技术领域technical field
本发明涉及多车辆协同技术领域,特别是涉及一种多车辆协同定位与地图构建方法、装置、设备及存储介质。The present invention relates to the technical field of multi-vehicle coordination, in particular to a multi-vehicle coordinated positioning and map construction method, device, equipment and storage medium.
背景技术Background technique
随着人工智能以及车联网技术(V2X)技术的推进,多车辆协同技术是实现车辆智能化、网联化的关键技术,其中多车辆协同定位与地图构建技术是实现V2X场景下自动驾驶的重要前提。With the advancement of artificial intelligence and vehicle-to-everything (V2X) technology, multi-vehicle collaboration technology is the key technology to realize vehicle intelligence and networking, among which multi-vehicle collaborative positioning and map construction technology are important for realizing automatic driving in V2X scenarios. premise.
现有的车辆定位与地图构建技术多采用GPS/INS组合惯导定位,由于GNSS卫星信号可能被遮挡,同时轮式里程计精度易受车轮滑移影响,造成车辆无法满足复杂行驶环境中的定位精度要求;现有的采用64线激光雷达同步定位与地图构建技术(SimultaneousLocalization And Mapping,简称SLAM)可对车辆进行高精度定位与地图构建,但成本太高,难以实现产品化。现有的视觉SLAM技术多应用于室内机器人导航,无法满足车辆室外大场景视觉定位与地图构建的稳定性和鲁棒性要求。同时现有单车辆SLAM技术依赖于多传感器融合方案,整体硬件成本较高,并且单车辆SLAM的地图构建效率较低,只能对可观测的环境进行SLAM,无法对未知环境进行导航,降低了车辆定位与地图构建系统的环境适应性。Existing vehicle positioning and map construction technologies mostly use GPS/INS combined inertial navigation positioning. Since GNSS satellite signals may be blocked, and the accuracy of wheel odometers is easily affected by wheel slippage, vehicles cannot meet the positioning requirements in complex driving environments. Accuracy requirements; the existing 64-line lidar simultaneous positioning and mapping technology (Simultaneous Localization And Mapping, referred to as SLAM) can perform high-precision positioning and map construction for vehicles, but the cost is too high to achieve commercialization. The existing visual SLAM technology is mostly used in indoor robot navigation, which cannot meet the stability and robustness requirements of vehicle outdoor large scene visual positioning and map construction. At the same time, the existing single-vehicle SLAM technology relies on multi-sensor fusion solutions, the overall hardware cost is high, and the map construction efficiency of single-vehicle SLAM is low. It can only perform SLAM on the observable environment and cannot navigate the unknown environment, reducing the Environmental adaptability of vehicle localization and map building systems.
因此,如何实现多车辆协同定位与地图构建技术,且成本低,满足稳定性和鲁棒性要求,是本领域技术人员亟待解决的技术问题。Therefore, how to realize multi-vehicle cooperative positioning and map construction technology with low cost and meet the requirements of stability and robustness is a technical problem to be solved urgently by those skilled in the art.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种多车辆协同定位与地图构建方法、装置、设备及存储介质,具有更准确、更高效和更鲁棒的优势,同时降低了成本,提高了效率。其具体方案如下:In view of this, the purpose of the present invention is to provide a method, device, equipment and storage medium for multi-vehicle cooperative positioning and map construction, which has the advantages of more accuracy, efficiency and robustness, while reducing costs and improving efficiency. The specific plan is as follows:
一种多车辆协同定位与地图构建方法,包括:A multi-vehicle collaborative positioning and map construction method, comprising:
通过单车辆定位与地图构建系统实时获取车辆定位与局部道路地图数据,并实时发送至车辆附近的道路5G基础设施;Obtain vehicle positioning and local road map data in real time through the single vehicle positioning and map construction system, and send them to the road 5G infrastructure near the vehicle in real time;
通过所述道路5G基础设施将所述车辆定位与局部道路地图数据实时发送至云端地图服务器;Send the vehicle positioning and local road map data to the cloud map server in real time through the road 5G infrastructure;
所述云端地图服务器在接收到所述车辆定位与局部道路地图数据后,通过数据融合与拼接算法将所述车辆定位与局部道路地图数据拼接成车辆定位与全局道路地图数据并进行实时更新与维护;After the cloud map server receives the vehicle positioning and local road map data, it splices the vehicle positioning and local road map data into vehicle positioning and global road map data through a data fusion and splicing algorithm, and performs real-time update and maintenance ;
所述云端地图服务器将更新后的所述车辆定位与全局道路地图数据发送回所述道路5G基础设施;The cloud map server sends the updated vehicle location and global road map data back to the road 5G infrastructure;
所述道路5G基础设施将更新后的所述车辆定位与全局道路地图数据实时发送给附近的车辆。The road 5G infrastructure sends the updated vehicle location and global road map data to nearby vehicles in real time.
优选地,在本发明实施例提供的上述多车辆协同定位与地图构建方法中,通过单车辆定位与地图构建系统实时获取车辆定位与局部道路地图数据,并实时发送至车辆附近的道路5G基础设施,具体包括:Preferably, in the above-mentioned multi-vehicle cooperative positioning and map construction method provided by the embodiment of the present invention, the vehicle positioning and local road map data are obtained in real time through the single vehicle positioning and map construction system, and are sent to the road 5G infrastructure near the vehicle in real time , including:
通过双目视觉里程计模块和车辆运动模型实时获取车辆的局部定位数据并发送至传感器融合模块;Obtain the local positioning data of the vehicle in real time through the binocular visual odometer module and the vehicle motion model and send it to the sensor fusion module;
通过GNSS定位模块实时获取车辆的全局定位数据并发送至所述传感器融合模块;The global positioning data of the vehicle is obtained in real time by the GNSS positioning module and sent to the sensor fusion module;
通过所述传感器融合模块将所述车辆局部定位数据和所述车辆全局定位数据进行数据融合,获得车辆定位数据;performing data fusion on the vehicle local positioning data and the vehicle global positioning data through the sensor fusion module to obtain vehicle positioning data;
通过回环检测模块对所述车辆定位数据进行修正和更新;Correcting and updating the vehicle positioning data through the loop detection module;
通过局部道路地图构建模块根据更新后的所述车辆定位数据,通过地图构建算法进行道路地图构建,获得车辆局部道路地图数据;Carry out road map construction through a map construction algorithm according to the updated vehicle positioning data through the local road map construction module, and obtain vehicle local road map data;
通过5G通信模块将获得的所述车辆定位数据和所述车辆局部道路地图数据汇总为车辆定位与局部道路地图数据并实时发送至车辆附近的道路5G基础设施。Through the 5G communication module, the obtained vehicle positioning data and the vehicle local road map data are aggregated into vehicle positioning and local road map data and sent to the road 5G infrastructure near the vehicle in real time.
优选地,在本发明实施例提供的上述多车辆协同定位与地图构建方法中,所述车辆局部道路地图数据包括数字地图、栅格地图、语义地图和特征地图数据。Preferably, in the above multi-vehicle co-location and map construction method provided by the embodiment of the present invention, the vehicle local road map data includes digital map, grid map, semantic map and feature map data.
优选地,在本发明实施例提供的上述多车辆协同定位与地图构建方法中,所述双目视觉里程计模块采用的传感器是安装在车辆前方的双目立体相机,所述车辆运动模型采用的传感器是车载惯性测量单元。Preferably, in the above-mentioned multi-vehicle cooperative positioning and map construction method provided by the embodiment of the present invention, the sensor used by the binocular visual odometer module is a binocular stereo camera installed in front of the vehicle, and the vehicle motion model uses The sensor is an on-board inertial measurement unit.
优选地,在本发明实施例提供的上述多车辆协同定位与地图构建方法中,通过双目视觉里程计模块实时获取车辆的局部定位数据,具体包括:Preferably, in the above-mentioned multi-vehicle cooperative positioning and map construction method provided by the embodiment of the present invention, the local positioning data of the vehicle is obtained in real time through the binocular visual odometer module, specifically including:
通过双目立体相机获取图像;Obtain images through a binocular stereo camera;
通过图像获取与校正模块将所述双目立体相机获取的图像进行获取和畸变校正;The image acquired by the binocular stereo camera is acquired and distorted by the image acquisition and correction module;
通过左右图像立体匹配模块对校正后的图像数据进行深度信息计算以及立体点云生成;Perform depth information calculation and stereo point cloud generation on the corrected image data through the left and right image stereo matching module;
通过运动估计模块对前后连续帧生成的三维点云数据通过迭代最近邻算法进行相机位姿计算,获得所述双目立体相机的位姿数据;The three-dimensional point cloud data generated by the front and rear consecutive frames is calculated by the motion estimation module through an iterative nearest neighbor algorithm to obtain the pose data of the binocular stereo camera;
通过坐标变换模块将所述双目立体相机的位姿数据转换到车辆坐标系下,输出车辆坐标系下的车辆局部定位数据。The pose data of the binocular stereo camera is converted into the vehicle coordinate system through the coordinate transformation module, and the vehicle local positioning data in the vehicle coordinate system is output.
本发明实施例还提供了一种多车辆协同定位与地图构建装置,包括:单车辆定位与地图构建系统、道路5G基础设施和云端地图服务器;其中,The embodiment of the present invention also provides a multi-vehicle coordinated positioning and map construction device, including: a single vehicle positioning and map construction system, road 5G infrastructure and cloud map server; wherein,
所述单车辆定位与地图构建系统,用于实时获取车辆定位与局部道路地图数据,并实时发送至车辆附近的所述道路5G基础设施;The single vehicle positioning and map construction system is used to obtain vehicle positioning and local road map data in real time, and send them to the road 5G infrastructure near the vehicle in real time;
所述道路5G基础设施,用于将所述车辆定位与局部道路地图数据实时发送至所述云端地图服务器;还用于将所述云端地图服务器发送的更新后的所述车辆定位与全局道路地图数据实时发送给附近的车辆;The road 5G infrastructure is used to send the vehicle positioning and local road map data to the cloud map server in real time; it is also used to send the updated vehicle positioning and global road map sent by the cloud map server Data is sent to nearby vehicles in real time;
所述云端地图服务器,用于在接收到所述车辆定位与局部道路地图数据后,通过数据融合与拼接算法将所述车辆定位与局部道路地图数据拼接成车辆定位与全局道路地图数据并进行实时更新与维护;还用于将更新后的所述车辆定位与全局道路地图数据发送回所述道路5G基础设施。The cloud map server is used to splice the vehicle positioning and local road map data into vehicle positioning and global road map data through a data fusion and splicing algorithm after receiving the vehicle positioning and local road map data and perform real-time Update and maintenance; it is also used to send the updated vehicle positioning and global road map data back to the road 5G infrastructure.
优选地,在本发明实施例提供的上述多车辆协同定位与地图构建装置中,所述单车辆定位与地图构建系统包括双目视觉里程计模块、车辆运动模型、GNSS定位模块、传感器融合模块、回环检测模块、局部道路地图构建模块和5G通信模块;其中,Preferably, in the above-mentioned multi-vehicle cooperative positioning and map construction device provided by the embodiment of the present invention, the single vehicle positioning and map construction system includes a binocular visual odometer module, a vehicle motion model, a GNSS positioning module, a sensor fusion module, Loopback detection module, local road map construction module and 5G communication module; among them,
所述双目视觉里程计模块和所述车辆运动模型,用于实时获取车辆的局部定位数据并发送至所述传感器融合模块;The binocular visual odometer module and the vehicle motion model are used to obtain local positioning data of the vehicle in real time and send it to the sensor fusion module;
所述GNSS定位模块,用于实时获取车辆的全局定位数据并发送至所述传感器融合模块;The GNSS positioning module is used to obtain the global positioning data of the vehicle in real time and send it to the sensor fusion module;
所述传感器融合模块,用于将所述车辆局部定位数据和所述车辆全局定位数据进行数据融合,获得车辆定位数据;The sensor fusion module is used to perform data fusion of the vehicle local positioning data and the vehicle global positioning data to obtain vehicle positioning data;
所述回环检测模块,用于对所述车辆定位数据进行修正和更新;The loop detection module is used to correct and update the vehicle positioning data;
所述局部道路地图构建模块,用于根据更新后的所述车辆定位数据,通过地图构建算法进行道路地图构建,获得车辆局部道路地图数据;The local road map construction module is used to construct a road map through a map construction algorithm according to the updated vehicle positioning data, and obtain vehicle local road map data;
所述5G通信模块,用于将获得的所述车辆定位数据和所述车辆局部道路地图数据汇总为车辆定位与局部道路地图数据并实时发送至车辆附近的道路5G基础设施。The 5G communication module is used to summarize the obtained vehicle positioning data and the vehicle local road map data into vehicle positioning and local road map data and send them to the road 5G infrastructure near the vehicle in real time.
优选地,在本发明实施例提供的上述多车辆协同定位与地图构建装置中,所述双目视觉里程计模块包括双目立体相机、图像获取与校正模块、左右图像立体匹配模块、运动估计模块和坐标变换模块;其中,Preferably, in the above-mentioned multi-vehicle cooperative positioning and map construction device provided by the embodiment of the present invention, the binocular visual odometer module includes a binocular stereo camera, an image acquisition and correction module, a left and right image stereo matching module, and a motion estimation module and coordinate transformation module; among them,
所述双目立体相机,用于获取图像;The binocular stereo camera is used to acquire images;
所述图像获取与校正模块,用于将所述双目立体相机获取的图像进行获取和畸变校正;The image acquisition and correction module is used to acquire and correct distortion of the image acquired by the binocular stereo camera;
所述左右图像立体匹配模块,用于对校正后的图像数据进行深度信息计算以及立体点云生成;The left and right image stereo matching module is used to perform depth information calculation and stereo point cloud generation on the corrected image data;
所述运动估计模块,用于对前后连续帧生成的三维点云数据通过迭代最近邻算法进行相机位姿计算,获得所述双目立体相机的位姿数据;The motion estimation module is used to calculate the camera pose through an iterative nearest neighbor algorithm on the three-dimensional point cloud data generated by the front and rear consecutive frames, and obtain the pose data of the binocular stereo camera;
所述坐标变换模块,用于将所述双目立体相机的位姿数据转换到车辆坐标系下,输出车辆坐标系下的车辆局部定位数据。The coordinate transformation module is used to convert the pose data of the binocular stereo camera into the vehicle coordinate system, and output vehicle local positioning data in the vehicle coordinate system.
本发明实施例还提供了一种多车辆协同定位与地图构建设备,包括处理器和存储器,其中,所述处理器执行所述存储器中保存的计算机程序时实现如本发明实施例提供的上述多车辆协同定位与地图构建方法。The embodiment of the present invention also provides a multi-vehicle cooperative positioning and map construction device, including a processor and a memory, wherein, when the processor executes the computer program stored in the memory, the above multiple functions as provided in the embodiment of the present invention are realized. Vehicle co-location and map building methods.
本发明实施例还提供了一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序被处理器执行时实现如本发明实施例提供的上述多车辆协同定位与地图构建方法。An embodiment of the present invention also provides a computer-readable storage medium for storing a computer program, wherein, when the computer program is executed by a processor, the above-mentioned method for multi-vehicle coordinated positioning and map construction as provided in the embodiment of the present invention is implemented.
本发明所提供的一种多车辆协同定位与地图构建方法、装置、设备及存储介质,该方法包括:通过单车辆定位与地图构建系统实时获取车辆定位与局部道路地图数据,并实时发送至车辆附近的道路5G基础设施;通过道路5G基础设施将车辆定位与局部道路地图数据实时发送至云端地图服务器;云端地图服务器在接收到车辆定位与局部道路地图数据后,通过数据融合与拼接算法将车辆定位与局部道路地图数据拼接成车辆定位与全局道路地图数据并进行实时更新与维护;云端地图服务器将更新后的车辆定位与全局道路地图数据发送回道路5G基础设施;道路5G基础设施将更新后的车辆定位与全局道路地图数据实时发送给附近的车辆。在单车辆实现自身定位的同时,可以与周围特定区域内的其他车辆进行协同定位与地图构建,实现单车辆平台局部地图的不断更新,并对全局地图进行定期维护,进而实现周围特定区域内多车辆平台协同定位与高精度地图系统;与单车辆SLAM相比,多车辆协同SLAM具有更准确、更高效和更鲁棒的优势,同时降低了单车辆平台高精度定位与地图构建的硬件成本,提高了道路地图构建的效率。A multi-vehicle coordinated positioning and map construction method, device, equipment and storage medium provided by the present invention, the method includes: obtaining vehicle positioning and local road map data in real time through a single vehicle positioning and map construction system, and sending them to the vehicle in real time Nearby road 5G infrastructure; through the road 5G infrastructure, the vehicle positioning and local road map data are sent to the cloud map server in real time; after the cloud map server receives the vehicle positioning and local road map data, The positioning and local road map data are spliced into vehicle positioning and global road map data and updated and maintained in real time; the cloud map server sends the updated vehicle positioning and global road map data back to the road 5G infrastructure; the road 5G infrastructure will be updated The vehicle positioning and global road map data are sent to nearby vehicles in real time. While a single vehicle realizes its own positioning, it can perform collaborative positioning and map construction with other vehicles in a specific surrounding area, realize the continuous update of the local map of the single vehicle platform, and perform regular maintenance on the global map, thereby realizing multi- Vehicle platform collaborative positioning and high-precision map system; compared with single-vehicle SLAM, multi-vehicle collaborative SLAM has the advantages of being more accurate, more efficient and more robust, and at the same time reduces the hardware cost of single-vehicle platform high-precision positioning and map construction, Improved the efficiency of road map construction.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention, and those skilled in the art can also obtain other drawings according to the provided drawings without creative work.
图1为本发明实施例提供的多车辆协同定位与地图构建方法的流程图;Fig. 1 is a flow chart of a multi-vehicle cooperative positioning and map construction method provided by an embodiment of the present invention;
图2为本发明实施例提供的多车辆协同定位与地图构建方法的示意图;2 is a schematic diagram of a multi-vehicle cooperative positioning and map construction method provided by an embodiment of the present invention;
图3为本发明实施例提供的多车辆协同定位与地图构建方法的完整示意图;FIG. 3 is a complete schematic diagram of a multi-vehicle cooperative positioning and map construction method provided by an embodiment of the present invention;
图4为本发明实施例提供的多车辆协同定位与地图构建装置的结构示意图。Fig. 4 is a schematic structural diagram of a multi-vehicle coordinated positioning and map construction device provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明提供一种多车辆协同定位与地图构建方法,如图1和图2所示,包括以下步骤:The present invention provides a multi-vehicle cooperative positioning and map construction method, as shown in Figure 1 and Figure 2, comprising the following steps:
S101、通过单车辆定位与地图构建系统实时获取车辆定位与局部道路地图数据,并实时发送至车辆附近的道路5G基础设施;S101. Obtain vehicle positioning and local road map data in real time through the single vehicle positioning and map construction system, and send them to the road 5G infrastructure near the vehicle in real time;
S102、通过道路5G基础设施将车辆定位与局部道路地图数据实时发送至云端地图服务器;S102. Send the vehicle positioning and local road map data to the cloud map server in real time through the road 5G infrastructure;
S103、云端地图服务器在接收到车辆定位与局部道路地图数据后,通过数据融合与拼接算法将车辆定位与局部道路地图数据拼接成车辆定位与全局道路地图数据并进行实时更新与维护;S103. After receiving the vehicle positioning and local road map data, the cloud map server splices the vehicle positioning and local road map data into vehicle positioning and global road map data through data fusion and splicing algorithms, and performs real-time update and maintenance;
S104、云端地图服务器将更新后的车辆定位与全局道路地图数据发送回道路5G基础设施;S104. The cloud map server sends the updated vehicle location and global road map data back to the road 5G infrastructure;
S105、道路5G基础设施将更新后的车辆定位与全局道路地图数据实时发送给附近的车辆。S105. The road 5G infrastructure sends the updated vehicle positioning and global road map data to nearby vehicles in real time.
在本发明实施例提供的上述多车辆协同定位与地图构建方法中,在单车辆实现自身定位的同时,可以与周围特定区域内的其他车辆进行协同定位与地图构建,实现单车辆平台局部地图的不断更新,并对全局地图进行定期维护,进而实现周围特定区域内多车辆平台协同定位与高精度地图系统;与单车辆SLAM相比,多车辆协同SLAM具有更准确、更高效和更鲁棒的优势,同时降低了单车辆平台高精度定位与地图构建的硬件成本,提高了道路地图构建的效率。In the above-mentioned multi-vehicle cooperative positioning and map construction method provided by the embodiment of the present invention, while a single vehicle realizes its own positioning, it can perform cooperative positioning and map construction with other vehicles in a specific surrounding area to realize the local map of a single vehicle platform. Continuously update and maintain the global map regularly, so as to realize the collaborative positioning and high-precision map system of multiple vehicle platforms in the surrounding specific area; compared with single-vehicle SLAM, multi-vehicle collaborative SLAM has more accurate, efficient and robust At the same time, it reduces the hardware cost of high-precision positioning and map construction for a single vehicle platform, and improves the efficiency of road map construction.
进一步地,在具体实施时,在本发明实施例提供的上述多车辆协同定位与地图构建方法中,如图3所示,步骤S101通过单车辆定位与地图构建系统实时获取车辆定位与局部道路地图数据,并实时发送至车辆附近的道路5G基础设施,具体可以包括以下步骤:Further, during specific implementation, in the above-mentioned multi-vehicle cooperative positioning and map construction method provided by the embodiment of the present invention, as shown in FIG. 3 , step S101 obtains the vehicle positioning and local road map in real time through the single vehicle positioning and map construction system The data is sent to the road 5G infrastructure near the vehicle in real time, which may include the following steps:
步骤一、通过双目视觉里程计模块和车辆运动模型实时获取车辆的局部定位数据(车辆坐标系下的x,y,z三轴位移量和三轴角速度量)并发送至传感器融合模块;这里双目视觉里程计模块采用的传感器可以是安装在车辆前方的双目立体相机,车辆运动模型采用的传感器可以是车载惯性测量单元(Inertial measurement unit,简称IMU);Step 1. Obtain the local positioning data of the vehicle (x, y, z three-axis displacement and three-axis angular velocity under the vehicle coordinate system) in real time through the binocular visual odometer module and the vehicle motion model and send it to the sensor fusion module; here The sensor used in the binocular visual odometer module can be a binocular stereo camera installed in front of the vehicle, and the sensor used in the vehicle motion model can be a vehicle-mounted inertial measurement unit (IMU for short);
步骤二、通过GNSS定位模块实时获取车辆的全局定位数据并发送至传感器融合模块;Step 2. Obtain the global positioning data of the vehicle in real time through the GNSS positioning module and send it to the sensor fusion module;
步骤三、通过传感器融合模块将双目视觉里程计模块和车辆运动模型获取的车辆局部定位数据和GNSS定位模块获取的车辆全局定位数据进行数据融合,获得车辆定位数据;此时的车辆定位数据更精准、鲁棒性更好;Step 3, through the sensor fusion module, the vehicle local positioning data obtained by the binocular visual odometer module and the vehicle motion model and the vehicle global positioning data obtained by the GNSS positioning module are data fused to obtain the vehicle positioning data; the vehicle positioning data at this time is updated. Accurate and robust;
步骤四、通过回环检测模块对车辆定位数据进行修正和更新;具体地,当车辆再次驶过相同道路时,回环检测模块通过回环检测算法,对车辆定位数据进行误差修正,提高单车辆定位与地图构建系统的精度和稳健性;Step 4: Use the loopback detection module to correct and update the vehicle positioning data; specifically, when the vehicle passes the same road again, the loopback detection module uses the loopback detection algorithm to correct the error of the vehicle positioning data to improve the single vehicle positioning and map accuracy. Build system precision and robustness;
步骤五、通过局部道路地图构建模块根据更新后的车辆定位数据,对双目立体相机获得的点云数据,通过地图构建算法进行道路地图构建,获得车辆局部道路地图数据;这里的车辆局部道路地图数据可以包括数字地图、栅格地图、语义地图和特征地图数据;Step 5. Use the local road map construction module to construct the road map through the map construction algorithm for the point cloud data obtained by the binocular stereo camera according to the updated vehicle positioning data, and obtain the local road map data of the vehicle; here, the local road map of the vehicle Data can include digital map, raster map, semantic map and feature map data;
步骤六、通过5G通信模块将获得的车辆定位数据和车辆局部道路地图数据汇总为车辆定位与局部道路地图数据并实时发送至车辆附近的道路5G基础设施。Step 6. Summarize the obtained vehicle positioning data and vehicle local road map data into vehicle positioning and local road map data through the 5G communication module, and send them to the road 5G infrastructure near the vehicle in real time.
更进一步地,在具体实施时,在本发明实施例提供的上述多车辆协同定位与地图构建方法中,上述步骤一中通过双目视觉里程计模块实时获取车辆的局部定位数据,具体可以包括:首先通过双目立体相机获取图像;然后通过图像获取与校正模块将双目立体相机获取的图像进行获取和畸变校正;之后通过左右图像立体匹配模块对校正后的图像数据进行深度信息计算以及立体点云生成;随后通过运动估计模块对前后连续帧生成的三维点云数据通过迭代最近邻算法(Iterative Closest Point,简称ICP)进行相机位姿计算,获得双目立体相机的位姿数据(相机的x,y,z三轴位移量和三轴角速度量);最后通过坐标变换模块将双目立体相机的位姿数据转换到车辆坐标系下,输出车辆坐标系下的车辆局部定位数据(车辆坐标下的x,y,z三轴位移量和三轴角速度量)。Furthermore, in specific implementation, in the above-mentioned multi-vehicle cooperative positioning and map construction method provided by the embodiment of the present invention, in the above step 1, the local positioning data of the vehicle is obtained in real time through the binocular visual odometer module, which may specifically include: First, the image is acquired through the binocular stereo camera; then the image acquired by the binocular stereo camera is acquired and the distortion is corrected by the image acquisition and correction module; then the depth information calculation and the stereo point of the corrected image data are performed by the left and right image stereo matching module Cloud generation; then through the motion estimation module, the three-dimensional point cloud data generated by the front and rear consecutive frames are calculated by the iterative nearest neighbor algorithm (Iterative Closest Point, ICP for short), and the pose data of the binocular stereo camera (the x , y, z three-axis displacement and three-axis angular velocity); finally, the pose data of the binocular stereo camera is converted to the vehicle coordinate system through the coordinate transformation module, and the vehicle local positioning data under the vehicle coordinate system is output (vehicle coordinates x, y, z three-axis displacement and three-axis angular velocity).
基于同一发明构思,本发明实施例还提供了一种多车辆协同定位与地图构建装置,由于该多车辆协同定位与地图构建装置解决问题的原理与前述一种多车辆协同定位与地图构建方法相似,因此该多车辆协同定位与地图构建装置的实施可以参见多车辆协同定位与地图构建方法的实施,重复之处不再赘述。Based on the same inventive concept, the embodiment of the present invention also provides a multi-vehicle cooperative positioning and map construction device, because the principle of solving the problem of the multi-vehicle cooperative positioning and map construction device is similar to the aforementioned multi-vehicle cooperative positioning and map construction method , therefore, the implementation of the multi-vehicle cooperative positioning and map construction device can refer to the implementation of the multi-vehicle cooperative positioning and map construction method, and the repetition will not be repeated.
在具体实施时,本发明实施例提供的多车辆协同定位与地图构建装置,如图4所示,具体包括:单车辆定位与地图构建系统1、道路5G基础设施2和云端地图服务器3;其中,In specific implementation, the multi-vehicle coordinated positioning and map construction device provided by the embodiment of the present invention, as shown in Figure 4, specifically includes: a single vehicle positioning and map construction system 1, a road 5G infrastructure 2 and a cloud map server 3; ,
单车辆定位与地图构建系统1,用于实时获取车辆定位与局部道路地图数据,并实时发送至车辆附近的道路5G基础设施2;Single vehicle positioning and map construction system 1, used to obtain vehicle positioning and local road map data in real time, and send them to the road 5G infrastructure near the vehicle in real time 2;
道路5G基础设施2,用于将车辆定位与局部道路地图数据实时发送至云端地图服务器3;还用于将云端地图服务器3发送的更新后的车辆定位与全局道路地图数据实时发送给附近的车辆;The road 5G infrastructure 2 is used to send vehicle positioning and local road map data to the cloud map server 3 in real time; it is also used to send the updated vehicle positioning and global road map data sent by the cloud map server 3 to nearby vehicles in real time ;
云端地图服务器3,用于在接收到车辆定位与局部道路地图数据后,通过数据融合与拼接算法将车辆定位与局部道路地图数据拼接成车辆定位与全局道路地图数据并进行实时更新与维护;还用于将更新后的车辆定位与全局道路地图数据发送回道路5G基础设施2。The cloud map server 3 is used to splice the vehicle positioning and local road map data into vehicle positioning and global road map data through data fusion and splicing algorithms after receiving the vehicle positioning and local road map data, and perform real-time update and maintenance; Used to send updated vehicle positioning and global road map data back to road 5G infrastructure2.
在本发明实施例提供的上述多车辆协同定位与地图构建装置中,可以通过上述单车辆定位与地图构建系统、道路5G基础设施和云端地图服务器的相互作用,在单车辆实现自身定位的同时,与周围特定区域内的其他车辆进行协同定位与地图构建,实现单车辆平台局部地图的不断更新,并对全局地图进行定期维护,进而实现周围特定区域内多车辆平台协同定位与高精度地图系统;与单车辆SLAM相比,多车辆协同SLAM具有更准确、更高效和更鲁棒的优势,同时降低了单车辆平台高精度定位与地图构建的硬件成本,提高了道路地图构建的效率。In the above-mentioned multi-vehicle cooperative positioning and map construction device provided by the embodiment of the present invention, through the interaction of the above-mentioned single vehicle positioning and map construction system, road 5G infrastructure and cloud map server, while a single vehicle realizes its own positioning, Carry out collaborative positioning and map construction with other vehicles in the surrounding specific area, realize the continuous update of the local map of the single vehicle platform, and regularly maintain the global map, and then realize the collaborative positioning and high-precision map system of multiple vehicle platforms in the surrounding specific area; Compared with single-vehicle SLAM, multi-vehicle collaborative SLAM has the advantages of being more accurate, efficient and robust, and at the same time reduces the hardware cost of high-precision positioning and map construction on a single-vehicle platform, and improves the efficiency of road map construction.
进一步地,在具体实施时,在本发明实施例提供的上述多车辆协同定位与地图构建装置中,单车辆定位与地图构建系统可以包括双目视觉里程计模块、车辆运动模型、GNSS定位模块、传感器融合模块、回环检测模块、局部道路地图构建模块和5G通信模块;其中,双目视觉里程计模块和车辆运动模型,用于实时获取车辆的局部定位数据并发送至传感器融合模块;GNSS定位模块,用于实时获取车辆的全局定位数据并发送至传感器融合模块;传感器融合模块,用于将车辆局部定位数据和车辆全局定位数据进行数据融合,获得车辆定位数据;回环检测模块,用于对车辆定位数据进行修正和更新;局部道路地图构建模块,用于根据更新后的车辆定位数据,通过地图构建算法进行道路地图构建,获得车辆局部道路地图数据;5G通信模块,用于将获得的车辆定位数据和车辆局部道路地图数据汇总为车辆定位与局部道路地图数据并实时发送至车辆附近的道路5G基础设施。Further, in specific implementation, in the above-mentioned multi-vehicle coordinated positioning and map construction device provided by the embodiment of the present invention, the single vehicle positioning and map construction system may include a binocular visual odometer module, a vehicle motion model, a GNSS positioning module, Sensor fusion module, loop detection module, local road map construction module and 5G communication module; among them, the binocular visual odometer module and vehicle motion model are used to obtain the local positioning data of the vehicle in real time and send it to the sensor fusion module; GNSS positioning module , used to obtain the global positioning data of the vehicle in real time and send it to the sensor fusion module; the sensor fusion module is used to fuse the vehicle local positioning data and the vehicle global positioning data to obtain vehicle positioning data; the loopback detection module is used to detect the vehicle The positioning data is corrected and updated; the local road map construction module is used to construct the road map through the map construction algorithm according to the updated vehicle positioning data, and obtain the local road map data of the vehicle; the 5G communication module is used to locate the obtained vehicle The data and vehicle local road map data are aggregated into vehicle positioning and local road map data and sent to the road 5G infrastructure near the vehicle in real time.
更进一步地,在具体实施时,在本发明实施例提供的上述多车辆协同定位与地图构建装置中,双目视觉里程计模块可以包括双目立体相机、图像获取与校正模块、左右图像立体匹配模块、运动估计模块和坐标变换模块;其中,双目立体相机,用于获取图像;图像获取与校正模块,用于将双目立体相机获取的图像进行获取和畸变校正;左右图像立体匹配模块,用于对校正后的图像数据进行深度信息计算以及立体点云生成;运动估计模块,用于对前后连续帧生成的三维点云数据通过迭代最近邻算法进行相机位姿计算,获得双目立体相机的位姿数据;坐标变换模块,用于将双目立体相机的位姿数据转换到车辆坐标系下,输出车辆坐标系下的车辆局部定位数据。Furthermore, in specific implementation, in the above-mentioned multi-vehicle cooperative positioning and map construction device provided by the embodiment of the present invention, the binocular visual odometer module may include a binocular stereo camera, an image acquisition and correction module, and a left and right image stereo matching module, a motion estimation module and a coordinate transformation module; wherein, the binocular stereo camera is used to acquire images; the image acquisition and correction module is used to acquire and correct distortion of the images acquired by the binocular stereo camera; the left and right image stereo matching module, It is used to calculate the depth information of the corrected image data and generate a stereoscopic point cloud; the motion estimation module is used to perform camera pose calculation on the 3D point cloud data generated by consecutive frames before and after using iterative nearest neighbor algorithm to obtain a binocular stereo camera pose data; the coordinate transformation module is used to transform the pose data of the binocular stereo camera into the vehicle coordinate system, and output the vehicle local positioning data in the vehicle coordinate system.
关于上述各个模块更加具体的工作过程可以参考前述实施例公开的相应内容,在此不再进行赘述。For the more specific working process of each of the above modules, reference may be made to the corresponding content disclosed in the foregoing embodiments, which will not be repeated here.
相应的,本发明实施例还公开了一种多车辆协同定位与地图构建设备,包括处理器和存储器;其中,处理器执行存储器中保存的计算机程序时实现前述实施例公开的多车辆协同定位与地图构建方法。Correspondingly, the embodiment of the present invention also discloses a multi-vehicle coordinated positioning and map construction device, including a processor and a memory; wherein, when the processor executes the computer program stored in the memory, the multi-vehicle coordinated positioning and map construction disclosed in the foregoing embodiments is realized. The map construction method.
关于上述方法更加具体的过程可以参考前述实施例中公开的相应内容,在此不再进行赘述。For a more specific process of the above method, reference may be made to the corresponding content disclosed in the foregoing embodiments, and details are not repeated here.
进一步的,本发明还公开了一种计算机可读存储介质,用于存储计算机程序;计算机程序被处理器执行时实现前述公开的多车辆协同定位与地图构建方法。Further, the present invention also discloses a computer-readable storage medium for storing a computer program; when the computer program is executed by a processor, the aforementioned multi-vehicle coordinated positioning and map construction method is realized.
关于上述方法更加具体的过程可以参考前述实施例中公开的相应内容,在此不再进行赘述。For a more specific process of the above method, reference may be made to the corresponding content disclosed in the foregoing embodiments, and details are not repeated here.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置、设备、存储介质而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same or similar parts of each embodiment can be referred to each other. For the devices, equipment, and storage media disclosed in the embodiments, since they correspond to the methods disclosed in the embodiments, the description is relatively simple, and for relevant details, please refer to the description of the methods.
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Professionals can further realize that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software or a combination of the two. In order to clearly illustrate the possible For interchangeability, in the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of the methods or algorithms described in connection with the embodiments disclosed herein may be directly implemented by hardware, software modules executed by a processor, or a combination of both. Software modules can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other Any other known storage medium.
本发明实施例提供的一种多车辆协同定位与地图构建方法、装置、设备及存储介质,该方法包括:通过单车辆定位与地图构建系统实时获取车辆定位与局部道路地图数据,并实时发送至车辆附近的道路5G基础设施;通过道路5G基础设施将车辆定位与局部道路地图数据实时发送至云端地图服务器;云端地图服务器在接收到车辆定位与局部道路地图数据后,通过数据融合与拼接算法将车辆定位与局部道路地图数据拼接成车辆定位与全局道路地图数据并进行实时更新与维护;云端地图服务器将更新后的车辆定位与全局道路地图数据发送回道路5G基础设施;道路5G基础设施将更新后的车辆定位与全局道路地图数据实时发送给附近的车辆。在单车辆实现自身定位的同时,可以与周围特定区域内的其他车辆进行协同定位与地图构建,实现单车辆平台局部地图的不断更新,并对全局地图进行定期维护,进而实现周围特定区域内多车辆平台协同定位与高精度地图系统;与单车辆SLAM相比,多车辆协同SLAM具有更准确、更高效和更鲁棒的优势,同时降低了单车辆平台高精度定位与地图构建的硬件成本,提高了道路地图构建的效率。The embodiment of the present invention provides a multi-vehicle cooperative positioning and map construction method, device, equipment and storage medium, the method includes: obtaining vehicle positioning and local road map data in real time through a single vehicle positioning and map construction system, and sending them to The road 5G infrastructure near the vehicle; the vehicle positioning and local road map data are sent to the cloud map server in real time through the road 5G infrastructure; after the cloud map server receives the vehicle positioning and local road map data, the The vehicle positioning and local road map data are spliced into vehicle positioning and global road map data and updated and maintained in real time; the cloud map server sends the updated vehicle positioning and global road map data back to the road 5G infrastructure; the road 5G infrastructure will be updated The final vehicle positioning and global road map data are sent to nearby vehicles in real time. While a single vehicle realizes its own positioning, it can perform collaborative positioning and map construction with other vehicles in a specific surrounding area, realize the continuous update of the local map of the single vehicle platform, and perform regular maintenance on the global map, thereby realizing multi- Vehicle platform collaborative positioning and high-precision map system; compared with single-vehicle SLAM, multi-vehicle collaborative SLAM has the advantages of being more accurate, more efficient and more robust, and at the same time reduces the hardware cost of single-vehicle platform high-precision positioning and map construction, Improved the efficiency of road map construction.
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it should also be noted that in this text, relational terms such as first and second etc. are only used to distinguish one entity or operation from another, and do not necessarily require or imply that these entities or operations, any such actual relationship or order exists. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
以上对本发明所提供的多车辆协同定位与地图构建方法、装置、设备及存储介质进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The multi-vehicle cooperative positioning and map construction method, device, equipment and storage medium provided by the present invention have been introduced in detail above. In this paper, specific examples have been used to illustrate the principle and implementation of the present invention. The description of the above embodiments is only It is used to help understand the method of the present invention and its core idea; at the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and scope of application. In summary, this The content of the description should not be construed as limiting the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810826003.9ACN109084785A (en) | 2018-07-25 | 2018-07-25 | More vehicle co-locateds and map constructing method, device, equipment and storage medium |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810826003.9ACN109084785A (en) | 2018-07-25 | 2018-07-25 | More vehicle co-locateds and map constructing method, device, equipment and storage medium |
| Publication Number | Publication Date |
|---|---|
| CN109084785Atrue CN109084785A (en) | 2018-12-25 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810826003.9APendingCN109084785A (en) | 2018-07-25 | 2018-07-25 | More vehicle co-locateds and map constructing method, device, equipment and storage medium |
| Country | Link |
|---|---|
| CN (1) | CN109084785A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110207691A (en)* | 2019-05-08 | 2019-09-06 | 南京航空航天大学 | A kind of more unmanned vehicle collaborative navigation methods based on data-link ranging |
| CN110446164A (en)* | 2019-07-23 | 2019-11-12 | 深圳前海达闼云端智能科技有限公司 | Mobile terminal positioning method and device, mobile terminal and server |
| CN110490809A (en)* | 2019-08-28 | 2019-11-22 | 清华大学 | Multiple agent co-located and build drawing method and device |
| CN110703291A (en)* | 2019-10-12 | 2020-01-17 | 北京航空航天大学 | A vehicle contour recognition and obstacle avoidance method based on GNSS/INS |
| CN110979332A (en)* | 2019-12-24 | 2020-04-10 | 奇瑞汽车股份有限公司 | Control method, device and storage medium for smart car |
| CN111638536A (en)* | 2019-03-01 | 2020-09-08 | 通用汽车环球科技运作有限责任公司 | Method and apparatus for context-aware crowd-sourced sparse high definition maps |
| CN111982133A (en)* | 2019-05-23 | 2020-11-24 | 北京地平线机器人技术研发有限公司 | Method and device for positioning vehicle based on high-precision map and electronic equipment |
| CN112070820A (en)* | 2020-08-29 | 2020-12-11 | 南京翱翔信息物理融合创新研究院有限公司 | Distributed augmented reality positioning terminal, positioning server and positioning system |
| CN112862881A (en)* | 2021-02-24 | 2021-05-28 | 清华大学 | Road map construction and fusion method based on crowd-sourced multi-vehicle camera data |
| CN112880696A (en)* | 2021-01-13 | 2021-06-01 | 成都朴为科技有限公司 | Parking system and method based on simultaneous mapping and positioning |
| CN113127590A (en)* | 2021-04-09 | 2021-07-16 | 中移智行网络科技有限公司 | Map updating method and device |
| CN113192153A (en)* | 2021-05-26 | 2021-07-30 | 清华大学 | Multi-agent cooperative map construction method and device based on sub-map |
| CN113819920A (en)* | 2021-10-10 | 2021-12-21 | 安徽江淮汽车集团股份有限公司 | Automatic driving non-autonomous navigation method for congested road section |
| WO2022063056A1 (en)* | 2020-09-22 | 2022-03-31 | 重庆兰德适普信息科技有限公司 | Method for constructing high-precision point cloud map |
| CN114383611A (en)* | 2021-12-30 | 2022-04-22 | 华南智能机器人创新研究院 | A multi-machine collaborative laser SLAM method, device and system for a mobile robot |
| CN114626539A (en)* | 2020-12-10 | 2022-06-14 | 中国科学院深圳先进技术研究院 | Distributed SLAM system and learning method thereof |
| CN115033586A (en)* | 2022-08-11 | 2022-09-09 | 上海伯镭智能科技有限公司 | Method for sensing mine road boundary and updating crowdsourcing map |
| CN115454057A (en)* | 2022-08-24 | 2022-12-09 | 中国矿业大学 | A digital twin intelligent management and control modeling system and method for coal mine robot swarm |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105674993A (en)* | 2016-01-15 | 2016-06-15 | 武汉光庭科技有限公司 | Binocular camera-based high-precision visual sense positioning map generation system and method |
| CN106272423A (en)* | 2016-08-31 | 2017-01-04 | 哈尔滨工业大学深圳研究生院 | A kind of multirobot for large scale environment works in coordination with the method for drawing and location |
| CN107063275A (en)* | 2017-03-24 | 2017-08-18 | 重庆邮电大学 | Intelligent vehicle map emerging system and method based on roadside device |
| CN107796391A (en)* | 2017-10-27 | 2018-03-13 | 哈尔滨工程大学 | A kind of strapdown inertial navigation system/visual odometry Combinated navigation method |
| CN107945220A (en)* | 2017-11-30 | 2018-04-20 | 华中科技大学 | A kind of method for reconstructing based on binocular vision |
| CN108253963A (en)* | 2017-12-20 | 2018-07-06 | 广西师范大学 | A kind of robot active disturbance rejection localization method and alignment system based on Multi-sensor Fusion |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105674993A (en)* | 2016-01-15 | 2016-06-15 | 武汉光庭科技有限公司 | Binocular camera-based high-precision visual sense positioning map generation system and method |
| CN106272423A (en)* | 2016-08-31 | 2017-01-04 | 哈尔滨工业大学深圳研究生院 | A kind of multirobot for large scale environment works in coordination with the method for drawing and location |
| CN107063275A (en)* | 2017-03-24 | 2017-08-18 | 重庆邮电大学 | Intelligent vehicle map emerging system and method based on roadside device |
| CN107796391A (en)* | 2017-10-27 | 2018-03-13 | 哈尔滨工程大学 | A kind of strapdown inertial navigation system/visual odometry Combinated navigation method |
| CN107945220A (en)* | 2017-11-30 | 2018-04-20 | 华中科技大学 | A kind of method for reconstructing based on binocular vision |
| CN108253963A (en)* | 2017-12-20 | 2018-07-06 | 广西师范大学 | A kind of robot active disturbance rejection localization method and alignment system based on Multi-sensor Fusion |
| Title |
|---|
| CHEN, X 等: "Integration of Low-Cost GNSS and Monocular Cameras for Simultaneous Localization and Mapping", 《SENSOR》* |
| 周智: "基于双目视觉的移动机器人室内三维地图构建方法研究", 《中国优秀硕士学位论文全文数据库》* |
| 周经美: "GPS盲区下基于视觉感知的车辆高精度定位技术研究", 《中国博士学位论文全文数据库》* |
| 汪敏: "基于环境地图的多移动机器人协同机制研究", 《中国优秀硕士学位论文全文数据库》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111638536A (en)* | 2019-03-01 | 2020-09-08 | 通用汽车环球科技运作有限责任公司 | Method and apparatus for context-aware crowd-sourced sparse high definition maps |
| CN111638536B (en)* | 2019-03-01 | 2023-12-08 | 通用汽车环球科技运作有限责任公司 | Method and apparatus for context aware crowdsourcing sparse high definition maps |
| CN110207691A (en)* | 2019-05-08 | 2019-09-06 | 南京航空航天大学 | A kind of more unmanned vehicle collaborative navigation methods based on data-link ranging |
| CN110207691B (en)* | 2019-05-08 | 2021-01-15 | 南京航空航天大学 | Multi-unmanned vehicle collaborative navigation method based on data link ranging |
| CN111982133A (en)* | 2019-05-23 | 2020-11-24 | 北京地平线机器人技术研发有限公司 | Method and device for positioning vehicle based on high-precision map and electronic equipment |
| CN110446164A (en)* | 2019-07-23 | 2019-11-12 | 深圳前海达闼云端智能科技有限公司 | Mobile terminal positioning method and device, mobile terminal and server |
| CN110490809A (en)* | 2019-08-28 | 2019-11-22 | 清华大学 | Multiple agent co-located and build drawing method and device |
| CN110703291B (en)* | 2019-10-12 | 2022-03-15 | 北京航空航天大学 | A vehicle contour recognition and obstacle avoidance method based on GNSS/INS |
| CN110703291A (en)* | 2019-10-12 | 2020-01-17 | 北京航空航天大学 | A vehicle contour recognition and obstacle avoidance method based on GNSS/INS |
| CN110979332A (en)* | 2019-12-24 | 2020-04-10 | 奇瑞汽车股份有限公司 | Control method, device and storage medium for smart car |
| CN110979332B (en)* | 2019-12-24 | 2022-03-15 | 奇瑞汽车股份有限公司 | Control method, device and storage medium for smart car |
| CN112070820A (en)* | 2020-08-29 | 2020-12-11 | 南京翱翔信息物理融合创新研究院有限公司 | Distributed augmented reality positioning terminal, positioning server and positioning system |
| WO2022063056A1 (en)* | 2020-09-22 | 2022-03-31 | 重庆兰德适普信息科技有限公司 | Method for constructing high-precision point cloud map |
| CN114626539A (en)* | 2020-12-10 | 2022-06-14 | 中国科学院深圳先进技术研究院 | Distributed SLAM system and learning method thereof |
| CN112880696A (en)* | 2021-01-13 | 2021-06-01 | 成都朴为科技有限公司 | Parking system and method based on simultaneous mapping and positioning |
| CN112862881B (en)* | 2021-02-24 | 2023-02-07 | 清华大学 | Road map construction and fusion method based on crowd-sourced multi-vehicle camera data |
| CN112862881A (en)* | 2021-02-24 | 2021-05-28 | 清华大学 | Road map construction and fusion method based on crowd-sourced multi-vehicle camera data |
| CN113127590A (en)* | 2021-04-09 | 2021-07-16 | 中移智行网络科技有限公司 | Map updating method and device |
| CN113192153A (en)* | 2021-05-26 | 2021-07-30 | 清华大学 | Multi-agent cooperative map construction method and device based on sub-map |
| CN113819920A (en)* | 2021-10-10 | 2021-12-21 | 安徽江淮汽车集团股份有限公司 | Automatic driving non-autonomous navigation method for congested road section |
| CN113819920B (en)* | 2021-10-10 | 2024-05-17 | 安徽江淮汽车集团股份有限公司 | Automatic driving non-autonomous navigation method for road section easy to be jammed |
| CN114383611A (en)* | 2021-12-30 | 2022-04-22 | 华南智能机器人创新研究院 | A multi-machine collaborative laser SLAM method, device and system for a mobile robot |
| CN115033586A (en)* | 2022-08-11 | 2022-09-09 | 上海伯镭智能科技有限公司 | Method for sensing mine road boundary and updating crowdsourcing map |
| CN115033586B (en)* | 2022-08-11 | 2022-11-04 | 上海伯镭智能科技有限公司 | A method for perception and crowdsourcing map update of mine road boundary |
| CN115454057A (en)* | 2022-08-24 | 2022-12-09 | 中国矿业大学 | A digital twin intelligent management and control modeling system and method for coal mine robot swarm |
| CN115454057B (en)* | 2022-08-24 | 2023-11-10 | 中国矿业大学 | Digital twin intelligent management and control modeling system and method for coal mine machine crowd |
| Publication | Publication Date | Title |
|---|---|---|
| CN109084785A (en) | More vehicle co-locateds and map constructing method, device, equipment and storage medium | |
| CN109116397B (en) | Vehicle-mounted multi-camera visual positioning method, device, equipment and storage medium | |
| CN109710724B (en) | A kind of method and apparatus of building point cloud map | |
| CN110146910B (en) | Positioning method and device based on data fusion of GPS and laser radar | |
| US10863166B2 (en) | Method and apparatus for generating three-dimensional (3D) road model | |
| CN109100730B (en) | Multi-vehicle cooperative rapid map building method | |
| US10291898B2 (en) | Method and apparatus for updating navigation map | |
| CN110426051A (en) | A kind of lane line method for drafting, device and storage medium | |
| CN107167139A (en) | A kind of Intelligent Mobile Robot vision positioning air navigation aid and system | |
| CN106199626A (en) | Based on the indoor three-dimensional point cloud map generation system and the method that swing laser radar | |
| CN110033489A (en) | A kind of appraisal procedure, device and the equipment of vehicle location accuracy | |
| JP2017090239A (en) | Information processing device, control method, program, and storage media | |
| CN114459471B (en) | Positioning information determining method and device, electronic equipment and storage medium | |
| CN113706633B (en) | Three-dimensional information determination method and device for target object | |
| WO2024027350A1 (en) | Vehicle positioning method and apparatus, computer device and storage medium | |
| KR102097416B1 (en) | An augmented reality representation method for managing underground pipeline data with vertical drop and the recording medium thereof | |
| CN111982133A (en) | Method and device for positioning vehicle based on high-precision map and electronic equipment | |
| KR101611280B1 (en) | Mobile mapping system using stereo camera and method of generating point cloud in mobile mapping system | |
| CN108253942B (en) | Method for improving oblique photography measurement space-three quality | |
| CN117611762B (en) | Multi-level map construction method, system and electronic equipment | |
| EP4239288B1 (en) | Methods for processing a map, and vehicle | |
| CN117541655B (en) | Method for eliminating radar map building z-axis accumulated error by fusion of visual semantics | |
| CN110148205B (en) | A method and device for 3D reconstruction based on crowdsourcing images | |
| CN115638788B (en) | Construction method, computer equipment and storage medium of semantic vector map | |
| CN114429515B (en) | A method, device and equipment for constructing point cloud map |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20181225 |