Movatterモバイル変換


[0]ホーム

URL:


CN109112156A - A kind of recombination pseudomonad producing 3- hydracrylic acid, its construction method and its application - Google Patents

A kind of recombination pseudomonad producing 3- hydracrylic acid, its construction method and its application
Download PDF

Info

Publication number
CN109112156A
CN109112156ACN201811092228.2ACN201811092228ACN109112156ACN 109112156 ACN109112156 ACN 109112156ACN 201811092228 ACN201811092228 ACN 201811092228ACN 109112156 ACN109112156 ACN 109112156A
Authority
CN
China
Prior art keywords
pseudomonad
recombination
acid
construction method
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811092228.2A
Other languages
Chinese (zh)
Inventor
周生芳
吕作鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal UniversityfiledCriticalJiangsu Normal University
Priority to CN201811092228.2ApriorityCriticalpatent/CN109112156A/en
Publication of CN109112156ApublicationCriticalpatent/CN109112156A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromChinese

一种生产3‑羟基丙酸的重组假单胞菌、其构建方法及其应用,属于基因工程领域和发酵工程领域,所述重组宿主菌为假单胞菌,表达编码乙酰辅酶A羧化酶的基因accABCD和编码丙二酰辅酶A还原酶的基因mcr。制备方法为:获得重组载体pUCPK‑AM;转化到宿主感受态细胞中。本发明通过构建外源表达3‑羟基丙酸生产途径,获得的菌株能够在以乙酸为唯一碳源的培养基中生产3‑羟基丙酸,可以降低3‑羟基丙酸生物制造成本,并为工农业废弃乙酸的利用提供一种可行的研究思路与方向,具有重要的经济价值和社会意义。

A recombinant Pseudomonas for producing 3-hydroxypropionic acid, a construction method and applications thereof, belonging to the fields of genetic engineering and fermentation engineering, wherein the recombinant host is Pseudomonas and expresses coding acetyl-CoA carboxylase The gene accABCD and the gene mcr encoding malonyl-CoA reductase. The preparation method is as follows: obtaining a recombinant vector pUCPK-AM; and transforming it into a host competent cell. In the present invention, by constructing an exogenous expression 3-hydroxypropionic acid production pathway, the obtained strain can produce 3-hydroxypropionic acid in a medium with acetic acid as the sole carbon source, which can reduce the biological production cost of 3-hydroxypropionic acid, and is effective for the production of 3-hydroxypropionic acid. The utilization of industrial and agricultural waste acetic acid provides a feasible research idea and direction, which has important economic value and social significance.

Description

A kind of recombination pseudomonad producing 3- hydracrylic acid, its construction method and its application
Technical field
The present invention relates to molecular biology, genetic engineering field, and in particular to a kind of recombination for producing 3- hydracrylic acid is falseMonad, its construction method and its application.
Background technique
3- hydracrylic acid is the green material for the acrylic acid that synthesis has high added economic value, is widely used in baby's paperIn urine pants, surface covering, paint and adhesives industry.In recent years, the demand of acrylic acid is continuously increased.Traditional chemical methodProduction 3- hydracrylic acid has the characteristics that process is complicated, environmental pollution at high cost and easy, and microbial method production 3- hydracrylic acidThese factors can be effectively avoided.Biology base 3- hydracrylic acid is mainly obtained using glycerol as substrate by microbial fermentation at present, raw materials glycerine price is larger by Biodiesel influence on development.Under the premise of China does not strive the policy on ground with grain and oil, biologyDiesel oil industry raw material resources are insufficient, cost is excessively high, bring limitation to Material synthesis 3- hydracrylic acid is used glycerol as.CauseThis, solves the competitiveness that raw material sources and cost problem are produced for improving Chinese biological base 3- hydracrylic acid, realizes biology baseThe sustainable development of 3- hydracrylic acid is most important.Acetic acid is in China's abundance, the waste water of industrial or agricultural discharge rich in a large amount ofAcetic acid;The conversion of synthesising biological gas, a carbonizable substance methanol and methane conversion, sewage sludge anaerobic digestion etc. can also generate largelyAcetic acid.Compared with other raw materials, acetic acid raw material is cheap.If being used for the conjunction of biology base 3- hydracrylic acid using acetic acid as raw materialAt can be greatly lowered production cost, improve the competitiveness of biology base 3- hydracrylic acid, realize biology base 3- hydracrylic acidSustainable development.Mode microorganism Escherichia coli (E.coli), which has been reported, can use acetic acid synthesis 3- hydracrylic acid,But the concentration of tolerable acetic acid is low (< 8g/L), cell slow growth when bacterial metabolism acetic acid.
Summary of the invention
The object of the present invention is to provide the recombination of the high production 3- hydracrylic acid of the tolerance of a kind of pair of substrate acetic acid is false singleBorn of the same parents bacterium and its construction method, and the method using recombination pseudomonad 3-hydroxyl ethylformic acid fermentation production.
As the first aspect of the present invention, a kind of construction method of recombination pseudomonad for producing 3- hydracrylic acid is provided,The construction method is one of following method:
Method 1: acetyl-coA carboxylase gene accADBC and malonyl coenzyme A reductase gene mcr are building up to originalOn nuclear expression carrier, then prokaryotic expression carrier is imported in pseudomonad, building obtains recombination pseudomonad;
Method 2: acetyl-coA carboxylase gene accADBC and malonyl coenzyme A reductase gene mcr will be integrated intoBuilding obtains recombination pseudomonad in pseudomonad genome.
Preferably, method 1 specifically includes: by acetyl-coA carboxylase gene accADBC and malonyl coenzyme A reductaseGene mcr is building up on Escherichia coli-pseudomonad shuttle plasmid pUCPK, then obtained recombinant plasmid pUCPK-AM is usedPUCPK-AM converts pseudomonad, obtains recombination pseudomonad ZAP-AM1.
Preferably, the pseudomonad is ATCC13867.
As a second aspect of the invention, the recombination pseudomonad of the building as described in above-mentioned construction method is provided.
As the third aspect of the present invention, application of the recombination pseudomonad in 3-hydroxyl ethylformic acid fermentation production is provided.
Preferably, the fermentation is to carry out aerobic fermentation by raw material of acetic acid.
Preferably, fermentative medium formula used are as follows: 100mmol/L phosphate buffer, 5g/L sodium acetate, 0.25g/L sulphurSour magnesium, 1g/L ammonium chloride, 1g/L yeast extract;Biotin 2.2mg/L, sodium bicarbonate 20mmol/L, the pH=of phosphate buffer7.0。
Preferably, the fermentation condition are as follows: seed liquor is inoculated by 50mL hair with the inoculum concentration of OD600=0.1 after inoculationIn ferment culture medium, ferment 24 hours under the conditions of 37 DEG C of temperature, 250rpm.
Beneficial effects of the present invention: recombination pseudomonad of the invention is high to the tolerance of substrate acetic acid, can be used for scaleMetaplasia produces 3- hydracrylic acid;Bacterium is produced with recombination pseudomonad production 3- hydracrylic acid of the invention, CO can be fixed2, improve 3-Hydracrylic acid carbon yield and substrate Atom economy reduce raw materials for production cost and the addition of fermentation and acid process alkalinity neutralization reagentCost.
Detailed description of the invention
Fig. 1 is the metabolic pathway for producing 3- hydracrylic acid in the embodiment of the present invention using recombination pseudomonad.
Specific embodiment:
Following embodiment further illustrates the contents of the present invention, but should not be construed as limiting the invention.Without departing substantially fromIn the case where spirit of that invention and essence, to modifications or substitutions made by the method for the present invention, step or condition, the present invention is belonged toRange.Unless otherwise specified, the conventional means that technological means used in embodiment is well known to those skilled in the art, such asThe molecular cloning experiment handbooks such as Sambrook, or the condition according to product description suggestion.
Escherichia coli used in the following embodiment-pseudomonad shuttle plasmid pUCPK is building early period.
Embodiment 1 is overexpressed acetyl-coA carboxylase gene accADBC and malonyl coenzyme A reduction in pseudomonadEnzyme gene mcr
Using the genome of pseudomonad (Pseudomonas sp.ATCC13867) as template, design primer carries out PCR pointsIt Kuo Zeng not accA (SEQ ID NO.1), accB (SEQ ID NO.2), accC (SEQ ID NO.3), accD (SEQ IDNO.4), over-lap PCR is carried out, then to obtain a gene cluster of accADBC.With the gene of photosynthetic Chloronema Dubinina and Gorlenko thermophilic in NCBIGroup information inquires the nucleotide sequence of mcr gene, after then carrying out codon optimization, sends to gene chemical synthesis company synthesis mcr baseBecause of (mcr gene order is as shown in SEQ ID NO.5), the gene of synthesis is subjected to PCR amplification.By Escherichia coli-pseudomonadShuttle plasmid pUCPK carries out digestion with XbaI and HindIII, and mcr segment is connected on pUCPK, the recombinant plasmid life of acquisitionEntitled pUCPK-M;This plasmid carries out digestion with BamHI and EcoRI, and accABDBC segment is connected on pUCPK-M, acquisitionRecombinant plasmid is named as pUCPK-AM.PUCPK-AM is transferred to pseudomonad by electrotransformation using electroporation apparatus (Bole)In, electrode conditions are 25 μ F, 200 Ω, 180V (electric shock cup width is 2mm).On the kanamycins LB plate containing 30mg/LScreening obtains recombinant bacterium, is named as ZAP-AM1.
Embodiment 2 utilizes recombination pseudomonad 3-hydroxyl ethylformic acid fermentation production
Pseudomonad wild strain ZAP and recombinant bacterium ZAP-AM1 are incubated overnight on LB plate respectively.It is fresh from thisSingle colonie is inoculated into the 50mL triangular flask containing 10mL seed culture medium on plate, 37 DEG C, 250rpm culture 12 hours, gainedSeed liquor OD600 value is 3-4.
The formula of seed culture medium Luria-Bertani (LB) are as follows: 10g/L tryptone, 5g/L yeast extract, 10g/L chlorineChange sodium.
Seed liquor is inoculated into 50mL fermentation medium with the inoculum concentration of OD600=0.1 after inoculation, fermentation uses250mL triangular flask, control 37 DEG C of temperature, 250rpm, fermentation time 24 hours.
The formula of fermentation medium includes: 100mmol/L phosphate buffer (pH7.0), 5g/L sodium acetate, 0.25g/L sulphurSour magnesium, 1g/L ammonium chloride, 1g/L yeast extract;Biotin 2.2mg/L, sodium bicarbonate 20mmol/L.
As shown in Figure 1, acetic acid generates intermediate product acetyl coenzyme A in microbial body intracellular metabolite, acetyl coenzyme A is first in secondMalonyl coenzyme A is generated under the action of acyl coenzyme A carboxylase (ACC), malonyl coenzyme A further passes through malonyl coenzyme AThe catalysis of reductase (MCR) generates 3- hydracrylic acid.
After fermentation 24 hours, after measured, wild strain ZAP does not produce 3- hydracrylic acid, and recombinant bacterium ZAP-AM produces the 3- of 5mMHydracrylic acid.
Sequence table
<110>Jiangsu Normal University
<120>a kind of recombination pseudomonad for producing 3- hydracrylic acid, its construction method and its application
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 951
<212> DNA
<213>pseudomonad (Pseudomonas sp. ATCC13867)
<400> 1
atgaacccga attttctcga tttcgaacag cccattgccg acctgcacgc caagatcgaa 60
gaactgcgcc tggttggcaa cgacaacgcg ctgaacatca ccgacgaaat ctcccgtctg 120
caggagaaga gcaaggcgct gaccgagaac atcttcggca acctgaccag ctggcagatc 180
gcccagctcg cgcgccatcc gcgtcgcccc tacaccctgg actacatcga gcacatcttc 240
ggcgagttcg aagagctgca cggcgaccgt catttcgccg atgatgcggc catcgttggc 300
ggcgttgccc gcctcgacga gcaaccggtg atgatcatcg gtcaccagaa gggtcgcgaa 360
gtccgcgaga aggtgcgccg caacttcggc atgccgcgtc cggaaggcta ccgcaaggcc 420
tgccgcctga tggaaatggc cgaacgcttc aagatgccga tcctgacctt catcgacacc 480
cccggcgcct acccgggcat cgatgccgaa gagcgtggtc agagcgaggc gattgcctgg 540
aacctgcgcg tcatggcgcg cctgaagacc ccgatcatcg ccaccgttat cggcgagggc 600
ggttccggcg gcgcgctggc cattggcgtg tgcgaccagc tgaacatgct gcagtattcc 660
acctacgcgg tgatctcccc ggaaggctgc gcctcgattc tctggcgtac cgccgagaag 720
gcgccggaag cggccgaggc gatgggcatc accgccaacc gcctgaagga tctgggcatt 780
gtcgacagca tcatccccga gccgctgggc agcgctcacc gcgacccggc cgcgatgtcc 840
cagtcgatcc gcaaggccct gctcggccag ctggatgttc tcaagcaact gagcaccgaa 900
gagctgctgg cgcgccgcta cgagcgcctg atgagctacg gcgtcgcctg a 951
<210> 2
<211> 468
<212> DNA
<213>pseudomonad (Pseudomonas sp. ATCC13867)
<400> 2
atggacatcc gtaaagtcaa gaaactgatc gaactgctcg aagaatccgg catcgacgaa 60
ctggagatca aagagggcga agagtccgta cgcatcagcc gtcacagcaa gaccgccgcc 120
cagccggtct acgccgccgc cccggcctac gccccggctc ccgtcgcagc cgctccggtc 180
gctgccgccg cagccccgac cgccgaagcc gctccggccg caccggtgct caacggcaac 240
gccgtgcgct cgccgatggt cggcaccttc tatcgcgccg cctcgccgac ctccgccaac 300
ttcgtcgaag tcggccagag cgtgaagaaa ggcgacatcc tgtgcatcgt cgaagccatg 360
aagatgatga accacatcga ggccgagacc agcggcgtga tcggtcaagt cctcgtggag 420
aacggccagc cggtcgagtt cgaccagccc ctgttcacca tcgtttaa 468
<210> 3
<211> 1350
<212> DNA
<213>pseudomonad (Pseudomonas sp. ATCC13867)
<400> 3
atgttggaaa aagtactgat cgccaaccgc ggcgaaatcg cgctgcgcat cctgcgcgcg 60
tgcaaggagc tgggcatcaa gacggtggct gtgcattcga ccgccgaccg cgaactgatg 120
cacctgtcgc tggccgacga agcggtctgc atcggtccgg ccccggctgc gcagtcctac 180
ctgcacatcc cggcgatcat cgccgcggcc gaggtcaccg gtgccgtggg tatccatccc 240
ggctacggct tcctcgccga gaacgccgac ttcgccgagc aggtcgagcg ctcgggcttc 300
accttcatcg gcccgagcgc cgacgtcatc cgcctgatgg gtgacaaggt gtccgccaag 360
gacgccatga agaaagccgg cgtgccgacc gtaccgggct ccgacggccc gctgcccgaa 420
gacgaagaga ccgcgctggc gatcgcccgc gaggttggct acccggtgat catcaaggcc 480
gccggtggcg gcggtggtcg cggcatgcgc gtcgtgcacc acgaggaaga cctgatcaag 540
tccgccaagc tgacccgtac cgaagcgggc gcggccttcg gcaactcgat ggtctacctg 600
gagaagttcc tgaccaaccc gcgtcacgtg gaagtccagg tgctctccga cggccagggc 660
aacgccatcc acctgggcga ccgcgactgc tccctgcagc gtcgtcacca gaaggtactg 720
gaagaagccc cagccccggg catcgacgag aaggcccgcg aagaagtgct ggcccgctgc 780
gtccaggcct gcatcgagat cggctatcgt ggcgccggca ccttcgagtt cctctacgag 840
aacggccgct tctacttcat cgagatgaac acccgcgtcc aggtggagca tccggtgtcg 900
gagatggtca ccggtatcga catcgtcaag gaaatgctca gcatcgcctc gggcaacaag 960
ctgtcgatcc gccaggaaga cgtggtcatc cgtggccatg cgctggaatg ccggatcaat 1020
gccgaagacc cgaagacctt catgccgagc cctggcaagg tcaagcactt ccacgcgccg 1080
ggcggcaacg gcgtgcgcgt cgattcgcac ctgtacagcg gctacgccgt accgccgaac 1140
tatgactcgc tggtgggcaa ggtcatcacc tacggcaagg accgagccga agccctggcg 1200
cgcatgcgca atgccctgga cgagctgatc gtcgacggca tcaagaccaa taccgagctg 1260
cacaaggatc tggtccgcga caaggagttc tgcaaaggtg gcgtgaacat ccactacctg 1320
gagaagaagc tgggcatgga caagcactaa 1350
<210> 4
<211> 876
<212> DNA
<213>pseudomonad (Pseudomonas sp. ATCC13867)
<400> 4
atgagcaact ggctggtaga caagctgatc ccttccatca tgcgttccga agcgaagaag 60
agctcggttc cggaaggcct gtggcacaag tgcccgtcct gcgaggcggt gctgtaccgt 120
cccgagctgg aaaagaccct ggacgtctgc ccgaagtgcg atcaccacat gcgcatcggc 180
gcccgtgccc gcctggacat cttcctcgat gaagagggtc gcgaagagct tggcgccgag 240
ctggagccgg tggatcgcct gaagttccgc gacagcaaga agtacaagga ccgcctgagc 300
gccgcgcaga aggacaccgg cgagaaggat gcgctgatct ccatgagcgg caagctgatg 360
ggcatgccgg tggtggccag cgccttcgag ttctccttca tgggcggctc gatgggctcc 420
atcgtcggcg agcgtttcgt gcgcgccgcc aactacgcct tggaaaaccg ttgcccgatg 480
atctgcttct ccgcttcggg cggtgcgcgc atgcaggaag cgctgatttc cctgatgcag 540
atggccaaga cctccgccgc gctggcgcgc ctgcgcgaag aaggcattcc gttcatctcc 600
gtgctgaccg acccggtcta cggcggcgtt tccgccagcc tggcgatgct cggcgacgtg 660
atcgtcggcg agccgcgcgc cctgatcggc ttcgccggcc cgcgggtgat cgagcagacc 720
gtgcgcgaga agctgcccga aggcttccag cgtagcgagt tcctgctgga gcacggtgcc 780
atcgacatga tcgtccaccg ttcggaaatg cgtcagcggc tcgccagcct gctggccaag 840
ttcaccaaca ctccaagtac cgcgctcgca ggatga 876
<210> 5
<211> 3660
<212> DNA
<213>thermophilic photosynthetic Chloronema Dubinina and Gorlenko (Chloroflexus aurantiacus)
<400> 5
atgtctggta ccggtcgtct ggcaggtaag atcgcactga tcaccggcgg tgctggtaac 60
atcggttctg agctgactcg tcgtttcctg gcagagggtg caactgtcat catcagcggt 120
cgtaaccgcg caaagctgac cgcactggca gagcgtatgc aagcagaggc aggtgtacct 180
gcaaagcgta tcgacctgga ggtgatggac ggtagcgacc ctgtagcagt gcgtgcaggt 240
atcgaggcaa tcgtggctcg tcatggtcag atcgacatcc tggtcaacaa cgcgggcagc 300
gcaggtgcac aacgtcgtct ggctgaaatc ccactgactg aggcagagct gggtcctggt 360
gcagaagaga ctctgcatgc aagcatcgca aacctgctgg gcatgggttg gcacctgatg 420
cgtatcgcag cacctcacat gcctgtcggt agcgcagtca tcaacgtctc taccatcttc 480
tcccgtgctg agtactacgg ccgtatcccg tacgtcaccc ctaaggctgc tctgaacgct 540
ctgtcccagc tggctgcacg tgagctgggt gcacgtggta tccgtgttaa tacgatcttc 600
ccgggcccta tcgagagcga ccgtatccgt accgtgttcc agcgtatgga ccagctgaaa 660
ggccgtccag agggtgacac tgcacaccac ttcctgaaca ccatgcgtct gtgccgtgca 720
aacgaccagg gtgcactgga gcgtcgtttc ccaagcgtcg gtgacgtagc agacgcagct 780
gtattcctgg caagcgcaga gtctgcagct ctgtctggtg agactatcga ggtcacgcac 840
ggtatggagc tgccagcatg ctctgagacc tctctgctgg cacgtactga cctgcgtact 900
atcgacgcat ctggtcgtac gactctgatc tgcgctggtg accagatcga ggaggtgatg 960
gcactgaccg gtatgctgcg tacctgcggt tctgaggtga tcatcggctt ccgttccgca 1020
gcggcgctgg cacaattcga acaggcggtc aacgaatccc gccgtctggc aggcgctgat 1080
ttcactccac caatcgctct gccactggac ccacgtgatc cagctactat cgatgcggtc 1140
ttcgactggg ctggtgaaaa caccggtggt atccacgcag ctgtaatcct gccagctacc 1200
agccacgaac cggctccgtg tgtaatcgaa gtggacgacg aacgtgtgct gaacttcctg 1260
gccgacgaaa tcaccggcac gatcgtgatc gccagccgtc tggctcgtta ctggcaatcc 1320
caacgtctga ccccgggtgc tcgtgctcgt ggtccgcgtg ttattttcct gtctaacggt 1380
gctgaccaaa acggcaacgt gtacggccgt attcagtccg ccgctatcgg tcagctgatc 1440
cgtgtgtggc gtcacgaagc tgaactggac taccagcgtg ctagcgctgc tggtgaccac 1500
gtgctgccgc cggtttgggc taatcaaatc gtgcgtttcg ctaaccgtag cctggaaggt 1560
ctggaattcg cgtgcgcttg gactgctcag ctgctgcaca gccagcgtca tatcaacgaa 1620
atcaccctga acatcccggc gaacatcagc gcgaccaccg gtgctcgtag cgcttctgtg 1680
ggttgggctg aatccctgat cggtctgcac ctgggtaaag tggctctgat taccggcggt 1740
agcgctggta tcggtggtca gatcggtcgt ctgctggctc tgtctggcgc tcgtgtaatg 1800
ctggctgctc gcgatcgtca taaactggaa cagatgcagg cgatgatcca gtccgaactg 1860
gccgaagtgg gctacaccga cgtggaagac cgcgtgcaca tcgctccggg ttgtgacgtt 1920
agctccgaag ctcagctggc tgacctggtt gaacgtactc tgtccgcttt cggtaccgtg 1980
gactacctga tcaacaatgc gggcatcgcg ggtgtggaag aaatggttat cgacatgccg 2040
gttgaaggct ggcgccacac cctgttcgcg aacctgatct ccaactactc cctgatgcgc 2100
aaactggcgc cgctgatgaa aaaacagggc tccggctaca tcctgaacgt ttcctcctac 2160
ttcggcggcg aaaaagacgc ggcgatcccg tacccgaacc gcgcggatta cgcggtttcc 2220
aaagccggcc agcgcgctat ggcggaagtt ttcgcgcgtt tcctgggccc ggaaattcag 2280
attaacgcga ttgcgccggg cccggttgaa ggtgatcgcc tgcgtggtac tggtgaacgt 2340
ccgggtctgt tcgctcgtcg tgcccgtctg attctggaaa acaaacgcct gaacgaactg 2400
cacgccgccc tgattgcggc cgcccgtact gatgaacgtt ctatgcacga actggttgaa 2460
ctgctgctgc cgaacgatgt tgcggccctg gaacagaacc cggccgcccc gactgcgctg 2520
cgtgaactgg cccgtcgttt tcgttctgaa ggcgatccgg cggcgtctag cagctccgcg 2580
ctgctgaatc gttctattgc ggccaaactg ctggcccgtc tgcataatgg cggctatgtt 2640
ctgccggcgg atattttcgc caatctgccg aatccgccgg atccgttttt cactcgtgcg 2700
cagattgatc gtgaagcccg taaagttcgc gatggcatta tgggcatgct gtacctgcag 2760
cgcatgccga cggaattcga tgttgcgatg gcgaccgttt attatctggc ggatcgcaac 2820
gtttccggcg aaaccttcca cccgtccggc ggcctgcgct atgaacgcac cccgaccggc 2880
ggcgaactgt ttggcctgcc gtctccggaa cgtctggcgg aactggttgg ctctactgtt 2940
tatctgattg gcgaacacct gacggaacac ctgaacctgc tggcgcgtgc gtatctggaa 3000
cgttacggcg cgcgccaggt tgttatgatt gttgaaacgg aaaccggcgc cgaaacgatg 3060
cgccgcctgc tgcacgatca cgttgaagcc ggccgcctga tgactattgt tgcgggcgat 3120
cagattgaag cggccattga tcaggccatt acccgctatg gccgcccggg tccggttgta 3180
tgtactccgt ttcgcccgct gccgactgta ccgctggtag gccgcaaaga ttctgattgg 3240
tccactgttc tgtctgaagc ggaatttgcg gaactgtgtg aacaccagct gacccaccat 3300
tttcgcgtag cgcgcaaaat tgcgctgtct gatggcgcgt ctctggcgct ggtaaccccg 3360
gaaaccaccg cgacctctac caccgaacag tttgcgctgg cgaactttat taaaacgacc 3420
ctgcatgcct ttacggcgac cattggcgta gaatctgaac gcacggcgca gcgcattctg 3480
attaaccagg tagatctgac ccgccgcgcg cgcgccgaag aaccgcgcga tccgcatgaa 3540
cgccagcagg aactggaacg ctttattgaa gccgttctgc tggtaaccgc cccgctgccg 3600
ccggaagccg atacccgcta tgcgggccgc attcatcgcg gccgcgcgat taccgtttaa 3660

Claims (8)

CN201811092228.2A2018-09-192018-09-19A kind of recombination pseudomonad producing 3- hydracrylic acid, its construction method and its applicationPendingCN109112156A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201811092228.2ACN109112156A (en)2018-09-192018-09-19A kind of recombination pseudomonad producing 3- hydracrylic acid, its construction method and its application

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201811092228.2ACN109112156A (en)2018-09-192018-09-19A kind of recombination pseudomonad producing 3- hydracrylic acid, its construction method and its application

Publications (1)

Publication NumberPublication Date
CN109112156Atrue CN109112156A (en)2019-01-01

Family

ID=64859411

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201811092228.2APendingCN109112156A (en)2018-09-192018-09-19A kind of recombination pseudomonad producing 3- hydracrylic acid, its construction method and its application

Country Status (1)

CountryLink
CN (1)CN109112156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110564757A (en)*2019-09-272019-12-13华东理工大学Construction method and application of metabolic engineering escherichia coli strain for producing 3-hydroxypropionic acid by using acetic acid or salt thereof
CN116986983A (en)*2023-06-202023-11-03湖州紫金生物科技有限公司Method for separating and purifying 3-hydroxydecanoic acid from pseudomonas bacteria

Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2013180581A1 (en)*2012-05-302013-12-05Lanzatech New Zealand LimitedRecombinant microorganisms and uses therefor
CN104046659A (en)*2014-06-182014-09-17中国科学院青岛生物能源与过程研究所Poly-3-hydroxy propionic acid copolymer and production method thereof
CN104531786A (en)*2014-12-102015-04-22燃点科技(天津)有限公司Method for synthesizing poly 3-hydroxypropionic acid by using acetyl coenzyme A
CN105039376A (en)*2014-08-142015-11-11清华大学Recombinant bacterium for producing 3-hydroxypropionic acid homopolymer/copolymer as well as construction method and application of recombinant bacterium
CN105950529A (en)*2016-06-242016-09-21清华大学 Recombinant Corynebacterium glutamicum producing 3-hydroxypropionic acid, its construction method and application
CN107119002A (en)*2017-04-282017-09-01中国科学院青岛生物能源与过程研究所A kind of recombinant bacterium for synthesizing 3 hydracrylic acids and its construction method and application
CN107151643A (en)*2017-04-282017-09-12中国科学院青岛生物能源与过程研究所A kind of recombinant bacterium for producing 3 hydracrylic acid copolymers and its construction method and application
CN108070546A (en)*2016-11-102018-05-25北京科技大学Produce recombination bacillus coli and its application of 3- hydracrylic acids

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2013180581A1 (en)*2012-05-302013-12-05Lanzatech New Zealand LimitedRecombinant microorganisms and uses therefor
CN104046659A (en)*2014-06-182014-09-17中国科学院青岛生物能源与过程研究所Poly-3-hydroxy propionic acid copolymer and production method thereof
CN105039376A (en)*2014-08-142015-11-11清华大学Recombinant bacterium for producing 3-hydroxypropionic acid homopolymer/copolymer as well as construction method and application of recombinant bacterium
CN104531786A (en)*2014-12-102015-04-22燃点科技(天津)有限公司Method for synthesizing poly 3-hydroxypropionic acid by using acetyl coenzyme A
CN105950529A (en)*2016-06-242016-09-21清华大学 Recombinant Corynebacterium glutamicum producing 3-hydroxypropionic acid, its construction method and application
CN108070546A (en)*2016-11-102018-05-25北京科技大学Produce recombination bacillus coli and its application of 3- hydracrylic acids
CN107119002A (en)*2017-04-282017-09-01中国科学院青岛生物能源与过程研究所A kind of recombinant bacterium for synthesizing 3 hydracrylic acids and its construction method and application
CN107151643A (en)*2017-04-282017-09-12中国科学院青岛生物能源与过程研究所A kind of recombinant bacterium for producing 3 hydracrylic acid copolymers and its construction method and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴孔阳等: "3_羟基丙酸生产菌育种的研究进展", 《生物技术》*
张轩: "利用3-羟基丙酸途径产3-羟基丙酸的基因工程菌的构建", 《万方论文数据库》*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110564757A (en)*2019-09-272019-12-13华东理工大学Construction method and application of metabolic engineering escherichia coli strain for producing 3-hydroxypropionic acid by using acetic acid or salt thereof
CN116986983A (en)*2023-06-202023-11-03湖州紫金生物科技有限公司Method for separating and purifying 3-hydroxydecanoic acid from pseudomonas bacteria

Similar Documents

PublicationPublication DateTitle
Liu et al.Recent advances in fermentative biohydrogen production
CN101255405B (en)Novel constructed high-yield malic acid gene engineering bacterium and method for producing malic acid by using same
CN101531988B (en)Alkaline pectinase genetic engineering bacteria and construction method thereof
CN109321590B (en) Genetically engineered bacteria using acetic acid to produce L-lactic acid and its construction method and application
CN102199570B (en)Method for constructing gene engineering bacterium for improving microbial fermentation for1,3-propanediol production from glycerol
CN107287143A (en)The Recombinant organism and its construction method of high yield butanol and application
Sun et al.Fermentation performance and mechanism of a novel microbial consortium DUT08 for 1, 3-propandiol production from biodiesel-derived crude glycerol under non-strictly anaerobic conditions
CN109112156A (en)A kind of recombination pseudomonad producing 3- hydracrylic acid, its construction method and its application
CN120005795A (en) Methane-loving genetically engineered bacteria with high yield of fermentable sugars and construction method and application thereof
CN108865905A (en)A kind of recombination Mortierella alpina engineering bacteria producing unsaturated fatty acid capability improving
CN104293817B (en)Construction methods and uses of recombinant plasmid for producing succinic acid, and genetic engineering bacterium
CN118389307A (en) A yeast engineering strain for synthesizing succinic acid based on aspartate pathway and its construction method and application
CN112280725A (en)Recombinant escherichia coli for efficiently producing succinic acid and construction method thereof
CN115895989B (en)Escherichia coli for high yield of succinic acid and preparation method and application thereof
CN108060203B (en)Method for producing 1, 3-propylene glycol by whole-cell mixed transformation of glycerol
CN107119003B (en)Recombinant bacterium for synthesizing 3-hydroxypropionic acid by utilizing glucan and construction method and application thereof
CN115873773A (en)Escherichia coli for producing L-lactic acid by efficiently utilizing sucrose and application
CN111394396B (en)Method for producing 1, 3-propylene glycol by using glycerol fermentation by microorganisms
CN108102941A (en)The Gluconobacter oxvdans of one plant of glycerol dehydrogenase gene sequence of combination containing certain films and its application
CN109593697B (en)Recombinant pseudomonas for producing 3-hydroxypropionic acid and construction method thereof
CN101265474A (en)Method for producing clostridium perfringens glycerin anhydrase incitant gene and 1,3-propanediol thereof
CN104830851A (en)Recombinant bacterium of formate dehydrogenase and application of recombinant bacterium
CN104498523A (en)Engineering bacteria for knocking out pyruvate formate-lyase genes and application of engineering bacteria
CN113249281B (en)Recombinant bacterium for producing phloroglucinol by using ethanol and construction method and application thereof
CN114854612B (en)Transformation of Saccharomyces cerevisiae for producing L-lactic acid and application thereof

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
RJ01Rejection of invention patent application after publication
RJ01Rejection of invention patent application after publication

Application publication date:20190101


[8]ページ先頭

©2009-2025 Movatter.jp