








技术领域technical field
本发明涉及一种下肢外骨骼机器人,具体涉及一种基于人机末端交互的下肢外骨骼机器人系统。The invention relates to a lower limb exoskeleton robot, in particular to a lower limb exoskeleton robot system based on human-machine terminal interaction.
背景技术Background technique
外骨骼机器人是一种融合了传感技术、控制技术等多种技术的可穿戴设备,特别地,下肢外骨骼机器人是一种与人体下肢结构相类似的的外骨骼机器人,能够帮助穿戴者实现助力行走、下肢康复、上下楼梯等动作。An exoskeleton robot is a wearable device that integrates various technologies such as sensing technology and control technology. Assist in walking, lower limb rehabilitation, up and down stairs, etc.
下肢外骨骼机器人主要髋关节、膝关节与踝关节构成,拥有15个自由度,包括腰部旋转、髋部伸屈、髋部外展、髋部内外旋转、膝部伸屈、踝部伸屈、踝部旋转、踝部内外翻。The lower limb exoskeleton robot is mainly composed of hip joints, knee joints and ankle joints, with 15 degrees of freedom, including waist rotation, hip extension and flexion, hip abduction, hip internal and external rotation, knee extension and flexion, ankle extension and flexion, Ankle rotation, ankle inversion.
目前,现有的下肢外骨骼与人体的贴合性较差、穿戴不舒适、人机交互信息不准确,导致人机跟随效果差,助力效果不明显。At present, the existing lower extremity exoskeletons have poor fit with the human body, are uncomfortable to wear, and have inaccurate human-machine interaction information, resulting in poor human-machine following effects and insignificant boosting effects.
发明内容SUMMARY OF THE INVENTION
本发明为解决现有的下肢外骨骼与人体的贴合性较差、穿戴不舒适、人机交互信息不准确,导致人机跟随效果差,助力效果不明显的问题,进而提供一种基于人机末端交互的下肢外骨骼机器人系统。In order to solve the problems of poor fit between the existing lower limb exoskeleton and the human body, uncomfortable wearing and inaccurate human-machine interaction information, resulting in poor human-machine following effect and insignificant boosting effect, the present invention further provides a human-based The lower limb exoskeleton robot system interacting with the end of the machine.
本发明为解决上述技术问题采取的技术方案是:The technical scheme that the present invention takes for solving the above-mentioned technical problems is:
本发明的基于人机末端交互的下肢外骨骼机器人系统包括背架1、两个髋关节2、两个惯性单元3、两个大腿杆4、两个膝关节5、两个小腿杆6、两个踝关节7和两个足底压力鞋8,所述背架1下部对称设置有两个髋关节支架104,髋关节支架104的一端通过内收外展轴201与背架1转动连接,每个髋关节支架104的自由端通过髋部内外旋转轴203与相应的髋关节2转动连接,每个髋关节2通过髋部屈伸轴202与相应的大腿杆4连接,每个大腿杆4的上部设置有一个惯性单元3,每个大腿杆4的下部通过一个膝关节5与相应的小腿杆6的上端连接,每个小腿杆6的下端通过一个踝关节7与相应的足底压力鞋8连接,所述下肢外骨骼机器人系统还包括两个气动弹簧106,气动弹簧106的一端与背架1连接,气动弹簧106的另一端与相应的一个髋关节支架104连接,踝关节7设置有远心机构701,远心机构包括第一连杆组件、第二连杆组件和多个连接轴711,第一连杆组件的一端与踝关节连接件703通过连接轴711转动连接,第一连杆组件的另一端与第二连杆组件的一端通过连接轴711转动连接,第二连杆组件的另一端与踝关节底座712通过连接轴711转动连接,踝关节底座712设置在足底压力鞋上。The lower limb exoskeleton robot system based on human-machine terminal interaction of the present invention includes a back frame 1, two
进一步地,远心机构的第一连杆组件包括第一连杆705、第二连杆706和两个第一连接片708,第一连接705与第二连杆706平行且相对设置,第一连杆705的长度小于第二连杆706的长度,第一连杆705和第二连杆706的一端均通过一个连接轴711与踝关节连接件703转动连接,第一连杆705的另一端与第二连杆706的中部通过两个第一连接片708和两个连接轴711连接;远心机构的第二连杆组件包括第三连杆707、第四连杆710和两个第二连接片709,第三连杆707和第四连杆710平行且相对设置,第三连杆707的长度小于第四连杆710的长度,第三连杆707和第四连杆710的一端均通过一个连接轴711与踝关节底座712转动连接,第三连杆707的另一端与第一连杆705所述的另一端通过一个连接轴711转动连接,第四连杆710的另一端与第二连杆706所述的另一端通过一个连接轴711转动连接,第三连杆707所述的另一端通过两个第二连接片709与第四连杆710连接。Further, the first link assembly of the telecentric mechanism includes a
进一步地,膝关节5包括电机501、固定盖502、谐波减速器503、连接板504、膝关节本体、大腿杆连接件505、小腿杆连接件507和减速器输出轴508,大腿杆连接件505的下端设置有外沿,固定盖502和连接板504平行设置且固装在大腿杆连接件505的外沿上,电机501固装在固定盖502的一端面上,谐波减速器503的一端固装在固定盖502的另一端面上,谐波减速器503的另一端与连接板504连接,减速器输出轴508固装在谐波减速器503上,膝关节本体通过深沟球轴承506安装在减速器输出轴508上,小腿杆连接件507的上端固装在膝关节本体的下部,所述下肢外骨骼异构膝关节还包括并联弹性体509、磁编码器磁环510、磁编码器磁头511和端盖512,端盖512通过法兰固装在膝关节本体的外环面上,并联弹性体509固装在端盖512内,并联弹性体509通过轴架与减速器输出轴508同轴固接,磁编码器磁环510安装在膝关节本体上,磁编码器磁头511安装在并联弹性体509上,磁编码器磁环510与磁编码器磁头511相对设置,膝关节本体上沿其外沿加工有圆弧凹槽,圆弧凹槽内设置有两个可调节限位块521,圆弧凹槽与连接板504正对设置,连接板504上沿其圆周方向加工有多个限位孔522,连接板504上插装有限位销523,可调节限位块521与限位销523之间设置有弹性橡胶块524,可调节限位块,521包括橡胶垫和两个调节片,橡胶垫位于两个调节片之间,可调节限位块521通过螺栓螺母锁紧在膝关节本体的圆弧凹槽上。Further, the
进一步地,并联弹性体509包括弹性体外环901、弹性体内环903、六对矩形弹簧902、三对三角块905和六对弹性定位销906,弹性体内环903上沿其圆周方向均布加工有三个燕尾块,弹性体外环901内壁上其圆周方向均布设置有三对三角块905,每对三角块905并列设置,弹性体内环903位于弹性体外环901内,每对矩形弹簧902的一端与一对三角块905相接触,每对矩形弹簧902的另一端与相应的一个燕尾块相接触,每个矩形弹簧902通过一个弹性定位销906定位,三角块905通过螺钉和两侧矩形弹簧902的压力作用与弹性体外环901固定在一起,并联弹性体509还包括六对球头销904,弹性体内环903的每个燕尾块的两侧均设置有一对球头销904。Further, the parallel
进一步地,背架1包括背架内层和背架外层,背架内层包括两个柔性背带101和两个腰封103,两个柔性背带101设置在背架板前端面上部,两个腰封103设置在背架板前端面下部;背架外层包括电源110、控制盒107、六维力传感器102、六维力采集卡105、两个单维力采集卡109和电源板108,电源110、控制盒107、六维力采集卡105、两个单维力采集卡109和电源板108设置在背架板后端面上,背架板为双层背架板,六维力传感器102设置在双层背架板之间。Further, the back frame 1 includes an inner layer of the back frame and an outer layer of the back frame, the inner layer of the back frame includes two
进一步地,大腿杆4的内侧设置有大腿绑带,大腿杆4的长度范围为418mm~478mm,小腿杆6的长度范围为390mm~450mm。Further, the inner side of the
进一步地,大腿杆4和小腿杆6均采用碳纤维材料制成。Further, both the
进一步地,足底压力鞋包括后跟挡板13、后绑带14、两个后绑带架15、两个后绑带架座16、前绑带17、两个前绑带架18、两个前绑带架座19、上层鞋底20、中层鞋底21和下层鞋底22,上层鞋底20、中层鞋底21和下层鞋底22由上至下依次设置,前绑带架座19和后绑带架座16前后对应设置在鞋底两侧,每个前绑带架座19上设置有一个前绑带架18,每个后绑带架座16上设置有一个后绑带架15,两个后绑带架15之间设置有后绑带14,两个前绑带架18之间设置有前绑带17,后跟挡板13设置在鞋底的后侧。Further, the sole pressure shoe includes a heel baffle 13, a rear strap 14, two rear strap frames 15, two rear strap frame seats 16, a front strap 17, two front strap frames 18, two The front strapping frame seat 19, the upper sole 20, the middle layer sole 21 and the lower layer sole 22, the upper layer sole 20, the middle layer sole 21 and the lower layer sole 22 are arranged in order from top to bottom, the front strapping frame seat 19 and the rear strapping frame seat 16 The front and rear are correspondingly arranged on both sides of the sole, each front strapping frame seat 19 is provided with a front strapping frame 18, each rear strapping frame seat 16 is provided with a rear strapping frame 15, two rear strapping frames are provided A rear strap 14 is arranged between the two front strap frames 18 , a front strap 17 is arranged between the two front strap frames 18 , and the heel baffle 13 is arranged on the rear side of the sole.
进一步地,中层鞋底21由前后两部分鞋底组成,中层鞋底21的前后两部分通过合页连接,中层鞋底21通过多个内六角圆柱头螺钉固定在下层鞋底22的上端面上;上层鞋底20由前后两部分鞋底组成,上层鞋底20的前部分通过螺钉固装在中层鞋底21的前部,上层鞋底20的后部分通过螺钉固装在中层鞋底21的后部。Further, the middle layer sole 21 is made up of two front and rear parts of the sole, the front and rear parts of the middle layer sole 21 are connected by hinges, and the middle layer sole 21 is fixed on the upper end surface of the lower layer sole 22 by a plurality of hexagon socket head screws; The front part of the upper sole 20 is fixed on the front part of the middle sole 21 through screws, and the rear part of the upper sole 20 is fixed on the rear part of the middle sole 21 through screws.
进一步地,髋关节2采用无刷电机和谐波减速器作为外骨骼的驱动单元,髋关节2包括无刷电机、谐波减速器、磁编码器和并联弹性体,髋关节2与膝关节5的结构相同。Further, the
本发明与现有技术相比具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明的基于人机末端交互的下肢外骨骼机器人系统设置有两个气动弹簧,通过重力平衡的方式达到穿戴者不用克服重力做功的效果,即采用基于主动平衡设计的髋关节结构;本发明将髋部内收外展轴、髋部屈伸轴、髋部内外旋转轴与人体髋关节转轴重合,髋关节杆件设计成曲面形式,可最大程度地包络髋部,髋关节杆件自由度为可伸缩机构,以满足不同髋关节宽度的穿戴者需求,最大可调节至440mm;The lower limb exoskeleton robot system based on human-machine terminal interaction of the present invention is provided with two pneumatic springs, and the effect that the wearer does not need to overcome gravity to do work is achieved by means of gravity balance, that is, the hip joint structure based on active balance design is adopted; The hip adduction and abduction axis, hip flexion and extension axis, and hip internal and external rotation axis coincide with the human hip joint rotation axis. The hip joint rod is designed in the form of a curved surface, which can wrap the hip to the greatest extent. Telescopic mechanism to meet the needs of wearers with different hip widths, the maximum can be adjusted to 440mm;
外骨骼机器人系统采用电机作为动力,系统需要电源、控制器和驱动器,为了保证电气系统的使用安全,使机器人整体结构紧凑,电气各模块均布置于外骨骼机器人的腰背部,同时背部还需要承担负载,额定负载为20kg,同时在躯干腰部增加一个旋转自由度,避免下坐、下蹲时,后背不能活动的情况;The exoskeleton robot system uses a motor as a power source, and the system requires a power supply, a controller and a driver. In order to ensure the safe use of the electrical system and make the overall structure of the robot compact, the electrical modules are arranged on the waist and back of the exoskeleton robot, and the back also needs to bear Load, the rated load is 20kg, and a rotational degree of freedom is added to the waist of the trunk to avoid the situation that the back cannot move when sitting or squatting;
在腰腹部安装腰封,腰封一方面可以对人机髋关节起到固定作用,另一方面在人机系统行走过程中,当其中一条人机耦合腿抬起时,即其处于摆动相位时,其这条腿的部分重量可通过腰带与髋关节转移到另一支处于支撑相位的腿上,这样可以部分分担一条腿抬起时,腿部重力对穿戴者产生的重力压迫;The girdle seal is installed on the waist and abdomen. On the one hand, the girdle seal can fix the hip joint of the human-machine system. , part of the weight of this leg can be transferred to the other leg in the support phase through the belt and hip joint, so that it can partially share the gravitational compression of the wearer caused by the gravity of the leg when one leg is lifted;
人机交互信息,通过CAN总线方式与控制盒进行通信,并设计了各原件的供电电源板,整个系统采用两个24V的锂电池电源供电,能够保证连续工作时间为两小时,电源板设计为集成模块,可提供24V、12V、5V多种电压,保证下肢外骨骼系统整体的续航能力。Human-computer interaction information, communicates with the control box through CAN bus, and designs the power supply board of each original. The whole system is powered by two 24V lithium battery power supplies, which can ensure continuous working time of two hours. The power board is designed as The integrated module can provide various voltages of 24V, 12V and 5V to ensure the overall endurance of the lower limb exoskeleton system.
本发明下肢外骨骼与人体的贴合性好、穿戴舒适、人机交互信息准确,人机跟随效果好,助力效果明显。The lower limb exoskeleton of the invention has good fit between the human body, comfortable wearing, accurate human-machine interaction information, good man-machine following effect, and obvious boosting effect.
附图说明Description of drawings
图1是本发明的基于人机末端交互的下肢外骨骼机器人系统整体结构示意图;1 is a schematic diagram of the overall structure of a lower limb exoskeleton robot system based on human-machine terminal interaction of the present invention;
图2是本发明具体实施方式一中背架1的左视图;2 is a left side view of the back frame 1 in the first embodiment of the present invention;
图3是本发明具体实施方式一中背架1的后视图;3 is a rear view of the back frame 1 in the first embodiment of the present invention;
图4是本发明具体实施方式一中背架1和髋关节的主视图;FIG. 4 is a front view of the back frame 1 and the hip joint in Embodiment 1 of the present invention;
图5是本发明具体实施方式三中膝关节5的整体结构爆炸示意图;5 is an exploded schematic diagram of the overall structure of the
图6是本发明具体实施方式三中膝关节本体的右视图;6 is a right side view of the knee joint body in
图7是本发明具体实施方式四中并联弹性体509的结构示意图;7 is a schematic structural diagram of a parallel
图8是本发明具体实施方式一中踝关节7的远心机构701示意图;8 is a schematic diagram of the
图9是本发明具体实施方式二和具体实施方式八中远心机构701和足底压力鞋的结构示意图。FIG. 9 is a schematic structural diagram of the
具体实施方式Detailed ways
具体实施方式一:如图1~8所示,本实施方式的基于人机末端交互的下肢外骨骼机器人系统包括背架1、两个髋关节2、两个惯性单元3、两个大腿杆4、两个膝关节5、两个小腿杆6、两个踝关节7和两个足底压力鞋8,所述背架1下部对称设置有两个髋关节支架104,髋关节支架104的一端通过内收外展轴201与背架1转动连接,每个髋关节支架104的自由端通过髋部内外旋转轴203与相应的髋关节2转动连接,每个髋关节2通过髋部屈伸轴202与相应的大腿杆4连接,每个大腿杆4的上部设置有一个惯性单元3,每个大腿杆4的下部通过一个膝关节5与相应的小腿杆6的上端连接,每个小腿杆6的下端通过一个踝关节7与相应的足底压力鞋8连接,所述下肢外骨骼机器人系统还包括两个气动弹簧106,气动弹簧106的一端与背架1连接,气动弹簧106的另一端与相应的一个髋关节支架104连接,踝关节7设置有远心机构701,远心机构包括第一连杆组件、第二连杆组件和多个连接轴711,第一连杆组件的一端与踝关节连接件703通过连接轴711转动连接,第一连杆组件的另一端与第二连杆组件的一端通过连接轴711转动连接,第二连杆组件的另一端与踝关节底座712通过连接轴711转动连接,踝关节底座712设置在足底压力鞋上。Embodiment 1: As shown in FIGS. 1 to 8 , the lower limb exoskeleton robot system based on human-machine terminal interaction in this embodiment includes a back frame 1 , two
由于在人体行走、上下台阶、蹲起等过程中都会输出较大的关节力矩和瞬时功率,则在髋部处引入助力机构很有必要,有许多外骨骼系统将此自由度设计为驱动自由度,但是这种设计会增加控制算法的难度且增加系统的整体质量,因此,为了在降低穿戴者的输出功率的同时使系统更加的轻量化,该自由度设计为两个对称的气动弹簧106进行支撑,通过重力平衡的方式达到穿戴者不用克服重力做功的效果,即采用基于主动平衡设计的髋关节结构。为了将该自由度设计成准拟人化结构,进一步改善舒适性,基于人体工程学设计,将该自由度设计有在后方髋部内收外展轴201、髋部屈伸轴202、髋部内外旋转轴203与人体髋关节转轴重合。如图4所示,髋关节支架104设计成曲面形式,可最大程度地包络髋部,并将该自由度设计为可伸缩机构,以满足不同髋关节宽度的穿戴者需求,最大可调节至440mm。Since the human body will output large joint torque and instantaneous power during the process of walking, going up and down steps, and squatting, it is necessary to introduce a power assist mechanism at the hip. There are many exoskeleton systems that design this degree of freedom as a driving degree of freedom. , but this design will increase the difficulty of the control algorithm and increase the overall quality of the system. Therefore, in order to reduce the wearer's output power while making the system more lightweight, the degree of freedom is designed for two symmetrical pneumatic springs 106. Support, through the method of gravity balance, the wearer does not need to overcome gravity to do work, that is, the hip joint structure based on active balance design is adopted. In order to design this degree of freedom into a quasi-anthropomorphic structure and further improve comfort, based on ergonomic design, this degree of freedom is designed with a rear hip adduction and
具体实施方式二:如图8和图9所示,本实施方式远心机构的第一连杆组件包括第一连杆705、第二连杆706和两个第一连接片708,第一连接705与第二连杆706平行且相对设置,第一连杆705的长度小于第二连杆706的长度,第一连杆705和第二连杆706的一端均通过一个连接轴711与踝关节连接件703转动连接,第一连杆705的另一端与第二连杆706的中部通过两个第一连接片708和两个连接轴711连接;远心机构的第二连杆组件包括第三连杆707、第四连杆710和两个第二连接片709,第三连杆707和第四连杆710平行且相对设置,第三连杆707的长度小于第四连杆710的长度,第三连杆707和第四连杆710的一端均通过一个连接轴711与踝关节底座712转动连接,第三连杆707的另一端与第一连杆705所述的另一端通过一个连接轴711转动连接,第四连杆710的另一端与第二连杆706所述的另一端通过一个连接轴711转动连接,第三连杆707所述的另一端通过两个第二连接片709与第四连杆710连接。如此设计,使得外骨骼踝关节外旋、内旋的旋转中心均与人体的旋转中心重合的,避免了穿戴者在运动时的不舒适,同时减缓在抬腿和落地的过程中对脚踝的压迫,长时间使用也不会有不适感,符合人体工程学设计。其它组成及连接关系与具体实施方式一相同。Embodiment 2: As shown in Figures 8 and 9, the first link assembly of the telecentric mechanism in this embodiment includes a
在冠状面内的外翻/内翻自由度的旋转中心是与人体的旋转中心不重合的,这会造成穿戴者在进行此自由度的运动时极其不舒适,本发明采用了一种基于远心机构的下肢外骨骼踝关节,用于下肢外骨骼机器人,通过双平行四边形远心机构701,将转动中心置于人体踝关节内外翻转动点,实现外骨骼踝关节转动中心与踝关节转动中心重合,从而协助人体绕远心点内外翻运动,避免了外骨骼踝关节内外翻转动中心与人体踝关节转动中心不重合的问题,提高人体穿戴外骨骼的舒适性。The rotation center of the valgus/varus degree of freedom in the coronal plane does not coincide with the rotation center of the human body, which will cause the wearer to be extremely uncomfortable when exercising this degree of freedom. The lower extremity exoskeleton ankle joint of the heart mechanism is used for the lower extremity exoskeleton robot. Through the double
具体实施方式三:如图5所示,本实施方式膝关节5包括电机501、固定盖502、谐波减速器503、连接板504、膝关节本体、大腿杆连接件505、小腿杆连接件507和减速器输出轴508,大腿杆连接件505的下端设置有外沿,固定盖502和连接板504平行设置且固装在大腿杆连接件505的外沿上,电机501固装在固定盖502的一端面上,谐波减速器503的一端固装在固定盖502的另一端面上,谐波减速器503的另一端与连接板504连接,减速器输出轴508固装在谐波减速器503上,膝关节本体通过深沟球轴承506安装在减速器输出轴508上,小腿杆连接件507的上端固装在膝关节本体的下部,所述下肢外骨骼异构膝关节还包括并联弹性体509、磁编码器磁环510、磁编码器磁头511和端盖512,端盖512通过法兰固装在膝关节本体的外环面上,并联弹性体509固装在端盖512内,并联弹性体509通过轴架与减速器输出轴508同轴固接,磁编码器磁环510安装在膝关节本体上,磁编码器磁头511安装在并联弹性体509上,磁编码器磁环510与磁编码器磁头511相对设置,膝关节本体上沿其外沿加工有圆弧凹槽,圆弧凹槽内设置有两个可调节限位块521,圆弧凹槽与连接板504正对设置,连接板504上沿其圆周方向加工有多个限位孔522,连接板504上插装有限位销523,可调节限位块521与限位销523之间设置有弹性橡胶块524,可调节限位块,521包括橡胶垫和两个调节片,橡胶垫位于两个调节片之间,可调节限位块521通过螺栓螺母锁紧在膝关节本体的圆弧凹槽上。如此设计,可以使得关节限位缓冲满足柔性需要,同时可以调整限位角度来满足不同的关节角度奇异,具有较高的普适性。其它组成及连接关系与具体实施方式一或二相同。Embodiment 3: As shown in FIG. 5 , the
由于机器人存在极限奇异,当抬腿时可能会出现死点,即主动件上的力无穷大也无法推动杆件,从而使得膝关节无法正常运动,甚至对人体造成伤害。为了避免出现奇异点,现将外骨骼膝关节进行一定角度的异构。为了实现膝关节异构,可调节限位块521用于机械限位,异构角度可设置为三个档:0°、20°、45°,用于限制膝关节屈伸自由度的转动范围,其中弹性橡胶块524可以起到缓冲的作用,而避免纯刚性接触。Due to the extreme singularity of the robot, there may be a dead point when lifting the leg, that is, the force on the active part is infinite and cannot push the rod, so that the knee joint cannot move normally, and even cause harm to the human body. In order to avoid singular points, the exoskeleton knee joint is now isomerized at a certain angle. In order to realize the knee joint heterogeneity, the
具体实施方式四:如图7所示,本实施方式并联弹性体509包括弹性体外环901、弹性体内环903、六对矩形弹簧902、三对三角块905和六对弹性定位销906,弹性体内环903上沿其圆周方向均布加工有三个燕尾块,弹性体外环901内壁上其圆周方向均布设置有三对三角块905,每对三角块905并列设置,弹性体内环903位于弹性体外环901内,每对矩形弹簧902的一端与一对三角块905相接触,每对矩形弹簧902的另一端与相应的一个燕尾块相接触,每个矩形弹簧902通过一个弹性定位销906定位,三角块905通过螺钉和两侧矩形弹簧902的压力作用与弹性体外环901固定在一起,并联弹性体509还包括六对球头销904,弹性体内环903的每个燕尾块的两侧均设置有一对球头销904。如此设计,使得弹性体满足小尺寸大刚度的需求,可以实现弹簧对三角块905正向施加压力,可以提高力传递效率,三角块905通过螺钉连接方便安装和拆卸,可以根据需要更换弹簧,同时内外环相对转动的过程中弹簧与球面始终能保持线接触,能够保证运动过程的稳定性。其它组成及连接关系与具体实施方式三相同。Embodiment 4: As shown in FIG. 7, the parallel
具体实施方式五:如图1、图2和图3所示,本实施方式背架1包括背架内层和背架外层,背架内层包括两个柔性背带101和两个腰封103,两个柔性背带101设置在背架板前端面上部,两个腰封103设置在背架板前端面下部;背架外层包括电源110、控制盒107、六维力传感器102、六维力采集卡105、两个单维力采集卡109和电源板108,电源110、控制盒107、六维力采集卡105、两个单维力采集卡109和电源板108设置在背架板后端面上,背架板为双层背架板,六维力传感器102设置在双层背架板之间。如此设计,一方面通过背架内层贴合人体设计,提高了外骨骼与人体接触的舒适性,另一方面外层集成了电控单元,方便穿戴者随时切换电源和采集设备信息。其它组成及连接关系与具体实施方式三相同。Embodiment 5: As shown in FIGS. 1 , 2 and 3 , the back frame 1 in this embodiment includes a back frame inner layer and a back frame outer layer, and the back frame inner layer includes two
背架外层放置电源110、控制盒107、六维力采集卡105、单维力采集卡109、电源板108,背架内外层通过六维力传感器102连接,通过六维力可检测出人体上身倾斜及蹲起意图。The outer layer of the back frame is placed with a
腰部设计为可调节结构,调节范围为440mm±10,以适应不同腰围的穿戴者。为了使外骨骼机器人在行走过程中更平稳,在腰腹部安装腰封103,腰封一方面可以对人机髋关节起到固定作用,另一方面在人机系统行走过程中,当其中一条人机耦合腿抬起时,即其处于摆动相位时,其这条腿的部分重量可通过腰带与髋关节转移到另一支处于支撑相位的腿上,这样可以部分分担一条腿抬起时,腿部重力对穿戴者产生的重力压迫。The waist is designed as an adjustable structure, with an adjustment range of 440mm±10 to accommodate wearers with different waist circumferences. In order to make the exoskeleton robot walk more smoothly, a
具体实施方式六:如图1所示,本实施方式大腿杆4的内侧设置有大腿绑带,大腿杆4的长度范围为418mm~478mm,小腿杆6的长度范围为390mm~450mm。如此设计,可以满足不同身高尺寸的人穿戴,按需求进行调节。其它组成及连接关系与具体实施方式四或五相同。Embodiment 6: As shown in FIG. 1 , the inner side of the
为了避免直线类型外骨骼的奇异点问题,抬腿困难的问题,同时满足缓冲吸振的作用,采用基于异构式设计的膝关节,同时大小腿杆件设计为可调节模式,此外还可以适应不同身高的穿戴者进行穿戴。大腿的长度设计为448mm±30,小腿杆的长度设计为420mm±30,穿戴者的适用身高范围为165cm至185cm。同时为了使整个系统重量减轻,大小腿杆采用碳纤维材料制造。外骨骼机器人系统采用电机作为动力,系统需要电源、控制器和驱动器,为了保证电气系统的使用安全,使机器人整体结构紧凑,电气各模块均布置于外骨骼机器人的腰背部。同时背部还需要承担负载,额定负载为20kg,同时在躯干腰部增加一个旋转自由度,避免下坐、下蹲时,后背不能活动的情况。In order to avoid the singular point problem of the linear type exoskeleton and the difficulty of raising the leg, and at the same time satisfy the effect of buffering and vibration absorption, the knee joint based on the heterogeneous design is adopted, and the upper and lower leg rods are designed in an adjustable mode, and can also adapt to different Wear it by the tall wearer. The length of the thigh is designed to be 448mm±30, the length of the calf bar is designed to be 420mm±30, and the applicable height range of the wearer is 165cm to 185cm. At the same time, in order to reduce the weight of the whole system, the upper and lower legs are made of carbon fiber material. The exoskeleton robot system uses a motor as a power source, and the system requires a power supply, a controller and a driver. In order to ensure the safety of the electrical system and make the overall structure of the robot compact, the electrical modules are arranged on the waist and back of the exoskeleton robot. At the same time, the back also needs to bear the load. The rated load is 20kg. At the same time, a rotational degree of freedom is added to the waist of the trunk to avoid the situation that the back cannot move when sitting or squatting.
具体实施方式七:如图1所示,本实施方式大腿杆4和小腿杆6均采用碳纤维材料制成。如此设计,可以降低外骨骼系统自重,满足外骨骼轻型化设计。其它组成及连接关系与具体实施方式一、二、四或五相同。Embodiment 7: As shown in FIG. 1 , both the
具体实施方式八:如图1和图9所示,本实施方式足底压力鞋包括后跟挡板13、后绑带14、两个后绑带架15、两个后绑带架座16、前绑带17、两个前绑带架18、两个前绑带架座19、上层鞋底20、中层鞋底21和下层鞋底22,上层鞋底20、中层鞋底21和下层鞋底22由上至下依次设置,前绑带架座19和后绑带架座16前后对应设置在鞋底两侧,每个前绑带架座19上设置有一个前绑带架18,每个后绑带架座16上设置有一个后绑带架15,两个后绑带架15之间设置有后绑带14,两个前绑带架18之间设置有前绑带17,后跟挡板13设置在鞋底的后侧。如此设计,可以缓冲运动中对上下两层压力传导的冲击,提高压力鞋的舒适性,方便穿戴。其它组成及连接关系与具体实施方式一、二或四相同。Embodiment 8: As shown in Figures 1 and 9, the sole pressure shoe of this embodiment includes a heel baffle 13, a rear strap 14, two rear strap frames 15, two rear strap frame seats 16, a front strap The straps 17, the two front strap frames 18, the two front strap frames 19, the upper sole 20, the middle sole 21 and the lower sole 22, the upper sole 20, the middle sole 21 and the lower sole 22 are arranged in order from top to bottom , the front strapping frame seat 19 and the rear strapping frame seat 16 are correspondingly arranged on both sides of the sole, each front strapping frame seat 19 is provided with a front strapping frame 18, and each rear strapping frame seat 16 is provided with There is a rear strap frame 15, a rear strap 14 is arranged between the two rear strap frames 15, a front strap 17 is arranged between the two front strap frames 18, and a heel baffle 13 is arranged on the rear side of the sole . Such a design can buffer the impact of the pressure conduction on the upper and lower layers during exercise, improve the comfort of the pressure shoe, and facilitate wearing. Other compositions and connection relationships are the same as in the first, second or fourth embodiment.
具体实施方式九:如图9所示,本实施方式中层鞋底21由前后两部分鞋底组成,中层鞋底21的前后两部分通过合页连接,中层鞋底21通过多个内六角圆柱头螺钉固定在下层鞋底22的上端面上;上层鞋底20由前后两部分鞋底组成,上层鞋底20的前部分通过螺钉固装在中层鞋底21的前部,上层鞋底20的后部分通过螺钉固装在中层鞋底21的后部。如此设计,前绑带架通过第二合页与前传感器支撑层活动连接,便于足底鞋穿戴,增强了足底鞋穿戴的灵活性。其它组成及连接关系与具体实施方式八相同。Embodiment 9: As shown in FIG. 9 , the middle sole 21 of the present embodiment is composed of two front and rear parts of the sole, the front and rear parts of the middle sole 21 are connected by hinges, and the middle sole 21 is fixed to the lower layer by a plurality of hexagonal socket head screws. The upper end surface of the sole 22; the upper sole 20 is composed of two parts of the sole, the front part of the upper sole 20 is fixed on the front part of the middle sole 21 by screws, and the rear part of the upper sole 20 is fixed on the middle sole 21 by screws. rear. With this design, the front strap frame is movably connected with the front sensor support layer through the second hinge, which facilitates the wearing of the sole shoe and enhances the flexibility of wearing the sole shoe. Other compositions and connection relationships are the same as in the eighth embodiment.
具体实施方式十:如图1所示,本实施方式髋关节2采用无刷电机和谐波减速器作为外骨骼的驱动单元,髋关节2包括无刷电机、谐波减速器、磁编码器和并联弹性体,髋关节2与膝关节5的结构相同。如此设计,通过增加了膝关节的柔性,增加了控制力的带宽,并联弹性体的内圈与减速器输出轴相连,并联弹性体的外圈与大腿杆相连,通过磁编码器和电机编码器测量角度差,进而进行人机交互力的测量。其它组成及连接关系与具体实施方式一、二、四、六、七或九相同。Embodiment 10: As shown in FIG. 1 , the
本发明控制系统采用ELMO驱动器对电机进行控制,主控制器采用基于Cortex-ARM9为核心的工控板,单维力采集卡109和六维力采集卡105分别采集人机交互信息,通过CAN总线方式与控制盒107进行通信,并设计了各原件的供电电源板,整个系统采用两个24V的锂电池电源110供电,能够保证连续工作时间为两小时。电源板108设计为集成模块,可提供24V、12V、5V等多种电压,保证下肢外骨骼系统整体的续航能力。The control system of the present invention uses the ELMO driver to control the motor, the main controller adopts the industrial control board based on Cortex-ARM9 as the core, the single-dimensional
以上仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落在本发明的保护范围。The above are only the preferred embodiments of the present invention, it should be pointed out: for those of ordinary skill in the art, without departing from the principles of the present invention, several improvements and equivalent replacements can also be made. The technical solutions after improvements and equivalent replacements all fall within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811240077.0ACN109223456B (en) | 2018-10-23 | 2018-10-23 | Lower limb exoskeleton robot system based on man-machine terminal interaction |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811240077.0ACN109223456B (en) | 2018-10-23 | 2018-10-23 | Lower limb exoskeleton robot system based on man-machine terminal interaction |
| Publication Number | Publication Date |
|---|---|
| CN109223456A CN109223456A (en) | 2019-01-18 |
| CN109223456Btrue CN109223456B (en) | 2020-10-13 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201811240077.0AActiveCN109223456B (en) | 2018-10-23 | 2018-10-23 | Lower limb exoskeleton robot system based on man-machine terminal interaction |
| Country | Link |
|---|---|
| CN (1) | CN109223456B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110192966B (en)* | 2019-05-13 | 2022-02-08 | 安徽三联机器人科技有限公司 | Lower limb power assisting device |
| CN110251365A (en)* | 2019-06-12 | 2019-09-20 | 中北大学 | A spherical exoskeleton hip joint rehabilitation mechanism |
| TWI704910B (en)* | 2019-06-26 | 2020-09-21 | 緯創資通股份有限公司 | Balance assistance system and wearable device |
| CN110434832A (en)* | 2019-07-04 | 2019-11-12 | 布法罗机器人科技(成都)有限公司 | A kind of compact ectoskeleton power unit |
| CN110393657B (en)* | 2019-07-14 | 2024-12-10 | 西安萨默尔机器人科技有限公司 | Exoskeleton lower limb assistive robot |
| CN110465925B (en)* | 2019-09-19 | 2022-10-04 | 哈尔滨工业大学 | Modularized walking-assisting exoskeleton robot driven by elasticity in series |
| CN110900569B (en)* | 2019-12-04 | 2021-07-13 | 迈宝智能科技(苏州)有限公司 | Rigid-flexible mixed exoskeleton |
| CN111281744A (en)* | 2020-03-05 | 2020-06-16 | 武汉沃森拓客科技有限公司 | Modular joint and wearable modular joint exoskeleton |
| CN111376236B (en)* | 2020-04-07 | 2024-12-10 | 京东科技信息技术有限公司 | Hip joint structure and exoskeleton robot |
| CN111643316A (en)* | 2020-05-07 | 2020-09-11 | 广西科技大学 | A disc motor ectoskeleton for rehabilitation training |
| CN111693181B (en)* | 2020-05-20 | 2022-04-05 | 南京航空航天大学 | A human-machine one-dimensional interactive force measurement sensor and measurement method for lower extremity exoskeleton |
| CN111823267B (en)* | 2020-07-17 | 2022-02-18 | 重庆悦强电子有限公司 | Power-assisted joint, supporting leg and exoskeleton |
| CN111773038B (en)* | 2020-08-06 | 2022-04-15 | 长春工业大学 | A new type of lower limb rehabilitation exoskeleton robot and control method |
| CN112238459B (en)* | 2020-10-13 | 2021-10-29 | 中国科学院沈阳自动化研究所 | A Linked Wearable Active Robot Arm with 16 Degrees of Freedom |
| CN112296988A (en)* | 2020-11-13 | 2021-02-02 | 西北工业大学深圳研究院 | A kangaroo-like wearable jumping robot that assists astronauts in lunar surface activities |
| CN112606037B (en)* | 2020-12-16 | 2022-11-08 | 安徽恒利增材制造科技有限公司 | Synchronous-rotating waist-arm connecting mechanism of humanoid casting auxiliary robot |
| CN112497196B (en)* | 2020-12-24 | 2022-04-19 | 迈宝智能科技(苏州)有限公司 | Exoskeleton robot electrical system |
| CN112545846B (en)* | 2020-12-29 | 2023-11-21 | 西北工业大学 | Powered multi-degree-of-freedom walking-assisted lower limb exoskeleton robot based on intent recognition |
| CN112692812B (en)* | 2020-12-31 | 2023-02-03 | 安杰莱科技(杭州)有限公司 | Exoskeleton waist module and exoskeleton robot |
| CN113305812B (en)* | 2021-06-29 | 2024-10-18 | 上海大学 | Bionic lower limb exoskeleton configuration and human-machine coupling gait trajectory optimization method |
| CN113693891A (en)* | 2021-08-24 | 2021-11-26 | 深圳市英汉思动力科技有限公司 | Exoskeleton enhancement auxiliary system |
| CN115715734A (en)* | 2021-08-27 | 2023-02-28 | 广州视源电子科技股份有限公司 | Exoskeleton device |
| CN116118894B (en)* | 2021-11-15 | 2024-06-07 | 腾讯科技(深圳)有限公司 | Hip joint assembly and robot |
| CN116421935A (en)* | 2022-01-04 | 2023-07-14 | 深圳市奇诺动力科技有限公司 | Foot supporting device and lower limb rehabilitation training device |
| CN115648175B (en)* | 2022-09-10 | 2023-06-20 | 中国农业科学院果树研究所 | An auxiliary supporting exoskeleton |
| CN119347731B (en)* | 2024-12-24 | 2025-04-11 | 杭州智元研究院有限公司 | Active lower limb four-bar-linkage heterogeneous exoskeleton and application method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103610524A (en)* | 2013-12-16 | 2014-03-05 | 哈尔滨工业大学 | Portable energy-storage type external skeleton assisting robot |
| WO2015136214A1 (en)* | 2014-03-11 | 2015-09-17 | Robotiques 3 Dimensions | Exoskeleton slipper |
| CN105816298A (en)* | 2016-05-23 | 2016-08-03 | 成都奥特为科技有限公司 | Wearable ankle protection and foot power assisting device |
| US9526668B2 (en)* | 2008-10-13 | 2016-12-27 | Rewalk Robotics Ltd. | Locomotion assisting device and method |
| CN106965156A (en)* | 2017-03-30 | 2017-07-21 | 北京精密机电控制设备研究所 | A kind of integrated multiple degrees of freedom lower limb exoskeleton of auxiliary lightness |
| CN107137207A (en)* | 2017-07-03 | 2017-09-08 | 哈尔滨工业大学 | Drive lacking lower limb assistance exoskeleton robot based on rope pulley mechanism |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9526668B2 (en)* | 2008-10-13 | 2016-12-27 | Rewalk Robotics Ltd. | Locomotion assisting device and method |
| CN103610524A (en)* | 2013-12-16 | 2014-03-05 | 哈尔滨工业大学 | Portable energy-storage type external skeleton assisting robot |
| WO2015136214A1 (en)* | 2014-03-11 | 2015-09-17 | Robotiques 3 Dimensions | Exoskeleton slipper |
| CN105816298A (en)* | 2016-05-23 | 2016-08-03 | 成都奥特为科技有限公司 | Wearable ankle protection and foot power assisting device |
| CN106965156A (en)* | 2017-03-30 | 2017-07-21 | 北京精密机电控制设备研究所 | A kind of integrated multiple degrees of freedom lower limb exoskeleton of auxiliary lightness |
| CN107137207A (en)* | 2017-07-03 | 2017-09-08 | 哈尔滨工业大学 | Drive lacking lower limb assistance exoskeleton robot based on rope pulley mechanism |
| Publication number | Publication date |
|---|---|
| CN109223456A (en) | 2019-01-18 |
| Publication | Publication Date | Title |
|---|---|---|
| CN109223456B (en) | Lower limb exoskeleton robot system based on man-machine terminal interaction | |
| CN203060231U (en) | Wearable lower limb exoskeleton walking-assisting robot | |
| CN103054692B (en) | Wearable lower limb exoskeleton walking-assisted robot | |
| CN109571434B (en) | Unpowered lower limb exoskeleton robot | |
| CN103735386B (en) | Wearable lower limb exoskeleton rehabilitation robot | |
| CN209966958U (en) | Lower limb exoskeleton assistance rehabilitation device | |
| CN109009866B (en) | Sitting type lower limb exoskeleton rehabilitation robot | |
| CN109009891A (en) | Wearable electricity drives assistance exoskeleton lower limb mechanism | |
| CN104812352B (en) | Robotic device for assistance and rehabilitation of lower limbs | |
| CN101810533B (en) | walking aid exoskeleton rehabilitation robot | |
| CN209316409U (en) | A wearable electric drive assist exoskeleton lower limb mechanism | |
| CN204121372U (en) | A kind of wearable lower limb exoskeleton walk help decompression robot device | |
| CN102247260B (en) | Line angle driving lower limb walking aid | |
| CN115137618B (en) | A wearable lower limb exoskeleton rehabilitation and assistance robot | |
| CN103610568A (en) | Human-simulated external skeleton robot assisting lower limbs | |
| CN111168648B (en) | A four-degree-of-freedom hip joint exoskeleton walking robot based on flexible drive | |
| CN202211834U (en) | Line angle driven lower limb walking aid | |
| CN217697231U (en) | A wearable upper limb power-assisted exoskeleton device | |
| CN203436523U (en) | Ten-freedom-degree lower limb walking-assisting device | |
| CN107928996A (en) | A kind of semi-passive light-type lower limb exoskeleton | |
| CN111743736A (en) | A carbon-free walking aid for the elderly | |
| CN107174488A (en) | A kind of vola in-wheel driving self-balancing power exoskeleton for Patients of Spinal | |
| CN108161909A (en) | A kind of bionical lower limb exoskeleton robot carried for auxiliary | |
| CN110123496B (en) | Upper limb movement function compensation equipment | |
| CN112022618B (en) | Rigid-flexible coupling wearable walking assisting exoskeleton system |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |