技术领域technical field
本发明属于光学技术领域,更具体地,涉及一种直接产生窄线宽涡旋激光的装置。The invention belongs to the technical field of optics, and more particularly, relates to a device for directly generating a narrow linewidth vortex laser.
背景技术Background technique
涡旋光束具有奇特的相位分布结构,在与传播方向垂直的截面上呈现涡旋型分布,而在光强分布上通常显示出具备中心暗点的环形光束。与普通的高斯光束相比,除了相位和光强分布上的特点外,涡旋光束还具备特殊的轨道角动量。目前,该类型光束已经被广泛应用于超显微成像、光操控、高容量的光通信、量子信息学与非线性光学等技术中。尤其在光通信方面,涡旋光的轨道角动量已被作为信息载体,用于有效提高空间或者光纤中的信号通道,实现高容量的激光通信系统。而具备窄线宽特性的涡旋光可以进一步提高激光的相干性,有利于实现高带宽的激光通信。The vortex beam has a peculiar phase distribution structure, showing a vortex-shaped distribution in the cross section perpendicular to the propagation direction, and usually shows a ring beam with a central dark spot in the light intensity distribution. Compared with ordinary Gaussian beams, in addition to the characteristics of phase and light intensity distribution, vortex beams also have special orbital angular momentum. At present, this type of beam has been widely used in ultra-microscopic imaging, optical manipulation, high-capacity optical communication, quantum information and nonlinear optics. Especially in optical communication, the orbital angular momentum of vortex light has been used as an information carrier to effectively improve the signal channel in space or optical fiber, and realize a high-capacity laser communication system. The vortex light with narrow linewidth characteristics can further improve the coherence of the laser, which is conducive to the realization of high-bandwidth laser communication.
涡旋光束的产生方法包括使用光学转换元件和直接腔内产生两种方式。光学转换元件有螺旋相位板、计算全息板、空间光调制器、柱透镜对等模式转换件,该转换件也可用于产生涡旋光的激光谐振腔内部。而另一种直接产生涡旋激光的方法,则采用环形光泵浦激光腔、在激光腔内部添加孔缺陷元件、利用光热效应和偏轴泵浦方式。而窄线宽的涡旋激光,则对涡旋光束产生方法提出了额外的要求。例如,基于光学转换元件的激光光束本身必须具备窄线宽特性。The generation methods of vortex beams include the use of optical conversion elements and direct intracavity generation. Optical conversion elements include helical phase plates, computational holographic plates, spatial light modulators, cylindrical lenses and other mode conversion elements, which can also be used in the interior of the laser resonator for generating vortex light. Another method to directly generate vortex laser is to use a ring optically pumped laser cavity, add hole defect elements inside the laser cavity, use the photothermal effect and off-axis pumping. The vortex laser with narrow linewidth puts forward additional requirements on the vortex beam generation method. For example, laser beams based on optical conversion elements must themselves have narrow linewidth characteristics.
发明内容SUMMARY OF THE INVENTION
针对现有技术的缺陷,本发明的目的是解决直接产生单频窄线宽涡旋激光的技术难题,克服现有基于多个光学元器件产生窄线宽涡旋光束系统复杂性的不足,提出一种能够在具备高稳定性和简单紧凑性同时产生窄线宽单频涡旋激光的装置,该装置还具备操作简单、稳定性高的特点。In view of the defects of the prior art, the purpose of the present invention is to solve the technical problem of directly generating a single-frequency narrow-linewidth vortex laser, and overcome the shortcomings of the existing system of generating a narrow-linewidth vortex beam based on multiple optical components. A device capable of generating a narrow linewidth single-frequency vortex laser with high stability and simplicity and compactness, the device also has the characteristics of simple operation and high stability.
本发明提供了一种直接产生窄线宽涡旋激光的装置,包括:单片激光腔、磁场施加模块、泵浦激光模块和透镜模块,所述单片激光腔采用稀土掺杂晶体作为增益介质,用于产生激光模式;所述磁场施加模块用于产生与所述单片激光腔的腔体平面平行的恒定的磁场,并施加在所述单片激光腔上以法拉第磁致旋光的方式使得不同方向的激光模式产生损耗差,从而提供单向出光所必须的条件;所述泵浦激光模块用于发射泵浦激光并激发所述增益介质中稀土离子的粒子数反转产生激光产生所需的光放大,以实现涡旋激光发射;所述透镜模块用于实现对泵浦激光的聚焦耦合以及对涡旋激光的准直输出。The invention provides a device for directly generating a narrow linewidth vortex laser, comprising: a monolithic laser cavity, a magnetic field applying module, a pumping laser module and a lens module, wherein the monolithic laser cavity adopts a rare earth doped crystal as a gain medium , used to generate a laser mode; the magnetic field application module is used to generate a constant magnetic field parallel to the cavity plane of the monolithic laser cavity, and apply it on the monolithic laser cavity in the manner of Faraday magnetostriction so that The laser modes in different directions have different losses, so as to provide the necessary conditions for unidirectional light output; the pump laser module is used to emit the pump laser and excite the population inversion of the rare earth ions in the gain medium to produce the required laser generation. The optical amplification of the vortex laser is used to realize the vortex laser emission; the lens module is used to realize the focusing coupling of the pump laser and the collimated output of the vortex laser.
更进一步地,泵浦激光模块发射的泵浦激光经透镜模块聚焦耦合后偏轴入射至所述单片激光腔上,并被所述增益介质吸收产生粒子数反转。Furthermore, the pump laser emitted by the pump laser module is focused and coupled by the lens module and then incident on the monolithic laser cavity off-axis, and is absorbed by the gain medium to generate population inversion.
更进一步地,单片激光腔包括:三个不平行的全反射边界面,以及一个激光波段高反射且泵浦波段消反的镀膜面。Furthermore, the monolithic laser cavity includes: three non-parallel total reflection boundary surfaces, and a coating surface with high reflection in the laser band and de-reflection in the pump band.
其中,当激光光束入射到单片激光腔的边界面处时进行第一次全反射后形成第一反射光,第一反射光经第二次全反射后形成第二反射光,第二反射光经第三次全反射后形成第三反射光,第三反射光回到入射面处,由于镀膜产生高反射与激光光束重合且相位满足谐振条件产生激光模式。Wherein, when the laser beam is incident on the boundary surface of the monolithic laser cavity, the first reflected light is formed after the first total reflection, the second reflected light is formed after the second total reflection of the first reflected light, and the second reflected light is formed. After the third total reflection, the third reflected light is formed, and the third reflected light returns to the incident surface. Due to the high reflection generated by the coating, the laser beam coincides with the laser beam and the phase meets the resonance condition to generate a laser mode.
更进一步地,激光光束和所述第三反射光位于同一平面,且所述第一反射光和所述第二反射光分别位于与所述激光光束不同的平面内。Further, the laser beam and the third reflected light are located in the same plane, and the first reflected light and the second reflected light are located in different planes from the laser beam, respectively.
其中,经透镜模块聚焦耦合后的激光光束在单片激光腔内一个光程中入射到其他三个非镀膜面时的入射角度大于等于激光光束从介质到空气产生全反射时的临界角。Among them, the incident angle of the laser beam focused and coupled by the lens module on the other three non-coated surfaces in one optical path in the single-chip laser cavity is greater than or equal to the critical angle when the laser beam is totally reflected from the medium to the air.
作为本发明的一个实施例,入射角度范围为30°~45°。As an embodiment of the present invention, the incident angle ranges from 30° to 45°.
现有产生涡旋激光的方式需要使用类似模式转换的辅助光学元件,而可通过腔内直接产生连续涡旋激光的技术所获得的激光线宽一般在MHz量级以上。本发明所构思的激光器装置与现有技术相比具备的主要优点:(1)激光腔和增益介质为单片的高品质激光晶体,且无需使用额外的辅助光学元件;(2)所产生的涡旋激光为单频连续激光,线宽可达到1kHz量级。因此,本发明装置可以在具备结构简单、体积小和重量轻的同时,产生具有高相干性的连续涡旋激光,在激光计量和光通信等领域有较好的潜在应用。Existing methods for generating vortex lasers require auxiliary optical elements similar to mode conversion, and the laser linewidths that can be obtained by directly generating continuous vortex lasers in a cavity are generally above the MHz order. Compared with the prior art, the laser device conceived in the present invention has the main advantages: (1) the laser cavity and the gain medium are monolithic high-quality laser crystals, and no additional auxiliary optical elements are required; (2) the generated The vortex laser is a single-frequency continuous laser with a linewidth of the order of 1 kHz. Therefore, the device of the present invention can generate a continuous vortex laser with high coherence while having a simple structure, small size and light weight, and has good potential applications in the fields of laser metrology and optical communication.
附图说明Description of drawings
图1是本发明实施例提供的窄线宽涡旋激光装置的结构示意图。FIG. 1 is a schematic structural diagram of a narrow linewidth vortex laser device provided by an embodiment of the present invention.
图2是本发明实施例提供的激发涡旋光模式的泵浦方式示意图。FIG. 2 is a schematic diagram of a pumping manner for exciting a vortex light mode provided by an embodiment of the present invention.
图3是单片激光腔内涡旋光模式形成的原理示意例图。FIG. 3 is a schematic illustration of the principle of the formation of vortex light modes in a monolithic laser cavity.
图4是本发明产生的+1阶窄线宽涡旋激光的光强图(左)与叉形干涉图(右)。FIG. 4 is the light intensity diagram (left) and the fork-shaped interference diagram (right) of the +1-order narrow linewidth vortex laser generated by the present invention.
图5是本发明产生的-1阶窄线宽涡旋激光的光强图(左)与叉形干涉图(右)。Figure 5 is the light intensity diagram (left) and the fork-shaped interference diagram (right) of the -1 order narrow linewidth vortex laser produced by the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
现有窄线宽涡旋激光的产生方式通常要求在已有窄线宽激光光源的基础上使用额外的光学转换元件,因而不具备简易性。本发明针对这个技术问题,提出在不使用任何额外光学转换元件的基础上直接在单片式激光腔上产生窄线宽涡旋激光的装置。该装置具备简易且紧凑的特点,能够利用普通的泵浦激光直接激发出窄线宽的涡旋激光。The existing narrow-linewidth vortex laser generation methods usually require the use of additional optical conversion elements on the basis of the existing narrow-linewidth laser light sources, so they are not simple. Aiming at this technical problem, the present invention proposes a device for generating a narrow linewidth vortex laser directly on a single-chip laser cavity without using any additional optical conversion elements. The device is simple and compact, and can directly excite vortex lasers with narrow linewidths using ordinary pump lasers.
本发明公开了一种在单片式非平面环形激光腔中直接产生窄线宽单频涡旋激光光束的装置。该装置产生的涡旋激光所具备光谱线宽一般在1kHz-10kHz范围内,因此能够用于精密测量和相干光通信等应用中。The invention discloses a device for directly generating a narrow line-width single-frequency vortex laser beam in a single-chip non-planar annular laser cavity. The spectral linewidth of the vortex laser generated by the device is generally in the range of 1kHz-10kHz, so it can be used in applications such as precision measurement and coherent optical communication.
本发明提供的窄线宽单频涡旋光产生装置包括:单片激光腔、磁场施加模块、泵浦激光模块和透镜模块,其中,单片激光腔可采用稀土掺杂晶体作为增益介质,同时以非平面环形谐振腔的结构支持高品质因子(即低损耗)的激光模式的产生;磁场施加模块可以使用永磁铁或通电线圈等方式去产生恒定的磁场,以法拉第磁致旋光的方式使得不同方向的激光模式产生损耗差,从而提供单向出光所必须的条件;泵浦激光模块用于激发增益介质中稀土离子的粒子数反转产生激光产生所需的光放大,以实现涡旋激光发射;透镜模块用于对泵浦激光的聚焦耦合和对涡旋激光的准直输出。The narrow linewidth single-frequency vortex light generating device provided by the present invention includes: a monolithic laser cavity, a magnetic field applying module, a pumping laser module and a lens module, wherein the monolithic laser cavity can use rare earth doped crystal as a gain medium, and at the same time The structure of the non-planar ring resonator supports the generation of laser modes with high quality factor (ie low loss); the magnetic field application module can use permanent magnets or energized coils to generate a constant magnetic field to make different directions in the Faraday magneto-rotation method. The laser mode produces a loss difference, thereby providing the necessary conditions for unidirectional light output; the pump laser module is used to excite the population inversion of rare earth ions in the gain medium to generate the optical amplification required for laser generation to achieve vortex laser emission; The lens module is used for the focused coupling of the pump laser and the collimated output of the vortex laser.
单片激光腔包括:单块的激光腔,可以是由拉曼材料、稀土掺杂材料和半导体等具有费尔德常数的增益介质制备。该腔体直接在材料上进行加工,以产生非平面的激光谐振结构,一般由三个不平行的全反射边界面和一个激光波段高反射、泵浦波段消反的镀膜面形成。The monolithic laser cavity includes: a monolithic laser cavity, which can be prepared from a gain medium with a Feld's constant such as Raman materials, rare-earth doped materials, and semiconductors. The cavity is directly processed on the material to generate a non-planar laser resonance structure, which is generally formed by three non-parallel total reflection boundary surfaces and a coating surface with high reflection in the laser band and de-reflection in the pump band.
磁场施加模块用于产生恒定磁场,其方向与腔体入射与出射光所在平面平行,目的在于利用磁致旋光效应使得光在介质中传播时产生光振动方向的偏转,从而使得顺时针与逆时针的环形谐振模式产生损耗差,以保证激光腔体的单向稳定出光;其结构具体可以为:使用单片或两片永磁铁,使得磁场方向与腔体平面平行;或者使用亥姆霍兹线圈产生相同方向的磁场。The magnetic field application module is used to generate a constant magnetic field, the direction of which is parallel to the plane where the incoming and outgoing light of the cavity are located. The ring resonance mode produces a loss difference to ensure the unidirectional stable light output of the laser cavity; its structure can be: use a single or two permanent magnets, so that the magnetic field direction is parallel to the cavity plane; or use a Helmholtz coil A magnetic field in the same direction is generated.
泵浦激光模块可以采用自由空间输出或者光纤耦合输出的半导体二极管或者固体激光器,其输出波长应该与激光能级跃迁所需的泵浦光源一致。The pump laser module can use a semiconductor diode or solid-state laser with free space output or fiber-coupled output, and its output wavelength should be consistent with the pump light source required for the laser energy level transition.
透镜模块包括:聚焦耦合透镜2和准直输出透镜模块4,聚焦耦合透镜2用于对泵浦激光模块1产生的泵浦激光聚焦后输出;准直输出透镜模块4用于对顺时针方向单向激光光束7进行准直后输出。The lens module includes: a focusing coupling lens 2 and a collimating output lens module 4, the focusing coupling lens 2 is used to focus the pump laser generated by the pump laser module 1 and output; the collimating output lens module 4 is used to The laser beam 7 is collimated and output.
本发明使用普通的泵浦激光聚焦泵浦单片非平面环形腔结构的激光腔体,通过偏轴调节的方式选择性地激发高品质激光腔内部的涡旋光模式,以实现单频涡旋激光的直接产生。The invention uses a common pump laser to focus pumping a laser cavity with a single-chip non-planar annular cavity structure, and selectively excites the vortex light mode inside the high-quality laser cavity by means of off-axis adjustment, so as to realize a single-frequency vortex laser directly generated.
为了更进一步的说明本发明实施例提供的直接产生涡旋光束的装置,现结合附图及具体实例详述如下:In order to further illustrate the device for directly generating a vortex beam provided by the embodiment of the present invention, the following is now detailed in conjunction with the accompanying drawings and specific examples:
如图1所示,直接产生涡旋光束的装置包括:单片激光腔3、磁场施加模块、泵浦激光模块1、聚焦耦合透镜2和准直输出透镜模块4,聚焦耦合透镜2设置在泵浦激光模块1的出射光路上且聚焦耦合透镜2的出射光入射至单片激光腔3的入射面,该入射光经过多次全反射后出射的光经过准直输出透镜模块4准直后输出。As shown in Fig. 1, the device for directly generating the vortex beam includes: a monolithic laser cavity 3, a magnetic field application module, a pump laser module 1, a focusing coupling lens 2 and a collimating output lens module 4, and the focusing coupling lens 2 is arranged on the pump The outgoing light of the laser beam module 1 and the outgoing light of the focusing coupling lens 2 is incident on the incident surface of the single-chip laser cavity 3, and the incident light after multiple total reflections is collimated by the collimating output lens module 4 and then output. .
如图2所示,本发明中的入射光通过偏轴入射到单片激光腔3上,在入射镀膜面301上形成泵浦光斑601;在保证入射光的入射角度符合腔体谐振模式角度要求时,通过移动图1中泵浦光束6、透镜2或者腔体3的位置,使得泵浦光斑601偏离镀膜面301的中心,移到环形光斑705内。以尺寸8mm×10mm×3mm的腔体为例,偏离中心的距离大致在30μm-200μm范围内。详细步骤如下所示:As shown in FIG. 2 , the incident light in the present invention is incident on the monolithic laser cavity 3 through off-axis, and a pumping spot 601 is formed on the incident coating surface 301; after ensuring that the incident angle of the incident light meets the cavity resonant mode angle requirements When the pump beam 6 , the lens 2 or the cavity 3 in FIG. 1 are moved, the pump spot 601 deviates from the center of the coating surface 301 and moves into the annular spot 705 . Taking a cavity with a size of 8mm×10mm×3mm as an example, the distance from the center is roughly in the range of 30μm-200μm. The detailed steps are as follows:
首先,我们通过透镜2将空间输出的泵浦激光光束6聚焦到单片激光腔体3的入射镀膜面301上。通过计算单片激光腔3中光学模式的横截面光斑尺寸,设计聚焦泵浦光光斑601的直径,使其等于或略小于计算值以达到好的模式匹配。First, we focus the spatially output pump laser beam 6 onto the incident coating surface 301 of the monolithic laser cavity 3 through the lens 2 . By calculating the cross-sectional spot size of the optical mode in the monolithic laser cavity 3, the diameter of the focused pump light spot 601 is designed to be equal to or slightly smaller than the calculated value to achieve good mode matching.
其次,泵浦光耦合到激光腔3中将被增益材料吸收产生粒子数反转。该泵浦光的入射角度需调节至满足单片非平面环形腔的设计角度,即激光光束在腔内一个光程中入射到其他三个非镀膜面时,其角度满足大于等于光从介质到空气产生全反射临界角的条件。通常,这个角度范围可以是30°~45°。此时,腔体中激光模式产生谐振,其模式的特点是:产生的激光光束701入射到激光腔3的边界面处进行第一次全反射后形成第一反射光702,第一反射光702进行第二次全反射后形成第二反射光703,第二反射光703经过第三次全反射后形成第三反射光704,第三反射光704回到入射面处,由于镀膜产生高反射与激光光束701重合且相位满足谐振条件产生激光模式。Second, the pump light coupled into the laser cavity 3 will be absorbed by the gain material to generate population inversion. The incident angle of the pump light needs to be adjusted to meet the design angle of the monolithic non-planar annular cavity, that is, when the laser beam is incident on the other three non-coated surfaces in one optical path in the cavity, the angle should be greater than or equal to the light from the medium to the The condition under which air produces the critical angle of total reflection. Typically, this angular range may be 30° to 45°. At this time, the laser mode in the cavity resonates, and the characteristics of the mode are: the generated laser beam 701 is incident on the boundary interface of the laser cavity 3 and undergoes the first total reflection to form the first reflected light 702. The first reflected light 702 After the second total reflection, the second reflected light 703 is formed, the second reflected light 703 is subjected to the third total reflection to form the third reflected light 704, and the third reflected light 704 returns to the incident surface. The laser beams 701 coincide and the phases satisfy the resonance condition to generate the laser mode.
其中,激光光束701和第三反射光704位于同一平面,而第一反射光702和第二反射光703彼此位于与激光光束701不同的平面内。通过施加恒定磁场5使得腔内光束的振动方向产生法拉第磁光旋转,从而产生顺时针方向单向激光光束7的出射。The laser beam 701 and the third reflected light 704 are located in the same plane, and the first reflected light 702 and the second reflected light 703 are located in a different plane from the laser beam 701 . By applying a constant magnetic field 5, the vibration direction of the beam in the cavity generates a Faraday magneto-optical rotation, thereby generating a clockwise unidirectional laser beam 7 to exit.
在本发明实施例中,三个角度可以不相同,但是通常都是对称性设计,也就是说如图1所示的激光光束701至第一反射光702与第二反射光703至第三反射光704的入射角相同,第一反射光702至第二反射光703的入射角一般与其他入射角不同。In this embodiment of the present invention, the three angles may be different, but they are usually designed symmetrically, that is, as shown in FIG. 1 , from the laser beam 701 to the first reflected light 702 and from the second reflected light 703 to the third reflected light The incident angles of the light 704 are the same, and the incident angles of the first reflected light 702 to the second reflected light 703 are generally different from other incident angles.
偏轴泵浦方式的实施,可以先将泵浦光斑601优化到面301的中心,随后,通过调节泵浦光束6、透镜2或者腔体3的位置(即调偏光斑601在面301上的位置),并检测输出光斑的干涉图案以确定涡旋光到的输出。基于传统干涉法检验观察涡旋光的方法,一般当观测到叉形、涡旋或花瓣形干涉图案时,可确定涡旋激光的产生。图4和图5为我们实验上获得的拓扑荷数为±1的涡旋激光输出图。其中,左图为成像设备上测得的光束光强分布,右图则为通过与近平面波相干产生的叉形干涉图。由干涉图可以得出涡旋光的拓扑荷数。最后,通过使用准直输出透镜模块4对单向激光光束7进行准直输出。In the implementation of the off-axis pumping mode, the pump spot 601 can be optimized to the center of the surface 301 first, and then, by adjusting the position of the pump beam 6, the lens 2 or the cavity 3 (that is, adjusting the position of the polarization spot 601 on the surface 301) position), and detect the interference pattern of the output spot to determine the output of the vortex light. The method of observing vortex light based on the traditional interferometry test, generally when a fork, vortex or petal-shaped interference pattern is observed, the generation of vortex laser can be determined. Figures 4 and 5 show the output graphs of the vortex laser with a topological charge of ±1 obtained experimentally. Among them, the left image is the beam intensity distribution measured on the imaging device, and the right image is the fork-shaped interference pattern generated by coherence with the near-plane wave. The topological charge of the vortex light can be obtained from the interferogram. Finally, the unidirectional laser beam 7 is collimated and output by using the collimating output lens module 4 .
单片激光腔中涡旋光产生的原理示意例图如图3所示。典型的涡旋拉盖尔-高斯LG01模可以看出为两种高阶厄米高斯光学模式HG01的叠加。对于非平面的环形腔体,HG01模式在传播过程中,由于非平面反射而发生光斑旋转,于是可看成不同HG01模式叠加而成的LG01涡旋模式在该类型的环形腔体中生产。因此,通过将泵浦光光斑偏轴至与该模式有较好空间重合处时,涡旋激光模式可以被激发出来。A schematic illustration of the principle of vortex light generation in a monolithic laser cavity is shown in Figure 3. The typical vortex Laguerre-Gaussian LG01 mode can be seen as the superposition of two higher-order Hermitian Gaussian optical modes HG01 . For a non-planar annular cavity, the HG01 mode rotates due to the non-planar reflection during the propagation process, so it can be seen that the LG01 vortex mode formed by the superposition of different HG01 modes is produced in this type of annular cavity . Therefore, the vortex lasing mode can be excited by off-axis of the pump light spot to a place with good spatial coincidence with the mode.
由于本发明中使用到的单片非平面环形谐振腔可无需额外辅助元件便能支持高品质的涡旋光模式,因此本发明能够进一步减少不必要的额外辅助元件,具备更小体积及更稳定的优势。同时,通过在301面的激光波段高反镀膜,结合该类型单片激光腔光环路中利用到的全反射,该激光腔可具备较低的环路损耗即较好的品质因子,因此基于本发明产生的单频涡旋激光线宽可达到1kHz量级。Since the monolithic non-planar ring resonator used in the present invention can support high-quality vortex light modes without additional auxiliary components, the invention can further reduce unnecessary additional auxiliary components, and has a smaller volume and more stable Advantage. At the same time, through the high-reflection coating of the laser band on the 301 surface, combined with the total reflection used in the optical loop of this type of single-chip laser cavity, the laser cavity can have a lower loop loss, that is, a better quality factor. The linewidth of the single-frequency vortex laser produced by the invention can reach the order of 1kHz.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810817898.XACN109038196B (en) | 2018-07-20 | 2018-07-20 | A Device for Directly Generating Narrow Linewidth Vortex Lasers |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810817898.XACN109038196B (en) | 2018-07-20 | 2018-07-20 | A Device for Directly Generating Narrow Linewidth Vortex Lasers |
| Publication Number | Publication Date |
|---|---|
| CN109038196A CN109038196A (en) | 2018-12-18 |
| CN109038196Btrue CN109038196B (en) | 2019-07-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810817898.XAActiveCN109038196B (en) | 2018-07-20 | 2018-07-20 | A Device for Directly Generating Narrow Linewidth Vortex Lasers |
| Country | Link |
|---|---|
| CN (1) | CN109038196B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111628398A (en)* | 2020-04-08 | 2020-09-04 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Device for generating low-noise double-frequency laser and photo-generated microwave |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111200233A (en)* | 2020-01-15 | 2020-05-26 | 厦门大学 | Narrow linewidth frequency multiplication vortex optical laser |
| CN113381280B (en)* | 2021-06-08 | 2024-11-22 | 江苏师范大学 | A device and method for directly generating mid-infrared ultrafast vortex laser |
| CN115579719A (en)* | 2022-09-29 | 2023-01-06 | 北京理工大学 | Single-frequency vortex laser |
| CN117117612B (en)* | 2023-08-23 | 2024-09-17 | 华中科技大学 | Non-planar annular cavity laser for improving optical isolation and optical isolation improving method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1373538A (en)* | 2001-02-28 | 2002-10-09 | 北京理工大学 | Corner cube non-planar unidirectional traveling-wave annular cavity single-frequency solid-state laser |
| US6614818B1 (en)* | 1999-12-01 | 2003-09-02 | Lightwave Electronics | Mode-hop-free single frequency solid state laser |
| CN101132101A (en)* | 2007-09-05 | 2008-02-27 | 福州高意通讯有限公司 | Laser device with single-block annular resonant cavity |
| CN103401129A (en)* | 2013-08-01 | 2013-11-20 | 哈尔滨工业大学 | LD (laser diode)-pumped single longitudinal mode type continuous wave 1645nm solid laser device |
| CN204517135U (en)* | 2015-04-25 | 2015-07-29 | 林燕彬 | Three-body type annular chamber model selection device |
| CN105161975A (en)* | 2015-09-25 | 2015-12-16 | 中国科学院上海光学精密机械研究所 | All fiber coupled air-tight packaged small non-planar ring single frequency laser |
| CN108199251A (en)* | 2018-01-15 | 2018-06-22 | 哈尔滨工业大学 | A High Power Tunable 2μm Single-Frequency Dual Pyramid Cavity Laser Based on Optical Rotation Effect |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6614818B1 (en)* | 1999-12-01 | 2003-09-02 | Lightwave Electronics | Mode-hop-free single frequency solid state laser |
| CN1373538A (en)* | 2001-02-28 | 2002-10-09 | 北京理工大学 | Corner cube non-planar unidirectional traveling-wave annular cavity single-frequency solid-state laser |
| CN101132101A (en)* | 2007-09-05 | 2008-02-27 | 福州高意通讯有限公司 | Laser device with single-block annular resonant cavity |
| CN103401129A (en)* | 2013-08-01 | 2013-11-20 | 哈尔滨工业大学 | LD (laser diode)-pumped single longitudinal mode type continuous wave 1645nm solid laser device |
| CN204517135U (en)* | 2015-04-25 | 2015-07-29 | 林燕彬 | Three-body type annular chamber model selection device |
| CN105161975A (en)* | 2015-09-25 | 2015-12-16 | 中国科学院上海光学精密机械研究所 | All fiber coupled air-tight packaged small non-planar ring single frequency laser |
| CN108199251A (en)* | 2018-01-15 | 2018-06-22 | 哈尔滨工业大学 | A High Power Tunable 2μm Single-Frequency Dual Pyramid Cavity Laser Based on Optical Rotation Effect |
| Title |
|---|
| Direct emission of chirality controllable femtosecond LG01 vortex beam;S. Wang 等;《APPLIED PHYSICS LETTERS》;20180517;第112卷;全文 |
| Generation of vortex beams by an image-rotating optical parametric oscillator;Arlee V. Smith 等;《OPTICS EXPRESS》;20030421;第11卷(第8期);全文 |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111628398A (en)* | 2020-04-08 | 2020-09-04 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Device for generating low-noise double-frequency laser and photo-generated microwave |
| Publication number | Publication date |
|---|---|
| CN109038196A (en) | 2018-12-18 |
| Publication | Publication Date | Title |
|---|---|---|
| CN109038196B (en) | A Device for Directly Generating Narrow Linewidth Vortex Lasers | |
| US8340143B2 (en) | Passively mode-locked picosecond laser device | |
| US7742509B2 (en) | Single-longitudinal mode laser with orthogonal-polarization traveling-wave mode | |
| CN105071206B (en) | A kind of vortex laser based on laser medium center zero gain structure | |
| CN102709802B (en) | Excited state atom filter receiving device for pumping laser atom frequency stabilization | |
| CN215343339U (en) | Annular cavity single longitudinal mode pulse laser | |
| WO2006028078A1 (en) | Passive q switch laser device | |
| CN107565352A (en) | A kind of laser of the tunable Laguerre Gaussian beams of output 1064nm | |
| CN104579499A (en) | Interferometer and sub-natural linewidth polarization-entangled twin photon generation method thereof | |
| CN107565354B (en) | An LD-pumped high-power Kerr lens self-mode-locked laser | |
| CN114421274A (en) | A Broadband Vortex Raman Microchip Laser with Tunable Topological Charges | |
| CN103326224A (en) | A radially polarized beam laser | |
| CN114784606B (en) | Laguerre-Gaussian beam generating device and method | |
| JP2001168429A (en) | Solid state laser oscillator | |
| CN113904208B (en) | A high-purity Laguerre-Gaussian beam generating system and its generating method | |
| CN113725711B (en) | Optical vortex optical fiber laser based on double vortex wave plates | |
| US6628692B2 (en) | Solid-state laser device and solid-state laser amplifier provided therewith | |
| CN110402522B (en) | Thin disc laser device | |
| CN115327880B (en) | Rectangular cold atom active light clock based on diffuse reflection cooling and implementation method | |
| CN117498134A (en) | Femtosecond vortex laser generation device and generation method | |
| CN104917053A (en) | V-shaped resonator and laser based on V-shaped resonator | |
| CN105470792B (en) | High power two-core co-cavity fiber laser | |
| CN112490836B (en) | A Gas Raman Laser Based on Ring Unstable Cavity | |
| CN114447755A (en) | Self-balancing system of orthogonal oscillatory laser gain based on intracavity polarization conversion device | |
| CN207559263U (en) | A kind of high efficiency all -fiber column vector beam laser |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |