11)的侧视图,导航探针55的远端504可以放置成与检查点600的头端602上的凹穴606的内表面608接触,以便经由导航系统42的检测设备44相对于手术系统100的其他部件在位置上相关、参考或配准股骨11,如图1所示。在检查点识别期间,导航探针55的远端504可以在凹穴606内的预定位置处“达到最低点”,使得手术系统100可以准确地定位检查点600,并且因此,相对于仪器55和手术系统100中的任何其他设备定位患者股骨11,例如显示器56上描绘的骨11的任何计算机化患者模型226。检查点识别和检查点600以及其他主题的各个方面在2007年5月18日提交的名称为“System and method for verifyingcalibration of a surgical device”的美国专利申请No.11/750,807进行了讨论,该专利申请通过引用整体并入本申请中。26B, which is a side view of the patient's bones (tibia 10, femur 11) undergoing a checkpoint identification step during total knee arthroplasty, thedistal end 504 of thenavigation probe 55 may be placed in contact with thecheckpoint 600 Theinner surface 608 of thepocket 606 on thehead end 602 contacts to positionally correlate, reference or register thefemur 11 relative to other components of thesurgical system 100 via thedetection device 44 of the navigation system 42, as shown in FIG. During checkpoint identification, thedistal end 504 of thenavigation probe 55 can "nadir" at a predetermined location within thepocket 606 so that thesurgical system 100 can accurately locate thecheckpoint 600 and, therefore, relative to theinstrument 55 and Any other equipment in thesurgical system 100 positions the patient'sfemur 11 , such as anycomputerized patient model 226 of thebone 11 depicted on the display 56 . Checkpoint identification and various aspects ofcheckpoint 600 and other topics are discussed in US Patent Application No. 11/750,807, filed May 18, 2007, entitled "System and method for verifying calibration of a surgical device," which patent The application is hereby incorporated by reference in its entirety.

在外科手术过程中使用的每个检查点600必须定位在患者骨骼(例如,股骨11)上,使得在给定特定手术方法的手术期间可以访问。另外,每个检查点600必须定位成使得它不会干扰手术或手术期间使用的工具。例如,检查点600应位于骨骼的一部分上,使得它不会干扰切割设备或通过切除而被移除。随后描述的方法和系统可以帮助术前确定不会干扰切割工具并且在切除期间不会被移除的检查点600的位点或位置。Eachcheckpoint 600 used during a surgical procedure must be positioned on the patient's bone (eg, femur 11 ) so as to be accessible during surgery given a particular surgical approach. Additionally, eachcheckpoint 600 must be positioned such that it does not interfere with the procedure or the tools used during the procedure. For example, thecheckpoint 600 should be located on a portion of the bone such that it does not interfere with the cutting device or be removed by resection. The subsequently described methods and systems can aid in preoperative determination of the site or location of thecheckpoint 600 that will not interfere with the cutting tool and will not be removed during resection.

参考图26C-26E,其分别是描绘植入部件320和检查点600的位置的患者股骨模型226,描绘植入部件300和检查点600的位置的患者胫骨模型224,和指示术前检查点位置验证过程360中的步骤的流程图。在关节成形手术的术前规划期间,外科医生或医疗专业人员可以识别患者骨骼模型224,226上的检查点600的位置[方框362]。或者,检查点的位置可以自动定位在患者骨骼模型224,226上。通过规划植入部件320,300和切除平面334,306相对于患者骨骼模型224,226的类型、位置和取向,如前面章节所述继续术前规划[方框364]。通过当植入部件320,300被规划成使得相关切除平面将以需要检查点600的替代位置或植入部件320,300的替代放置/取向的某种方式干扰检查点600时警告规划者(例如,外科医生),检查点位置验证过程360可以结合植入部件320,300的规划来工作。在某些情况下,修改检查点600的位置和放置可能比修改期望的植入部件320,300的位置和放置更容易。因此,规划者可以改变检查点600的位置,使得检查点600不再干扰切除平面。26C-26E, which arepatient femur model 226 depicting the location ofimplant component 320 andcheckpoint 600,patient tibia model 224 depicting the location ofimplant component 300 andcheckpoint 600, and indicating the preoperative checkpoint location A flowchart of steps in theverification process 360 . During preoperative planning for an arthroplasty procedure, the surgeon or medical professional may identify the location of thecheckpoint 600 on the patient'sskeletal model 224, 226 [block 362]. Alternatively, the locations of the checkpoints can be automatically positioned on the patientskeletal models 224, 226. Preoperative planning continues as described in previous sections by planning the type, location and orientation ofimplant components 320, 300 andresection planes 334, 306 relative to patientskeletal model 224, 226 [block 364]. By alerting the planner (eg, the surgeon) when theimplant components 320, 300 are planned such that the relevant resection plane will interfere with thecheck point 600 in some way that requires an alternate location of thecheck point 600 or an alternate placement/orientation of theimplant components 320, 300 , the checkpointlocation verification process 360 may work in conjunction with the planning of theimplant components 320 , 300 . In some cases, it may be easier to modify the location and placement of thecheckpoint 600 than to modify the location and placement of the desiredimplant components 320 , 300 . Therefore, the planner can change the position of thecheckpoint 600 so that thecheckpoint 600 no longer interferes with the resection plane.

继续,一旦在[方框364]处识别切除平面334,306,就为每个切除平面识别法线(N)[方框366],如图26F和26G所示,其分别是股骨切除334和胫骨切除306的一对矢状示意图,其中检查点600相对于切除334,306定位。如图26F-26G所示,法线(N)垂直于切除平面334。接下来,在检查点600和每个切除平面之间确定最短有符号距离矢量(d)。图26F-26G描绘了矢状视图中的最短有符号距离矢量(d),因为切除平面334,306与该视图正交,这导致平面334,306呈现为线而不是平面。Continuing, once resection planes 334, 306 are identified at [block 364], normals (N) are identified for each resection plane [block 366], as shown in Figures 26F and 26G, which arefemoral resection 334 and tibial resection, respectively A pair of sagittal views of 306 withcheckpoint 600 positioned relative to resections 334, 306. As shown in Figures 26F-26G, the normal (N) is perpendicular to theresection plane 334. Next, the shortest signed distance vector (d) is determined betweeninspection point 600 and each resection plane. Figures 26F-26G depict the shortest signed distance vector (d) in the sagittal view because the resection planes 334, 306 are orthogonal to the view, which results in theplanes 334, 306 appearing as lines rather than planes.

虽然在视觉上显示最短有符号距离矢量,但是可以在不用视觉显示的情况下计算最短有符号距离矢量(d)。另外,虽然图26F-26G中的最短有符号距离矢量(d)仅针对前侧切除334a描绘,但是可以为每个切除平面334(例如,远端切除平面334d,后侧切除平面334p,远端-前侧倒角切除平面334da,以及远端-后侧倒角切除平面334dp)确定、计算或识别最短有符号距离矢量(d)。Although the shortest signed distance vector is displayed visually, the shortest signed distance vector (d) can be calculated without visual display. Additionally, while the shortest signed distance vector (d) in FIGS. 26F-26G is depicted only for theanterior resection 334a, it may be possible for each resection plane 334 (eg,distal resection plane 334d,posterior resection plane 334p, distal - Anterior chamfer cut plane 334da, and distal end - Posterior chamfer cut plane 334dp) determine, calculate or identify the shortest signed distance vector (d).

注意,最短有符号距离矢量(d)包括大小或距离和三维方向。最短有符号距离矢量(d)可以被限定为检查点600与植入部件的(一个或多个)相关切除平面上的对应点之间的最短垂直距离,该相关切除平面与骨的切除表面334共同延伸。也就是说,最短有符号距离矢量(d)垂直于(一个或多个)切除平面并且与(一个或多个)法线(N)平行。如图26G所示,最短有符号距离矢量(d4)延伸到植入部件的相关切除平面上的点,该相关切除平面与切除表面334p共同延伸并定位在切除表面334p上方。Note that the shortest signed distance vector (d) includes magnitude or distance and three-dimensional orientation. The shortest signed distance vector (d) may be defined as the shortest vertical distance between theinspection point 600 and the corresponding point on the relevant resection plane(s) of the implanted component, the relevant resection plane and theresection surface 334 of the bone co-extension. That is, the shortest signed distance vector (d) is perpendicular to the resection plane(s) and parallel to the normal(s) (N). As shown in Figure 26G, the shortest signed distance vector (d4) extends to a point on the associated resection plane of the implant component that is coextensive with and positioned aboveresection surface 334p.

在某些实施例中,可以使用最短距离矢量代替最短有符号距离矢量(d)。也就是说,在该特定实施例中,最短距离矢量不需要垂直于植入部件的(一个或多个)相关切除平面或切除的骨表面。而是,最短距离矢量可以简单地是检查点600与切除平面或骨的被切除表面334,306上的点之间的最短距离矢量。在一些情况下,最短距离矢量可以垂直于被切除表面334,306或切除平面。在一些情况下,使用最短距离矢量可以导致大小小于用最短有符号距离矢量(d)计算的大小。In some embodiments, the shortest distance vector may be used instead of the shortest signed distance vector (d). That is, in this particular embodiment, the shortest distance vector need not be perpendicular to the relative resection plane(s) of the implant component or the resected bone surface. Rather, the shortest distance vector may simply be the shortest distance vector between theinspection point 600 and a point on the resection plane orresection surface 334, 306 of the bone. In some cases, the shortest distance vector may be perpendicular to the resectedsurface 334, 306 or the resected plane. In some cases, using the shortest distance vector may result in a size smaller than that calculated with the shortest signed distance vector (d).

如前所述,最短距离矢量可以从检查点600延伸到(一个或多个)相关切除平面或虚拟地被切除的骨表面334,306。另外或可选地,最短距离矢量可以从检查点600延伸到表示切削工具(例如,锯片)的可允许切削周界的触觉对象。触觉对象在几何形状上是平面的并且不是无限的(即,与切除平面不同)。它位于预定的切除平面,但具有有限面积。触觉对象的周界将锯片约束到预期的切口并且被设计成足够大以包括锯(例如,25毫米宽的锯片将具有至少25毫米宽的触觉对象),成形为至少移除将植入物放置在该位置所需的骨量,并且成形为保护软组织(即,不是无限的)。As previously discussed, the shortest distance vector may extend from theinspection point 600 to the relevant resection plane(s) or the virtually resected bone surfaces 334, 306. Additionally or alternatively, the shortest distance vector may extend frominspection point 600 to a haptic object representing the allowable cutting perimeter of a cutting tool (eg, a saw blade). A haptic object is geometrically planar and not infinite (ie, different from a cut plane). It is located at the predetermined resection plane, but has a limited area. The perimeter of the haptic object constrains the saw blade to the intended cut and is designed to be large enough to include the saw (eg, a 25 mm wide saw blade will have a haptic object that is at least 25 mm wide), shaped to at least remove the implant The amount of bone required for the object to be placed in that location, and shaped to protect the soft tissue (ie, not infinite).

以下讨论将借助对最短有符号距离矢量(d)的讨论进行,但是该讨论同样适用于前面段落中描述的最短距离矢量。The following discussion will be based on the discussion of the shortest signed distance vector (d), but the discussion applies equally to the shortest distance vector described in the preceding paragraph.

返回参考图26E,检查点位置验证过程360的下一步是询问每个相应切除平面344的法线(N)和距离矢量(d)是否指向相同方向[方框370]。如果法线(N)和距离矢量(d)指向相同方向[方框372],则切除平面被认为相对于检查点600处于“凸出”状态。在这种情况下,计算以下函数:如果距离矢量(d)的大小小于或等于4.50毫米,则检查点600的位置太靠近切除平面334,并且系统用警告警示规划者[方框376],其可以是检查点600的应该被修改的位置的音频和/或视觉指示。如果法线(N)和距离矢量(d)指向相同方向,但距离矢量(d)的大小大于4.50毫米,则检查点600的位置不需要修改。Referring back to Figure 26E, the next step in the checkpointlocation verification process 360 is to ask whether the normal (N) and distance vector (d) of each respective resection plane 344 point in the same direction [block 370]. If the normal (N) and the distance vector (d) point in the same direction [block 372 ], the resection plane is considered to be in a "bulging" state relative to theinspection point 600 . In this case, the following function is calculated: if the magnitude of the distance vector (d) is less than or equal to 4.50 mm, thecheckpoint 600 is located too close to theresection plane 334 and the system alerts the planner with a warning [block 376], which This may be an audio and/or visual indication of where thecheckpoint 600 should be modified. If the normal (N) and the distance vector (d) point in the same direction, but the magnitude of the distance vector (d) is greater than 4.50 mm, the position of thecheckpoint 600 does not need to be modified.

如果法线(N)和距离矢量(d)未指向相同方向(即,指向相反方向),则切除平面334相对于检查点600位置“深”,并且因此,检查点600将干扰切除或在关节成形手术期间从骨切除[方框374]。在这种情况下,系统用警告警示规划员[方框376],其可以是检查点600的应该被修改的位置的音频和/或视觉指示。可以由手术系统100使用与检查点位置/取向以及切除平面的位置/取向相关联的信息来生成切除和检查点定位数据,其可以在利用触觉设备60或者手术机器人进行关节成形手术期间使用。因此,本文描述的方法中的步骤可以描述生成切除平面和检查点定位数据以用于规划患者骨骼上的关节成形手术的方法。If the normal (N) and the distance vector (d) do not point in the same direction (ie, in opposite directions), theresection plane 334 is positioned "deep" relative to thecheckpoint 600, and thus, thecheckpoint 600 will interfere with the resection or at the joint Resection from bone during plastic surgery [Block 374]. In this case, the system alerts the planner [block 376] with a warning, which may be an audio and/or visual indication of where thecheckpoint 600 should be modified. The information associated with the checkpoint position/orientation and the position/orientation of the resection plane may be used bysurgical system 100 to generate resection and checkpoint positioning data, which may be used during an arthroplasty procedure utilizinghaptic device 60 or a surgical robot. Accordingly, the steps in the methods described herein may describe a method of generating resection planes and checkpoint positioning data for use in planning an arthroplasty procedure on a patient's bone.

可以使用替代方法来确定检查点600的位置是否位于“深”或“凸出”而不使用法线(N)。例如,可以确定从检查点600到切除平面的最短有符号距离矢量(d)。正号可以指示检查点600从平面“凸出”。相反,最短有符号距离矢量(d)的负号可以指示检查点600距平面“深”或从平面凹陷。Alternative methods may be used to determine whether the location ofcheckpoint 600 is "deep" or "bulging" without using the normal (N). For example, the shortest signed distance vector (d) from theinspection point 600 to the resection plane can be determined. A positive sign may indicate that thecheckpoint 600 "bulges" from the plane. Conversely, the negative sign of the shortest signed distance vector (d) may indicate that thecheckpoint 600 is "deep" from or recessed from the plane.

如图26F所示,关于股骨切除334,从检查点600到前侧切除平面334a的距离矢量(d)指向第一方向(即,朝向患者骨骼),并且前侧切除平面334a的法线(N)指向第二方向(即,远离患者骨骼),其与第一方向相反。因此,如[方框370]和[方框374]所示,切除平面相对于检查点600位于深处,并且检查点600将干扰切除(例如,接触切割工具)或在关节成形手期间从骨被切除。因此,系统向规划者发出警报或警告,以考虑检查点600或植入部件320,300的替代放置。一旦确定检查点600将干扰切割工具或从骨被切除,则可能不需要计算其他切除表面334da、334d、334dp、334p的最短有符号矢量(d)。然而,可以在某些情况下计算这种计算量。As shown in Figure 26F, with respect tofemoral resection 334, the distance vector (d) fromcheckpoint 600 toanterior resection plane 334a points in the first direction (ie, toward the patient's bone), and the normal toanterior resection plane 334a (N ) points in a second direction (ie, away from the patient's bone), which is opposite to the first direction. Therefore, as shown in [Block 370] and [Block 374], the resection plane is located deep with respect to thecheckpoint 600, and thecheckpoint 600 would interfere with the resection (eg, contacting a cutting tool) or cutting from the bone during an arthroplasty hand was cut off. Accordingly, the system issues an alert or warning to the planner to consider alternative placement of thecheckpoint 600 or implant components 320,300. Once it is determined that thecheckpoint 600 will interfere with the cutting tool or be resected from the bone, the shortest signed vector (d) of the other resected surfaces 334da, 334d, 334dp, 334p may not need to be calculated. However, this amount of computation can be calculated in some cases.

关于图26F中的胫骨切除306,从检查点600到近端胫骨切除306的距离矢量(d)指向第一方向(即,朝向患者骨骼),并且切除306的法线(N)指向第二方向(即,远离患者骨骼),其与第一方向相反。因此,如[方框370]和[方框374]所示,切除平面相对于检查点600位于深处,并且检查点600将干扰切除(例如,接触切割工具)或在关节成形手术期间从骨被切除。因此,系统向规划员发出警报或警告,以考虑检查点600或植入部件320,300的替代放置。With respect totibial resection 306 in Figure 26F, the distance vector (d) fromcheckpoint 600 toproximal tibial resection 306 points in a first direction (ie, towards the patient's bone), and the normal (N) ofresection 306 points in a second direction (ie, away from the patient's bone), which is opposite to the first direction. Therefore, as shown in [Block 370] and [Block 374], the resection plane is located deep with respect to thecheckpoint 600, and thecheckpoint 600 will interfere with the resection (eg, contacting a cutting tool) or removal from bone during an arthroplasty procedure was cut off. Accordingly, the system issues an alert or warning to the planner to consider alternative placement of thecheckpoint 600 or implant components 320,300.

参考图26G的股骨切除部分,从检查点600到前侧切除平面334a的距离矢量(d)指向第一方向(即,远离患者骨骼),并且前侧切除平面334a的法线(N)也指向第一方向(即,远离患者骨骼)。由于法线(N)和距离矢量(d)的方向部分指向相同方向,因此检查点位置验证过程360继续[方框372]。根据过程中的该步骤,根据以下等式分析距离矢量(d)的大小或距离部分:距离矢量(d)的大小是否小于或等于4.50毫米,如果是,则检查点600太靠近切除平面334,并且系统向规划者发送警报或警告[方框376]。如果距离矢量(d)的大小大于4.50毫米,则检查点600对于关节成形手术被适当地定位。Referring to the femoral resection portion of Figure 26G, the distance vector (d) from thecheckpoint 600 to theanterior resection plane 334a points in the first direction (ie, away from the patient's bone), and the normal (N) of theanterior resection plane 334a also points The first direction (ie, away from the patient's bone). Since the directional portions of the normal (N) and the distance vector (d) point in the same direction, the checkpointlocation verification process 360 continues [block 372]. According to this step in the process, the magnitude or distance portion of the distance vector (d) is analyzed according to the following equation: Is the magnitude of the distance vector (d) less than or equal to 4.50 mm, if so, then checkpoint 600 is too close toresection plane 334, And the system sends an alert or warning to the planner [block 376]. If the magnitude of the distance vector (d) is greater than 4.50 mm, thecheckpoint 600 is properly positioned for the arthroplasty procedure.

如参考图26G的股骨切除334所见,可以以与分析原始距离矢量(d)相同的方式分析附加距离矢量(d1),(d2),(d3),(d4)。如图所示,所有距离矢量(d1),(d2),(d3),(d4)指向与它们各自的法线(N)相同的方向。因此,关于[方框372]分析每个距离矢量(d1),(d2),(d3),(d4),以确定检查点600是否太靠近相应的切除平面334da,334d,334dp,334p。如果距离矢量(d1),(d2),(d3),(d4)中的一个或多个距离它们各自的切除平面334da,334d,334dp,334p小于或等于4.50毫米,则检查点600的位置必须修改、调整或移动以使其满足[方框372]中的条件,同时不导致任何其他距离矢量(d1),(d2),(d3),(d4)距离切除平面334a,334da,334d,334dp,334p小于或等于4.50毫米。As seen with reference to thefemoral resection 334 of Figure 26G, the additional distance vectors (dl), (d2), (d3), (d4) can be analyzed in the same manner as the original distance vector (d). As shown, all distance vectors (d1), (d2), (d3), (d4) point in the same direction as their respective normals (N). Therefore, each distance vector (dl), (d2), (d3), (d4) is analyzed with respect to [block 372] to determine if thecheckpoint 600 is too close to the corresponding resection plane 334da, 334d, 334dp, 334p. If one or more of the distance vectors (d1), (d2), (d3), (d4) are less than or equal to 4.50 mm from their respective resection planes 334da, 334d, 334dp, 334p, the location ofcheckpoint 600 must be Modify, adjust or move so that it satisfies the conditions in [Block 372], while not causing any other distance vectors (d1), (d2), (d3), (d4) to be away from the cut planes 334a, 334da, 334d, 334dp , 334p is less than or equal to 4.50mm.

在图26H的表650中示出了[方框372]中4.50毫米阈值的基本原理。表650概述了对于检查点600的4.50毫米阈值太靠近切除平面而被考虑的各种误差源。表650的第1行中的后侧切割系统误差指的是与解剖学结构Y方向(例如,图26F-26G中的前后方向)上的后侧切除相关的最大系统误差。最大系统误差是用户在进行后侧切割时系统100允许用户做出的最大允许误差或偏差。在该特定情况下,通过参考X1示出了与解剖学结构Y方向上的后侧切割相关联的最大系统误差。The rationale for the 4.50 mm threshold in [Block 372] is shown in Table 650 of Figure 26H. Table 650 summarizes the various error sources that are considered for the 4.50 mm threshold forinspection point 600 to be too close to the resection plane. The posterior cutting systematic error inrow 1 of table 650 refers to the maximum systematic error associated with posterior cutting in the anatomical Y-direction (eg, anterior-posterior direction in FIGS. 26F-26G ). The maximum systematic error is the maximum allowable error or deviation that thesystem 100 allows the user to make when making a posterior cut. In this particular case, the maximum systematic error associated with the posterior cut in the Y direction of the anatomy is shown by reference to X1.

图26H的表650的第2行中的远端切割系统误差指的是与解剖学结构Z方向(例如,图26F-26G中的远端-近端方向)上的远端切除相关联的最大系统误差。最大系统误差是用户在进行远端切割时系统100允许用户做出的最大允许误差或偏差。在该特定情况下,与解剖学结构Z方向上的远端切割相关联的最大系统误差由参考X2示出。The distal cutting system error inrow 2 of the table 650 of Figure 26H refers to the maximum associated with the distal cutting in the anatomical Z-direction (eg, the distal-proximal direction in Figures 26F-26G) system error. The maximum systematic error is the maximum allowable error or deviation that thesystem 100 allows the user to make when making a distal cut. In this particular case, the maximum systematic error associated with distal cutting in the Z-direction of the anatomy is shown by reference X2.

在图26H中的表650的第3行中由于后侧切割引起的前侧倒角系统误差是指由于与后侧切割相关联的最大误差(参考表650第1行所讨论)导致的与前侧倒角切割相关联的最大系统误差。如图26I所示,其是股骨切除334在以实线示出的第一位置以及在平移后以虚线示出的第二位置的矢状图,当后侧切割通过在解剖学结构Y方向上平移时,前侧倒角切割移动到更靠近检查点的量由参考X3所示。Anterior chamfer systematic error due to posterior cut inrow 3 of table 650 in FIG. 26H refers to the difference between the Maximum systematic error associated with side chamfer cuts. 26I, which is a sagittal view of thefemoral resection 334 in the first position shown in solid lines and the second position shown in dashed lines after translation, when the posterior cut passes in the anatomical Y direction When translating, the amount by which the front chamfer cut moves closer to the inspection point is indicated by reference X3.

在图26H中的表650第4行中由于远侧切割引起的前侧倒角系统误差是指由于与远侧切割相关的最大误差(参考表650第2行所讨论)导致的与前侧倒角切割相关联的最大系统误差。如图26J所示,其是股骨切除334在以实线示出的第一位置和在平移后以虚线示出的第二位置的矢状图,当远端切割在解剖学结构Z方向上平移时,前侧倒角切割移动到更靠近检查点的量由参考X4所示。Anterior chamfer system error due to distal cut in row 4 of table 650 in FIG. 26H refers to the difference between the anterior chamfer due to the largest error associated with the distal cut (discussed with reference torow 2 of table 650) Maximum systematic error associated with corner cuts. 26J, which is a sagittal view of thefemoral cut 334 in a first position shown in solid lines and a second position shown in dashed lines after translation, when the distal cut is translated in the anatomical Z direction , the amount by which the front chamfer cut moves closer to the inspection point is indicated by reference X4.

在图26H的表650第5行中由参考X5示出的轮廓误差是与前侧倒角切割相关联的最大轮廓误差。轮廓误差是在将外科医生的远端和后侧切割与规划的远端和后侧切割对齐之后与前侧、前侧倒角和后侧倒角切割相关的切除误差。因此,其为相对于被假定为对于对准目的而言作为主要和次要数据的远端和后侧切割的误差。The contour error shown by reference X5 in row 5 of table 650 of FIG. 26H is the largest contour error associated with the front side chamfer cut. Contour error is the resection error associated with the anterior, anterior chamfer, and posterior chamfer cuts after aligning the surgeon's distal and posterior cuts with the planned distal and posterior cuts. Therefore, it is the error relative to the distal and posterior cuts, which are assumed to be primary and secondary data for alignment purposes.

作为示例,假设外科医生已完成股骨上的所有五次切割并开始试验。假设远端切割比规划凸出1毫米,而后侧切割比规划深1毫米。当外科医生开始试验时,外科医生通过确保植入部件与远端平面上的被切除骨骼齐平并确保对于后侧切割一样来消除远端切割误差。通过这种方式,外科医生将所有远端和后侧切割误差转移到前侧、前侧倒角和后侧倒角切割上。可以通过设置例如在切割周围的1.5毫米的双侧公差带来控制这种类型的误差。也就是说,当远端和后侧切割被消除时,所有前侧、前侧倒角和后侧倒角切割将在术前规划位置周围的±1.5毫米内。As an example, assume that the surgeon has completed all five cuts on the femur and started the trial. Assume that the distal cut is 1 mm more prominent than planned and the posterior cut is 1 mm deeper than planned. When the surgeon begins the trial, the surgeon eliminates distal cutting errors by ensuring that the implanted component is flush with the resected bone on the distal plane and that it is the same for the posterior cut. In this way, the surgeon transfers all distal and posterior cutting errors to the anterior, anterior chamfer, and posterior chamfer cuts. This type of error can be controlled by setting a double sided tolerance band of eg 1.5 mm around the cut. That is, when the distal and posterior cuts are eliminated, all anterior, anterior chamfer, and posterior chamfer cuts will be within ±1.5 mm around the preoperative planned location.

在图26H的表650的第6行,由参考X6示出的平方和的根,其是给定贡献变量列表的组合误差,针对由于后侧切割引起的前侧倒角误差、由于远端切割导致的前侧倒角误差以及轮廓误差而计算。使用表650中提供的值,平方和的根等于如下:RSS=SQRT((X3)^2+(X4)^2+(X5)^2)=X6。Inrow 6 of table 650 of Figure 26H, the root of the sum of squares shown by reference X6, which is the combined error for a given list of contributing variables, for anterior chamfer error due to posterior cutting, due to distal cutting The resulting front chamfering error and contour error are calculated. Using the values provided in table 650, the root of the sum of squares is equal to the following: RSS=SQRT((X3)^2+(X4)^2+(X5)^2)=X6.

在图26H的表650的第7行,切割工具的刀片与检查点600内的TCP的距离由附图标记X7示出,其在某些情况下可为约2.87毫米。该值是切割工具的刀片可以距离检查点600的凹穴606(如图26A所示)的中心点而不接触检查点600的最短距离。因此,在这种情况下,切割工具必须与检查点600的工具中心点(TCP)间隔至少2.87毫米,以便工具不干扰或接触检查点600。对于该计算,假设股骨检查点600位于股骨表面上,股骨表面与矢状平面成约45度的角度。Inrow 7 of table 650 of Figure 26H, the distance of the blade of the cutting tool to the TCP withininspection point 600 is indicated by reference numeral X7, which in some cases may be about 2.87 mm. This value is the shortest distance that the blade of the cutting tool can be from the center point of thepocket 606 of the inspection point 600 (shown in FIG. 26A ) without touching theinspection point 600 . Therefore, in this case, the cutting tool must be spaced at least 2.87 mm from the tool center point (TCP) of theinspection point 600 so that the tool does not interfere with or contact theinspection point 600 . For this calculation, it is assumed that thefemoral checkpoint 600 is located on the femoral surface at an angle of approximately 45 degrees to the sagittal plane.

如在图26H的表650上所见,通过将第6行上的平方和的根X6与第7行上的刀片距离因子X7组合或相加来计算总阈值距离X8。As seen on the table 650 of Figure 26H, the total threshold distance X8 is calculated by combining or adding the root of the sum of squares X6 onrow 6 with the blade distance factor X7 onrow 7.

参考图26H的胫骨图652,胫骨近端切割误差通过在第1行的参考Y1示出。胫骨近端切割误差是与解剖学结构Z方向(例如,远端-近端方向)上的近端切除相关联的最大系统误差。也就是说,Y1是用户进行胫骨的近端切除时允许的最大允许误差。在胫骨图652的第2行中,对于胫骨检查点600,刀片距离因子由参考Y2示出。给定胫骨图652的第1和2行中的值,这些值的总和由参考Y3示出并且是总阈值距离。Referring to the tibia diagram 652 of FIG. 26H, the proximal tibia cut error is shown by reference Y1 inrow 1. Proximal tibia cutting error is the largest systematic error associated with proximal resection in the anatomical Z-direction (eg, distal-proximal direction). That is, Y1 is the maximum allowable error allowed when the user performs a proximal resection of the tibia. Inrow 2 of the tibial diagram 652, for thetibial checkpoint 600, the blade distance factor is shown by reference Y2. Given the values inrows 1 and 2 of thetibia graph 652, the sum of these values is shown by reference Y3 and is the total threshold distance.

股骨和胫骨检查点阈值中的较大者可以向上舍入到4.50毫米并且在本文描述的检查点位置验证过程360中使用。The greater of the femoral and tibial checkpoint thresholds may be rounded up to 4.50 mm and used in the checkpointlocation verification process 360 described herein.

III.术中软骨表面配准III. Intraoperative cartilage surface registration

在一个实施例中,从患者的实际股骨和胫骨的CT图像生成三维患者骨骼模型224,226。在其他实施例中,患者骨骼模型224,226由其他类型的医学图像生成,例如利用造影剂注射的CT、MRI、X射线等。这些成像模态中的一些将描绘患者的软骨(例如,利用造影剂的CT和MRI),并导致患者骨骼模型反映患者软骨的存在,而其他成像模态(例如直接(straight)CT)不会,导致患者骨骼模型不能反映患者软骨的存在并且仅反映患者的实际皮质或外骨表面。In one embodiment, three-dimensionalpatient bone models 224, 226 are generated from CT images of the patient's actual femur and tibia. In other embodiments, the patientskeletal models 224, 226 are generated from other types of medical images, such as CT, MRI, X-ray, etc. with contrast injection. Some of these imaging modalities will delineate the patient's cartilage (eg, CT and MRI with contrast agents) and result in a patient skeletal model reflecting the presence of the patient's cartilage, while other imaging modalities (eg, straight CT) will not , resulting in a patient skeletal model that does not reflect the presence of the patient's cartilage and only reflects the patient's actual cortical or outer bone surface.

在使用直接CT图像来生成三维患者骨骼模型224,226的情况下,因为CT在分辨率和速度方面中具有优于其他成像模态(例如MRI)的优点,例如,所得到的基于CT的骨模型不会反映患者的软骨表面。也就是说,骨骼模型仅是骨骼模型。由于上述术前规划涉及确定从患者骨骼模型224,226的仅骨髁表面的骨切除深度,其不反映患者的软骨髁表面,并且因为实际股骨和胫骨植入物的手术植入需要被定位成使得它们各自的髁表面位于复制患者的被替换的天然软骨髁表面的位置,作为全膝关节成形手术的一部分,所以需要在手术中考虑软骨的厚度。In the case of using direct CT images to generate a three-dimensionalpatient bone model 224, 226, because CT has advantages over other imaging modalities (eg, MRI) in terms of resolution and speed, for example, the resulting CT-based bone model does not Will reflect the patient's cartilage surface. That is, a skeletal model is a skeletal model only. Since the preoperative planning described above involves determining the depth of bone resection from the condyle-only surface of the patient'sskeletal model 224, 226, it does not reflect the patient's cartilaginous condyle surface, and because the surgical implantation of actual femoral and tibial implants needs to be positioned such that they are The respective condyle surfaces are positioned to replicate the patient's replaced native cartilage condyle surfaces as part of total knee arthroplasty surgery, so the thickness of the cartilage needs to be considered during the surgery.

考虑通过CT生成并在上述术前规划方法中使用的骨模型224,226中缺乏软骨表示的一种方式是分别向远端和近端移动术前规划的股骨和胫骨切除平面334,302等于软骨厚度的量,如从图27A和27B可以理解,图27A和27B分别是术前规划的股骨植入物和患者骨骼模型320,226的矢状图,以及术前规划的胫骨植入物和患者骨骼模型300,224的矢状图。如图27A中的虚线箭头所示,股骨植入物髁表面332的术前规划位置向远端移动以呈现股骨植入物髁表面的软骨补偿位置332A,并且股骨切除334的术前规划位置向远端移动以呈现股骨切除的软骨补偿位置334A。这样的调整的结果将使得实际的股骨植入物使其髁表面定位成代替被切除的股骨软骨髁表面。One way to consider the lack of cartilage representation in thebone models 224, 226 generated by CT and used in the preoperative planning methods described above is to move the pre-operatively planned femoral and tibial resection planes 334, 302 distally and proximally, respectively, by an amount equal to the thickness of the cartilage, As can be understood from Figures 27A and 27B, Figures 27A and 27B are sagittal views of the preoperatively planned femoral implant andpatient bone model 320, 226, and sagittal views of the preoperatively planned tibial implant andpatient bone model 300, 224, respectively picture. As indicated by the dashed arrows in Figure 27A, the preoperatively planned position of the femoralimplant condyle surface 332 is moved distally to present thecartilage compensation position 332A of the femoral implant condyle surface, and the preoperatively planned position of thefemoral resection 334 is shifted to The distal end is moved to present thecartilage compensation position 334A of the femoral resection. The result of such an adjustment will be that the actual femoral implant will have its condyle surface positioned in place of the resected femoral cartilage condyle surface.

如图27B中的虚线箭头所示,胫骨植入物髁表面304的术前规划位置向近端移动以呈现胫骨植入物髁表面的软骨补偿位置304A,并且胫骨切除306的术前规划位置向近端移动以呈现胫骨切除的软骨补偿位置306A。这样的调整的结果将使得实际的胫骨植入物使其髁表面定位成代替被切除的胫骨软骨髁表面。As indicated by the dashed arrows in Figure 27B, the preoperatively planned position of the tibialimplant condyle surface 304 is moved proximally to present thecartilage compensation position 304A of the tibial implant condyle surface, and the preoperatively planned position of thetibial resection 306 is moved towards The proximal end is moved to present thecartilage compensation position 306A of the tibial resection. The result of such an adjustment will be that the actual tibial implant will have its condyle surface positioned to replace the resected tibial cartilage condyle surface.

在一个实施例中,可以通过根据软骨厚度的估计进行图27A和27B所示的移动来进行软骨补偿。例如,股骨和胫骨术前规划的切除可以在它们各自的方向上移动估计的软骨厚度,例如2毫米。In one embodiment, cartilage compensation may be performed by performing the movements shown in Figures 27A and 27B based on estimates of cartilage thickness. For example, preoperatively planned resections of the femur and tibia can move the estimated cartilage thickness, eg, 2 mm, in their respective directions.

在另一个实施例中,软骨补偿可以在术中配准过程期间进行,如现在将讨论的。如上面关于图1所讨论的,在实际手术期间,实际患者骨骼10,11通过固定到患者骨骼10,11并且经由导航系统42的检测设备44检测的导航标记46而在位置上配准到相应的患者骨骼模型224,226。由于实际骨骼10,11术中配准到骨骼模型224,226,所以系统100知道骨骼模型髁表面相对于实际骨骼10,11这些表面的位置。然而,由于骨骼模型是CT成像的结果,软骨髁表面不是术前规划的一部分,并且系统100不知道软骨髁表面相对于实际骨骼或骨模型的这些表面的位置。软骨的配准可以解决这种情况。In another embodiment, cartilage compensation may be performed during an intraoperative registration process, as will now be discussed. As discussed above in relation to FIG. 1 , during the actual surgery, theactual patient bones 10 , 11 are registered in position to the correspondingnavigation markers 46 fixed to thepatient bones 10 , 11 and detected via thedetection device 44 of the navigation system 42 . patient skeletal model 224,226. Since theactual bones 10, 11 are intraoperatively registered to thebone models 224, 226, thesystem 100 knows the position of the bone model condyle surfaces relative to these surfaces of theactual bones 10, 11. However, since the bone model is the result of CT imaging, the cartilage condyle surfaces are not part of the preoperative planning, and thesystem 100 does not know the location of the cartilage condyle surfaces relative to these surfaces of the actual bone or bone model. Registration of cartilage can resolve this situation.

图28A和28B分别是如图1中的系统的显示器56上所示的患者股骨模型226的轴向或横向远端视图和冠状后视图。界标捕获区域500,501突出显示在每个视图中的模型226上。界标捕获区域涉及实际患者股骨11上可由外科医生在术中识别的区域。28A and 28B are an axial or lateral distal view and a coronal posterior view, respectively, of the patient'sfemur model 226 as shown on the display 56 of the system in FIG. 1 .Landmark capture areas 500, 501 are highlighted on themodel 226 in each view. The landmark capture area refers to an area on the actual patient'sfemur 11 that can be identified intraoperatively by the surgeon.

图29A和29B分别是图28A和28B的界标捕获区域500,501的放大视图,其中在每个捕获区域上描绘了一系列配准点502。在一个实施例中,每个区域500,501上具有十个点502,并且在其他实施例中,点502的数量可以大于或小于10。Figures 29A and 29B are enlarged views of thelandmark capture areas 500, 501 of Figures 28A and 28B, respectively, with a series ofregistration points 502 depicted on each capture area. In one embodiment, there are tendots 502 on eacharea 500, 501, and in other embodiments the number ofdots 502 may be greater or less than ten.

从图1及图29A和29B可以理解,从触觉设备60的末端执行器的自由端延伸的导航探针55的远端504或捕获探针的远端504(即触觉设备60的被图1中的手术工具58占据的部分)由外科医生引导,以在外科医生认为与图29A和29B中显示器上显示的区域500和501中的点502相同的位置处术中接触患者的实际股骨11的实际软骨髁表面。每当外科医生在被认为与显示器56上显示的点502之一相对应的位置接触患者的实际股骨11的软骨髁表面时,外科医生向系统100进行输入,然后系统100配准该实际软骨点位置和显示在显示器56上的对应点502。重复该过程,直到所有十个点502都配准到实际患者股骨11的软骨髁表面上的相应点位置。虽然该过程被描述为配准与骨模型上显示的特定点相对应的软骨表面上的各个点,系统100可以替代地仅显示目标区域而不描绘用于捕获的各个点。1 and FIGS. 29A and 29B, thedistal end 504 of thenavigation probe 55 or thedistal end 504 of the capture probe extending from the free end of the end effector of the haptic device 60 (ie, the end of thehaptic device 60 in FIG. 1 The portion occupied by the surgical tool 58) is guided by the surgeon to intraoperatively contact theactual femur 11 of the patient at a location the surgeon believes to be the same aspoint 502 in theregions 500 and 501 shown on the displays in FIGS. 29A and 29B. Cartilage condyle surface. Whenever the surgeon contacts the cartilaginous condyle surface of the patient'sactual femur 11 at a location believed to correspond to one of thepoints 502 displayed on the display 56, the surgeon makes an input to thesystem 100, which then registers the actual cartilage point The location andcorresponding point 502 displayed on the display 56 . This process is repeated until all tenpoints 502 are registered to corresponding point locations on the cartilaginous condyle surface of the actual patient'sfemur 11 . While the process is described as registering various points on the cartilage surface that correspond to specific points displayed on the bone model, thesystem 100 may alternatively display only the target area without delineating the various points for capture.

作为捕获过程的结果,由于患者股骨模型已经配准到实际患者股骨11,现在将实际患者股骨的软骨髁表面配准到患者股骨模型226。作为通过外科医生或外科手术团队的成员用单独的分立动作单独将每个点502输入到系统100中的替代,捕获过程可以通过单个输入启动(例如,屏幕上的按钮点击,脚踏板输入,导航探针55上的按钮按下),然后外科医生可“涂抹”区域500,501,同时系统自动输入导航探针55的远端504在骨表面上的位置。因此,系统可以在短时间内仅用外科医生或外科手术团队提供的单个输入信号收集十个点。As a result of the capture process, since the patient femur model has been registered to the actualpatient femur 11 , the cartilaginous condyle surface of the actual patient femur is now registered to thepatient femur model 226 . Instead of individually entering eachpoint 502 into thesystem 100 with separate discrete actions by the surgeon or member of the surgical team, the capture process can be initiated by a single input (eg, button click on screen, foot pedal input, button press on the navigation probe 55), the surgeon can then "paint" theareas 500, 501 while the system automatically enters the position of thedistal end 504 of thenavigation probe 55 on the bone surface. Thus, the system can collect ten points in a short period of time with only a single input signal provided by the surgeon or surgical team.

返回到图27A,其中软骨髁表面相对于患者骨骼模型226配准,并且软骨髁表面的位置由虚线332A表示,系统100向远端移动植入物髁表面332以在位置上与软骨髁表面线332A重合,从而将术前规划的切除线334拉到术中调整的切除线334A。因此,经由所描述的配准过程,通过将实际患者股骨11的软骨髁表面配准到患者股骨模型226,在术中调整术前规划的切除线。Returning to Figure 27A, wherein the cartilage condyle surface is registered relative to thepatient bone model 226, and the position of the cartilage condyle surface is represented by the dashedline 332A, thesystem 100 distally moves theimplant condyle surface 332 to be in position with the cartilagecondyle surface line 332A overlap, thereby pulling the preoperativeplanned resection line 334 to the intraoperatively adjustedresection line 334A. Thus, the preoperatively planned resection line is adjusted intraoperatively by registering the cartilaginous condyle surface of the actual patient'sfemur 11 to the patient'sfemur model 226 via the described registration process.

一旦软骨髁表面被配准,就可以通过向远端移动植入物髁表面一定量来调整或确定术前规划的切除,该量等于在特定方向上三维仅骨模型的关节表面与映射的软骨表面之间的差。Once the cartilage condyle surface is registered, the preoperatively planned resection can be adjusted or determined by moving the implant condyle surface distally by an amount equal to the articular surface of the 3D bone-only model in a specific orientation with the mapped cartilage difference between surfaces.

虽然软骨髁表面332A的配准线在图27A中描绘为线,但在一些实施例中,软骨偏移信息可以简单地为从股骨模型226的髁表面偏移达配准的软骨区域500的配准厚度的点或其他参考的形式。在某些实施例中,取决于感兴趣的特定骨区域,系统100可以仅描绘最低/最远端/最后侧/最近端的单个点。在某些实施例中,所有点502的全部或一部分可用于内插表面,并且系统100可将植入物髁表面332移动到内插的表面。Although the registration line of thecartilage condyle surface 332A is depicted as a line in Figure 27A, in some embodiments the cartilage offset information may simply be the registration of thecartilage region 500 offset from the condyle surface of thefemoral model 226 to the registration Quasi-thickness points or other forms of reference. In some embodiments, thesystem 100 may only delineate a single lowest/most distal/most posterior/most proximal single point, depending on the particular bone region of interest. In certain embodiments, all or a portion of allpoints 502 may be used for the interpolated surface, and thesystem 100 may move theimplant condyle surface 332 to the interpolated surface.

一旦基于软骨厚度调整切除深度,外科医生就可以接受改变或修改植入规划。Once the depth of resection is adjusted based on cartilage thickness, the surgeon can accept changes or modifications to the implantation plan.

虽然前面的软骨配准讨论是在股骨术中软骨配准和切除调整的背景下进行的,但前面的讨论同样适用于胫骨术中软骨配准和切除调整,如从图27A、28A和29A至图27B、28B和29B的比较可以理解的。While the preceding discussion of cartilage registration is in the context of intraoperative cartilage registration and resection adjustment in the femur, the preceding discussion applies equally to the intraoperative cartilage registration and resection adjustment in the tibia, as shown in Figures 27A, 28A, and 29A to A comparison of Figures 27B, 28B and 29B is understandable.

由于通过上述软骨配准过程调整了术前规划的切除以计及软骨厚度,植入的植入物可以使其各自的髁表面定位成代替被切除的软骨髁表面。在其他实施例中,植入的植入物可以仅使一个髁表面(例如,内侧或外侧)定位成代替被切除的软骨髁表面。在其他实施例中,植入的植入物可以不使任何髁表面(例如,内侧或外侧)定位成代替被切除的软骨髁表面。Since the preoperatively planned resection is adjusted to account for cartilage thickness through the cartilage registration process described above, implanted implants can have their respective condyle surfaces positioned to replace the resected cartilage condyle surfaces. In other embodiments, the implanted implant may have only one condyle surface (eg, medial or lateral) positioned in place of the resected cartilaginous condyle surface. In other embodiments, the implanted implant may not have any condylar surfaces (eg, medial or lateral) positioned in place of the resected cartilaginous condylar surfaces.

术中软骨配准过程可以被描述为生成用于规划膝关节成形术的切除数据的过程或方法。由于患者骨骼模型226,224可以仅描绘骨骼,在某些实施例中,并且实际患者骨骼可能至少部分地被软骨覆盖,所以软骨的术中配准可以提供对切除深度的调整量的洞察,切除深度可以在有或没有对于软骨的额外或替代考量的情况下术前确定。The intraoperative cartilage registration process can be described as a process or method of generating resection data for planning knee arthroplasty. Since thepatient bone models 226, 224 may only depict bone, in some embodiments, and the actual patient bone may be at least partially covered by cartilage, intraoperative registration of cartilage may provide insight into the amount of adjustment to the depth of resection, which may be Determined preoperatively with or without additional or replacement considerations for cartilage.

通常可以如下描述该过程或方法。系统的计算机可以接收从患者骨骼(例如,股骨,胫骨)的医学图像(例如,CT,MRI,X射线)生成的三维患者骨骼模型226,224(例如,股骨模型,胫骨模型)。三维患者骨骼模型226,224可包括对应于实际患者骨骼的形状和患者特异性轮廓的骨骼模型表面。三维患者骨骼模型226,224可以通过参考图1描述的跟踪和导航系统与实际患者骨骼的位置和取向相关。三维患者骨骼模型226,224可以位于三维坐标系或空间中。The process or method can generally be described as follows. The computer of the system may receive three-dimensionalpatient bone models 226, 224 (eg, femur, tibia) generated from medical images (eg, CT, MRI, X-ray) of the patient's bones (eg, femur, tibia). The three-dimensionalpatient bone models 226, 224 may include bone model surfaces that correspond to the shape and patient-specific contours of the actual patient bone. The three-dimensionalpatient bone models 226, 224 can be correlated to the position and orientation of the actual patient bone by the tracking and navigation system described with reference to FIG. 1 . The three-dimensionalpatient bone models 226, 224 may be located in a three-dimensional coordinate system or space.

该方法或过程还可以包括识别在三维患者骨骼模型226,224的骨模型表面上的目标区域500,501内的第一多个点502的位置,用于由外科医生借助导航探针55的远端504进行术中配准。该方法或过程还可以包括基于在与三维骨骼模型226,224的骨模型表面上的第一多个点502对应的位置中实际的物理患者骨骼上软骨的术中配准,接收第二多个点的位置数据。The method or process may also include identifying the locations of the first plurality ofpoints 502 within thetarget regions 500 , 501 on the surface of the bone model of the three-dimensionalpatient bone models 226 , 224 for operation by the surgeon with thedistal end 504 of thenavigation probe 55 Medium registration. The method or process may also include receiving an intraoperative registration of the cartilage on the actual physical patient's bone in locations corresponding to the first plurality ofpoints 502 on the surface of the bone model of the three-dimensional bone model 226, 224, receiving the second plurality of points. location data.

该方法或过程还可以包括基于骨模型表面上第二多个点的位置数据与第一多个点的位置之间的比较来确定切除深度。该方法或过程还可以包括使用切除深度生成切除数据。切除数据可以用作用于控制图1的手术机器人的触觉边界。附加地或替代地,切除数据可以在关节成形手术期间由手术机器人利用。附加地或替代地,在关节成形手术期间,导航系统可以利用切除数据。导航系统可以在执行关节成形手术期间与自主机器人或外科医生辅助设备协力操作。自主机器人,例如具有至少两个自由度(例如,旋转锉刀和平移能力)的切割设备可以执行关节成形手术,其中切除数据被用作用于执行切除的工具路径。外科医生辅助设备,例如本文所述的触觉设备60或具有至少一个自由度的切割工具(例如,由外科医生移动或平移的旋转锉刀),可以执行关节成形手术,其中切除数据是用于控制或限制切割工具的某些移动(例如,切除深度)虚拟或触觉边界。The method or process may also include determining the depth of resection based on a comparison between the position data of the second plurality of points on the surface of the bone model and the positions of the first plurality of points. The method or process may also include generating ablation data using the ablation depth. The resection data can be used as a haptic boundary for controlling the surgical robot of FIG. 1 . Additionally or alternatively, the resection data may be utilized by the surgical robot during an arthroplasty procedure. Additionally or alternatively, the navigation system may utilize resection data during an arthroplasty procedure. Navigation systems can operate in conjunction with autonomous robots or surgeon aids during arthroplasty procedures. An autonomous robot, such as a cutting device with at least two degrees of freedom (eg, rasping and translation capabilities) can perform an arthroplasty procedure, where the resection data is used as the tool path for performing the resection. A surgeon-assisted device, such as thehaptic device 60 described herein, or a cutting tool with at least one degree of freedom (eg, a burr that is moved or translated by the surgeon), can perform arthroplasty procedures, where resection data is used to control or Virtual or tactile boundaries that limit certain movements of the cutting tool (eg, depth of cut).

本文描述的方法的示例可以涉及生成切除数据,用于规划至少部分地在软骨中覆盖的患者骨上的关节成形手术。该方法可以包括计算机接收包括骨骼模型表面的三维患者骨骼模型,该三维患者骨骼模型经由导航系统与患者骨骼的位置和取向相关。三维患者骨骼模型处于三维坐标系中。计算机可以识别三维患者骨骼模型的骨模型表面上的目标区域以进行术中配准。计算机还可以基于在与三维骨骼模型的骨模型表面上的目标区域内的点对应的位置中患者骨骼上的软骨的术中配准来接收第一多个点的位置数据。计算机还可以至少部分地基于第一多个点的位置数据来确定切除深度。计算机还可以使用切除深度生成切除数据,切除数据被配置为在关节成形手术期间由导航系统使用。Examples of methods described herein may involve generating resection data for planning an arthroplasty procedure on a patient's bone at least partially covered in cartilage. The method may include the computer receiving a three-dimensional patient bone model including a surface of the bone model, the three-dimensional patient bone model being related to the position and orientation of the patient's bone via a navigation system. The 3D patient bone model is in a 3D coordinate system. The computer can identify target areas on the surface of the bone model of the three-dimensional patient bone model for intraoperative registration. The computer may also receive location data for the first plurality of points based on intraoperative registration of cartilage on the patient's bone in locations corresponding to points within the target area on the surface of the bone model of the three-dimensional bone model. The computer may also determine the depth of resection based at least in part on the position data of the first plurality of points. The computer may also use the depth of resection to generate resection data that is configured for use by the navigation system during the arthroplasty procedure.

参考图30,提供了具有可以实现本文所讨论的各种系统和方法的一个或多个计算单元的示例计算系统1300的详细描述。计算系统1300可以适用于在关节成形手术的术前规划中使用的任何计算机或系统,以及其他计算或网络设备。应当理解,这些设备的具体实现方式可以是不同的可能的特定计算架构,所有这些并非都在本文中具体讨论,但是本领域普通技术人员将理解这些架构。30, a detailed description of anexample computing system 1300 having one or more computing units that may implement the various systems and methods discussed herein is provided.Computing system 1300 can be adapted to any computer or system used in preoperative planning for arthroplasty surgery, as well as other computing or network devices. It should be understood that specific implementations of these devices may be different possible specific computing architectures, all of which are not specifically discussed herein, but which would be understood by those of ordinary skill in the art.

计算机系统1300可以是能够执行计算机程序产品以执行计算机过程的计算系统。数据和程序文件可以输入到计算机系统1300,计算机系统1300读取文件并在其中执行程序。计算机系统1300的一些元件在图30中示出,包括一个或多个硬件处理器1302,一个或多个数据存储设备1304,一个或多个存储器设备1308,和/或一个或多个端口1308-1310。另外,本领域技术人员将认识到的其他元件可以包括在计算系统1300中,但是未在图30中明确地描绘或在此进一步讨论。计算机系统1300的各种元件可以通过一个或多个通信总线、点对点通信路径或图30中未明确描述的其他通信手段彼此通信。Computer system 1300 may be a computing system capable of executing a computer program product to perform a computer process. Data and program files may be input tocomputer system 1300, which reads the files and executes programs therein. Some elements ofcomputer system 1300 are shown in FIG. 30, including one or more hardware processors 1302, one or moredata storage devices 1304, one or more memory devices 1308, and/or one or more ports 1308- 1310. Additionally, other elements that those skilled in the art will recognize may be included incomputing system 1300, but are not explicitly depicted in FIG. 30 or discussed further herein. The various elements ofcomputer system 1300 may communicate with each other through one or more communication buses, point-to-point communication paths, or other means of communication not expressly depicted in FIG. 30 .

处理器1302可以包括例如中央处理单元(CPU)、微处理器、微控制器、数字信号处理器(DSP)和/或一个或多个内部高速缓存层级。可以存在一个或多个处理器1302,使得处理器1302包括单个中央处理单元,或者能够执行指令并且彼此并行执行操作的多个处理单元,通常称为并行处理环境。The processor 1302 may include, for example, a central processing unit (CPU), a microprocessor, a microcontroller, a digital signal processor (DSP), and/or one or more internal cache levels. There may be one or more processors 1302 such that the processor 1302 includes a single central processing unit, or multiple processing units capable of executing instructions and performing operations in parallel with each other, commonly referred to as a parallel processing environment.

计算机系统1300可以是常规计算机、分布式计算机或任何其他类型的计算机,例如经由云计算架构可利用的一个或多个外部计算机。当前描述的技术可选地以存储在(一个或多个)数据存储设备1304上、存储在(一个或多个)存储器设备1306上和/或通过端口1308-1310中的一个或多个传送的软件来实现,从而将图30中的1300的计算机系统转换成用于实现本文所述操作的专用机器。计算机系统1300的示例包括个人计算机、终端、工作站、移动电话、平板计算机、膝上型计算机、个人计算机、多媒体控制台、游戏控制台、机顶盒等。Computer system 1300 may be a conventional computer, a distributed computer, or any other type of computer, such as one or more external computers available via a cloud computing architecture. The presently described techniques are optionally stored on data storage device(s) 1304, stored on memory device(s) 1306, and/or communicated through one or more of ports 1308-1310 software, thereby converting the computer system of 1300 in FIG. 30 into a special purpose machine for implementing the operations described herein. Examples ofcomputer system 1300 include personal computers, terminals, workstations, mobile phones, tablet computers, laptop computers, personal computers, multimedia consoles, game consoles, set-top boxes, and the like.

一个或多个数据存储设备1304可以包括能够存储在计算系统1300内生成或利用的数据(例如用于执行计算机过程的计算机可执行指令)的任何非易失性数据存储设备,计算机可执行指令可以包括应用程序和管理计算系统1300的各种部件的操作系统(OS)的指令。数据存储设备1304可以包括但不限于磁盘驱动器、光盘驱动器、固态驱动器(SSD)、闪存驱动器等。数据存储设备1304可以包括可移动数据存储介质、不可移动数据存储介质和/或借助这样的计算机程序产品经由有线或无线网络架构而可利用的外部存储设备,这样的计算机程序产品包括一个或多个数据库管理产品、web服务器产品、应用服务器产品和/或其他附加软件部件。可移动数据存储介质的示例包括紧凑式盘只读存储器(CD-ROM)、数字通用盘只读存储器(DVD-ROM)、磁光盘、闪存驱动器等。不可移动数据存储介质的示例包括内部磁硬盘、SSD等。一个或多个存储器设备1306可以包括易失性存储器(例如,动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)等)和/或非易失性存储器(例如,只读存储器(ROM)、闪存等)。One or moredata storage devices 1304 may include any non-volatile data storage device capable of storing data generated or utilized withincomputing system 1300, such as computer-executable instructions for performing computer processes, which may Includes application programs and instructions for an operating system (OS) that manages the various components ofcomputing system 1300 .Data storage devices 1304 may include, but are not limited to, magnetic disk drives, optical disk drives, solid state drives (SSDs), flash drives, and the like.Data storage devices 1304 may include removable data storage media, non-removable data storage media, and/or external storage devices available via wired or wireless network architecture by means of such computer program products including one or more Database management products, web server products, application server products and/or other additional software components. Examples of removable data storage media include compact disk read only memory (CD-ROM), digital versatile disk read only memory (DVD-ROM), magneto-optical disks, flash drives, and the like. Examples of non-removable data storage media include internal magnetic hard disks, SSDs, and the like. One ormore memory devices 1306 may include volatile memory (eg, dynamic random access memory (DRAM), static random access memory (SRAM), etc.) and/or nonvolatile memory (eg, read only memory ( ROM), flash memory, etc.).

包含实现根据当前描述的技术系统和方法的机制的计算机程序产品可以驻留在数据存储设备1304和/或存储器设备1306中,其可以被称为机器可读介质。应当理解,机器可读介质可以包括任何有形的非暂时性介质,其能够存储或编码指令以执行本公开的任何一个或多个操作以供机器执行或者能够存储或者编码由这些指令使用或与这些指令相关联的数据结构和/或模块。机器可读介质可以包括存储一个或多个可执行指令或数据结构的单个介质或多个介质(例如,集中式或分布式数据库和/或相关联的高速缓存和服务器)。A computer program product embodying the mechanisms implementing the technical systems and methods according to the present description may reside indata storage device 1304 and/ormemory device 1306, which may be referred to as a machine-readable medium. It should be understood that a machine-readable medium may include any tangible, non-transitory medium capable of storing or encoding instructions to perform any one or more operations of the present disclosure for execution by a machine or capable of storing or encoding for use by or in conjunction with such instructions The data structure and/or module associated with the instruction. A machine-readable medium may include a single medium or multiple media storing one or more executable instructions or data structures (eg, a centralized or distributed database and/or associated caches and servers).

在一些实现方式中,计算机系统1300包括一个或多个端口,例如输入/输出(I/O)端口1308和通信端口1310,用于与其他计算、网络或交通工具设备通信。应当理解,端口1308-1310可以组合或分离,并且计算机系统1300中可以包括更多或更少的端口。In some implementations,computer system 1300 includes one or more ports, such as input/output (I/O) port 1308 and communication port 1310, for communicating with other computing, network, or vehicle devices. It should be understood that ports 1308-1310 may be combined or separated, and that more or fewer ports may be included incomputer system 1300.

I/O端口1308可以连接到I/O设备或其他设备,通过该I/O设备或其他设备向计算系统1300输入或输出信息。这样的I/O设备可以包括但不限于一个或多个输入设备、输出设备和/或其他设备。I/O ports 1308 may connect to I/O devices or other devices through which information is input or output tocomputing system 1300 . Such I/O devices may include, but are not limited to, one or more input devices, output devices, and/or other devices.

在一个实现方式中,输入设备将人类生成的信号(例如,人类语音、物理移动、物理触摸或压力和/或类似信号)转换为电信号,作为经由I/O端口1308输入到计算系统1300中的输入数据。类似地,输出设备可以将从计算系统1300经由I/O端口1308接收的电信号转换为可以被人类感知的信号作为输出,例如声音、光和/或触摸。输入设备可以是字母数字输入设备,包括字母数字和其他键,用于经由I/O端口1308向处理器1302传送信息和/或命令选择。输入设备可以是另一类型的用户输入设备,包括但不限于:方向和选择控制设备,例如鼠标、轨迹球、光标方向键、操纵杆和/或轮;一个或多个传感器,例如相机、麦克风、位置传感器、取向传感器、重力传感器、惯性传感器和/或加速度计;和/或触敏显示屏(“触摸屏”)。输出设备可以包括但不限于显示器、触摸屏、扬声器、触感和/或触觉输出设备和/或类似设备。在一些实现方式中,输入设备和输出设备可以是相同的设备,例如,在触摸屏的情况下。In one implementation, the input device converts human-generated signals (eg, human speech, physical movement, physical touch or pressure, and/or the like) into electrical signals for input intocomputing system 1300 via I/O port 1308 the input data. Similarly, output devices may convert electrical signals received fromcomputing system 1300 via I/O port 1308 to signals that can be perceived by humans as output, such as sound, light, and/or touch. The input device may be an alphanumeric input device, including alphanumeric and other keys, for communicating information and/or command selections to processor 1302 via I/O port 1308. The input device may be another type of user input device including, but not limited to: directional and selection control devices such as mouse, trackball, cursor direction keys, joystick and/or wheel; one or more sensors such as camera, microphone , position sensors, orientation sensors, gravity sensors, inertial sensors, and/or accelerometers; and/or a touch-sensitive display screen ("touch screen"). Output devices may include, but are not limited to, displays, touch screens, speakers, haptic and/or haptic output devices, and/or the like. In some implementations, the input device and the output device may be the same device, eg, in the case of a touch screen.

在一个实现方式中,通信端口1310连接到网络,通过该网络,计算机系统1300可以接收在执行本文所述的方法和系统时,以及在发送信息和由此确定的网络配置改变时有用的网络数据。换句话说,通信端口1310将计算机系统1300连接到一个或多个通信接口设备,这些通信接口设备被配置为通过一个或多个有线或无线通信网络或连接在计算系统1300和其他设备之间发送和/或接收信息。这样的网络或连接的示例包括但不限于通用串行总线(USB)、以太网、Wi-Fi、

Figure BDA0001957681090000641
近场通信(NFC)、长期演进(LTE)等。可以经由通信端口1310利用一个或多个这样的通信接口设备,以直接通过点对点通信路径、通过广域网(WAN)(例如,因特网)、通过局域网(LAN),通过蜂窝(例如,第三代(3G)或第四代(4G))网络或通过其他通信手段来与一个或多个其他机器通信。此外,通信端口1310可以与天线或其他链路通信以进行电磁信号传输和/或接收。In one implementation, communication port 1310 is connected to a network through whichcomputer system 1300 can receive network data useful in performing the methods and systems described herein, as well as in sending information and determining network configuration changes therefrom . In other words, communication port 1310 connectscomputer system 1300 to one or more communication interface devices that are configured to transmit data betweencomputing system 1300 and other devices over one or more wired or wireless communication networks or connections and/or receive information. Examples of such networks or connections include, but are not limited to, Universal Serial Bus (USB), Ethernet, Wi-Fi,
Figure BDA0001957681090000641
Near Field Communication (NFC), Long Term Evolution (LTE), etc. One or more of such communication interface devices may be utilized via communication port 1310 to directly over a point-to-point communication path, over a wide area network (WAN) (eg, the Internet), over a local area network (LAN), over cellular (eg, third generation (3G) ) or fourth generation (4G)) network or through other means of communication to communicate with one or more other machines. Additionally, the communication port 1310 may communicate with an antenna or other link for electromagnetic signal transmission and/or reception.

在示例实现方式中,患者数据、骨骼模型(例如,一般、患者特异性),变换软件和其他软件以及其他模块和服务可以由存储在数据存储设备1304和/或存储器设备1306上的指令来实现并且由处理器1302执行。计算机系统1300可以与手术系统100集成或以其他方式形成手术系统100的一部分。In an example implementation, patient data, skeletal models (eg, general, patient-specific), transformation software and other software, and other modules and services may be implemented by instructions stored ondata storage device 1304 and/ormemory device 1306 and executed by the processor 1302 .Computer system 1300 may be integrated with or otherwise form part ofsurgical system 100 .

图30中阐述的系统仅是可以根据本公开的方面使用或配置的计算机系统的一个可能示例。应当理解,可以使用计算系统上存储用于实现当前公开的技术的计算机可执行指令的其他非暂时性有形计算机可读存储介质。The system set forth in Figure 30 is but one possible example of a computer system that may be used or configured in accordance with aspects of the present disclosure. It should be understood that other non-transitory tangible computer-readable storage media on a computing system storing computer-executable instructions for implementing the presently disclosed techniques may be used.

在本公开中,本文公开的方法,尤其例如图8、10A-10C、18-19和26E中所示的方法,可以实现为设备可读的指令集或软件。此外,应理解,所公开的方法中的步骤的特定顺序或层次是示例方法的实例。基于设计偏好,应理解,方法中的步骤的特定顺序或层次可以重新布置,同时仍在所公开的主题内。所附方法权利要求以样本顺序呈现各个步骤的元素,并且不一定意味着限于所呈现的特定顺序或层次。In the present disclosure, the methods disclosed herein, particularly such as those shown in Figures 8, 10A-10C, 18-19, and 26E, may be implemented as a device-readable set of instructions or software. Furthermore, it is understood that the specific order or hierarchy of steps in the disclosed methods is an example of a sample approach. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the method may be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.

包括本文描述的任何方法的所描述的公开可以作为计算机程序产品或软件提供,其可以包括其上存储有指令的非暂时性机器可读介质,其可以用于对计算机系统(或其他电子设备)进行编程,以执行根据本公开的过程。机器可读介质包括用于以机器(例如,计算机)可读的形式(例如,软件、处理应用程序)存储信息的任何机构。机器可读介质可以包括但不限于磁存储介质、光存储介质;磁光存储介质、只读存储器(ROM);随机存取存储器(RAM);可擦除可编程存储器(例如,EPROM和EEPROM);闪存;或适用于存储电子指令的其他类型的介质。The described disclosure, including any of the methods described herein, may be provided as a computer program product or software, which may include a non-transitory machine-readable medium having instructions stored thereon, which may be used to program a computer system (or other electronic device) Programming is performed to perform processes in accordance with the present disclosure. A machine-readable medium includes any mechanism for storing information in a form (eg, software, processing application) readable by a machine (eg, a computer). Machine-readable media may include, but are not limited to, magnetic storage media, optical storage media; magneto-optical storage media, read only memory (ROM); random access memory (RAM); erasable programmable memory (eg, EPROM and EEPROM) ; flash memory; or other types of media suitable for storing electronic instructions.

虽然已经参考各种实现方式描述了本公开,但是应当理解,这些实现方式是说明性的,并且本公开的范围不限于它们。可以进行许多变化、修改、添加和改进。更一般地,已经在特定实现方式的背景中描述了根据本公开的实施例。在本公开的各种实施例中,功能可以以不同的方式分离或组合,或者以不同的术语描述。这些和其他变化、修改、添加和改进可以落入如以下权利要求中限定的本公开的范围内。While the present disclosure has been described with reference to various implementations, it is to be understood that these implementations are illustrative and the scope of the present disclosure is not limited to them. Many changes, modifications, additions and improvements are possible. More generally, embodiments in accordance with the present disclosure have been described in the context of specific implementations. In various embodiments of the present disclosure, functionality may be separated or combined in different ways, or described in different terms. These and other variations, modifications, additions and improvements may fall within the scope of the present disclosure as defined in the following claims.

通常,虽然已经参考特定实施例描述了本文描述的实施例,但是可以在不脱离本公开的精神和范围的情况下对其进行修改。还要注意,这里使用的术语“包括”旨在表示包含在内,即“包括但不限于”。In general, although the embodiments described herein have been described with reference to specific embodiments, modifications may be made without departing from the spirit and scope of the present disclosure. Note also that the term "including" as used herein is intended to mean inclusive, ie, "including but not limited to".

如各种示例性实施例中所示的系统和方法的构造和布置仅是说明性的。尽管在本公开中仅详细描述了几个实施例,但是可以进行许多修改(例如,各种元件的大小、尺寸、结构、形状和比例、参数的值、安装布置、材料的使用、颜色、方向等的变化)。例如,元件的位置可以颠倒或以其他方式变化,并且可以更改或改变分立的元件的性质或数量或位置。因此,所有这些修改旨在包括在本公开的范围内。根据替代实施例,可以改变或重新排序任何过程或方法步骤的顺序或次序。在不脱离本公开的范围的情况下,可以在示例性实施例的设计、操作条件和布置方面进行其他替换、修改、改变和省略。The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are merely illustrative. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (eg, size, dimension, configuration, shape and proportions of various elements, values of parameters, mounting arrangements, use of materials, colors, orientations etc. changes). For example, the positions of elements may be reversed or otherwise varied, and the nature or number or positions of discrete elements may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of this disclosure. The order or sequence of any process or method steps may be varied or re-ordered according to alternative embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.

Claims (45)

Translated fromChinese
1.一种生成切除数据以用于规划至少部分地在软骨中覆盖的患者骨骼上的关节成形手术的系统,所述系统包括:1. A system for generating resection data for planning an arthroplasty procedure on a patient's bone at least partially covered in cartilage, the system comprising:接收包括骨骼模型表面的三维患者骨骼模型的模块,所述三维患者骨骼模型通过导航系统与患者骨骼的位置和取向相关,所述三维患者骨骼模型处于三维坐标系中;a module that receives a three-dimensional patient bone model including a surface of the bone model, the three-dimensional patient bone model being related to the position and orientation of the patient's bone by a navigation system, the three-dimensional patient bone model being in a three-dimensional coordinate system;识别所述三维患者骨骼模型的骨骼模型表面上的目标区域以进行术中配准的模块;A module for identifying target regions on the skeletal model surface of the three-dimensional patient skeletal model for intraoperative registration;基于在与所述三维骨骼模型的所述骨骼模型表面上的所述目标区域内的点对应的位置中患者骨骼上的软骨的术中对准接收第一多个点的位置数据的模块;A module that receives location data for a first plurality of points based on intraoperative alignment of cartilage on a patient's bone in locations corresponding to points within the target area on the bone model surface of the three-dimensional bone model;至少部分地基于第一多个点的位置数据确定切除深度的模块;和a module for determining a depth of resection based at least in part on the position data of the first plurality of points; and使用所述切除深度生成切除数据的模块,所述切除数据被配置为在关节成形手术期间由导航系统使用。A module for generating resection data using the resection depth, the resection data being configured for use by a navigation system during an arthroplasty procedure.2.根据权利要求1所述的系统,还包括将所述第一多个点的位置数据映射到所述三维坐标系中的模块。2. The system of claim 1, further comprising a module for mapping the position data of the first plurality of points into the three-dimensional coordinate system.3.根据权利要求1所述的系统,其中,确定所述切除深度包括确定所述第一多个点与所述骨骼模型表面上的所述目标区域之间的深度差。3. The system of claim 1, wherein determining the resection depth comprises determining a depth difference between the first plurality of points and the target area on the bone model surface.4.根据权利要求3所述的系统,还包括通过将所述深度差加到仅骨的切除深度来确定所述切除深度的模块。4. The system of claim 3, further comprising a module that determines the resection depth by adding the depth difference to a bone-only resection depth.5.根据权利要求4所述的系统,其中,通过增加所述深度差向远端调整仅骨的切除深度。5. The system of claim 4, wherein the bone-only resection depth is adjusted distally by increasing the depth difference.6.根据权利要求1所述的系统,其中,确定所述切除深度包括基于所述第一多个点改变仅骨的切除深度。6. The system of claim 1, wherein determining the resection depth comprises changing a bone-only resection depth based on the first plurality of points.7.根据权利要求6所述的系统,其中,基于所述第一多个点向远端调整所述仅骨的切除深度。7. The system of claim 6, wherein the bone-only resection depth is adjusted distally based on the first plurality of points.8.根据权利要求1所述的系统,其中,所述患者骨骼包括股骨,并且所述三维患者骨骼模型包括三维患者股骨模型。8. The system of claim 1, wherein the patient bone comprises a femur and the three-dimensional patient bone model comprises a three-dimensional patient femur model.9.根据权利要求8所述的系统,其中,所述目标区域包括所述三维患者股骨模型的内侧或外侧髁中的至少一个的关节区域。9. The system of claim 8, wherein the target area comprises an articulation area of at least one of a medial or lateral condyle of the three-dimensional patient femur model.10.根据权利要求1所述的系统,其中,所述患者骨骼包括胫骨,并且所述三维患者骨骼模型包括三维患者胫骨模型。10. The system of claim 1, wherein the patient bone comprises a tibia and the three-dimensional patient bone model comprises a three-dimensional patient tibia model.11.根据权利要求10所述的系统,其中,所述切除深度包括胫骨的近端切除深度,其中,基于所述第一多个点的位置数据向近端调节所述近端切除深度。11. The system of claim 10, wherein the resection depth comprises a proximal resection depth of the tibia, wherein the proximal resection depth is adjusted proximally based on the position data of the first plurality of points.12.根据权利要求10所述的系统,其中,所述目标区域包括所述三维患者胫骨模型的内侧或外侧胫骨平台中的至少一个的关节区域。12. The system of claim 10, wherein the target region comprises an articulation region of at least one of a medial or lateral tibial plateau of the three-dimensional patient tibial model.13.根据权利要求1所述的系统,其中,所述三维患者骨骼模型是仅骨骼模型。13. The system of claim 1, wherein the three-dimensional patient bone model is a bone-only model.14.根据权利要求1所述的系统,其中,从患者骨骼的医学图像生成所述三维患者骨骼模型。14. The system of claim 1, wherein the three-dimensional patient skeleton model is generated from a medical image of the patient's skeleton.15.根据权利要求1所述的系统,其中,所述导航系统在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。15. The system of claim 1, wherein the navigation system operates in conjunction with an autonomous robot or a surgeon assisting device when performing an arthroplasty procedure.16.一种生成切除数据以用于规划膝关节上的关节成形手术的系统,所述膝关节包括患者的股骨和胫骨,所述系统包括:16. A system for generating resection data for planning an arthroplasty procedure on a knee joint comprising a patient's femur and tibia, the system comprising:接收在共同的三维坐标系中以第一预先规划的取向相对于彼此定向的三维股骨模型和三维股骨植入物模型的模块,所述三维股骨模型对应于患者的股骨,所述三维股骨植入物模型包括内侧髁表面和外侧髁表面;a module that receives a three-dimensional femoral model and a three-dimensional femoral implant model oriented relative to each other in a common three-dimensional coordinate system in a first pre-planned orientation, the three-dimensional femoral model corresponding to the patient's femur, the three-dimensional femur implanted The object model includes the medial condyle surface and the lateral condyle surface;接收在共同的三维坐标系中以第二预先规划的取向相对于彼此定向的三维胫骨模型和三维胫骨植入物模型的模块,所述三维胫骨模型对应于患者的胫骨,所述三维胫骨植入物模型包括内侧关节表面和外侧关节表面,所述三维股骨模型和所述三维胫骨模型根据患者股骨和胫骨的姿势经由导航系统相对于彼此定向;A module receiving a three-dimensional tibial model and a three-dimensional tibial implant model oriented relative to each other in a common three-dimensional coordinate system in a second pre-planned orientation, the three-dimensional tibial model corresponding to the patient's tibia, the three-dimensional tibial implant an object model comprising a medial articular surface and a lateral articular surface, the three-dimensional femoral model and the three-dimensional tibial model oriented relative to each other via a navigation system according to the posture of the patient's femur and tibia;接收对应于第一姿势中股骨和胫骨的第一位置和取向的第一位置和取向数据的模块;a module for receiving first position and orientation data corresponding to a first position and orientation of the femur and tibia in a first posture;计算第一姿势中所述三维股骨植入物模型的内侧髁表面和所述三维胫骨植入物模型上或与所述三维胫骨植入物模型相关联的第一点之间的第一有符号距离的模块;calculating a first signed between the medial condyle surface of the three-dimensional femoral implant model in a first pose and a first point on or associated with the three-dimensional tibial implant model distance module;计算第一姿势中所述三维股骨植入物模型的外侧髁表面和所述三维胫骨植入物模型上或与所述三维胫骨植入物模型相关联的第二点之间的第二有符号距离的模块;calculating a second signed between the lateral condyle surface of the 3D femoral implant model in the first pose and a second point on or associated with the 3D tibial implant model distance module;基于所述第一和第二有符号距离确定或调整切除深度的模块;和A module for determining or adjusting a depth of resection based on the first and second signed distances; and使用所述切除深度生成切除数据的模块,所述切除数据被配置为在关节成形手术期间由导航系统使用。A module for generating resection data using the resection depth, the resection data being configured for use by a navigation system during an arthroplasty procedure.17.根据权利要求16所述的系统,其中,所述三维股骨模型和所述三维胫骨模型是从患者的膝关节的医学图像生成的。17. The system of claim 16, wherein the three-dimensional femoral model and the three-dimensional tibia model are generated from medical images of a patient's knee joint.18.根据权利要求16所述的系统,其中,所述第一姿势是膝关节伸展。18. The system of claim 16, wherein the first posture is knee extension.19.根据权利要求16所述的系统,其中,所述第一点位于所述三维胫骨植入物模型的内侧关节表面上,并且所述第二点位于所述三维胫骨植入物模型的外侧关节表面上。19. The system of claim 16, wherein the first point is located on a medial articular surface of the three-dimensional tibial implant model and the second point is located laterally of the three-dimensional tibial implant model on the articular surface.20.根据权利要求19所述的系统,其中,通过全局搜索最近距离算法计算所述第一有符号距离和第二有符号距离。20. The system of claim 19, wherein the first signed distance and the second signed distance are calculated by a global search closest distance algorithm.21.根据权利要求20所述的系统,其中,所述全局搜索最近距离算法识别与所述内侧髁表面和外侧髁表面以及所述内侧关节表面和外侧关节表面中的每一个相关联的参考顶点。21. The system of claim 20, wherein the global search closest distance algorithm identifies a reference vertex associated with each of the medial and lateral condyle surfaces and the medial and lateral articular surfaces .22.根据权利要求19所述的系统,还包括:22. The system of claim 19, further comprising:接收对应于在与所述第一姿势不同的第二姿势中的股骨和胫骨的第二位置和取向的第二位置和取向数据的模块;a module for receiving second position and orientation data corresponding to a second position and orientation of the femur and tibia in a second posture different from the first posture;计算所述第二姿势中所述三维股骨植入物模型的内侧髁表面与所述三维胫骨植入物模型的内侧关节表面之间的第三有符号距离的模块;和means for calculating a third signed distance between the medial condyle surface of the three-dimensional femoral implant model and the medial articular surface of the three-dimensional tibial implant model in the second pose; and计算所述第二姿势中所述三维股骨植入物模型的外侧髁表面与所述三维胫骨植入物模型的外侧关节表面之间的第四有符号距离的模块。A module for calculating a fourth signed distance between the lateral condyle surface of the three-dimensional femoral implant model and the lateral articular surface of the three-dimensional tibial implant model in the second pose.23.根据权利要求22所述的系统,其中,所述第二姿势是屈曲。23. The system of claim 22, wherein the second posture is flexion.24.根据权利要求22所述的系统,其中,通过全局搜索最近距离算法计算所述第一有符号距离、第二有符号距离、第三有符号距离和第四有符号距离。24. The system of claim 22, wherein the first signed distance, the second signed distance, the third signed distance and the fourth signed distance are calculated by a global search closest distance algorithm.25.根据权利要求22所述的系统,其中,通过全局搜索最近距离算法计算所述第一有符号距离和第二有符号距离,并且通过增量搜索最近距离算法计算所述第三有符号距离和第四有符号距离。25. The system of claim 22, wherein the first signed distance and the second signed distance are calculated by a global search closest distance algorithm, and the third signed distance is calculated by an incremental search closest distance algorithm and the fourth signed distance.26.根据权利要求25所述的系统,其中,所述全局搜索最近距离算法识别与所述内侧髁表面和外侧髁表面以及所述内侧关节表面和外侧关节表面中的每一个相关联的参考顶点,并且所述增量搜索最近距离算法被用于与所述内侧髁表面和外侧髁表面的参考顶点相邻的特定顶点,以确定任何特定顶点是否分别比参考顶点更靠近对应的内侧关节表面或外侧关节表面。26. The system of claim 25, wherein the global search closest distance algorithm identifies the reference vertex associated with each of the medial condyle surface and lateral condyle surface and the medial articular surface and the lateral articular surface , and the incremental search closest distance algorithm is used for a specific vertex adjacent to the reference vertex of the medial and lateral condyle surfaces to determine whether any specific vertex is closer to the corresponding medial articular surface than the reference vertex, respectively or Lateral articular surface.27.根据权利要求16所述的系统,其中,所述三维股骨植入物模型包括包含顶点的第一三角形表面网格,所述三维胫骨植入物模型包括包含面的第二三角形表面网格,其中,计算所述三维股骨植入物模型的顶点和所述三维胫骨植入物模型的面之间的所述第一有符号距离和第二有符号距离。27. The system of claim 16, wherein the three-dimensional femoral implant model includes a first triangular surface mesh including vertices and the three-dimensional tibial implant model includes a second triangular surface mesh including faces , wherein the first signed distance and the second signed distance between the vertex of the three-dimensional femoral implant model and the face of the three-dimensional tibial implant model are calculated.28.根据权利要求19所述的系统,其中,与要在关节成形手术中使用的物理胫骨植入物的内侧和关节表面相比,所述三维胫骨植入物模型的内侧关节表面和外侧关节表面被修改为较平坦或较少凹进以确定所述切除深度。28. The system of claim 19, wherein the medial articular surface and lateral joint of the three-dimensional tibial implant model are compared to the medial and articular surfaces of a physical tibial implant to be used in an arthroplasty procedure The surface is modified to be flatter or less concave to determine the depth of resection.29.根据权利要求16所述的系统,其中,所述第一点位于与所述三维胫骨植入物模型相关联的胫骨切除平面的内侧部分上,并且所述第二点位于与所述三维胫骨植入物模型相关联的胫骨切除平面的外侧部分上。29. The system of claim 16, wherein the first point is located on a medial portion of a tibial resection plane associated with the three-dimensional tibial implant model, and the second point is located on a medial portion of the tibial resection plane associated with the three-dimensional tibial implant model. The tibial implant model is associated with the lateral portion of the tibial resection plane.30.根据权利要求16所述的系统,其中,所述导航系统在执行关节成形手术时与自主机器人或外科医生辅助设备协力操作。30. The system of claim 16, wherein the navigation system operates in conjunction with an autonomous robot or a surgeon assisting device when performing an arthroplasty procedure.31.一种生成切除数据以用于规划在由患者的第一骨骼和第二骨骼形成的关节上的关节成形手术的系统,所述系统包括:31. A system for generating resection data for planning an arthroplasty procedure on a joint formed by a first bone and a second bone of a patient, the system comprising:接收在共同的三维坐标系中以第一预先规划的取向相对于彼此定向的第一三维骨骼模型和第一三维植入物模型的模块,所述第一三维骨骼模型对应于患者的所述第一骨骼,所述第一三维植入物模型包括第一植入物关节表面;A module receiving a first three-dimensional bone model and a first three-dimensional implant model oriented relative to each other in a common three-dimensional coordinate system in a first pre-planned orientation, the first three-dimensional bone model corresponding to the patient's second a bone, the first three-dimensional implant model including the first implant articular surface;接收在共同的三维坐标系中以第二预先规划的取向相对于彼此定向的第二三维骨骼模型和第二三维植入物模型的模块,所述第二三维骨骼模型对应于患者的第二骨骼,所述第二三维植入物模型包括第二植入物关节表面,所述第一三维骨骼模型和所述第二三维骨骼模型通过导航系统根据患者的第一骨骼和第二骨骼的姿势相对于彼此定向;a module receiving a second three-dimensional bone model and a second three-dimensional implant model oriented relative to each other in a common three-dimensional coordinate system in a second pre-planned orientation, the second three-dimensional bone model corresponding to a second bone of the patient , the second three-dimensional implant model includes a second implant joint surface, and the first three-dimensional bone model and the second three-dimensional bone model are relative to each other according to the posture of the first bone and the second bone of the patient through the navigation system oriented towards each other;接收对应于第一姿势中所述第一骨骼和所述第二骨骼的第一位置和取向的第一位置和取向数据的模块;a module for receiving first position and orientation data corresponding to a first position and orientation of the first bone and the second bone in a first pose;计算所述第一姿势中所述第一三维植入物模型的第一植入物关节表面与所述第二三维植入物模型上或与所述第二三维植入物模型相关联的第一点之间的第一有符号距离的模块;Calculating a first implant articular surface of the first three-dimensional implant model in the first pose and the second three-dimensional implant model on or associated with the second three-dimensional implant model a module of the first signed distance between points;基于所述第一距离确定或调整切除深度的模块;和A module for determining or adjusting a depth of resection based on the first distance; and使用所述切除深度生成切除数据的模块,所述切除数据被配置为在关节成形手术期间由导航系统使用。A module for generating resection data using the resection depth, the resection data being configured for use by a navigation system during an arthroplasty procedure.32.根据权利要求31所述的系统,其中,所述关节是膝关节、踝关节、肘关节或腕关节中的一种。32. The system of claim 31, wherein the joint is one of a knee joint, an ankle joint, an elbow joint, or a wrist joint.33.根据权利要求31所述的系统,其中,所述第一骨骼是股骨,并且所述第二骨骼是胫骨。33. The system of claim 31, wherein the first bone is the femur and the second bone is the tibia.34.根据权利要求33所述的系统,其中,所述第一点位于与所述第二三维植入物模型相关联的近端胫骨切除平面的一部分上。34. The system of claim 33, wherein the first point is located on a portion of a proximal tibial resection plane associated with the second three-dimensional implant model.35.根据权利要求33所述的系统,其中,所述第一三维植入物模型包括内侧髁表面和外侧髁表面,所述第二三维植入物模型包括内侧关节表面和外侧关节表面,所述第一有符号距离在内侧髁表面和所述第一点之间确定。35. The system of claim 33, wherein the first three-dimensional implant model includes a medial condyle surface and a lateral condyle surface, and the second three-dimensional implant model includes a medial articular surface and a lateral articular surface, so that The first signed distance is determined between the medial condyle surface and the first point.36.根据权利要求35所述的系统,还包括计算所述第一姿势中所述外侧髁表面和所述第二三维植入物模型上或与所述第二三维植入物模型相关联的第二点之间的第二有符号距离的模块。36. The system of claim 35, further comprising calculating the surface of the lateral condyle in the first posture and the second three-dimensional implant model on or associated with the second three-dimensional implant model. Module of the second signed distance between the second points.37.根据权利要求36所述的系统,其中,所述第一点位于所述第二三维植入物模型的内侧关节表面上,并且所述第二点位于所述第二三维植入物模型的外侧关节表面上。37. The system of claim 36, wherein the first point is located on a medial articular surface of the second three-dimensional implant model and the second point is located on the second three-dimensional implant model on the lateral articular surface.38.根据权利要求37所述的系统,其中,与要在关节成形手术中使用的物理植入物的内侧和关节表面相比,所述第二三维植入物模型的内侧和外侧关节表面被修改为较平坦或较少凹进以确定所述切除深度。38. The system of claim 37, wherein the medial and lateral articular surfaces of the second three-dimensional implant model are compared to medial and lateral articular surfaces of a physical implant to be used in an arthroplasty procedure. Modified to be flatter or less recessed to determine the depth of resection.39.根据权利要求37所述的系统,其中,经由全局搜索最近距离算法计算所述第一有符号距离和第二有符号距离。39. The system of claim 37, wherein the first signed distance and the second signed distance are calculated via a global search closest distance algorithm.40.根据权利要求39所述的系统,其中,所述全局搜索最近距离算法识别与所述内侧髁表面和外侧髁表面以及所述内侧关节表面和外侧关节表面中的每一个相关联的参考顶点。40. The system of claim 39, wherein the global search closest distance algorithm identifies the reference vertex associated with each of the medial condyle surface and lateral condyle surface and the medial articular surface and the lateral articular surface .41.根据权利要求37所述的系统,还包括:41. The system of claim 37, further comprising:接收对应于在与所述第一姿势不同的第二姿势中的所述第一骨骼和所述第二骨骼的第二位置和取向的第二位置和取向数据的模块;a module for receiving second position and orientation data corresponding to second positions and orientations of the first bone and the second bone in a second pose different from the first pose;计算所述第二姿势中所述第一三维植入物模型的内侧髁表面与所述第二三维植入物模型的内侧关节表面之间的第三有符号距离的模块;和means for calculating a third signed distance between the medial condyle surface of the first three-dimensional implant model and the medial articular surface of the second three-dimensional implant model in the second pose; and计算所述第二姿势中所述第一三维植入物模型的外侧髁表面与所述第二三维植入物模型的外侧关节表面之间的第四有符号距离的模块。A module for calculating a fourth signed distance between the lateral condyle surface of the first three-dimensional implant model and the lateral articular surface of the second three-dimensional implant model in the second pose.42.根据权利要求41所述的系统,其中,通过全局搜索最近距离算法计算所述第一有符号距离、第二有符号距离、第三有符号距离和第四有符号距离。42. The system of claim 41, wherein the first signed distance, the second signed distance, the third signed distance and the fourth signed distance are calculated by a global search closest distance algorithm.43.根据权利要求41所述的系统,其中,通过全局搜索最近距离算法计算所述第一有符号距离和第二有符号距离,并且通过增量搜索最近距离算法计算所述第三有符号距离和第四有符号距离。43. The system of claim 41, wherein the first signed distance and the second signed distance are calculated by a global search closest distance algorithm, and the third signed distance is calculated by an incremental search closest distance algorithm and the fourth signed distance.44.根据权利要求43所述的系统,其中,所述全局搜索最近距离算法识别与所述内侧髁表面和外侧髁表面以及所述内侧关节表面和外侧关节表面中的每一个相关联的参考顶点,并且所述增量搜索最近距离算法被用于与所述内侧髁表面和外侧髁表面的参考顶点相邻的特定顶点,以确定任何特定顶点是否分别比所述参考顶点更靠近对应的内侧关节表面或外侧关节表面。44. The system of claim 43, wherein the global search closest distance algorithm identifies the reference vertex associated with each of the medial condyle surface and lateral condyle surface and the medial articular surface and the lateral articular surface , and the incremental search closest distance algorithm is used for the specific vertex adjacent to the reference vertex of the medial condyle surface and the lateral condyle surface to determine whether any specific vertex is closer to the corresponding medial joint than the reference vertex respectively surface or lateral articular surface.45.根据权利要求31所述的系统,其中,所述导航系统在执行所述关节成形手术时与自主机器人或外科医生辅助设备协力操作。45. The system of claim 31, wherein the navigation system operates in conjunction with an autonomous robot or a surgeon assisting device in performing the arthroplasty procedure.
CN201680087996.1A2016-05-272016-05-27Preoperative planning and related intraoperative registration for surgical systemsActiveCN109496143B (en)

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
PCT/US2016/034847WO2017204832A1 (en)2016-05-272016-05-27Preoperative planning and associated intraoperative registration for a surgical system

Publications (2)

Publication NumberPublication Date
CN109496143A CN109496143A (en)2019-03-19
CN109496143Btrue CN109496143B (en)2020-06-19

Family

ID=60412913

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201680087996.1AActiveCN109496143B (en)2016-05-272016-05-27Preoperative planning and related intraoperative registration for surgical systems

Country Status (7)

CountryLink
EP (2)EP3463153B1 (en)
JP (1)JP6680911B2 (en)
KR (1)KR20190000940A (en)
CN (1)CN109496143B (en)
AU (3)AU2016408411C1 (en)
CA (1)CA3024840A1 (en)
WO (1)WO2017204832A1 (en)

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN100396478C (en)*1997-08-282008-06-25大日本印刷株式会社Rib processing device
KR100752205B1 (en)*2000-01-042007-08-24엘지.필립스 엘시디 주식회사 LCD and its repair method
US6864873B2 (en)*2000-04-062005-03-08Fujitsu LimitedSemiconductor integrated circuit for driving liquid crystal panel
KR100789555B1 (en)*2000-09-222007-12-28다카사고네츠가쿠고오교 가부시키가이샤 Air Purification HVAC and Air Purification HVAC
KR100727838B1 (en)*2001-04-242007-06-14삼성테크윈 주식회사 Camera system with focusing function
KR100743700B1 (en)*2001-05-212007-07-30엘지전자 주식회사 Washing machine detergent box coupling device
KR100708973B1 (en)*2004-08-162007-04-18동부일렉트로닉스 주식회사 Apparatus and method for manufacturing a semiconductor using a load lock chamber having a UV lamp module
KR100707424B1 (en)*2004-08-172007-04-13엘지전자 주식회사 Starting device of single-phase induction motor
KR100747526B1 (en)*2004-08-272007-08-08엘지전자 주식회사 Blower
JP2006095786A (en)*2004-09-292006-04-13Seiko Epson Corp Printer head and image forming apparatus having the same
KR100730384B1 (en)*2004-10-142007-06-19한국건설기술연구원Sorting and washing apparatus of natural aggregate suitable to manufacturing of concrete
KR100706635B1 (en)*2004-10-182007-04-11주식회사 케이에스티응용연구소 Charging circuit of charger using light with backup charging unit
KR100733073B1 (en)*2004-12-312007-06-27강재석 Wire connector
KR100717732B1 (en)*2005-03-252007-05-11(주)메디코 Infectious Waste Incinerator
JP2006288777A (en)*2005-04-122006-10-26Matsushita Electric Ind Co Ltd dishwasher
KR100746772B1 (en)*2005-05-162007-08-06이용학 Connecting Structure of Sap Bag and Sap Set
KR100714189B1 (en)*2005-06-172007-05-02고려특수화학주식회사 Coke oven door
KR100710665B1 (en)*2005-07-072007-04-23태주공업 주식회사 Fixed structure of human body sensor
KR100705987B1 (en)*2005-08-102007-04-13양민우 Functional air stone with light emitting element and sound
KR100701507B1 (en)*2005-08-182007-04-02주식회사 두륭 Rigging Device
TW200716044A (en)*2005-09-052007-05-01Matsushita Electric Industrial Co LtdDishwasher
KR100734400B1 (en)*2005-09-232007-07-02동양콘크리트산업 주식회사 Resin concrete centrifugal force tube manufacturing method
KR100715689B1 (en)*2005-11-042007-05-09주식회사 케이에스엠 Flange of Semiconductor Low Pressure Chemical Vapor Deposition Equipment
KR100712915B1 (en)*2005-11-102007-05-02엘지전자 주식회사 Cold air supply duct of the refrigerator
KR100762297B1 (en)*2005-11-142007-10-01한희선 Joining structure and joining method of aluminum radiator main pit
KR100721999B1 (en)*2005-12-152007-05-28(주) 신한금형 Gate automatic cutting device for injection mold
KR100743178B1 (en)*2005-12-232007-07-30최부성 Method for producing printed matter, apparatus used therefor, and print film produced thereby
KR100715661B1 (en)*2006-01-262007-05-07이병찬 Inverter system and inverting method for motor
KR100721795B1 (en)*2006-01-262007-05-25민은홍 Frame frame prevents water from entering
KR100732049B1 (en)*2006-02-022007-06-25(주) 에너텍 Gas and Air Mixing Combustor
KR100718241B1 (en)*2006-02-062007-05-15이용주 Lens filter holder of the camera
KR100746406B1 (en)*2006-02-102007-08-03쿠쿠전자주식회사 Electric pressure cooking rice cooker
KR100758532B1 (en)*2006-03-132007-09-13(주) 파루 Environmental factor detector
KR100668772B1 (en)*2006-03-172007-01-12한경희 Tongs, hangers and steam irons
KR100736681B1 (en)*2006-03-252007-07-06조호봉 Mobile electric preheating device
KR100728102B1 (en)*2006-03-282007-06-13한국지질자원연구원 Flush and vacuum filtration device
KR100789884B1 (en)*2006-03-312007-12-28김통일 Toy fastening means for assembly
KR100711906B1 (en)*2006-04-032007-04-27신중 panties
KR100786089B1 (en)*2006-05-292007-12-17엘지전자 주식회사 Heating source drive device of cooker
KR100745444B1 (en)*2006-06-092007-08-03이경호 Wastewater Treatment System Using Biological Media
KR100704430B1 (en)*2006-06-142007-04-09주식회사 우진엔지니어링 Measuring device for shell material of transmission and distribution tower
KR100768932B1 (en)*2006-07-032007-10-25배은경 World time readable globe
KR100787196B1 (en)*2006-07-042007-12-21한국단자공업 주식회사 Inner undercut molding apparatus of mold assembly and its method
KR100763438B1 (en)*2006-07-282007-10-04주식회사 에이스침대 Bed mattress and its manufacturing method
KR100707978B1 (en)*2006-08-142007-04-16조덕준 Plate Washing Equipment
KR100739208B1 (en)*2006-08-162007-07-13서울통신기술 주식회사 Opening and closing method of digital door lock and device therefor
KR100785430B1 (en)*2006-08-162007-12-13김상열 Marine pipe fixing device
KR100704747B1 (en)*2006-09-042007-04-09주식회사 지에스텍 Post-free mold assembly method
KR100781940B1 (en)*2006-09-252007-12-04주식회사 디지털텍 Rotary Polymerization Method of Aluminum Polymer Capacitor
KR100779733B1 (en)*2006-10-102007-11-29조철민 Medical rotating body
KR100778279B1 (en)*2006-10-102007-11-29주식회사 호동전자 Livestock Drinking Water Supply Device and Method
KR100769889B1 (en)*2006-11-152007-10-24정하음 Decorative moldings outside the building
KR100718567B1 (en)*2006-11-272007-05-15성주환 Baroque crankshaft for air compressor
KR100789296B1 (en)*2006-11-302007-12-28최종채 Street light
KR100761312B1 (en)*2006-12-012007-10-04주식회사 대우일렉트로닉스 Kimchi Refrigerator Body Structure
KR100731987B1 (en)*2006-12-052007-06-25주식회사 오티케이 Double glazing with blinds
KR100779404B1 (en)*2006-12-292007-11-23송영일 Automatic washing machine cleaner
KR100782794B1 (en)*2006-12-292007-12-05박세헌 Arm and blade integrated wiper system
KR100711085B1 (en)*2007-01-312007-04-27보은군 Liver water supply automatic control device
KR100754924B1 (en)*2007-01-312007-09-03이성형 Adjustable street light pole
KR100721717B1 (en)*2007-02-232007-05-25주식회사 한양 티이씨 Underground distributors reliably combined with distribution lines
KR100761338B1 (en)*2007-03-232007-09-27주식회사 한얼엔지니어링 Underground Power Cable Protector
US11857266B2 (en)2012-06-212024-01-02Globus Medical, Inc.System for a surveillance marker in robotic-assisted surgery
US11963755B2 (en)2012-06-212024-04-23Globus Medical Inc.Apparatus for recording probe movement
US11793570B2 (en)2012-06-212023-10-24Globus Medical Inc.Surgical robotic automation with tracking markers
US10758315B2 (en)2012-06-212020-09-01Globus Medical Inc.Method and system for improving 2D-3D registration convergence
US11857149B2 (en)2012-06-212024-01-02Globus Medical, Inc.Surgical robotic systems with target trajectory deviation monitoring and related methods
US11864839B2 (en)2012-06-212024-01-09Globus Medical Inc.Methods of adjusting a virtual implant and related surgical navigation systems
US11864745B2 (en)2012-06-212024-01-09Globus Medical, Inc.Surgical robotic system with retractor
US11317971B2 (en)2012-06-212022-05-03Globus Medical, Inc.Systems and methods related to robotic guidance in surgery
US11786324B2 (en)2012-06-212023-10-17Globus Medical, Inc.Surgical robotic automation with tracking markers
US11298196B2 (en)2012-06-212022-04-12Globus Medical Inc.Surgical robotic automation with tracking markers and controlled tool advancement
US11589771B2 (en)2012-06-212023-02-28Globus Medical Inc.Method for recording probe movement and determining an extent of matter removed
US12004905B2 (en)2012-06-212024-06-11Globus Medical, Inc.Medical imaging systems using robotic actuators and related methods
US11399900B2 (en)2012-06-212022-08-02Globus Medical, Inc.Robotic systems providing co-registration using natural fiducials and related methods
US10874466B2 (en)2012-06-212020-12-29Globus Medical, Inc.System and method for surgical tool insertion using multiaxis force and moment feedback
US10799298B2 (en)2012-06-212020-10-13Globus Medical Inc.Robotic fluoroscopic navigation
US11253327B2 (en)2012-06-212022-02-22Globus Medical, Inc.Systems and methods for automatically changing an end-effector on a surgical robot
US11896446B2 (en)2012-06-212024-02-13Globus Medical, IncSurgical robotic automation with tracking markers
US10624710B2 (en)2012-06-212020-04-21Globus Medical, Inc.System and method for measuring depth of instrumentation
US11974822B2 (en)2012-06-212024-05-07Globus Medical Inc.Method for a surveillance marker in robotic-assisted surgery
CN114376733B (en)*2015-06-092025-01-10直观外科手术操作公司 Configuring surgical systems using surgical procedure atlases
US11883217B2 (en)2016-02-032024-01-30Globus Medical, Inc.Portable medical imaging system and method
WO2018013848A1 (en)2016-07-152018-01-18Mako Surgical Corp.Systems for a robotic-assisted revision procedure
KR102299132B1 (en)2016-08-302021-09-08마코 서지컬 코포레이션 Intraoperative pelvic registration systems and methods
JP2020511239A (en)*2017-03-172020-04-16インテリジョイント サージカル インク. System and method for augmented reality display in navigation surgery
EP3574862B1 (en)2018-06-012021-08-18Mako Surgical CorporationSystems for adaptive planning and control of a surgical tool
JP7082090B2 (en)*2018-06-272022-06-07グローバス メディカル インコーポレイティッド How to tune virtual implants and related surgical navigation systems
CN109692041B (en)*2019-01-302021-09-21杭州键嘉机器人有限公司Bone surface registration method for covering cartilage
JP2022524439A (en)2019-03-122022-05-02デピュイ・アイルランド・アンリミテッド・カンパニー Orthopedic system with medial pivot femoral components and inserts
CN109938842B (en)*2019-04-182021-07-30雅客智慧(北京)科技有限公司Facial surgery positioning navigation method and device
CN109998682B (en)*2019-04-282020-08-18北京天智航医疗科技股份有限公司 Probe device, precision detection method, precision detection system and positioning system
AU2020265431B2 (en)*2019-05-022025-04-24Depuy Ireland Unlimited CompanyOrthopaedic implant placement system and method
WO2020225676A1 (en)2019-05-082020-11-12DePuy Synthes Products, Inc.Orthopaedic implant system with hinge
CN110251277B (en)*2019-05-292022-02-08广东工业大学Method for manufacturing personalized acetabulum prosthesis and auxiliary method for total hip replacement
CN110215284B (en)*2019-06-062021-04-02上海木木聚枞机器人科技有限公司Visualization system and method
AU2020315615A1 (en)2019-07-152022-02-17Stryker CorporationRobotic hand-held surgical instrument systems and methods
AU2020315554B2 (en)2019-07-172023-02-23Mako Surgical Corp.Surgical registration tools, systems, and methods of use in computer-assisted surgery
CN112237477B (en)*2019-07-172021-11-16杭州三坛医疗科技有限公司Fracture reduction closed operation positioning navigation device
CN112402063B (en)*2019-08-232024-12-20智塑健康科技(嘉兴)有限公司 A method, system, device and readable storage medium for building a model of a bone structure prosthesis
EP4021314A4 (en)2019-08-292022-12-28MAKO Surgical Corp. ROBOTIC SURGICAL SYSTEM FOR ADVANCED HIP ARTHROPLASTY
US12083020B2 (en)2019-09-102024-09-10Depuy Ireland Unlimited CompanyOrthopaedic knee prosthesis system and methods for using same
CN110728029B (en)*2019-09-172022-10-18中国人民解放军总医院第四医学中心Femur integrity analysis system and femur integrity analysis model construction method
CN112451090B (en)*2019-11-062022-02-18中国人民解放军总医院第四医学中心 An Analytical Model Construction System
WO2021098177A1 (en)*2019-11-212021-05-27苏州微创畅行机器人有限公司Osteotomy verification method and verification apparatus, readable storage medium, and orthopedic surgery system
CN110811832B (en)2019-11-212021-02-23苏州微创畅行机器人有限公司Osteotomy checking method, checking equipment, readable storage medium and orthopedic surgery system
CN114730484A (en)*2019-12-202022-07-08史密夫和内修有限公司 3D selective bone matching from 2D image data
CN110974426A (en)*2019-12-242020-04-10上海龙慧医疗科技有限公司Robot system for orthopedic joint replacement surgery
WO2021142213A1 (en)*2020-01-092021-07-15Smith & Nephew, Inc.Methods and arrangements to describe deformity of a bone
CN111249002B (en)*2020-01-212021-10-08北京天智航医疗科技股份有限公司 Intraoperative planning and adjustment method, device and equipment for total knee arthroplasty
KR102349862B1 (en)2020-01-312022-01-12큐렉소 주식회사Apparatus for providing robotic surgery inforamtion during joint replacement robotic surgery, and method thereof
EP4099935A1 (en)*2020-02-042022-12-14Smith & Nephew, Inc.Improved and cass assisted osteotomies
JP6807122B1 (en)*2020-02-122021-01-06リバーフィールド株式会社 Surgical robot and control unit for surgical robot
CN111227932B (en)*2020-02-192021-06-04苏州微创畅行机器人有限公司Bone registration method, bone registration system, bone registration control device, and trackable member
CN111297475B (en)*2020-02-192021-06-18苏州微创畅行机器人有限公司Bone registration method, bone registration system, bone registration control device, and trackable member
CN111345895B (en)*2020-03-132021-08-20北京天智航医疗科技股份有限公司 Robotic assistance system, control method and electronic device for total knee replacement surgery
US11944396B2 (en)2020-03-272024-04-02Mako Surgical Corp.Systems and methods for controlling robotic movement of a tool based on a virtual boundary
US11890060B2 (en)*2020-04-292024-02-06Medtronic Navigation, Inc.System and method for navigating and illustrating a procedure
CN111700681B (en)*2020-05-272021-05-14元化智能科技(深圳)有限公司Method and device for generating safe osteotomy prompt message and terminal equipment
CN111728695B (en)*2020-06-122023-07-25天津理工大学 A beam-assisted positioning system for craniotomy
CN111754619B (en)*2020-06-292024-07-02武汉市东旅科技有限公司Bone space data acquisition method, acquisition device, electronic equipment and storage medium
EP4545052A3 (en)2020-07-102025-07-09DePuy Ireland Unlimited CompanyMedial stabilized orthopaedic knee prosthesis
US11980426B2 (en)2020-08-032024-05-14Warsaw Orthopedic, Inc.System and method for preliminary registration
CN113017829B (en)*2020-08-222023-08-29张逸凌Preoperative planning method, system, medium and device for total knee arthroplasty based on deep learning
CN112155732B (en)*2020-09-292022-05-17苏州微创畅行机器人有限公司Readable storage medium, bone modeling and registering system and bone surgery system
US11819280B2 (en)2020-09-302023-11-21DePuy Synthes Products, Inc.Customized patient-specific orthopaedic surgical instrument using patient-specific contacting bodies and parametric fixed geometry
CN112370153B (en)*2020-11-132022-03-11山东中医药大学Integrated operation system for limb fracture and control method
CN112641510B (en)*2020-12-182021-08-17北京长木谷医疗科技有限公司 Joint replacement surgery robot navigation and positioning system and method
CN112641511B (en)2020-12-182021-09-10北京长木谷医疗科技有限公司Joint replacement surgery navigation system and method
CN114681001A (en)*2020-12-282022-07-01北京和华瑞博医疗科技有限公司Cutting precision verification method of surgical robot system
US11890058B2 (en)2021-01-212024-02-06Arthrex, Inc.Orthopaedic planning systems and methods of repair
CN112914726B (en)*2021-01-222021-11-26元化智能科技(深圳)有限公司Robot system for assisting bone surgery
CN112826590A (en)*2021-02-022021-05-25复旦大学 A spatial registration system for knee arthroplasty based on multimodal fusion and point cloud registration
US12150728B2 (en)2021-04-142024-11-26Globus Medical, Inc.End effector for a surgical robot
US12178515B2 (en)2021-04-262024-12-31Arthrex, Inc.Systems and methods for density calibration
US12419689B2 (en)2021-06-292025-09-23DePuy Synthes Products, Inc.Patient-specific registration jig and associated method for registering an orthopaedic surgical instrument to a patient
CN114869478A (en)*2021-07-092022-08-09武汉联影智融医疗科技有限公司End tool motion guiding method and system and surgical robot
CN113633379A (en)*2021-07-302021-11-12天津市天津医院Lower limb mechanical axis navigation system, lower limb operation navigation method and storage medium
CN113842211B (en)*2021-09-032022-10-21北京长木谷医疗科技有限公司 Three-dimensional preoperative planning system and prosthesis model matching method for knee replacement
CN113842213B (en)*2021-09-032022-10-11北京长木谷医疗科技有限公司Surgical robot navigation positioning method and system
US11759216B2 (en)2021-09-222023-09-19Arthrex, Inc.Orthopaedic fusion planning systems and methods of repair
CN114332000B (en)*2021-12-242025-06-27杭州堃博生物科技有限公司 Processing method, device and surgical system for image registration
CN114305697B (en)*2021-12-252024-08-09山东航维骨科医疗器械股份有限公司 A control method for a joint replacement surgical robot
WO2023201074A1 (en)*2022-04-152023-10-19Stryker CorporationPointer tool for endoscopic surgical procedures
US12193775B2 (en)2022-05-062025-01-14Jpi ConsultingMethod and system for remote robotic control of positioning of an instrument
CN114948069B (en)*2022-05-232025-09-23武汉联影智融医疗科技有限公司 Bone grinding safety monitoring system, method, storage medium and program product
US12300020B1 (en)*2022-06-272025-05-13Amazon Technologies, Inc.System to assess biometric input data
EP4547139A1 (en)*2022-06-302025-05-07Think Surgical, Inc.Automated arthoplasty planning with machine learning
CN115153831B (en)*2022-07-052025-02-18杭州湖西云百生科技有限公司 Prosthesis data management method and system
US12303213B2 (en)2022-07-212025-05-20Jpi ConsultingPreoperative imaging combined with intraoperative navigation before and after removal of an implant from a surgical site to create a composite surgical three dimensional structural dataset
CN115300101B (en)*2022-08-232024-09-17江苏世康启航医疗器械有限公司Device and method for determining visual angle direction of sagittal femur
US12369981B2 (en)*2023-02-072025-07-29Depuy Ireland Unlimited CompanySystems and methods for bone model registration with adaptive soft tissue thickness
CN115844531B (en)*2023-02-222023-09-12北京壹点灵动科技有限公司Navigation system for hip replacement operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2007085085A1 (en)*2006-01-252007-08-02Orthosoft Inc.Cas system for condyle measurement
WO2009025783A1 (en)*2007-08-172009-02-26Mohamed Rashwan MahfouzImplant design analysis suite
CN104955421A (en)*2012-10-182015-09-30史密夫和内修有限公司Alignment devices and methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4841975A (en)*1987-04-151989-06-27Cemax, Inc.Preoperative planning of bone cuts and joint replacement using radiant energy scan imaging
US20040102866A1 (en)*2001-01-292004-05-27Harris Simon JamesModelling for surgery
US8010180B2 (en)2002-03-062011-08-30Mako Surgical Corp.Haptic guidance system and method
WO2006091494A1 (en)*2005-02-222006-08-31Mako Surgical Corp.Haptic guidance system and method
US8337508B2 (en)*2006-03-202012-12-25Perception Raisonnement Action En MedecineDistractor system
US20100153081A1 (en)*2008-12-112010-06-17Mako Surgical Corp.Implant planning for multiple implant components using constraints
US8382765B2 (en)*2007-08-072013-02-26Stryker Leibinger Gmbh & Co. Kg.Method of and system for planning a surgery
US8617171B2 (en)*2007-12-182013-12-31Otismed CorporationPreoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
WO2010099231A2 (en)*2009-02-242010-09-02Conformis, Inc.Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US9622820B2 (en)*2012-05-032017-04-18Siemens Product Lifecycle Management Software Inc.Feature-driven rule-based framework for orthopedic surgical planning
US20140013565A1 (en)*2012-07-102014-01-16Eileen B. MacDonaldCustomized process for facilitating successful total knee arthroplasty with outcomes analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2007085085A1 (en)*2006-01-252007-08-02Orthosoft Inc.Cas system for condyle measurement
WO2009025783A1 (en)*2007-08-172009-02-26Mohamed Rashwan MahfouzImplant design analysis suite
CN104955421A (en)*2012-10-182015-09-30史密夫和内修有限公司Alignment devices and methods

Also Published As

Publication numberPublication date
AU2019204995B2 (en)2020-10-22
WO2017204832A1 (en)2017-11-30
AU2020260503A1 (en)2020-11-26
JP2019523686A (en)2019-08-29
CA3024840A1 (en)2017-11-30
AU2016408411C1 (en)2019-11-14
EP3463153A1 (en)2019-04-10
KR20190000940A (en)2019-01-03
EP3463153B1 (en)2024-06-26
EP4331513A3 (en)2024-10-09
EP4331513A2 (en)2024-03-06
JP6680911B2 (en)2020-04-15
CN109496143A (en)2019-03-19
AU2016408411B2 (en)2019-06-20
AU2019204995A1 (en)2019-08-01
AU2016408411A1 (en)2019-01-03
AU2020260503B2 (en)2021-11-18
EP3463153A4 (en)2020-01-15

Similar Documents

PublicationPublication DateTitle
CN109496143B (en)Preoperative planning and related intraoperative registration for surgical systems
US12042230B2 (en)Preoperative planning and associated intraoperative registration for a surgical system
US12144558B2 (en)Systems and methods for preoperative planning and postoperative analysis of surgical procedures
JP7669486B2 (en) Surgical system and method of use for ultrasound-based multiple bone positioning in computer-assisted surgery - Patents.com
US11957417B2 (en)Surgical registration tools, systems, and methods of use in computer-assisted surgery

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp