Movatterモバイル変換


[0]ホーム

URL:


CN109372710B - Carbon nano tube fiber yarn composite thermal expansion material type laser photo-thermal driver - Google Patents

Carbon nano tube fiber yarn composite thermal expansion material type laser photo-thermal driver
Download PDF

Info

Publication number
CN109372710B
CN109372710BCN201811249737.1ACN201811249737ACN109372710BCN 109372710 BCN109372710 BCN 109372710BCN 201811249737 ACN201811249737 ACN 201811249737ACN 109372710 BCN109372710 BCN 109372710B
Authority
CN
China
Prior art keywords
thermal expansion
expansion material
fiber yarn
carbon nanotube
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811249737.1A
Other languages
Chinese (zh)
Other versions
CN109372710A (en
Inventor
袁曦明
袁一楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Wuhan
Original Assignee
China University of Geosciences Wuhan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences WuhanfiledCriticalChina University of Geosciences Wuhan
Priority to CN201811249737.1ApriorityCriticalpatent/CN109372710B/en
Publication of CN109372710ApublicationCriticalpatent/CN109372710A/en
Application grantedgrantedCritical
Publication of CN109372710BpublicationCriticalpatent/CN109372710B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种碳纳米管纤维纱线复合热膨胀材料型激光光热驱动器,包括:碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器、碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器、碳纳米管纤维纱线复合热膨胀材料筒型激光光热驱动器或碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器;所述纳米粒子复合型碳纳米管纤维纱线包括:采用将纳米粒子与碳纳米管纤维纱线进行组装或复合;在激光光热作用下,热膨胀材料层具有驱动效应,并对紧密相接触的纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层的驱动产生协同放大作用;由于其多层叠置结构,在光热作用下产生联动与协同的伸缩或旋转驱动增强效应。

The invention discloses a carbon nanotube fiber yarn composite thermal expansion material laser photothermal driver, which includes: a carbon nanotube fiber yarn wrapped thermal expansion material multi-layer stacked laser photothermal driver, carbon nanotube fiber yarn spinning and thermal expansion material Material layers stacked spiral laser photothermal actuator, carbon nanotube fiber yarn composite thermal expansion material barrel type laser photothermal actuator or carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photothermal actuator; the nanoparticle composite type Carbon nanotube fiber yarns include: the assembly or composite of nanoparticles and carbon nanotube fiber yarns; under the action of laser light and heat, the thermal expansion material layer has a driving effect and has a driving effect on the nanoparticle composite carbon nanoparticles that are in close contact with each other. The drive of the spirally wound layer of the tube fiber yarn produces a synergistic amplification effect; due to its multi-layer stacked structure, a linked and synergistic telescopic or rotational driving enhancement effect is produced under the action of light and heat.

Description

Translated fromChinese
碳纳米管纤维纱线复合热膨胀材料型激光光热驱动器Carbon nanotube fiber yarn composite thermal expansion material laser photothermal driver

技术领域Technical field

本发明属于人工智能、光机电一体化及机器人技术领域,涉及人工智能、光机电一体化及机器人的驱动技术,更具体地涉及一种碳纳米管纤维纱线复合热膨胀材料型激光光热驱动器。The invention belongs to the fields of artificial intelligence, optical electromechanical integration and robot technology, relates to artificial intelligence, optical electromechanical integration and robot driving technology, and more specifically relates to a carbon nanotube fiber yarn composite thermal expansion material type laser photothermal driver.

背景技术Background technique

当前随着人工智能、光机电一体化和机器人领域的各种技术快速发展,驱动技术显得越来越重要。驱动器又称执行器,是一种重要的执行机构和动力源。它的主要功能是可以在电磁、热、静电、压力等不同动力的驱动下实现力或位移的输出。目前发展的较成熟且已经应用的驱动机构种类主要有静电驱动型、光致伸缩型、电磁驱动型、热膨胀驱动型、压电驱动型、超声波驱动型、记忆合金驱动型、磁致伸缩驱动型等。各种类型的驱动器有各自的优缺点,适用于不同的环境和领域。静电型驱动器是利用电荷间的吸引力和排斥力来驱动微电机进行工作,其中静电微马达是最早提出的微马达。静电型驱动器的优点是成本较低,但主要缺点是驱动力矩小。压电型驱动器是利用逆压电效应,在压电材料上施加电压来引起压电材料形变,从而实现驱动功能。压电驱动器具有结构简单、无噪声、控制方便等优点,但主要缺点是存在非线性现象。电磁型驱动器是利用电磁线圈通电时产生的磁力来驱动转子,实现驱动功能。电磁型驱动器具有结构简单、可靠性较高、能够承载较大电流等优点,但电磁型驱动器普遍存在能耗偏高、线圈温度偏高、噪声偏大及体积偏大等缺点。电热型驱动器是将电能转化成热能,利用材料温度变化产生的形变来实现驱动功能。磁致伸缩型驱动器利用磁致伸缩效应来实现驱动功能。所谓磁致伸缩效应是指铁磁体在外磁场变化时,其体积和长度发生变化产生的驱动效应。形状记忆合金型驱动器采用形状记忆合金材料,在预置温度下有回复原来形状的能力,来实现驱动功能。形状记忆合金型驱动器具有输出力较大、形变量较大、动作柔和性较好、控制较方便等优点,但存在响应速度较慢,形状呈阶跃性变化等缺点。光热驱动器是将光能转化成材料的热能,使材料温度升高产生体积膨胀,利用热膨胀量来实现驱动功能。与各种类型的驱动器相比,光热驱动器具有原理和结构简单、选材较广泛、输出较力和形变量较大、可以远距离非接触控制、可微小化和集成化等优点,且具备一定的能量转化效率和动态响应速度,是一种具有广泛应用前景的驱动技术。Currently, with the rapid development of various technologies in the fields of artificial intelligence, opto-mechatronics and robotics, drive technology is becoming more and more important. The driver, also known as the actuator, is an important actuator and power source. Its main function is to realize the output of force or displacement driven by different powers such as electromagnetic, heat, electrostatic, pressure, etc. The types of driving mechanisms that are currently developed and have been applied mainly include electrostatic driving, photostrictive, electromagnetic driving, thermal expansion driving, piezoelectric driving, ultrasonic driving, memory alloy driving, and magnetostrictive driving. wait. Various types of drives have their own advantages and disadvantages and are suitable for different environments and fields. Electrostatic drivers use the attraction and repulsion between charges to drive micromotors to work. Among them, electrostatic micromotors are the earliest micromotors proposed. The advantage of electrostatic actuators is lower cost, but the main disadvantage is small driving torque. The piezoelectric actuator uses the inverse piezoelectric effect to apply voltage to the piezoelectric material to cause the piezoelectric material to deform, thereby achieving the driving function. Piezoelectric actuators have the advantages of simple structure, no noise, and convenient control, but their main disadvantage is the existence of nonlinear phenomena. The electromagnetic driver uses the magnetic force generated when the electromagnetic coil is energized to drive the rotor to achieve the driving function. Electromagnetic drives have the advantages of simple structure, high reliability, and the ability to carry large currents. However, electromagnetic drives generally have shortcomings such as high energy consumption, high coil temperature, high noise, and large size. The electrothermal driver converts electrical energy into thermal energy and uses the deformation caused by the temperature change of the material to achieve the driving function. Magnetostrictive actuators utilize the magnetostrictive effect to achieve the driving function. The so-called magnetostrictive effect refers to the driving effect caused by changes in the volume and length of ferromagnets when the external magnetic field changes. Shape memory alloy actuators use shape memory alloy materials and have the ability to return to their original shape at a preset temperature to achieve the driving function. The shape memory alloy actuator has the advantages of large output force, large deformation, soft movement, and convenient control, but it has the disadvantages of slow response speed and step change in shape. The photothermal driver converts light energy into thermal energy of the material, causing the temperature of the material to increase to cause volume expansion, and the amount of thermal expansion is used to achieve the driving function. Compared with various types of drivers, photothermal drivers have the advantages of simple principle and structure, wider selection of materials, greater output and deformation, long-distance non-contact control, miniaturization and integration, etc., and have certain With excellent energy conversion efficiency and dynamic response speed, it is a driving technology with broad application prospects.

但是,如何将光能量高效转换为热能并进行有效快速传输,如何实现远距离非接触控制,如何将光热能量有效地转换为驱动力,如何进一步提高光热驱动器的驱动效率等,这些技术问题需要解决。However, there are technical issues such as how to efficiently convert light energy into thermal energy and transmit it effectively and quickly, how to achieve long-distance non-contact control, how to effectively convert photothermal energy into driving force, and how to further improve the driving efficiency of photothermal drivers. needs to be addressed.

发明内容Contents of the invention

针对当前在人工智能、光机电一体化和机器人技术领域中的光热驱动器技术发展存在的系列技术问题,本发明提供一种碳纳米管纤维纱线复合热膨胀材料型激光光热驱动器,以达到优化提升光热驱动器的各项性能指标,进一步拓展光热驱动器的应用领域。In view of the series of technical problems currently existing in the development of photothermal driver technology in the fields of artificial intelligence, opto-mechanical integration and robotics technology, the present invention provides a carbon nanotube fiber yarn composite thermal expansion material type laser photothermal driver to achieve optimization Improve various performance indicators of photothermal drivers and further expand the application fields of photothermal drivers.

本发明的一种碳纳米管纤维纱线复合热膨胀材料型激光光热驱动器的实现具体技术方案包括:碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器、碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器、碳纳米管纤维纱线复合热膨胀材料筒型激光光热驱动器或碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器;所述碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器,包括:纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层、热膨胀材料层、激光接收器、激光器;所述热膨胀材料包括:固体热膨胀材料、液体热膨胀材料或气体热膨胀材料;所述液体热膨胀材料和气体热膨胀材料均被导热性能良好的弹性物质包覆构成,包括:液体热膨胀材料微胶囊或气体热膨胀材料微胶囊;所述液体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆液体热膨胀材料,并构成微胶囊结构;所述气体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆气体热膨胀材料,并构成微胶囊结构;所述固体热膨胀材料包括:有机高分子热膨胀材料、无机相变热膨胀材料、无机有机杂化热膨胀材料或固体热膨胀材料微胶囊;所述固体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆固体热膨胀材料,并构成微胶囊结构;所述纳米粒子复合型碳纳米管纤维纱线包括:采用将纳米粒子与碳纳米管纤维纱线进行组装或复合,并将纳米粒子组装或复合在碳纳米管孔洞内或碳纳米管纤维聚集束的间隙内;所述纳米粒子复合型碳纳米管纤维纱线,包括:由多束单根碳纳米管或碳纳米管聚集束纤维经过组装纳米粒子后,采用并股工艺形成的复股纤维,通过加捻过程并组成具有螺旋结构连续纱线;所述纳米粒子包括:带电荷的纳米颗粒、纳米电解质物质或纳米离子体;所述纳米粒子复合型碳纳米管纤维纱线按照一定角度规则螺旋缠绕在固体热膨胀材料的外面,或螺旋缠绕在被导热性能良好的弹性物质包覆具有一定数量的液体热膨胀材料微胶囊的外面,或螺旋缠绕在被导热性能良好的弹性物质包覆具有一定数量的气体热膨胀材料微胶囊的外面,紧密相接触,并构成双层或多层相互间隔且叠置的紧密结构,其一端装配激光接收器与纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层一端相接触和热膨胀材料层一端相接触,其另一端装配驱动输出装置,并构成一体化的碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器。The specific technical solution for realizing a carbon nanotube fiber yarn composite thermal expansion material laser photothermal driver of the present invention includes: a carbon nanotube fiber yarn wrapped thermal expansion material multi-layer stacked laser photothermal driver, a carbon nanotube fiber yarn spinning A spiral laser photothermal driver stacked with layers of cloth and thermal expansion material, a cylinder type laser photothermal driver composed of carbon nanotube fiber yarn composite thermal expansion material, or an integrated laser photothermal driver composed of carbon nanotube fiber yarn spring composite thermal expansion material; the carbon Nanotube fiber yarn wrapped with thermal expansion material multi-layer stacked laser photothermal driver, including: nanoparticle composite carbon nanotube fiber yarn spiral wrapping layer, thermal expansion material layer, laser receiver, laser; the thermal expansion material includes: solid thermal expansion material, liquid thermal expansion material or gas thermal expansion material; the liquid thermal expansion material and the gas thermal expansion material are both covered by elastic materials with good thermal conductivity, including: liquid thermal expansion material microcapsules or gas thermal expansion material microcapsules; the liquid thermal expansion material The microcapsule includes: an elastic material film with good thermal conductivity is used to cover the liquid thermal expansion material, and forms a microcapsule structure; the gas thermal expansion material microcapsule includes: an elastic material film with good thermal conductivity is used to cover the gas thermal expansion material, and the microcapsule structure is formed. Capsule structure; the solid thermal expansion material includes: organic polymer thermal expansion material, inorganic phase change thermal expansion material, inorganic organic hybrid thermal expansion material or solid thermal expansion material microcapsule; the solid thermal expansion material microcapsule includes: an elastic material with good thermal conductivity The material film covers the solid thermal expansion material and forms a microcapsule structure; the nanoparticle composite carbon nanotube fiber yarn includes: assembling or compounding the nanoparticles and the carbon nanotube fiber yarn, and assembling or compounding the nanoparticles Compounded in carbon nanotube holes or in the gaps between carbon nanotube fiber aggregated bundles; the nanoparticle composite carbon nanotube fiber yarn includes: assembled from multiple bundles of single carbon nanotubes or carbon nanotube aggregated bundle fibers. After the nanoparticles are produced, the multi-stranded fiber formed by the doubling process is formed into a continuous yarn with a spiral structure through the twisting process; the nanoparticles include: charged nanoparticles, nanoelectrolyte substances or nanoparticles; the nanoparticles The particle composite carbon nanotube fiber yarn is spirally wound around the outside of the solid thermal expansion material according to certain angle rules, or spirally wound around the outside of a certain number of liquid thermal expansion material microcapsules covered by an elastic material with good thermal conductivity, or spirally wound around A certain number of gas thermal expansion material microcapsules are coated with an elastic material with good thermal conductivity and are in close contact with each other to form a double or multi-layer spaced and stacked close structure. One end of the microcapsule is equipped with a laser receiver and a nanometer One end of the particle composite carbon nanotube fiber yarn spiral winding layer is in contact with one end of the thermal expansion material layer, and the other end is equipped with a drive output device, forming an integrated carbon nanotube fiber yarn wrapped with thermal expansion material multi-layer stacked laser light Hot drive.

所述碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器的工作过程为:激光器的激光束照射或通过光导纤维传输给激光接收器;激光接收器将光热传输给纳米粒子复合型碳纳米管纤维纱线缠绕热膨胀材料多层叠置层;在光热作用下,带电荷的纳米粒子进入碳纳米管的中空结构内或碳纳米管纤维纱线束间隙内,促使碳纳米管或碳纳米管纤维纱线束的结构形态发生改变;由于纳米粒子复合型碳纳米管纤维纱线螺旋缠绕在热膨胀材料层的外层,纳米粒子复合型碳纳米管纤维纱线产生伸缩或旋转驱动效应;由于纳米粒子复合型碳纳米管纤维纱线缠绕热膨胀材料为多层叠置结构,纳米粒子复合型碳纳米管纤维纱线材料具有快速传热性能,能够将光热快速传输给热膨胀材料层,使热膨胀材料层接收的被传输热量呈现叠加效应,热膨胀材料层的温度升高速度加快,在高温条件下产生热膨胀驱动效应;热膨胀材料层对紧密相接触的纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层的驱动产生协同放大作用;由于纳米粒子复合型碳纳米管纤维纱线螺旋缠绕热膨胀材料为多层叠置结构,在光热作用下产生联动与协同的伸缩或旋转驱动增强效应。The working process of the carbon nanotube fiber yarn wrapped with thermal expansion material multi-layer stacked laser photothermal driver is: the laser beam of the laser is irradiated or transmitted to the laser receiver through the optical fiber; the laser receiver transmits photothermal to the nanoparticle composite type Carbon nanotube fiber yarns are wrapped around multiple stacks of thermal expansion materials; under the action of light and heat, charged nanoparticles enter the hollow structure of the carbon nanotubes or the gaps between the carbon nanotube fiber yarn bundles, causing the carbon nanotubes or carbon The structural form of the nanotube fiber yarn bundle changes; because the nanoparticle composite carbon nanotube fiber yarn is spirally wound on the outer layer of the thermal expansion material layer, the nanoparticle composite carbon nanotube fiber yarn produces a telescopic or rotational driving effect; Since the nanoparticle composite carbon nanotube fiber yarn is wrapped around the thermal expansion material to form a multi-layer stacked structure, the nanoparticle composite carbon nanotube fiber yarn material has fast heat transfer performance and can quickly transmit light and heat to the thermal expansion material layer, causing thermal expansion. The transmitted heat received by the material layer shows a superposition effect, and the temperature of the thermal expansion material layer increases faster, producing a thermal expansion driving effect under high temperature conditions; the thermal expansion material layer spirally winds the nanoparticle composite carbon nanotube fiber yarn in close contact The driving of the layers produces a synergistic amplification effect; because the nanoparticle composite carbon nanotube fiber yarn is spirally wound around the thermal expansion material into a multi-layer stacked structure, a linked and synergistic telescopic or rotational driving enhancement effect is produced under the action of light and heat.

上述方案中,所述碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器,包括:纳米粒子复合型碳纳米管纤维纱线纺布、热膨胀材料层、激光接收器、激光器;所述热膨胀材料包括:固体热膨胀材料、液体热膨胀材料或气体热膨胀材料;所述液体热膨胀材料和气体热膨胀材料均被导热性能良好的弹性物质包覆构成,包括:液体热膨胀材料微胶囊或气体热膨胀材料微胶囊;所述液体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆液体热膨胀材料,并构成微胶囊结构;所述气体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆气体热膨胀材料,并构成微胶囊结构;所述固体热膨胀材料包括:有机高分子热膨胀材料、无机相变热膨胀材料、无机有机杂化热膨胀材料或固体热膨胀材料微胶囊;所述固体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆固体热膨胀材料,并构成微胶囊结构;所述纳米粒子复合型碳纳米管纤维纱线纺布由纳米粒子复合型碳纳米管纤维纱线编纺制成;所述纳米粒子复合型碳纳米管纤维纱线包括:采用将纳米粒子与碳纳米管纤维纱线进行组装或复合,并将纳米粒子组装或复合在碳纳米管孔洞内或碳纳米管纤维聚集束的间隙内;所述纳米粒子复合型碳纳米管纤维纱线,包括:由多束单根碳纳米管或碳纳米管聚集束纤维经过组装纳米粒子后,采用并股工艺形成的复股纤维,通过加捻过程并组成具有螺旋结构连续纱线;所述纳米粒子包括:带电荷的纳米颗粒、纳米电解质物质或纳米离子体;所述纳米粒子复合型碳纳米管纤维纱线纺布与热膨胀材料层紧密相接触,并构成双层或多层互相间隔叠置螺旋结构,其一端装配激光接收器,与双层或多层互相间隔叠置纳米粒子复合型碳纳米管纤维纱线纺布一端相接触和热膨胀材料层一端相接触,其另一端连接驱动输出装置,并构成一体化的碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器。In the above solution, the carbon nanotube fiber yarn fabric and thermal expansion material layer are stacked to form a spiral laser photothermal driver, including: nanoparticle composite carbon nanotube fiber yarn fabric, thermal expansion material layer, laser receiver, laser ; The thermal expansion materials include: solid thermal expansion materials, liquid thermal expansion materials or gas thermal expansion materials; the liquid thermal expansion materials and gas thermal expansion materials are both covered by elastic materials with good thermal conductivity, including: liquid thermal expansion material microcapsules or gas thermal expansion materials Material microcapsules; the liquid thermal expansion material microcapsules include: using an elastic material film with good thermal conductivity to cover the liquid thermal expansion material, and forming a microcapsule structure; the gas thermal expansion material microcapsules include: using an elastic material film with good thermal conductivity The gas thermal expansion material is coated and constitutes a microcapsule structure; the solid thermal expansion material includes: organic polymer thermal expansion material, inorganic phase change thermal expansion material, inorganic organic hybrid thermal expansion material or solid thermal expansion material microcapsule; the solid thermal expansion material microcapsule The capsule includes: an elastic material film with good thermal conductivity is used to cover a solid thermal expansion material and form a microcapsule structure; the nanoparticle composite carbon nanotube fiber yarn is woven from the nanoparticle composite carbon nanotube fiber yarn. Made; the nanoparticle composite carbon nanotube fiber yarn includes: assembling or compounding the nanoparticles and the carbon nanotube fiber yarn, and assembling or compounding the nanoparticles in the carbon nanotube holes or the carbon nanotubes. Within the gaps between fiber aggregated bundles; the nanoparticle composite carbon nanotube fiber yarn includes: a complex composite formed by multiple bundles of single carbon nanotubes or carbon nanotube aggregated bundle fibers using the stranding process after assembling nanoparticles. The stranded fibers are formed into a continuous yarn with a helical structure through a twisting process; the nanoparticles include: charged nanoparticles, nanoelectrolyte substances or nanoparticles; the nanoparticle composite carbon nanotube fiber yarn fabric It is in close contact with the thermal expansion material layer and forms a double-layer or multi-layer mutually spaced and stacked spiral structure. One end of it is equipped with a laser receiver, and the double-layer or multi-layer mutually spaced and stacked nanoparticle composite carbon nanotube fiber yarn is spun. One end of the cloth is in contact with one end of the thermal expansion material layer, and the other end is connected to the drive output device, forming an integrated spiral laser photothermal driver in which the carbon nanotube fiber yarn fabric and the thermal expansion material layer are stacked.

所述碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器的工作过程为:激光器的激光束照射或通过光导纤维传输给激光接收器;激光接收器将光热传输给纳米粒子复合型碳纳米管纤维纱线纺布层与热膨胀材料层;由于纳米粒子复合型碳纳米管纤维纱线纺布层与热膨胀材料层呈紧密接触并相间隔叠置构成连续螺旋结构,在光热作用下带电荷的纳米粒子进入碳纳米管的中空结构内或碳纳米管纤维纱线布的间隙内,促使碳纳米管或碳纳米管纤维纱线布的结构形态发生改变;由于纳米粒子复合型碳纳米管纤维纱线布缠绕在热膨胀材料层的外层,纳米粒子复合型碳纳米管纤维纱线布则产生伸缩或旋转驱动效应;由于纳米粒子复合型碳纳米管纤维纱线布具有优良的导热性能,具有“三明治”夹心结构的纳米粒子复合型碳纳米管纤维纱线布能够将光热快速传输给中间层的热膨胀材料层,使热膨胀材料层接收的热量呈现叠加效应,其温度升高速度加快,热膨胀材料层在高温条件下产生热膨胀驱动效应,并对纳米粒子复合型碳纳米管纤维纱线布的驱动力或驱动位移产生协同放大作用;由于纳米粒子复合型碳纳米管纤维纱线布与热膨胀材料层为紧密相接触的叠置结构,在光热作用下产生联动与协同作用的伸缩或旋转驱动增强效应。The working process of the spiral laser photothermal driver stacked with layers of carbon nanotube fiber yarns and thermal expansion materials is: the laser beam of the laser is irradiated or transmitted to the laser receiver through the optical fiber; the laser receiver transmits the photothermal energy to the nanometer The particle composite carbon nanotube fiber yarn woven layer and the thermal expansion material layer; because the nanoparticle composite carbon nanotube fiber yarn woven layer and the thermal expansion material layer are in close contact and are spaced apart to form a continuous spiral structure, under the light Under the action of heat, charged nanoparticles enter the hollow structure of carbon nanotubes or the gaps in carbon nanotube fiber yarn cloth, causing the structural morphology of carbon nanotubes or carbon nanotube fiber yarn cloth to change; due to the composite of nanoparticles The nanoparticle composite carbon nanotube fiber yarn cloth is wrapped around the outer layer of the thermal expansion material layer, and the nanoparticle composite carbon nanotube fiber yarn cloth produces a telescopic or rotational driving effect; because the nanoparticle composite carbon nanotube fiber yarn cloth has excellent With excellent thermal conductivity, the nanoparticle composite carbon nanotube fiber yarn cloth with a "sandwich" sandwich structure can quickly transmit light and heat to the thermal expansion material layer in the middle layer, so that the heat received by the thermal expansion material layer presents a superposition effect, and its temperature rises. With high speed acceleration, the thermal expansion material layer produces a thermal expansion driving effect under high temperature conditions, and has a synergistic amplification effect on the driving force or driving displacement of the nanoparticle composite carbon nanotube fiber yarn cloth; due to the nanoparticle composite carbon nanotube fiber yarn cloth The wire cloth and the thermal expansion material layer are in close contact with each other and have a stacked structure. Under the action of light and heat, they produce a telescopic or rotational drive enhancement effect of linkage and synergy.

上述方案中,所述碳纳米管纤维纱线复合热膨胀材料筒型激光光热驱动器,包括:碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器、碳纳米管纤维纱线复合热膨胀材料筒型纱线束芯式激光光热驱动器;所述碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器,包括:纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层、热膨胀材料筒层、纳米粒子复合型碳纳米管纤维纱线缠绕层、激光接收器、激光器;所述热膨胀材料包括:固体热膨胀材料、液体热膨胀材料和气体热膨胀材料;所述液体热膨胀材料和气体热膨胀材料均被导热性能良好的弹性物质包覆构成,包括:液体热膨胀材料微胶囊、气体热膨胀材料微胶囊;所述液体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆液体热膨胀材料,并构成微胶囊结构;所述气体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆气体热膨胀材料,并构成微胶囊结构;所述固体热膨胀材料包括:有机高分子热膨胀材料、无机相变热膨胀材料、无机有机杂化热膨胀材料或固体热膨胀材料微胶囊;所述固体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆固体热膨胀材料,并构成微胶囊结构;所述纳米粒子复合型碳纳米管纤维纱线螺旋弹簧,采用多束纳米粒子复合型碳纳米管纤维纱线或纳米粒子复合型碳纳米管纤维纱线束螺旋加工制作;所述纳米粒子复合型碳纳米管纤维纱线包括:采用将纳米粒子与碳纳米管纤维纱线进行组装或复合,并将纳米粒子组装或复合在碳纳米管孔洞内或碳纳米管纤维聚集束的间隙内;纳米粒子复合型碳纳米管纤维纱线,包括:由多束单根碳纳米管或碳纳米管聚集束纤维经过组装纳米粒子后,采用并股工艺形成的复股纤维,通过加捻过程并组成具有螺旋结构连续纱线;所述纳米粒子包括:带电荷的纳米颗粒、纳米电解质物质或纳米离子体;所述纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层装配于中部;所述热膨胀材料筒层装配于碳纳米管纤维纱线螺旋弹簧层外面,并紧密相接触;所述纳米粒子复合型碳纳米管纤维纱线按照一定的角度螺旋缠绕在热膨胀材料筒层外面,构成纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层;所述激光接收器装配于一端,与纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层一端相接触、热膨胀材料筒层一端相接触、纳米粒子复合型碳纳米管纤维纱线缠绕层一端相接触,并构成一体化的碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器。In the above solution, the carbon nanotube fiber yarn composite thermal expansion material cylindrical laser photothermal driver includes: carbon nanotube fiber yarn composite thermal expansion material cylindrical spring core laser photothermal driver, carbon nanotube fiber yarn composite Thermal expansion material cylindrical yarn beam core laser photothermal driver; the carbon nanotube fiber yarn composite thermal expansion material cylindrical spring core laser photothermal driver includes: nanoparticle composite carbon nanotube fiber yarn spiral spring layer , thermal expansion material cylinder layer, nanoparticle composite carbon nanotube fiber yarn winding layer, laser receiver, laser; the thermal expansion material includes: solid thermal expansion material, liquid thermal expansion material and gas thermal expansion material; the liquid thermal expansion material and gas Thermal expansion materials are all covered with elastic materials with good thermal conductivity, including: liquid thermal expansion material microcapsules and gas thermal expansion material microcapsules; the liquid thermal expansion material microcapsules include: liquid thermal expansion materials coated with elastic material films with good thermal conductivity. , and constitute a microcapsule structure; the gas thermal expansion material microcapsule includes: an elastic material film with good thermal conductivity is used to coat the gas thermal expansion material, and constitute a microcapsule structure; the solid thermal expansion material includes: organic polymer thermal expansion material, inorganic Phase change thermal expansion materials, inorganic-organic hybrid thermal expansion materials or solid thermal expansion material microcapsules; the solid thermal expansion material microcapsules include: using an elastic material film with good thermal conductivity to coat the solid thermal expansion material and forming a microcapsule structure; the nanometer The particle composite carbon nanotube fiber yarn spiral spring is produced by spiral processing of multiple bundles of nanoparticle composite carbon nanotube fiber yarn or nanoparticle composite carbon nanotube fiber yarn bundles; the nanoparticle composite carbon nanotube Fiber yarns include: assembling or compounding nanoparticles and carbon nanotube fiber yarns, and assembling or compounding the nanoparticles in carbon nanotube holes or in the gaps between carbon nanotube fiber aggregate bundles; nanoparticle composite carbon Nanotube fiber yarns include: multi-stranded fibers formed from multiple bundles of single carbon nanotubes or aggregated bundles of carbon nanotubes, which are assembled with nanoparticles and then stranded using a plying process. Through the twisting process, a continuous yarn with a spiral structure is formed. line; the nanoparticles include: charged nanoparticles, nanoelectrolyte substances or nanoparticles; the nanoparticle composite carbon nanotube fiber yarn spiral spring layer is assembled in the middle; the thermal expansion material cylinder layer is assembled in the carbon The nanotube fiber yarn is outside the spiral spring layer and is in close contact with each other; the nanoparticle composite carbon nanotube fiber yarn is spirally wound at a certain angle outside the thermal expansion material cylinder layer to form a nanoparticle composite carbon nanotube fiber yarn. The wire spiral winding layer; the laser receiver is assembled at one end, in contact with one end of the nanoparticle composite carbon nanotube fiber yarn spiral spring layer, one end of the thermal expansion material cylinder layer, and the nanoparticle composite carbon nanotube fiber yarn One end of the winding layer is in contact and forms an integrated carbon nanotube fiber yarn composite thermal expansion material cylindrical spring core laser photothermal driver.

所述碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器的工作过程为:激光器的激光束照射或通过光导纤维传输给激光接收器;激光接收器将光热传输给纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层、热膨胀材料筒层、纳米粒子复合型碳纳米管纤维纱线缠绕层;在光热作用下,带电荷的纳米粒子进入碳纳米管的中空结构内、碳纳米管纤维纱线螺旋弹簧间隙内或碳纳米管纤维纱线束间隙内,促使碳纳米管、碳纳米管纤维纱线螺旋弹簧或碳纳米管纤维纱线束的结构形态发生改变;纳米粒子复合型碳纳米管纤维纱线螺旋弹簧产生伸缩或旋转驱动效应,纳米粒子复合型碳纳米管纤维纱线束产生伸缩或旋转驱动效应;由于纳米粒子复合型碳纳米管纤维纱线呈螺旋缠绕在热膨胀材料筒的外层,纳米粒子复合型碳纳米管纤维纱线螺旋弹簧在中芯层,与热膨胀材料筒层共同构成“三明治”式的夹心结构,则由于纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层与纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层均具有优良的导热性能,共同对中间的热膨胀材料筒产生热传导作用,使对热膨胀材料筒产生热传导叠加作用,则热膨胀材料筒的温度升高速度加快,热膨胀材料筒在高温条件下产生热膨胀驱动效应,并对纳米粒子复合型碳纳米管纤维纱线螺旋弹簧或纳米粒子复合型碳纳米管纤维纱线束的驱动产生协同放大作用;因此,纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层、纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层与热膨胀材料筒层,在光热作用下产生联动与协同作用的伸缩或旋转驱动增强效应。The working process of the carbon nanotube fiber yarn composite thermal expansion material cylindrical spring core laser photothermal driver is: the laser beam of the laser is irradiated or transmitted to the laser receiver through the optical fiber; the laser receiver transmits photothermal to the nanoparticles Composite carbon nanotube fiber yarn spiral spring layer, thermal expansion material cylinder layer, nanoparticle composite carbon nanotube fiber yarn winding layer; under the action of light and heat, charged nanoparticles enter the hollow structure of the carbon nanotube, In the gap of the carbon nanotube fiber yarn coil spring or in the gap of the carbon nanotube fiber yarn bundle, the structural form of the carbon nanotube, the carbon nanotube fiber yarn coil spring or the carbon nanotube fiber yarn bundle is changed; nanoparticles The composite carbon nanotube fiber yarn spiral spring produces a telescopic or rotational driving effect, and the nanoparticle composite carbon nanotube fiber yarn bundle produces a telescopic or rotational driving effect; because the nanoparticle composite carbon nanotube fiber yarn is spirally wound around In the outer layer of the thermal expansion material cylinder, the nanoparticle composite carbon nanotube fiber yarn coil spring is in the core layer, and together with the thermal expansion material cylinder layer, form a "sandwich" sandwich structure. Due to the nanoparticle composite carbon nanotube fiber yarn Both the wire spiral winding layer and the nanoparticle composite carbon nanotube fiber yarn spiral spring layer have excellent thermal conductivity, and jointly produce heat conduction to the thermal expansion material cylinder in the middle, causing a thermal conduction superposition effect on the thermal expansion material cylinder, and the thermal expansion material cylinder The temperature rises faster, and the thermal expansion material cylinder produces a thermal expansion driving effect under high temperature conditions, and synergistically amplifies the driving of the nanoparticle composite carbon nanotube fiber yarn coil spring or the nanoparticle composite carbon nanotube fiber yarn bundle. function; therefore, the nanoparticle composite carbon nanotube fiber yarn spiral winding layer, the nanoparticle composite carbon nanotube fiber yarn spiral spring layer and the thermal expansion material cylinder layer produce linkage and synergistic expansion or contraction under the action of light and heat. Rotary drive enhancement effect.

上述方案中,所述碳纳米管纤维纱线复合热膨胀材料筒型纱线束芯式激光光热驱动器,包括:纳米粒子复合型碳纳米管纤维纱线束层、热膨胀材料筒层、纳米粒子复合型碳纳米管纤维纱线纺布、激光接收器、激光器;所述热膨胀材料包括:固体热膨胀材料、液体热膨胀材料和气体热膨胀材料;所述液体热膨胀材料和气体热膨胀材料均被导热性能良好的弹性物质包覆构成,包括:液体热膨胀材料微胶囊、气体热膨胀材料微胶囊;所述液体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆液体热膨胀材料,并构成微胶囊结构;所述气体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆气体热膨胀材料,并构成微胶囊结构;所述固体热膨胀材料包括:有机高分子热膨胀材料、无机相变热膨胀材料、无机有机杂化热膨胀材料或固体热膨胀材料微胶囊;所述固体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆固体热膨胀材料,并构成微胶囊结构;所述纳米粒子复合型碳纳米管纤维纱线束层采用多束单根碳纳米管纤维纱线构成;所述纳米粒子复合型碳纳米管纤维纱线采用将纳米粒子与纳米粒子复合型碳纳米管纤维纱线进行组装或复合,并将纳米粒子组装或复合在碳纳米管孔洞内或碳纳米管纤维聚集束的间隙内;纳米粒子复合型碳纳米管纤维纱线,包括:由多束单根碳纳米管或碳纳米管聚集束纤维经过组装纳米粒子后,采用并股工艺形成的复股纤维,通过加捻过程并组成具有螺旋结构连续纱线;所述纳米粒子包括:带电荷的纳米颗粒、纳米电解质物质或纳米离子体;所述纳米粒子复合型碳纳米管纤维纱线束层装配于中部;所述热膨胀材料筒层装配于纳米粒子复合型碳纳米管纤维纱线束层外面,并紧密接触;所述纳米粒子复合型碳纳米管纤维纱线纺布装配于热膨胀材料筒层外面,并紧密接触;所述激光接收器装配于一端,并与纳米粒子复合型碳纳米管纤维纱线束层一端相接触、热膨胀材料筒层一端相接触、纳米粒子复合型碳纳米管纤维纱线纺布一端相接触,并构成一体化的碳纳米管纤维纱线复合热膨胀材料筒型纱线束芯式激光光热驱动器。In the above solution, the carbon nanotube fiber yarn composite thermal expansion material barrel type yarn beam core laser photothermal driver includes: nanoparticle composite carbon nanotube fiber yarn bundle layer, thermal expansion material barrel layer, nanoparticle composite carbon nanotube fiber yarn fabric, laser receiver, laser; the thermal expansion materials include: solid thermal expansion materials, liquid thermal expansion materials and gas thermal expansion materials; the liquid thermal expansion materials and gas thermal expansion materials are both made of elastic materials with good thermal conductivity The material coating composition includes: liquid thermal expansion material microcapsules and gas thermal expansion material microcapsules; the liquid thermal expansion material microcapsules include: using an elastic material film with good thermal conductivity to coat the liquid thermal expansion material and forming a microcapsule structure; The gas thermal expansion material microcapsule includes: an elastic material film with good thermal conductivity is used to coat the gas thermal expansion material and form a microcapsule structure; the solid thermal expansion material includes: organic polymer thermal expansion material, inorganic phase change thermal expansion material, inorganic organic hybrid Thermal expansion materials or solid thermal expansion material microcapsules; the solid thermal expansion material microcapsules include: using an elastic material film with good thermal conductivity to cover the solid thermal expansion material and forming a microcapsule structure; the nanoparticle composite carbon nanotube fiber yarn The bundle layer is composed of multiple bundles of single carbon nanotube fiber yarns; the nanoparticle composite carbon nanotube fiber yarn is assembled or compounded by nanoparticles and nanoparticle composite carbon nanotube fiber yarns, and the nanoparticle composite carbon nanotube fiber yarn is Particles are assembled or compounded in carbon nanotube holes or in the gaps between carbon nanotube fiber aggregated bundles; nanoparticle composite carbon nanotube fiber yarns include: multiple bundles of single carbon nanotubes or carbon nanotube aggregated bundle fibers passing through After assembling the nanoparticles, the multi-strand fibers formed by the doubling process are formed into a continuous yarn with a spiral structure through a twisting process; the nanoparticles include: charged nanoparticles, nanoelectrolyte substances or nanoionics; The nanoparticle composite carbon nanotube fiber yarn bundle layer is assembled in the middle; the thermal expansion material cylinder layer is assembled outside the nanoparticle composite carbon nanotube fiber yarn bundle layer and is in close contact; the nanoparticle composite carbon nanotube fiber yarn bundle layer The tube fiber yarn fabric is assembled outside the thermal expansion material cylinder layer and is in close contact; the laser receiver is assembled at one end and in contact with one end of the nanoparticle composite carbon nanotube fiber yarn bundle layer and one end of the thermal expansion material cylinder layer. One end of the nanoparticle composite carbon nanotube fiber yarn is in contact with each other and forms an integrated carbon nanotube fiber yarn composite thermal expansion material cylinder yarn beam core laser photothermal driver.

所述碳纳米管纤维纱线复合热膨胀材料筒型纱线束芯式激光光热驱动器的工作过程为:激光器的激光束照射或通过光导纤维传输给激光接收器;激光接收器将光热传输给纳米粒子复合型碳纳米管纤维纱线束芯层、热膨胀材料筒层、纳米粒子复合型碳纳米管纤维纱线缠绕层;在光热作用下,带电荷的纳米粒子进入碳纳米管的中空结构内、碳纳米管纤维纱线束芯间隙内或碳纳米管纤维纱线束间隙内,促使碳纳米管、碳纳米管纤维纱线束的结构形态发生改变;纳米粒子复合型碳纳米管纤维纱线束芯产生伸缩驱动效应;纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层产生伸缩或旋转驱动效应;由于纳米粒子复合型碳纳米管纤维纱线呈螺旋缠绕在热膨胀材料筒的外层,纳米粒子复合型碳纳米管纤维纱线束芯在中心层,与中间层的热膨胀材料层共同形成“三明治”式的紧密结构;由于纳米粒子复合型碳纳米管纤维纱线具有优良的导热性能,共同对中间的热膨胀材料筒产生热传导作用,使对热膨胀材料筒产生热传导叠加作用,则热膨胀材料筒的温度升高速度加快,在高温条件下产生热膨胀驱动效应,并对纳米粒子复合型碳纳米管纤维纱线束芯或纳米粒子复合型碳纳米管纤维纱线束的驱动产生协同放大作用;因此,纳米粒子复合型碳纳米管纤维纱线束芯、纳米粒子复合型碳纳米管纤维纱线缠绕层与热膨胀材料筒在光热作用下产生联动与协同作用的伸缩或旋转驱动增强效应。The working process of the carbon nanotube fiber yarn composite thermal expansion material cylindrical yarn beam core laser photothermal driver is: the laser beam of the laser is irradiated or transmitted to the laser receiver through the optical fiber; the laser receiver transmits the photothermal Nanoparticle composite carbon nanotube fiber yarn bundle core layer, thermal expansion material cylinder layer, nanoparticle composite carbon nanotube fiber yarn winding layer; under the action of light and heat, charged nanoparticles enter the hollow structure of the carbon nanotube Within the gap between the core of the carbon nanotube fiber yarn bundle or the gap between the carbon nanotube fiber yarn bundle, the structural morphology of the carbon nanotube and the carbon nanotube fiber yarn bundle is changed; nanoparticle composite carbon nanotube fiber yarn The wire harness core produces a telescopic driving effect; the spirally wound layer of the nanoparticle composite carbon nanotube fiber yarn produces a telescopic or rotational driving effect; because the nanoparticle composite carbon nanotube fiber yarn is spirally wound on the outer layer of the thermal expansion material cylinder, The core of the nanoparticle composite carbon nanotube fiber yarn is in the center layer, and together with the thermal expansion material layer in the middle layer, it forms a tight "sandwich" structure; because the nanoparticle composite carbon nanotube fiber yarn has excellent thermal conductivity, Together they produce a thermal conductive effect on the thermal expansion material cylinder in the middle, causing a thermal conduction superposition effect on the thermal expansion material cylinder. Then the temperature of the thermal expansion material cylinder increases faster, producing a thermal expansion driving effect under high temperature conditions, and affecting the nanoparticle composite carbon nanotubes. The driving of the fiber yarn bundle core or the nanoparticle composite carbon nanotube fiber yarn bundle produces a synergistic amplification effect; therefore, the nanoparticle composite carbon nanotube fiber yarn bundle core and the nanoparticle composite carbon nanotube fiber yarn winding The layer and the thermal expansion material cylinder produce a linkage and synergistic telescopic or rotational driving enhancement effect under the action of light and heat.

上述方案中,所述碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器,包括:纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层、热膨胀材料、激光接收器、激光器;所述热膨胀材料包括:固体热膨胀材料、液体热膨胀材料或气体热膨胀材料;所述液体热膨胀材料和气体热膨胀材料均被导热性能良好的弹性物质包覆构成,包括:液体热膨胀材料微胶囊或气体热膨胀材料微胶囊;所述液体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆液体热膨胀材料,并构成微胶囊结构;所述气体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆气体热膨胀材料,并构成微胶囊结构;所述固体热膨胀材料包括:有机高分子热膨胀材料、无机相变热膨胀材料、无机有机杂化热膨胀材料或固体热膨胀材料微胶囊;所述固体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆固体热膨胀材料,并构成微胶囊结构;所述纳米粒子复合型碳纳米管纤维纱线螺旋弹簧采用由纳米粒子复合型碳纳米管纤维纱线螺旋加工制作;所述纳米粒子复合型碳纳米管纤维纱线采用将纳米粒子与碳纳米管纤维纱线进行组装或复合,并将纳米粒子组装或复合在碳纳米管孔洞内或碳纳米管纤维聚集束间隙内;所述碳纳米管纤维纱线,包括:由多束单根碳纳米管或碳纳米管聚集束纤维经过组装纳米粒子后,采用并股工艺形成的复股纤维,通过加捻过程并组成具有螺旋结构连续纱线;所述纳米粒子包括:带电荷的纳米颗粒、纳米电解质物质或纳米离子体;所述热膨胀材料渗透于碳纳米管孔洞、碳纳米管纤维纱线孔洞或碳纳米管纤维纱线弹簧间隙中,构成紧密复合结构体;所述激光接收器装配于一端,并与纳米粒子复合型碳纳米管纤维纱线弹簧和热膨胀材料紧密复合结构体相接触,构成碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器。In the above solution, the carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photothermal driver includes: a nanoparticle composite carbon nanotube fiber yarn spiral spring layer, a thermal expansion material, a laser receiver, and a laser; The thermal expansion materials include: solid thermal expansion materials, liquid thermal expansion materials or gas thermal expansion materials; the liquid thermal expansion materials and gas thermal expansion materials are both coated with elastic materials with good thermal conductivity, including: liquid thermal expansion material microcapsules or gas thermal expansion material microcapsules. Capsule; the liquid thermal expansion material microcapsule includes: an elastic material film with good thermal conductivity is used to cover the liquid thermal expansion material, and forms a microcapsule structure; the gas thermal expansion material microcapsule includes: an elastic material film with good thermal conductivity is used. Gas thermal expansion materials and constitute a microcapsule structure; the solid thermal expansion materials include: organic polymer thermal expansion materials, inorganic phase change thermal expansion materials, inorganic-organic hybrid thermal expansion materials or solid thermal expansion material microcapsules; the solid thermal expansion material microcapsules include : Use an elastic material film with good thermal conductivity to cover the solid thermal expansion material and form a microcapsule structure; the nanoparticle composite carbon nanotube fiber yarn spiral spring is made of nanoparticle composite carbon nanotube fiber yarn spiral processing ; The nanoparticle composite carbon nanotube fiber yarn is assembled or compounded with nanoparticles and carbon nanotube fiber yarn, and the nanoparticles are assembled or compounded in the carbon nanotube holes or in the gaps between the carbon nanotube fiber aggregate bundles Within; the carbon nanotube fiber yarn includes: a multi-stranded fiber formed by multiple bundles of single carbon nanotubes or carbon nanotube aggregated bundle fibers using a doubling process after assembling nanoparticles, and is formed through a twisting process. Continuous yarn with a spiral structure; the nanoparticles include: charged nanoparticles, nanoelectrolyte substances or nanoions; the thermal expansion material penetrates into carbon nanotube holes, carbon nanotube fiber yarn holes or carbon nanotube fibers In the gap between the yarn springs, a compact composite structure is formed; the laser receiver is assembled at one end and is in contact with the nanoparticle composite carbon nanotube fiber yarn spring and the thermal expansion material compact composite structure to form a carbon nanotube fiber yarn Line spring composite thermal expansion material integrated laser photothermal driver.

所述碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器的工作过程为:激光器的激光束照射或通过光导纤维传输给激光接收器;激光接收器将光热传输给纳米粒子复合型碳纳米管纤维纱线弹簧复合热膨胀材料;在光热作用下,带电荷的纳米粒子进入碳纳米管的中空结构内、碳纳米管纤维纱线束孔洞或间隙内或碳纳米管纤维纱线束弹簧的间隙内,促使碳纳米管、纳米粒子复合型碳纳米管纤维纱线束或纳米粒子复合型碳纳米管纤维纱线束弹簧层的结构形态发生改变;纳米粒子复合型碳纳米管纤维纱线束弹簧层产生伸缩或旋转驱动效应;由于纳米粒子复合型碳纳米管纤维纱线弹簧与热膨胀材料互相交叉渗透融合并紧密接触,且纳米粒子复合型碳纳米管纤维纱线弹簧层具有优良的导热性能,对热膨胀材料产生热传导叠加作用,则热膨胀材料的温度升高速度加快,热膨胀材料在高温条件下产生热膨胀驱动效应,并对纳米粒子复合型碳纳米管纤维纱线螺旋弹簧的驱动产生协同放大作用;由于纳米粒子复合型碳纳米管纤维纱线弹簧层与热膨胀材料筒为紧密接触的一体化结构,在光热作用下产生联动与协同作用的伸缩或旋转驱动增强效应。The working process of the carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photothermal driver is: the laser beam of the laser is irradiated or transmitted to the laser receiver through the optical fiber; the laser receiver transmits photothermal to the nanoparticle composite Type carbon nanotube fiber yarn spring composite thermal expansion material; under the action of light and heat, charged nanoparticles enter the hollow structure of the carbon nanotube, the holes or gaps in the carbon nanotube fiber yarn bundle, or the carbon nanotube fiber yarn In the gap of the bundle spring, the structural morphology of the spring layer of the carbon nanotube, nanoparticle composite carbon nanotube fiber yarn bundle or nanoparticle composite carbon nanotube fiber yarn bundle is changed; the nanoparticle composite carbon nanotube fiber The yarn bundle spring layer produces a telescopic or rotational driving effect; because the nanoparticle composite carbon nanotube fiber yarn spring and the thermal expansion material cross-penetrate, fuse, and are in close contact with each other, the nanoparticle composite carbon nanotube fiber yarn spring layer has excellent The thermal conductivity of the thermal expansion material will produce a thermal conductive superposition effect on the thermal expansion material, and the temperature of the thermal expansion material will increase faster. The thermal expansion material will produce a thermal expansion driving effect under high temperature conditions, and will drive the nanoparticle composite carbon nanotube fiber yarn coil spring. Synergistic amplification effect; since the nanoparticle composite carbon nanotube fiber yarn spring layer and the thermal expansion material cylinder are in close contact with the integrated structure, a linkage and synergistic telescopic or rotational driving enhancement effect is produced under the action of light and heat.

上述方案中,所述纳米粒子复合型碳纳米管纤维纱线中的碳纳米管纤维纱线制备方法包括:静电纺丝法、化学气相生长法(CVD)、湿法纺丝法、干法纺丝法、阵列纺丝法、双卷曲法、高温高速熔喷法、激光拉伸法、Xano Shear法;所述碳纳米管纤维包括:单壁碳纳米管纤维、多壁碳纳米管纤维;所述纳米粒子组装于碳纳米管纤维纱线方法,包括:共混熔融法(BFM)、溶液渗透法(INFITRATION)、混浸挤轧法(MLM)、包覆植入法(ICM)、混裹缠绕法(MWM)、涂层涂膜法(CFM)或健力接枝法(KBT)。In the above solution, the preparation method of the carbon nanotube fiber yarn in the nanoparticle composite carbon nanotube fiber yarn includes: electrospinning, chemical vapor growth (CVD), wet spinning, and dry spinning. Silk method, array spinning method, double crimping method, high temperature and high speed melt blowing method, laser drawing method, Xano Shear method; the carbon nanotube fiber includes: single wall carbon nanotube fiber, multi-wall carbon nanotube fiber; The methods for assembling the nanoparticles into carbon nanotube fiber yarns include: blending melting method (BFM), solution infiltration method (INFITRATION), mixed padding method (MLM), encapsulated implantation method (ICM), mixed wrapping Winding method (MWM), coating film method (CFM) or Kinili grafting method (KBT).

上述方案中,所述激光接收器包括:采用三维石墨烯材料及复合材料、碳纳米管复合材料、储热材料、碳纤维复合材料、储热与导热复合材料、无机导热材料或有机导热材料;所述三维石墨烯材料包括:三维石墨烯材料、三维石墨烯复合材料、三维氧化石墨烯材料、三维氧化石墨烯复合材料或三维多孔石墨烯复合材料;所述三维多孔石墨烯复合材料包括:三维多孔石墨烯海绵复合材料、三维多孔石墨烯水凝胶复合材料、三维多孔石墨烯气凝胶复合材料、三维多孔石墨烯泡沫复合材料或三维多孔氧化石墨烯组装体复合材料;所述三维多孔石墨烯复合材料包括:组装或添加石墨烯纳米片、纳米碳管或导热纳米材料构成的三维多孔石墨烯复合材料,其组装或添加物具有储热与导热增强效应。In the above solution, the laser receiver includes: using three-dimensional graphene materials and composite materials, carbon nanotube composite materials, heat storage materials, carbon fiber composite materials, heat storage and thermal conductivity composite materials, inorganic thermal conductive materials or organic thermal conductive materials; The three-dimensional graphene material includes: three-dimensional graphene material, three-dimensional graphene composite material, three-dimensional graphene oxide material, three-dimensional graphene oxide composite material or three-dimensional porous graphene composite material; the three-dimensional porous graphene composite material includes: three-dimensional porous graphene composite material Graphene sponge composite material, three-dimensional porous graphene hydrogel composite material, three-dimensional porous graphene aerogel composite material, three-dimensional porous graphene foam composite material or three-dimensional porous graphene oxide assembly composite material; the three-dimensional porous graphene Composite materials include: three-dimensional porous graphene composite materials composed of assembled or added graphene nanosheets, carbon nanotubes or thermally conductive nanomaterials, and their assembly or additions have heat storage and thermal conductivity enhancement effects.

本发明的碳纳米管纤维纱线复合热膨胀材料型激光光热驱动器具有以下有益效果:The carbon nanotube fiber yarn composite thermal expansion material laser photothermal driver of the present invention has the following beneficial effects:

a、本发明的碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器,采用纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层与热膨胀材料层紧密接触并间隔多层叠置结构,纳米粒子复合型碳纳米管纤维纱线材料具有快速传热性能;在光热作用下,带电荷的纳米粒子进入碳纳米管的中空结构内、碳纳米管纤维纱线间隙内,促使碳纳米管、碳纳米管纤维纱线束的结构形态发生改变,产生驱动效应,并能够将光热快速传输给热膨胀材料层,使热膨胀材料层接收的被传输热量呈现叠加效应,使热膨胀材料层在高温条件下产生热膨胀驱动效应;热膨胀材料层并对紧密相接触的纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层的驱动产生协同放大作用,在光热作用下产生联动与协同的伸缩或旋转驱动增强效应。a. The carbon nanotube fiber yarn wrapped with thermal expansion material multi-layer stacked laser photothermal driver of the present invention adopts the nanoparticle composite carbon nanotube fiber yarn spiral winding layer to be in close contact with the thermal expansion material layer and separated from the multi-layer stacked structure. Nano The particle composite carbon nanotube fiber yarn material has fast heat transfer performance; under the action of light and heat, the charged nanoparticles enter the hollow structure of the carbon nanotube and the gaps between the carbon nanotube fiber yarn, causing the carbon nanotube to The structural form of the carbon nanotube fiber yarn bundle changes, producing a driving effect, and can quickly transmit light and heat to the thermal expansion material layer, so that the transmitted heat received by the thermal expansion material layer presents a superposition effect, making the thermal expansion material layer Produce a thermal expansion driving effect; the thermal expansion material layer has a synergistic amplification effect on the driving of the closely contacted nanoparticle composite carbon nanotube fiber yarn spiral winding layer, and produces a linked and synergistic telescopic or rotational driving enhancement effect under the action of light and heat. .

b、本发明的碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器,采用纳米粒子复合型碳纳米管纤维纱线纺布与热膨胀材料层紧密相接触,并构成双层或多层互相间隔置螺旋结构,由于纳米粒子复合型碳纳米管纤维纱线布具有优良的导热性能,纳米粒子复合型碳纳米管纤维纱线布能够将光热快速传输给具有“三明治”夹心结构的中间层热膨胀材料层,使热膨胀材料层接收的热量呈现叠加效应,热膨胀材料层在高温条件下产生热膨胀驱动效应,并对纳米粒子复合型碳纳米管纤维纱线布的驱动力或驱动位移产生协同放大作用;由于纳米粒子复合型碳纳米管纤维纱线布与热膨胀材料层为紧密相接触的叠置结构,在光热作用下产生联动与协同作用的伸缩或旋转驱动增强效应。b. The carbon nanotube fiber yarn fabric and the thermal expansion material layer of the present invention are stacked with a spiral laser photothermal driver. The nanoparticle composite carbon nanotube fiber yarn fabric is in close contact with the thermal expansion material layer and forms a double layer. Or multiple layers of mutually spaced spiral structures. Since the nanoparticle composite carbon nanotube fiber yarn cloth has excellent thermal conductivity, the nanoparticle composite carbon nanotube fiber yarn cloth can quickly transmit light and heat to the "sandwich" sandwich. The thermal expansion material layer in the middle layer of the structure causes the heat received by the thermal expansion material layer to present a superposition effect. The thermal expansion material layer produces a thermal expansion driving effect under high temperature conditions, and exerts a driving force or driving displacement on the nanoparticle composite carbon nanotube fiber yarn cloth. Produce a synergistic amplification effect; because the nanoparticle composite carbon nanotube fiber yarn cloth and the thermal expansion material layer are in close contact with the stacked structure, a linkage and synergistic telescopic or rotational drive enhancement effect is produced under the action of light and heat.

c、本发明的碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器,采用纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层、热膨胀材料筒层、纳米粒子复合型碳纳米管纤维纱线缠绕层共同构成“三明治”式的夹心结构,则由于纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层与纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层均具有优良的导热性能,共同对中间的热膨胀材料筒产生热传导作用,使对热膨胀材料筒产生热传导叠加作用,则热膨胀材料筒的温度升高速度加快,热膨胀材料筒在高温条件下产生热膨胀驱动效应,并对纳米粒子复合型碳纳米管纤维纱线螺旋弹簧或纳米粒子复合型碳纳米管纤维纱线束的驱动产生协同放大作用,在光热作用下产生联动与协同作用的伸缩或旋转驱动增强效应。c. The carbon nanotube fiber yarn composite thermal expansion material cylindrical spring core laser photothermal driver of the present invention adopts a nanoparticle composite carbon nanotube fiber yarn spiral spring layer, a thermal expansion material cylinder layer, and a nanoparticle composite carbon nanometer The tube fiber yarn winding layers together form a "sandwich" sandwich structure. Because the nanoparticle composite carbon nanotube fiber yarn spiral winding layer and the nanoparticle composite carbon nanotube fiber yarn spiral spring layer both have excellent thermal conductivity. properties, jointly produce a thermal conductive effect on the thermal expansion material cylinder in the middle, causing a thermal conduction superposition effect on the thermal expansion material cylinder, the temperature of the thermal expansion material cylinder increases faster, the thermal expansion material cylinder produces a thermal expansion driving effect under high temperature conditions, and has a thermal expansion driving effect on the nanoparticles The driving of the composite carbon nanotube fiber yarn coil spring or the nanoparticle composite carbon nanotube fiber yarn bundle produces a synergistic amplification effect, and produces a telescopic or rotational driving enhancement effect of linkage and synergy under the action of light and heat.

d、本发明的碳纳米管纤维纱线复合热膨胀材料型激光光热驱动器,采用了能量密度大和方向统一性好的激光来远程驱动,具有更好的独立性、实用性;整个驱动过程排除了电流的介入,无需采用电线从外界引入电源,有利于减小驱动系统及装置的尺寸和重量,易实现系统及装置的集成化和小型化;能够避免电磁干扰问题,可以实现长距离非接触传输及控制;本发明的驱动器具有在人工智能、光机电一体化和机器人领域中广泛运用前景。d. The carbon nanotube fiber yarn composite thermal expansion material type laser photothermal driver of the present invention uses a laser with high energy density and good direction uniformity for remote driving, and has better independence and practicality; the entire driving process eliminates The intervention of current eliminates the need to use wires to introduce power from the outside, which is beneficial to reducing the size and weight of drive systems and devices, making it easy to integrate and miniaturize systems and devices; it can avoid electromagnetic interference problems and can achieve long-distance non-contact transmission and control; the driver of the present invention has broad application prospects in the fields of artificial intelligence, optomechanical integration, and robotics.

附图说明Description of the drawings

下面将结合附图及实施例对本发明作进一步说明,附图中:The present invention will be further described below in conjunction with the accompanying drawings and examples. In the accompanying drawings:

图1是碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器的结构示意图;Figure 1 is a schematic structural diagram of a multi-layer stacked laser photothermal driver wrapped with carbon nanotube fiber yarns wrapped with thermal expansion materials;

图2是碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器的结构示意图;Figure 2 is a schematic structural diagram of a spiral laser photothermal driver stacked with layers of carbon nanotube fiber yarns and thermal expansion materials;

图3是纳米粒子复合型碳纳米管纤维纱线的结构示意图;Figure 3 is a schematic structural diagram of nanoparticle composite carbon nanotube fiber yarn;

图4是碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器的结构示意图;Figure 4 is a schematic structural diagram of a carbon nanotube fiber yarn composite thermal expansion material cylindrical spring core laser photothermal driver;

图5是纳米粒子复合型碳纳米管纤维纱线弹簧的结构示意图;Figure 5 is a schematic structural diagram of a nanoparticle composite carbon nanotube fiber yarn spring;

图6是碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器的结构示意图。Figure 6 is a schematic structural diagram of a carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photothermal driver.

其中,碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器1、碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器2、碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器3、碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器4、纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层5、第一热膨胀材料层6、第一激光接收器7、纳米粒子8、纳米粒子复合型碳纳米管纤维纱线9、纳米粒子复合型碳纳米管纤维纱线纺布10、第二热膨胀材料层11、第二激光接收器12、纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层13、热膨胀材料筒层14、纳米粒子复合型碳纳米管纤维纱线缠绕层15、第三激光接收器16、纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层17、热膨胀材料18、第四激光接收器19、驱动输出装置20、碳纳米管聚集束纤维21。Among them, carbon nanotube fiber yarn wrapped with thermal expansion material multi-layer stacked laser photothermal driver 1, carbon nanotube fiber yarn woven fabric and thermal expansion material layer stacked spiral laser photothermal driver 2, carbon nanotube fiber yarn composite thermal expansion material Cylindrical spring core laser photothermal driver 3. Carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photothermal driver 4. Nanoparticle composite carbon nanotube fiber yarn spiral winding layer 5. First thermal expansion material layer 6. First laser receiver 7, nanoparticles 8, nanoparticle composite carbon nanotube fiber yarn 9, nanoparticle composite carbon nanotube fiber yarn fabric 10, second thermal expansion material layer 11, second laser receiver Device 12, nanoparticle composite carbon nanotube fiber yarn spiral spring layer 13, thermal expansion material cylinder layer 14, nanoparticle composite carbon nanotube fiber yarn winding layer 15, third laser receiver 16, nanoparticle composite carbon Nanotube fiber yarn coil spring layer 17, thermal expansion material 18, fourth laser receiver 19, driving output device 20, carbon nanotube gathering bundle fiber 21.

具体实施方式Detailed ways

为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。In order to have a clearer understanding of the technical features, purposes and effects of the present invention, the specific embodiments of the present invention will now be described in detail with reference to the accompanying drawings.

实施例1.Example 1.

碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器1Carbon nanotube fiber yarn wrapped with thermal expansion material multi-layer stacked laser photothermal driver 1

本发明实施例1的碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器1结构示意图(见图1);纳米粒子复合型碳纳米管纤维纱线结构示意图(见图3)。A schematic structural diagram of a multi-layer stacked laser photothermal driver 1 with carbon nanotube fiber yarns wrapped around thermal expansion materials in Embodiment 1 of the present invention (see Figure 1); a schematic structural diagram of nanoparticle composite carbon nanotube fiber yarns (see Figure 3).

本发明实施例1的碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器1(见图1),包括:纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层5、第一热膨胀材料层6、第一激光接收器7、激光器;第一热膨胀材料层6采用:有机高分子热膨胀材料;纳米粒子复合型纳米粒子复合型碳纳米管纤维纱线9(见图3)采用将带电荷的纳米粒子与碳纳米管纤维纱线进行组装或复合,即将纳米粒子组装或复合在碳纳米管孔洞内或碳纳米管纤维聚集束的间隙内;纳米粒子复合型碳纳米管纤维纱线9,包括:由多束单根碳纳米管或碳纳米管聚集束纤维21经过组装纳米粒子后,采用并股工艺形成的复股纤维,通过加捻过程并组成具有螺旋结构连续纱线;纳米粒子8采用:带电荷的纳米颗粒;纳米粒子复合型碳纳米管纤维纱线9按照一定角度规则螺旋缠绕在固体第一热膨胀材料层6的外面,构成纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层5,紧密相接触,并构成双层或多层相互间隔且叠置的紧密结构(见图1),其一端装配第一激光接收器7,并与纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层5与多层第一热膨胀材料层6相间隔叠置的一端相接触,其另一端装配驱动输出装置,并构成一体化的碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器1。The carbon nanotube fiber yarn wrapped thermal expansion material multi-layer stacked laser photothermal driver 1 (see Figure 1) in Embodiment 1 of the present invention includes: a nanoparticle composite carbon nanotube fiber yarn spiral wrapping layer 5, a first thermal expansion material Layer 6, first laser receiver 7, laser; first thermal expansion material layer 6 is made of: organic polymer thermal expansion material; nanoparticle composite nanoparticle composite carbon nanotube fiber yarn 9 (see Figure 3) is made of charged The nanoparticles are assembled or compounded with the carbon nanotube fiber yarn, that is, the nanoparticles are assembled or compounded in the carbon nanotube holes or in the gaps between the carbon nanotube fiber aggregated bundles; the nanoparticle composite carbon nanotube fiber yarn 9, Including: multiple bundles of single carbon nanotubes or carbon nanotube aggregated bundle fibers 21 are assembled with nanoparticles and then formed using a plying process to form a continuous yarn with a spiral structure through a twisting process; nanoparticles 8 Using: charged nanoparticles; the nanoparticle composite carbon nanotube fiber yarn 9 is spirally wound outside the solid first thermal expansion material layer 6 according to a certain angle rule to form a nanoparticle composite carbon nanotube fiber yarn spiral winding layer 5. Closely contact each other and form a double-layer or multi-layer spaced and stacked close structure (see Figure 1), one end of which is equipped with the first laser receiver 7 and is spirally connected with the nanoparticle composite carbon nanotube fiber yarn. The winding layer 5 is in contact with one end of the multi-layer first thermal expansion material layer 6 that is spaced and stacked, and the other end is equipped with a drive output device, and constitutes an integrated carbon nanotube fiber yarn wrapped thermal expansion material multi-layer stacked laser photothermal driver 1.

碳纳米管纤维纱线缠绕热膨胀材料多层叠置型激光光热驱动器1的工作过程为:激光器的激光束照射或通过光导纤维传输给第一激光接收器7;第一激光接收器7将光热传输给纳米粒子复合型碳纳米管纤维纱线缠绕热膨胀材料多层叠置层;在光热作用下,带电荷的纳米粒子8进入碳纳米管的中空结构内或碳纳米管纤维纱线束间隙内,促使碳纳米管或纳米粒子复合型碳纳米管纤维纱线9束的结构形态发生改变;由于纳米粒子复合型碳纳米管纤维纱线9螺旋缠绕在第一热膨胀材料层6的外层,构成纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层5;纳米粒子复合型碳纳米管纤维纱线9产生伸缩或旋转驱动效应;由于纳米粒子复合型碳纳米管纤维纱线缠绕热膨胀材料为多层叠置结构,纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层5具有快速传热性能,能够将光热快速传输给第一热膨胀材料层6,使第一热膨胀材料层6接收的被传输热量呈现叠加效应,则第一热膨胀材料层6的温度升高速度加快,使第一热膨胀材料层6在高温条件下产生热膨胀驱动效应;第一热膨胀材料层6并对紧密相接触的纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层5的驱动产生协同放大作用;由于纳米粒子复合型碳纳米管纤维纱线螺旋缠绕热膨胀材料为多层叠置结构,在光热作用下产生联动与协同的伸缩或旋转驱动增强效应。The working process of the multi-layer stacked laser photothermal driver 1 with carbon nanotube fiber yarns wrapped around thermal expansion materials is as follows: the laser beam of the laser is irradiated or transmitted to the first laser receiver 7 through the optical fiber; the first laser receiver 7 transmits the photothermal The nanoparticle composite carbon nanotube fiber yarn is wrapped with multiple stacked layers of thermal expansion material; under the action of light and heat, the charged nanoparticles 8 enter the hollow structure of the carbon nanotube or the gap between the carbon nanotube fiber yarn bundles, Prompt the structural morphology of the carbon nanotube or nanoparticle composite carbon nanotube fiber yarn 9 bundles to change; because the nanoparticle composite carbon nanotube fiber yarn 9 is spirally wound on the outer layer of the first thermal expansion material layer 6, forming a nanometer The particle composite carbon nanotube fiber yarn is spirally wound layer 5; the nanoparticle composite carbon nanotube fiber yarn 9 produces a telescopic or rotational driving effect; due to the nanoparticle composite carbon nanotube fiber yarn winding thermal expansion material is multi-layer stacked Structure, the nanoparticle composite carbon nanotube fiber yarn spirally wound layer 5 has fast heat transfer performance and can quickly transmit light and heat to the first thermal expansion material layer 6, so that the transmitted heat received by the first thermal expansion material layer 6 is superimposed. effect, the temperature rise rate of the first thermal expansion material layer 6 accelerates, causing the first thermal expansion material layer 6 to produce a thermal expansion driving effect under high temperature conditions; the first thermal expansion material layer 6 reacts with the nanoparticle composite carbon nanoparticles in close contact The drive of the tube fiber yarn spirally wound layer 5 produces a synergistic amplification effect; because the nanoparticle composite carbon nanotube fiber yarn spirally wound thermal expansion material has a multi-layer stacked structure, a linked and coordinated telescopic or rotational drive is generated under the action of light and heat. Enhancement effect.

实施例2.Example 2.

碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器2Carbon nanotube fiber yarn woven fabric and thermal expansion material stacked spiral laser photothermal driver 2

本发明实施例2的碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器2结构示意图(见图2);纳米粒子复合型碳纳米管纤维纱线9结构示意(见图3)。Schematic diagram of the structure of the spiral laser photothermal driver 2 in which the carbon nanotube fiber yarn fabric and thermal expansion material layer are stacked in Embodiment 2 of the present invention (see Figure 2); the structure diagram of the nanoparticle composite carbon nanotube fiber yarn 9 (see Figure 3).

本发明实施例2的碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器2包括:纳米粒子复合型碳纳米管纤维纱线纺布10、第二热膨胀材料层11、第二激光接收器12、激光器;热膨胀材料11采用液体热膨胀材料微胶囊包括:采用导热性能良好的弹性物质膜包覆液体热膨胀材料,并构成微胶囊结构;纳米粒子复合型碳纳米管纤维纱线纺布10由纳米粒子复合型碳纳米管纤维纱线9编纺制成;纳米粒子复合型碳纳米管纤维纱线9(见图3)采用:采用将纳米粒子8与碳纳米管纤维纱线进行组装或复合,并将带电荷的纳米粒子8组装或复合在碳纳米管孔洞内或碳纳米管纤维聚集束的间隙内;纳米粒子复合型碳纳米管纤维纱线9,包括:由多束单根碳纳米管或碳纳米管聚集束纤维21经过组装纳米粒子后,采用并股工艺形成的复股纤维,通过加捻过程并组成具有螺旋结构连续纱线;所述纳米粒子8采用纳米电解质物质;纳米粒子复合型碳纳米管纤维纱线纺布10与第二热膨胀材料层11紧密相接触,并构成双层或多层互相间隔置螺旋结构(见图2),其一端装配第二激光接收器12,并与双层或多层互相间隔置的纳米粒子复合型碳纳米管纤维纱线纺布10和第二热膨胀材料层11叠置螺旋的一端紧密相接触,其另一端连接驱动输出装置,并构成一体化的碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器2。The carbon nanotube fiber yarn fabric and thermal expansion material layer stacked spiral laser photothermal driver 2 in Embodiment 2 of the present invention includes: nanoparticle composite carbon nanotube fiber yarn fabric 10, a second thermal expansion material layer 11, 2. Laser receiver 12, laser; thermal expansion material 11 adopts liquid thermal expansion material microcapsules, including: using an elastic material film with good thermal conductivity to coat the liquid thermal expansion material and forming a microcapsule structure; nanoparticle composite carbon nanotube fiber yarn spinning The cloth 10 is knitted and spun from the nanoparticle composite carbon nanotube fiber yarn 9; the nanoparticle composite carbon nanotube fiber yarn 9 (see Figure 3) is made by combining the nanoparticles 8 with the carbon nanotube fiber yarn. Assembling or compounding, and assembling or compounding the charged nanoparticles 8 in the holes of the carbon nanotubes or in the gaps between the aggregated bundles of carbon nanotube fibers; the nanoparticle composite carbon nanotube fiber yarn 9 includes: composed of multiple bundles of single After assembling nanoparticles, a carbon nanotube or carbon nanotube aggregate bundle fiber 21 is formed into a multi-stranded fiber using a plying process, and is twisted to form a continuous yarn with a spiral structure; the nanoparticles 8 are made of nanoelectrolyte substances ; The nanoparticle composite carbon nanotube fiber yarn fabric 10 is in close contact with the second thermal expansion material layer 11, and forms a double-layer or multi-layer mutually spaced spiral structure (see Figure 2), one end of which is equipped with a second laser receiver device 12, and is in close contact with one end of the stacked spiral of double or multi-layer nanoparticle composite carbon nanotube fiber yarn fabric 10 and the second thermal expansion material layer 11, and the other end is connected to the driving output device , and constitute an integrated spiral laser photothermal driver 2 composed of carbon nanotube fiber yarn fabric and thermal expansion material layer stacked.

碳纳米管纤维纱线纺布与热膨胀材料层叠置螺旋型激光光热驱动器2的工作过程为:激光器的激光束照射或通过光导纤维传输给第二激光接收器12;第二激光接收器12将光热传输给纳米粒子复合型碳纳米管纤维纱线纺布层10与第二热膨胀材料层11;由于纳米粒子复合型碳纳米管纤维纱线纺布层10与第二热膨胀材料层11呈紧密接触并相间隔叠置构成连续螺旋结构,在光热作用下带电荷的纳米电解质物质8进入碳纳米管的中空结构内或碳纳米管纤维纱线布10的间隙内,促使碳纳米管或碳纳米管纤维纱线布10的结构形态发生改变;由于纳米粒子复合型碳纳米管纤维纱线布10缠绕在第二热膨胀材料层11的外层,纳米粒子复合型碳纳米管纤维纱线布10则产生伸缩或旋转驱动效应;由于纳米粒子复合型碳纳米管纤维纱线布10具有优良的导热性能,纳米粒子复合型碳纳米管纤维纱线布10能够将光热快速传输给具有“三明治”夹心结构中间层的第二热膨胀材料层11,使第二热膨胀材料层11接收的热量呈现叠加效应,则第二热膨胀材料层11的温度升高速度加快,第二热膨胀材料层11在高温条件下产生热膨胀驱动效应,并对纳米粒子复合型碳纳米管纤维纱线布10的驱动力或驱动位移产生协同放大作用;由于纳米粒子复合型碳纳米管纤维纱线布10与第二热膨胀材料层11为紧密相接触的叠置结构,在光热作用下产生联动与协同作用的伸缩或旋转驱动增强效应。The working process of the spiral laser photothermal driver 2 in which the carbon nanotube fiber yarn is woven and layered with thermal expansion material is: the laser beam of the laser is irradiated or transmitted to the second laser receiver 12 through the optical fiber; the second laser receiver 12 The light and heat are transmitted to the nanoparticle composite carbon nanotube fiber yarn woven layer 10 and the second thermal expansion material layer 11; because the nanoparticle composite carbon nanotube fiber yarn woven layer 10 and the second thermal expansion material layer 11 are closely connected, Contacting and stacking at intervals to form a continuous spiral structure, the charged nanoelectrolyte substance 8 enters the hollow structure of the carbon nanotube or the gap of the carbon nanotube fiber yarn cloth 10 under the action of light and heat, causing the carbon nanotube or carbon The structural form of the nanotube fiber yarn cloth 10 changes; because the nanoparticle composite carbon nanotube fiber yarn cloth 10 is wrapped around the outer layer of the second thermal expansion material layer 11, the nanoparticle composite carbon nanotube fiber yarn cloth 10 Then a telescopic or rotational driving effect is produced; because the nanoparticle composite carbon nanotube fiber yarn cloth 10 has excellent thermal conductivity, the nanoparticle composite carbon nanotube fiber yarn cloth 10 can quickly transmit light and heat to the "sandwich" The second thermal expansion material layer 11 in the middle layer of the sandwich structure causes the heat received by the second thermal expansion material layer 11 to exhibit a superposition effect, so the temperature of the second thermal expansion material layer 11 rises faster, and the second thermal expansion material layer 11 under high temperature conditions Produce a thermal expansion driving effect, and produce a synergistic amplification effect on the driving force or driving displacement of the nanoparticle composite carbon nanotube fiber yarn cloth 10; because the nanoparticle composite carbon nanotube fiber yarn cloth 10 and the second thermal expansion material layer 11 It is a stacked structure in close contact, which produces a telescopic or rotational driving enhancement effect of linkage and synergy under the action of light and heat.

实施例3.Example 3.

碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器3Carbon nanotube fiber yarn composite thermal expansion material cylindrical spring core laser photothermal driver 3

本发明实施例3的碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器3结构示意图(见图4);纳米粒子复合型碳纳米管纤维纱线9结构示意(见图3);纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层13结构示意图(见图5)。Schematic structural diagram of the carbon nanotube fiber yarn composite thermal expansion material cylindrical spring core laser photothermal driver 3 in Embodiment 3 of the present invention (see Figure 4); structural diagram of the nanoparticle composite carbon nanotube fiber yarn 9 (see Figure 3 ); Schematic diagram of the structure of the nanoparticle composite carbon nanotube fiber yarn spiral spring layer 13 (see Figure 5).

碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器3,包括:纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层13、热膨胀材料筒层14、纳米粒子复合型碳纳米管纤维纱线缠绕层15、第三激光接收器16、激光器;热膨胀材料14采用:有机高分子热膨胀材料;纳米粒子复合型碳纳米管纤维纱线螺旋弹簧13,采用纳米粒子复合型碳纳米管纤维纱线9束螺旋加工制作;纳米粒子复合型碳纳米管纤维纱线9采用将带电荷的纳米粒子8与碳纳米管纤维纱线进行组装或复合,即将带电荷的纳米粒子8组装或复合在碳纳米管孔洞内或碳纳米管纤维聚集束的间隙内;纳米粒子复合型碳纳米管纤维纱线9,包括:由多数单根碳纳米管或碳纳米管聚集束纤维21经过组装纳米粒子后,采用并股工艺形成的复股纤维,通过加捻过程并组成具有螺旋结构连续纱线;纳米粒子8采用:带电荷的纳米颗粒;纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层13装配于中部;热膨胀材料筒层14装配于碳纳米管纤维纱线螺旋弹簧层13外面,并紧密相接触;纳米粒子复合型碳纳米管纤维纱线9按照一定的角度螺旋缠绕在热膨胀材料筒层14外面,构成纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层15;第三激光接收器16装配于一端,与纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层13一端相接触、热膨胀材料筒层14一端相接触、纳米粒子复合型碳纳米管纤维纱线缠绕层15一端相接触,并构成一体化的碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器3。Carbon nanotube fiber yarn composite thermal expansion material cylinder spring core laser photothermal driver 3, including: nanoparticle composite carbon nanotube fiber yarn spiral spring layer 13, thermal expansion material cylinder layer 14, nanoparticle composite carbon nanotube Fiber yarn winding layer 15, third laser receiver 16, laser; thermal expansion material 14 adopts: organic polymer thermal expansion material; nanoparticle composite carbon nanotube fiber yarn coil spring 13 adopts nanoparticle composite carbon nanotube fiber The yarn 9 bundles are produced by spiral processing; the nanoparticle composite carbon nanotube fiber yarn 9 is assembled or compounded with the charged nanoparticles 8 and the carbon nanotube fiber yarn, that is, the charged nanoparticles 8 are assembled or compounded in In the holes of carbon nanotubes or in the gaps between carbon nanotube fiber aggregate bundles; nanoparticle composite carbon nanotube fiber yarn 9 includes: a plurality of single carbon nanotubes or carbon nanotube aggregate bundle fibers 21 after assembling nanoparticles , the multi-ply fiber formed by the plying process is formed into a continuous yarn with a spiral structure through the twisting process; the nanoparticles 8 are made of: charged nanoparticles; the nanoparticle composite carbon nanotube fiber yarn spiral spring layer 13 is assembled in the middle; the thermal expansion material cylinder layer 14 is assembled outside the carbon nanotube fiber yarn spiral spring layer 13 and is in close contact; the nanoparticle composite carbon nanotube fiber yarn 9 is spirally wound around the thermal expansion material cylinder layer 14 at a certain angle On the outside, a spiral winding layer 15 of nanoparticle composite carbon nanotube fiber yarn is formed; a third laser receiver 16 is installed at one end, in contact with one end of the nanoparticle composite carbon nanotube fiber yarn spiral spring layer 13, and the thermal expansion material cylinder One end of the layer 14 is in contact, and one end of the nanoparticle composite carbon nanotube fiber yarn winding layer 15 is in contact, forming an integrated carbon nanotube fiber yarn composite thermal expansion material cylindrical spring core laser photothermal driver 3.

碳纳米管纤维纱线复合热膨胀材料筒型弹簧芯式激光光热驱动器3的工作过程为:激光器的激光束照射或通过光导纤维传输给第三激光接收器16;第三激光接收器16将光热传输给纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层13、热膨胀材料筒层14、纳米粒子复合型碳纳米管纤维纱线缠绕层15;在光热作用下,带电荷的纳米粒子8进入碳纳米管的中空结构内、碳纳米管纤维纱线螺旋弹簧间隙内或碳纳米管纤维纱线束间隙内,促使碳纳米管、碳纳米管纤维纱线螺旋弹簧或碳纳米管纤维纱线束的结构形态发生改变;纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层13产生伸缩或旋转驱动效应,纳米粒子复合型碳纳米管纤维纱线9束产生伸缩或旋转驱动效应;由于纳米粒子复合型碳纳米管纤维纱线呈螺旋缠绕在热膨胀材料筒层14的外层,纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层13在中芯层,与热膨胀材料筒层14共同构成“三明治”式的夹心结构,则由于纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层15与纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层13均具有优良的导热性能,共同对中间的热膨胀材料筒层14产生热传导作用,使对热膨胀材料筒层14产生热传导叠加作用,则热膨胀材料筒层14的温度升高速度加快,热膨胀材料筒层14在高温条件下产生热膨胀驱动效应,并对纳米粒子复合型碳纳米管纤维纱线螺旋弹簧13或纳米粒子复合型碳纳米管纤维纱线15束的驱动产生协同放大作用;因此,纳米粒子复合型碳纳米管纤维纱线螺旋缠绕层15、纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层13与热膨胀材料筒层14,在光热作用下产生联动与协同作用的伸缩或旋转驱动增强效应。The working process of the carbon nanotube fiber yarn composite thermal expansion material cylindrical spring core laser photothermal driver 3 is: the laser beam of the laser is irradiated or transmitted to the third laser receiver 16 through the optical fiber; the third laser receiver 16 transmits the light Heat is transmitted to the nanoparticle composite carbon nanotube fiber yarn spiral spring layer 13, the thermal expansion material cylinder layer 14, and the nanoparticle composite carbon nanotube fiber yarn winding layer 15; under the action of light and heat, the charged nanoparticles 8 Entering the hollow structure of carbon nanotubes, the gaps between carbon nanotube fiber yarn coil springs or the gaps between carbon nanotube fiber yarn bundles, causing the carbon nanotubes, carbon nanotube fiber yarn coil springs or carbon nanotube fiber yarns to The structural shape of the bundle changes; the nanoparticle composite carbon nanotube fiber yarn spiral spring layer 13 produces a telescopic or rotational driving effect, and the nanoparticle composite carbon nanotube fiber yarn 9 bundles produce a telescopic or rotational driving effect; due to the nanoparticles The composite carbon nanotube fiber yarn is spirally wound on the outer layer of the thermal expansion material cylinder layer 14, and the nanoparticle composite carbon nanotube fiber yarn spiral spring layer 13 is in the central core layer, forming a "sandwich" with the thermal expansion material cylinder layer 14. "type sandwich structure, because the nanoparticle composite carbon nanotube fiber yarn spiral winding layer 15 and the nanoparticle composite carbon nanotube fiber yarn spiral spring layer 13 both have excellent thermal conductivity, they jointly control the thermal expansion of the middle material. The cylinder layer 14 produces a thermal conduction effect, which causes a thermal conduction superposition effect on the thermal expansion material cylinder layer 14. Then the temperature of the thermal expansion material cylinder layer 14 increases at a faster rate. The thermal expansion material cylinder layer 14 produces a thermal expansion driving effect under high temperature conditions, and affects the nanoparticles. The driving of the composite carbon nanotube fiber yarn spiral spring 13 or the nanoparticle composite carbon nanotube fiber yarn 15 bundles produces a synergistic amplification effect; therefore, the nanoparticle composite carbon nanotube fiber yarn spiral winding layer 15, nanoparticles The composite carbon nanotube fiber yarn spiral spring layer 13 and the thermal expansion material cylinder layer 14 produce a linkage and synergistic telescopic or rotational driving enhancement effect under the action of light and heat.

实施例4.Example 4.

碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器4Carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photothermal driver 4

本发明实施例4的碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器4结构示意图(见图6);纳米粒子复合型碳纳米管纤维纱线9结构示意(见图3)。Schematic structural diagram of the carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photothermal driver 4 in Embodiment 4 of the present invention (see Figure 6); structural diagram of the nanoparticle composite carbon nanotube fiber yarn 9 (see Figure 3) .

碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器4,包括:纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层17、热膨胀材料18、第四激光接收器19、激光器、驱动输出装置20;热膨胀材料18采用:固体热膨胀材料;纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层17采用由纳米粒子复合型碳纳米管纤维纱线9螺旋加工制作;纳米粒子复合型碳纳米管纤维纱线9采用将纳米粒子与碳纳米管纤维纱线进行组装或复合,即将纳米粒子组装或复合在碳纳米管孔洞内或碳纳米管纤维聚集束间隙内;碳纳米管纤维纱线,包括:由多束单根碳纳米管或碳纳米管聚集束纤维21经过组装纳米粒子8后,采用并股工艺形成的复股纤维,通过加捻过程并组成具有螺旋结构连续纱线;纳米粒子8采用:纳米电解质物质;热膨胀材料18渗透于碳纳米管孔洞、碳纳米管纤维纱线孔洞或碳纳米管纤维纱线弹簧层17间隙中,构成紧密复合结构体;第四激光接收器19装配于一端,并与纳米粒子复合型碳纳米管纤维纱线弹簧层17和热膨胀材料18紧密复合结构体紧密接触,构成碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器4。Carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photothermal driver 4, including: nanoparticle composite carbon nanotube fiber yarn spiral spring layer 17, thermal expansion material 18, fourth laser receiver 19, laser, driver Output device 20; thermal expansion material 18 is made of: solid thermal expansion material; nanoparticle composite carbon nanotube fiber yarn spiral spring layer 17 is made of nanoparticle composite carbon nanotube fiber yarn 9 spiral processing; nanoparticle composite carbon nano The tube fiber yarn 9 is assembled or compounded with nanoparticles and carbon nanotube fiber yarn, that is, the nanoparticles are assembled or compounded in the carbon nanotube holes or in the gaps between the carbon nanotube fiber aggregated bundles; the carbon nanotube fiber yarn, It includes: a multi-stranded fiber formed by multiple bundles of single carbon nanotubes or carbon nanotube aggregated bundle fibers 21 after being assembled with nanoparticles 8, using a plying process, and formed into a continuous yarn with a spiral structure through a twisting process; nanoparticles 8 uses: nano electrolyte substance; thermal expansion material 18 penetrates into the carbon nanotube holes, carbon nanotube fiber yarn holes or carbon nanotube fiber yarn spring layer 17 gaps to form a compact composite structure; the fourth laser receiver 19 is assembled At one end, it is in close contact with the nanoparticle composite carbon nanotube fiber yarn spring layer 17 and the thermal expansion material 18 compact composite structure to form the carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photothermal driver 4.

碳纳米管纤维纱线弹簧复合热膨胀材料一体化型激光光热驱动器4的工作过程为:激光器的激光束照射或通过光导纤维传输给第四激光接收器19;第四激光接收器19将光热传输给纳米粒子复合型碳纳米管纤维纱线弹簧层17复合热膨胀材料18;在光热作用下,带电荷的纳米电解质物质8进入碳纳米管的中空结构内、碳纳米管纤维纱线束孔洞或间隙内或碳纳米管纤维纱线束弹簧层的间隙内,促使碳纳米管、纳米粒子复合型纳米粒子复合型碳纳米管纤维纱线9束或纳米粒子复合型碳纳米管纤维纱线束弹簧层17的结构形态发生改变;纳米粒子复合型碳纳米管纤维纱线束弹簧层17产生伸缩或旋转驱动效应;由于纳米粒子复合型碳纳米管纤维纱线弹簧层17与热膨胀材料18互相交叉渗透融合并紧密接触,且纳米粒子复合型碳纳米管纤维纱线弹簧层17具有优良的导热性能,对热膨胀材料18产生热传导叠加作用,则热膨胀材料18的温度升高速度加快,热膨胀材料18在高温条件下产生热膨胀驱动效应,并对纳米粒子复合型碳纳米管纤维纱线螺旋弹簧层17的驱动产生协同放大作用;由于纳米粒子复合型碳纳米管纤维纱线弹簧层17与热膨胀材料18为紧密接触的一体化结构,在光热作用下产生联动与协同作用的伸缩或旋转驱动增强效应。The working process of the carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photothermal driver 4 is: the laser beam of the laser is irradiated or transmitted to the fourth laser receiver 19 through the optical fiber; the fourth laser receiver 19 transmits the photothermal It is transmitted to the nanoparticle composite carbon nanotube fiber yarn spring layer 17 and the composite thermal expansion material 18; under the action of light and heat, the charged nanoelectrolyte substance 8 enters the hollow structure of the carbon nanotube and the holes in the carbon nanotube fiber yarn bundle. Or in the gap or in the gap of the carbon nanotube fiber yarn bundle spring layer, the carbon nanotube, nanoparticle composite nanoparticle composite carbon nanotube fiber yarn 9 bundles or nanoparticle composite carbon nanotube fiber yarn bundle The structural form of the spring layer 17 changes; the nanoparticle composite carbon nanotube fiber yarn bundle spring layer 17 produces a telescopic or rotational driving effect; because the nanoparticle composite carbon nanotube fiber yarn spring layer 17 and the thermal expansion material 18 intersect with each other Penetration, fusion and close contact, and the nanoparticle composite carbon nanotube fiber yarn spring layer 17 has excellent thermal conductivity, which produces a thermal conductive superposition effect on the thermal expansion material 18, so the temperature of the thermal expansion material 18 increases faster, and the thermal expansion material 18 is in The thermal expansion driving effect is produced under high temperature conditions, and has a synergistic amplification effect on the driving of the nanoparticle composite carbon nanotube fiber yarn coil spring layer 17; because the nanoparticle composite carbon nanotube fiber yarn spring layer 17 and the thermal expansion material 18 are The integrated structure in close contact produces a telescopic or rotational driving enhancement effect of linkage and synergy under the action of light and heat.

在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。In this article, the front, back, upper, lower and other locative words involved are defined based on the location of the components in the drawings and the positions of the components relative to each other, just for the sake of clarity and convenience in expressing the technical solution. It should be understood that the use of the locative words shall not limit the scope of protection claimed in this application.

在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。The above-described embodiments and features in the embodiments herein may be combined with each other if there is no conflict.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.

Claims (1)

1. A carbon nanotube fiber yarn composite thermal expansion material type laser photo-thermal driver, characterized by comprising: the carbon nano tube fiber yarn winding thermal expansion material multilayer stacked laser photo-thermal driver, the carbon nano tube fiber yarn spinning cloth and thermal expansion material layer stacked spiral laser photo-thermal driver, the carbon nano tube fiber yarn composite thermal expansion material cylinder type laser photo-thermal driver or the carbon nano tube fiber yarn spring composite thermal expansion material integrated laser photo-thermal driver; the carbon nano tube fiber yarn winding thermal expansion material multilayer stacked laser photo-thermal driver comprises: nanoparticle composite carbon nanotube fiber yarn spiral winding layer, thermal expansion material layer, laser receiver and laser; the thermal expansion material includes: a solid thermal expansion material, a liquid thermal expansion material, or a gas thermal expansion material; the liquid thermal expansion material and the gas thermal expansion material are both formed by cladding a thermally conductive elastic substance, and the liquid thermal expansion material comprises: liquid thermally expandable material microcapsules or gas thermally expandable material microcapsules; the liquid thermally expandable material microcapsule comprises: coating a liquid thermal expansion material by adopting a thermally conductive elastic substance film, and forming a microcapsule structure; the gas thermal expansion material microcapsule comprises: coating a gas thermal expansion material with a thermally conductive elastic substance film, and forming a microcapsule structure; the solid thermal expansion material comprises: an organic polymer thermal expansion material, an inorganic phase change thermal expansion material, an inorganic-organic hybrid thermal expansion material or a solid thermal expansion material microcapsule; the solid thermal expansion material microcapsule comprises: coating a solid thermal expansion material by adopting a thermally conductive elastic substance film, and forming a microcapsule structure; the nanoparticle composite carbon nanotube fiber yarn includes: assembling or compounding the nano particles and the carbon nano tube fiber yarns, and assembling or compounding the nano particles in the holes of the carbon nano tube or in gaps of the carbon nano tube fiber gathering beam; the nanoparticle composite carbon nanotube fiber yarn comprises: after assembling nano particles by a plurality of bundles of single carbon nano tubes or carbon nano tube aggregation bundle fibers, forming a multi-strand fiber by adopting stranding, and forming a continuous yarn with a spiral structure by twisting; the nanoparticle comprises: charged nanoparticles, nanoelectrolytes or nanoelectrolytes; the nano particle composite carbon nano tube fiber yarn is spirally wound outside the solid thermal expansion material according to a certain angle rule, or spirally wound outside the microcapsule with a certain number of liquid thermal expansion materials covered by the heat-conducting elastic material, or spirally wound outside the microcapsule with a certain number of gas thermal expansion materials covered by the heat-conducting elastic material, and is tightly contacted with each other to form a double-layer or multi-layer mutually-spaced and overlapped compact structure, one end of the compact structure is provided with a laser receiver, one end of the compact structure is contacted with one end of the spiral winding layer of the nano particle composite carbon nano tube fiber yarn and one end of the thermal expansion material layer, and the other end of the compact structure is provided with a driving output device, so that the integrated carbon nano tube fiber yarn winding thermal expansion material multi-layer overlapped laser photo-thermal driver is formed;
The spiral laser photo-thermal driver is put to carbon nanotube fiber yarn spinning cloth and thermal expansion material layer, includes: nanoparticle composite carbon nanotube fiber yarn spinning cloth, a thermal expansion material layer, a laser receiver and a laser; the thermal expansion material includes: a solid thermal expansion material, a liquid thermal expansion material, or a gas thermal expansion material; the liquid thermal expansion material and the gas thermal expansion material are both formed by cladding a thermally conductive elastic substance, and the liquid thermal expansion material comprises: liquid thermally expandable material microcapsules or gas thermally expandable material microcapsules; the liquid thermally expandable material microcapsule comprises: coating a liquid thermal expansion material by adopting a thermally conductive elastic substance film, and forming a microcapsule structure; the gas thermal expansion material microcapsule comprises: coating a gas thermal expansion material with a thermally conductive elastic substance film, and forming a microcapsule structure; the solid thermal expansion material comprises: an organic polymer thermal expansion material, an inorganic phase change thermal expansion material, an inorganic-organic hybrid thermal expansion material or a solid thermal expansion material microcapsule; the solid thermal expansion material microcapsule comprises: coating a solid thermal expansion material by adopting a thermally conductive elastic substance film, and forming a microcapsule structure; the nanoparticle composite carbon nanotube fiber yarn spinning cloth is woven by nanoparticle composite carbon nanotube fiber yarns; the nanoparticle composite carbon nanotube fiber yarn includes: assembling or compounding the nano particles and the carbon nano tube fiber yarns, and assembling or compounding the nano particles in the holes of the carbon nano tube or in gaps of the carbon nano tube fiber gathering beam; the nanoparticle composite carbon nanotube fiber yarn comprises: after assembling nano particles by a plurality of bundles of single carbon nano tubes or carbon nano tube aggregation bundle fibers, twisting the composite strand fibers formed by strand doubling to form continuous yarns with spiral structures; the nanoparticle comprises: charged nanoparticles, nanoelectrolytes or nanoelectrolytes; the nano particle composite carbon nano tube fiber yarn spinning cloth is tightly contacted with the thermal expansion material layer, and forms a double-layer or multi-layer mutually-spaced spiral structure, one end of the double-layer or multi-layer mutually-spaced spiral structure is provided with a laser receiver, one end of the double-layer or multi-layer mutually-spaced nano particle composite carbon nano tube fiber yarn spinning cloth is in homogeneous contact with one end of the thermal expansion material layer, the other end of the double-layer or multi-layer mutually-spaced nano particle composite carbon nano tube fiber yarn spinning cloth is connected with the driving output device, and an integrated carbon nano tube fiber yarn spinning cloth and thermal expansion material layer are stacked with a spiral laser photo-thermal driver;
The carbon nano tube fiber yarn composite thermal expansion material barrel-type laser photo-thermal driver comprises: a carbon nano tube fiber yarn composite thermal expansion material cylinder type spring core type laser photo-thermal driver or a carbon nano tube fiber yarn composite thermal expansion material cylinder type yarn bundle core type laser photo-thermal driver; the carbon nano tube fiber yarn composite thermal expansion material barrel type spring core type laser photo-thermal driver comprises: nanoparticle composite carbon nanotube fiber yarn spiral spring layer, thermal expansion material cylinder layer, nanoparticle composite carbon nanotube fiber yarn winding layer, laser receiver and laser; the thermal expansion material includes: a solid thermal expansion material, a liquid thermal expansion material, or a gas thermal expansion material; the liquid thermal expansion material and the gas thermal expansion material are both formed by cladding a thermally conductive elastic substance, and the liquid thermal expansion material comprises: liquid thermally expandable material microcapsules or gas thermally expandable material microcapsules; the liquid thermally expandable material microcapsule comprises: coating a liquid thermal expansion material by adopting a thermally conductive elastic substance film, and forming a microcapsule structure; the gas thermal expansion material microcapsule comprises: coating a gas thermal expansion material with a thermally conductive elastic substance film, and forming a microcapsule structure; the solid thermal expansion material comprises: an organic polymer thermal expansion material, an inorganic phase change thermal expansion material, an inorganic-organic hybrid thermal expansion material or a solid thermal expansion material microcapsule; the solid thermal expansion material microcapsule comprises: coating a solid thermal expansion material by adopting a thermally conductive elastic substance film, and forming a microcapsule structure; the nanoparticle composite type carbon nanotube fiber yarn spiral spring is manufactured by adopting multi-beam nanoparticle composite type carbon nanotube fiber yarns or nanoparticle composite type carbon nanotube fiber yarn beam spiral processing; the nanoparticle composite carbon nanotube fiber yarn includes: assembling or compounding the nano particles and the carbon nano tube fiber yarns, and assembling or compounding the nano particles in the holes of the carbon nano tube or in gaps of the carbon nano tube fiber gathering beam; the nanoparticle composite carbon nanotube fiber yarn comprises: after assembling nano particles by a plurality of bundles of single carbon nano tubes or carbon nano tube aggregation bundle fibers, twisting the composite strand fibers formed by strand doubling to form continuous yarns with spiral structures; the nanoparticle comprises: charged nanoparticles, nanoelectrolytes or nanoelectrolytes; the nanoparticle composite type carbon nano tube fiber yarn spiral spring layer is assembled in the middle of the carbon nano tube fiber yarn composite thermal expansion material cylinder type spring core type laser photo-thermal driver; the thermal expansion material cylinder layer is assembled outside the carbon nano tube fiber yarn spiral spring layer and is in close contact with the carbon nano tube fiber yarn spiral spring layer; the nano particle composite carbon nano tube fiber yarn is spirally wound outside the thermal expansion material cylinder layer according to a certain angle to form a nano particle composite carbon nano tube fiber yarn spiral winding layer; the laser receiver is assembled at one end, is contacted with one end of the nano particle composite carbon nano tube fiber yarn spiral spring layer, one end of the thermal expansion material cylinder layer and one end of the carbon nano tube fiber yarn winding layer, and forms an integrated carbon nano tube fiber yarn composite thermal expansion material cylinder type spring core type laser photo-thermal driver;
The carbon nano tube fiber yarn composite thermal expansion material tubular yarn bundle core type laser photo-thermal driver comprises: nanoparticle composite carbon nanotube fiber yarn bundle layer, thermal expansion material cylinder layer, nanoparticle composite carbon nanotube fiber yarn spinning cloth, laser receiver and laser; the thermal expansion material includes: a solid thermal expansion material, a liquid thermal expansion material, or a gas thermal expansion material; the liquid thermal expansion material and the gas thermal expansion material are both formed by cladding a thermally conductive elastic substance, and the liquid thermal expansion material comprises: liquid thermally expandable material microcapsules or gas thermally expandable material microcapsules; the liquid thermally expandable material microcapsule comprises: coating a liquid thermal expansion material by adopting a thermally conductive elastic substance film, and forming a microcapsule structure; the gas thermal expansion material microcapsule comprises: coating a gas thermal expansion material with a thermally conductive elastic substance film, and forming a microcapsule structure; the solid thermal expansion material comprises: an organic polymer thermal expansion material, an inorganic phase change thermal expansion material, an inorganic-organic hybrid thermal expansion material or a solid thermal expansion material microcapsule; the solid thermal expansion material microcapsule comprises: coating a solid thermal expansion material by adopting a thermally conductive elastic substance film, and forming a microcapsule structure; the nanoparticle composite carbon nanotube fiber yarn bundle layer is formed by a plurality of bundles of single carbon nanotube fiber yarns; the nano particle composite carbon nano tube fiber yarn is formed by assembling or compositing nano particles and carbon nano tube fiber yarn, and assembling or compositing the nano particles in carbon nano tube holes or gaps of carbon nano tube fiber gathering bundles; the nanoparticle composite carbon nanotube fiber yarn comprises: after assembling nano particles by a plurality of bundles of single carbon nano tubes or carbon nano tube aggregation bundle fibers, twisting the composite strand fibers formed by strand doubling to form continuous yarns with spiral structures; the nanoparticle comprises: charged nanoparticles, nanoelectrolytes or nanoelectrolytes; the nanoparticle composite type carbon nano tube fiber yarn bundle layer is assembled in the middle of the carbon nano tube fiber yarn composite thermal expansion material cylinder type yarn bundle core type laser photo-thermal driver; the thermal expansion material cylinder layer is assembled outside the carbon nano tube fiber yarn bundle layer and is in close contact with the carbon nano tube fiber yarn bundle layer; the nano particle composite carbon nano tube fiber yarn spinning cloth is assembled outside the thermal expansion material cylinder layer and is in close contact with the thermal expansion material cylinder layer; the laser receiver is assembled at one end, contacts with one end of the nano particle composite carbon nano tube fiber yarn bundle layer, contacts with one end of the thermal expansion material tube layer, contacts with one end of the nano particle composite carbon nano tube fiber yarn spinning cloth, and forms an integrated carbon nano tube fiber yarn composite thermal expansion material tube yarn bundle core type laser photo-thermal driver;
The carbon nanotube fiber yarn spring composite thermal expansion material integrated laser photo-thermal driver comprises: nanoparticle composite carbon nanotube fiber yarn spiral spring, thermal expansion material, laser receiver and laser; the thermal expansion material includes: a solid or liquid or gas heat expandable material; the liquid thermal expansion material and the gas thermal expansion material are both formed by cladding a thermally conductive elastic substance, and the liquid thermal expansion material comprises: liquid thermally expandable material microcapsules or gas thermally expandable material microcapsules; the liquid thermally expandable material microcapsule comprises: coating a liquid thermal expansion material by adopting a thermally conductive elastic substance film, and forming a microcapsule structure; the gas thermal expansion material microcapsule comprises: coating a gas thermal expansion material with a thermally conductive elastic substance film, and forming a microcapsule structure; the solid thermal expansion material comprises: an organic polymer thermal expansion material, an inorganic phase change thermal expansion material, an inorganic-organic hybrid thermal expansion material or a solid thermal expansion material microcapsule; the solid thermal expansion material microcapsule comprises: coating a solid thermal expansion material by adopting a thermally conductive elastic substance film, and forming a microcapsule structure; the nanoparticle composite type carbon nanotube fiber yarn spiral spring is manufactured by processing nanoparticle composite type carbon nanotube fiber yarn spiral; the nano particle composite carbon nano tube fiber yarn is formed by assembling or compositing nano particles and carbon nano tube fiber yarn, and assembling or compositing the nano particles in carbon nano tube holes or in carbon nano tube fiber aggregation bundle gaps; the nanoparticle composite carbon nanotube fiber yarn comprises: after assembling nano particles by a plurality of bundles of single carbon nano tubes or carbon nano tube aggregation bundle fibers, twisting the composite strand fibers formed by strand doubling to form continuous yarns with spiral structures; the nanoparticle comprises: charged nanoparticles, nanoelectrolytes or nanoelectrolytes; the thermal expansion material permeates into the holes of the carbon nano tubes, the holes of the carbon nano tube fiber yarns or the gaps of the carbon nano tube fiber yarn springs to form a compact composite structure; the laser receiver is assembled at one end and is contacted with the nano particle composite carbon nano tube fiber yarn spring and the thermal expansion material compact composite structure body to form the carbon nano tube fiber yarn spring composite thermal expansion material integrated laser photo-thermal driver;
the laser receiver is made of a three-dimensional graphene material, a composite material, a carbon nanotube composite material, a heat storage material, a carbon fiber composite material, a heat storage and heat conduction composite material, an inorganic heat conduction material or an organic heat conduction material; the three-dimensional graphene material includes: three-dimensional graphene material, three-dimensional graphene composite material, three-dimensional graphene oxide composite material or three-dimensional porous graphene composite material; the three-dimensional porous graphene composite material comprises: a three-dimensional porous graphene sponge composite, a three-dimensional porous graphene hydrogel composite, a three-dimensional porous graphene aerogel composite, a three-dimensional porous graphene foam composite, or a three-dimensional porous graphene oxide assembly composite; the three-dimensional porous graphene composite material comprises: and assembling or adding a three-dimensional porous graphene composite material formed by graphene nano sheets, nano carbon tubes or heat-conducting nano materials.
CN201811249737.1A2018-10-252018-10-25Carbon nano tube fiber yarn composite thermal expansion material type laser photo-thermal driverActiveCN109372710B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201811249737.1ACN109372710B (en)2018-10-252018-10-25Carbon nano tube fiber yarn composite thermal expansion material type laser photo-thermal driver

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201811249737.1ACN109372710B (en)2018-10-252018-10-25Carbon nano tube fiber yarn composite thermal expansion material type laser photo-thermal driver

Publications (2)

Publication NumberPublication Date
CN109372710A CN109372710A (en)2019-02-22
CN109372710Btrue CN109372710B (en)2023-09-22

Family

ID=65401898

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201811249737.1AActiveCN109372710B (en)2018-10-252018-10-25Carbon nano tube fiber yarn composite thermal expansion material type laser photo-thermal driver

Country Status (1)

CountryLink
CN (1)CN109372710B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110849478A (en)*2019-11-282020-02-28陕西师范大学 A device for adjusting circular dichroism spectrum of Archimedes spiral
CN113309677B (en)*2021-05-262022-08-09西湖大学Method and system for automatically generating periodic continuous mechanical motion by optical fiber actuator
CN119194692B (en)*2024-11-282025-02-28湖南大学 A phase change composite material and its preparation method and application

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE19943017A1 (en)*1999-05-192000-11-30Univ Ilmenau TechMicro system drive unit comprises system component containing thermal bimetal or bimorph changing shape when heated by laser and thus causing gripper movement.
JP2002515847A (en)*1997-05-292002-05-28ウィリアム・マーシュ・ライス・ユニバーシティ Carbon fibers formed from single-walled carbon nanotubes
CN104769834A (en)*2012-08-012015-07-08德克萨斯州大学系统董事会 Torsional and tensile actuators for crimped and uncrimped twisted nanofiber yarns and polymer fibers
CN108068319A (en)*2016-11-102018-05-25机械科学研究总院先进制造技术研究中心A kind of continuous fiber composite material increasing material manufacturing method
CN108678918A (en)*2018-05-082018-10-19中国地质大学(武汉)Laser-induced photo-thermal expansion type driving device
CN209278065U (en)*2018-10-252019-08-20中国地质大学(武汉)Carbon nano-tube fibre yarn Composite thermal expansion material type photothermal laser driver

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6682677B2 (en)*2000-11-032004-01-27Honeywell International Inc.Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2002515847A (en)*1997-05-292002-05-28ウィリアム・マーシュ・ライス・ユニバーシティ Carbon fibers formed from single-walled carbon nanotubes
DE19943017A1 (en)*1999-05-192000-11-30Univ Ilmenau TechMicro system drive unit comprises system component containing thermal bimetal or bimorph changing shape when heated by laser and thus causing gripper movement.
CN104769834A (en)*2012-08-012015-07-08德克萨斯州大学系统董事会 Torsional and tensile actuators for crimped and uncrimped twisted nanofiber yarns and polymer fibers
CN108068319A (en)*2016-11-102018-05-25机械科学研究总院先进制造技术研究中心A kind of continuous fiber composite material increasing material manufacturing method
CN108678918A (en)*2018-05-082018-10-19中国地质大学(武汉)Laser-induced photo-thermal expansion type driving device
CN209278065U (en)*2018-10-252019-08-20中国地质大学(武汉)Carbon nano-tube fibre yarn Composite thermal expansion material type photothermal laser driver

Also Published As

Publication numberPublication date
CN109372710A (en)2019-02-22

Similar Documents

PublicationPublication DateTitle
CN109372710B (en)Carbon nano tube fiber yarn composite thermal expansion material type laser photo-thermal driver
Zhu et al.Advanced fiber materials for wearable electronics
Leng et al.Recent advances in twisted‐fiber artificial muscles
Di et al.Carbon‐nanotube fibers for wearable devices and smart textiles
CN104769834B (en)Crimped and non-crimped twisted nanofiber yarn and polymer fiber twist and stretch drivers
TWI656868B (en) Bistable actuator device
Haines et al.New twist on artificial muscles
JP5679733B2 (en) Actuator
JP5959807B2 (en) Actuator and actuator structure
Foroughi et al.Carbon nanotube and graphene fiber artificial muscles
CN209278065U (en)Carbon nano-tube fibre yarn Composite thermal expansion material type photothermal laser driver
US12006598B2 (en)Sheath-run artificial muscles and methods of use thereof
Chen et al.Low‐voltage soft actuators for interactive human–machine interfaces
JP2015533521A5 (en)
CN109113942B (en)Carbon nano tube fiber composite shape memory alloy type driver
CN109088563B (en)Carbon nanotube fiber composite structure type electromagnetic actuator
CN112680966B (en)Composite fiber and preparation method and application thereof
JP2016042783A5 (en)
Zhou et al.Highly responsive soft electrothermal actuator with high-output force based on polydimethylsiloxane (PDMS)-coated carbon nanotube (CNT) sponge
JP2012095520A (en) Actuator
CN209800177U (en) Carbon Nanotube Fiber Composite Shape Memory Alloy Actuator
Lang et al.Emerging innovations in electrically powered artificial muscle fibers
CN109004856B (en) Carbon nanotube fiber reinforced bamboo-like composite structure tube for energy collection and power generation
CN209267472U (en) Carbon nanotube fiber composite structure electromagnetic actuator
KR102806746B1 (en)High-performance actuator based on carbon nanoscroll and carbon nanotube fiber composite using solid electrolyte

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp