Movatterモバイル変換


[0]ホーム

URL:


CN108844899A - A kind of parallelly compressed perception imaging system - Google Patents

A kind of parallelly compressed perception imaging system
Download PDF

Info

Publication number
CN108844899A
CN108844899ACN201810299539.XACN201810299539ACN108844899ACN 108844899 ACN108844899 ACN 108844899ACN 201810299539 ACN201810299539 ACN 201810299539ACN 108844899 ACN108844899 ACN 108844899A
Authority
CN
China
Prior art keywords
detector
imaging system
digital micromirror
compressed sensing
mirror group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810299539.XA
Other languages
Chinese (zh)
Other versions
CN108844899B (en
Inventor
李云辉
王晓东
王稚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CASfiledCriticalChangchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201810299539.XApriorityCriticalpatent/CN108844899B/en
Publication of CN108844899ApublicationCriticalpatent/CN108844899A/en
Application grantedgrantedCritical
Publication of CN108844899BpublicationCriticalpatent/CN108844899B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种并行压缩感知成像系统,前端镜组,数字微镜阵列,第一匹配镜组,第二匹配镜组,第一探测器以及第二探测器;所述前端镜组设置在所述目标场景和所述数字微镜阵列之间,所述目标场景可经所述前端镜组入射到数字微镜阵列上;所述数字微镜阵列,可将所述目标场景的光线沿着两个方向反射,分别反射至第一匹配镜组和第二匹配镜组。本发明公开的并行压缩感知成像系统可工作在不同的工作模式下,进行不同并行处理参数的切换,在对大规模场景进行成像时,可应用在不同的成像场合,增加了所述并行压缩感知成像系统的通用性。

The invention discloses a parallel compressed sensing imaging system, a front-end mirror group, a digital micromirror array, a first matching mirror group, a second matching mirror group, a first detector and a second detector; the front-end mirror group is arranged on Between the target scene and the digital micromirror array, the target scene can be incident on the digital micromirror array through the front-end lens group; the digital micromirror array can transmit the light of the target scene along the Reflected in two directions, respectively reflected to the first matching mirror group and the second matching mirror group. The parallel compressed sensing imaging system disclosed in the present invention can work in different working modes, switch between different parallel processing parameters, and can be applied to different imaging occasions when imaging large-scale scenes, increasing the parallel compressed sensing Versatility of the imaging system.

Description

Translated fromChinese
一种并行压缩感知成像系统A Parallel Compressed Sensing Imaging System

技术领域technical field

本发明涉及航天光学遥感计算成像技术领域,特别涉及一种并行压缩感知成像系统。The invention relates to the technical field of aerospace optical remote sensing computing imaging, in particular to a parallel compressed sensing imaging system.

背景技术Background technique

Donoho与Candes等人在2006年提出了压缩感知理论,该理论指出:如果一个信号在某个变换域是稀疏的,那么通过非相关测量矩阵将该信号投影到低维空间上,并通过求解一个最优化问题即可根据低维投影值高概率的恢复出原始信号。压缩感知理论给成像方式上带来了新的变革,突破了Nyquist-Shannon采样定理的限制,将图像采样与压缩合并为一个过程,将低分辨率采样下的高分辨率图像重建成为可能,因此成为近年来研究的热点问题。Donoho and Candes et al. proposed the compressed sensing theory in 2006, which pointed out that if a signal is sparse in a certain transformation domain, then the signal is projected onto a low-dimensional space through a non-correlated measurement matrix, and by solving a The optimization problem can restore the original signal with high probability according to the low-dimensional projection value. Compressed sensing theory has brought new changes to imaging methods, breaking through the limitations of the Nyquist-Shannon sampling theorem, combining image sampling and compression into one process, making it possible to reconstruct high-resolution images under low-resolution sampling, so It has become a hot research topic in recent years.

高分辨率的图像获取技术在军事侦察、环境监测、国土安全等领域一直有迫切的需求。传统成像采用场景与探测器像元一一对应的方式,图像分辨率取决于探测器像元的规模,为获取高分辨率的图像,需要增加探测器的像元数。而受制造工艺的限制,超大规模的探测器像元规模难以实现,因此目前通常采用多图像探测器机械或光学拼接的方式,大大增加了系统复杂度。同时高分辨率的图像对应着海量的数据,因此也加重了图像数据存储和传输的负担。High-resolution image acquisition technology has always been in urgent demand in the fields of military reconnaissance, environmental monitoring, and homeland security. Traditional imaging uses a one-to-one correspondence between the scene and the detector pixels. The image resolution depends on the size of the detector pixels. In order to obtain high-resolution images, the number of detector pixels needs to be increased. Due to the limitation of the manufacturing process, it is difficult to realize the ultra-large-scale detector pixel size. Therefore, the mechanical or optical splicing of multi-image detectors is usually used at present, which greatly increases the complexity of the system. At the same time, high-resolution images correspond to massive amounts of data, which also increases the burden of image data storage and transmission.

基于压缩感知理论,国内外学者提出了多种计算成像系统,包括单像素相机、压缩编码孔径成像、基于CMOS探测器的压缩成像等。其中美国Rice大学的Duarte M F等人提出的一种单像素相机是该理论的典型应用,该相机利用数字微镜阵列对场景进行编码,采用单像素的点探测器替代图像传感器作为图像信息采集器件,降低了系统的复杂度和成本,使图像分辨率不再受制于探测器的像元规模。但在对大规模场景进行成像时,编码观测次数增多,观测时间急剧增加,导致系统只能应用于静止或凝视成像场合。Based on the theory of compressed sensing, scholars at home and abroad have proposed a variety of computational imaging systems, including single-pixel cameras, compression-coded aperture imaging, and compression imaging based on CMOS detectors. Among them, a single-pixel camera proposed by Duarte MF of Rice University in the United States is a typical application of this theory. The camera uses a digital micromirror array to encode the scene, and uses a single-pixel point detector instead of an image sensor as an image information acquisition device. , which reduces the complexity and cost of the system, so that the image resolution is no longer limited by the pixel size of the detector. However, when imaging large-scale scenes, the number of coded observations increases and the observation time increases sharply, so the system can only be applied to stationary or staring imaging situations.

发明内容Contents of the invention

本发明旨在克服现有技术存在的缺陷,本发明采用以下技术方案:The present invention aims to overcome the defective that prior art exists, and the present invention adopts following technical scheme:

一方面,本发明实施例提供了一种并行压缩感知成像系统,包括:前端镜组,数字微镜阵列,第一匹配镜组,第二匹配镜组,第一探测器以及第二探测器;On the one hand, an embodiment of the present invention provides a parallel compressed sensing imaging system, including: a front-end mirror group, a digital micromirror array, a first matching mirror group, a second matching mirror group, a first detector, and a second detector;

所述前端镜组,用于实现目标场景和所述数字微镜阵列的匹配,所述前端镜组设置在所述目标场景和所述数字微镜阵列之间,所述目标场景可经所述前端镜组入射到数字微镜阵列上;The front-end mirror group is used to realize the matching of the target scene and the digital micromirror array, the front-end mirror group is arranged between the target scene and the digital micromirror array, and the target scene can be passed through the The front-end mirror group is incident on the digital micromirror array;

所述数字微镜阵列,可将所述目标场景的光线沿着两个方向反射,分别反射至第一匹配镜组和第二匹配镜组;The digital micromirror array can reflect the light of the target scene along two directions, respectively to the first matching mirror group and the second matching mirror group;

所述第一匹配镜组,用于实现数字微镜阵列与所述第一探测器的匹配,The first matching mirror group is used to realize the matching between the digital micromirror array and the first detector,

所述第一匹配镜组将由所述数字微镜阵列反射的所述目标场景的光线输出至所述第一探测器;The first matching mirror group outputs the light of the target scene reflected by the digital micromirror array to the first detector;

所述第二匹配镜组,用于实现数字微镜阵列与所述第二探测器的匹配,The second matching mirror group is used to realize the matching between the digital micromirror array and the second detector,

所述第二匹配镜组将由所述数字微镜阵列反射的所述目标场景的光线输出至所述第二探测器。The second matching mirror group outputs the light of the target scene reflected by the digital micro-mirror array to the second detector.

在一些实施例中,所述第一匹配镜组,将由所述数字微镜阵列反射的所述目标场景的光线输出至所述第一探测器的焦面;In some embodiments, the first matching lens group outputs the light of the target scene reflected by the digital micromirror array to the focal plane of the first detector;

在一些实施例中,所述第二匹配镜组,将由所述数字微镜阵列反射的所述目标场景的光线输出至所述第二探测器的焦面。In some embodiments, the second matching lens group outputs the light of the target scene reflected by the digital micromirror array to the focal plane of the second detector.

在一些实施例中,所述数字微镜阵列可将所述目标场景的光线沿着两个方向反射,所述方向为分别为偏转-12°和+12°。In some embodiments, the digital micromirror array can reflect the light of the target scene along two directions, and the directions are respectively deflected by -12° and +12°.

在一些实施例中,所述并行压缩感知成像系统的工作模式包括:第一工作模式和第二工作模式。In some embodiments, the working modes of the parallel compressed sensing imaging system include: a first working mode and a second working mode.

在一些实施例中,当所述并行压缩感知成像系统工作在第一工作模式时:In some embodiments, when the parallel compressed sensing imaging system works in the first working mode:

所述并行压缩感知成像系统驱动数字微镜阵列完成目标场景的编码,并控制所述第一探测器和所述第二探测器同时曝光;The parallel compressed sensing imaging system drives the digital micromirror array to complete the encoding of the target scene, and controls the simultaneous exposure of the first detector and the second detector;

在曝光完成后,所述并行压缩感知成像系统将所述第一探测器和所述第二探测器采集图像的对应数据进行作差,得到一组观测数据并完成对应次数的编码观测;最后完成原始图像的恢复。After the exposure is completed, the parallel compressed sensing imaging system makes a difference between the corresponding data of the images collected by the first detector and the second detector to obtain a set of observation data and complete the corresponding number of coded observations; finally complete Restoration of the original image.

在一些实施例中,当所述并行压缩感知成像系统工作在第二工作模式时:In some embodiments, when the parallel compressed sensing imaging system works in the second working mode:

所述并行压缩感知成像系统驱动数字微镜阵列完成目标场景的编码,并控制所述第一探测器曝光;The parallel compressed sensing imaging system drives the digital micromirror array to complete the encoding of the target scene, and controls the exposure of the first detector;

在曝光完成后,所述并行压缩感知成像系统驱动数字微镜阵列完成目标场景的编码,并控制第二探测器曝光;After the exposure is completed, the parallel compressed sensing imaging system drives the digital micromirror array to complete the encoding of the target scene, and controls the exposure of the second detector;

得到一组观测数据并完成对应次数的编码观测;Obtain a set of observation data and complete the corresponding number of coded observations;

最后完成原始图像的恢复。Finally, the restoration of the original image is completed.

在一些实施例中,所述完成原始图像的恢复为采用图像复原算法完成原始图像的恢复。In some embodiments, the restoration of the original image is to use an image restoration algorithm to restore the original image.

在一些实施例中,所述第一探测器为面阵探测器;述第二探测器为面阵探测器。In some embodiments, the first detector is an area array detector; the second detector is an area array detector.

另一方面,本发明实施例还提供了一种互补型压缩感知成像系统的控制方法。所述互补型压缩感知成像系统包括:前端镜组,数字微镜阵列,第一匹配镜组,第二匹配镜组,第一面阵探测器以及第二面阵探测器;On the other hand, the embodiment of the present invention also provides a control method of a complementary compressed sensing imaging system. The complementary compressed sensing imaging system includes: a front-end mirror group, a digital micromirror array, a first matching mirror group, a second matching mirror group, a first area array detector and a second area array detector;

所述前端镜组,用于实现目标场景和所述数字微镜阵列的匹配,所述前端镜组设置在所述目标场景和所述数字微镜阵列之间,所述目标场景可经所述前端镜组入射到数字微镜阵列上;The front-end mirror group is used to realize the matching of the target scene and the digital micromirror array, the front-end mirror group is arranged between the target scene and the digital micromirror array, and the target scene can be passed through the The front-end mirror group is incident on the digital micromirror array;

所述数字微镜阵列,可将所述目标场景的光线沿着两个方向反射,分别反射至第一匹配镜组和第二匹配镜组;The digital micromirror array can reflect the light of the target scene along two directions, respectively to the first matching mirror group and the second matching mirror group;

所述第一匹配镜组,用于实现数字微镜阵列与所述第一面阵探测器的匹配,The first matching mirror group is used to realize the matching between the digital micromirror array and the first area array detector,

所述第一匹配镜组将由所述数字微镜阵列反射的所述目标场景的光线输出至所述第一面阵探测器;The first matching mirror group outputs the light of the target scene reflected by the digital micromirror array to the first area array detector;

所述第二匹配镜组,用于实现数字微镜阵列与所述第二面阵探测器的匹配,The second matching mirror group is used to realize the matching between the digital micromirror array and the second area array detector,

所述第二匹配镜组将由所述数字微镜阵列反射的所述目标场景的光线输出至所述第二面阵探测器;The second matching mirror group outputs the light of the target scene reflected by the digital micromirror array to the second area array detector;

所述互补型压缩感知成像系统的工作模式包括:第一工作模式和第二工作模式;The working modes of the complementary compressed sensing imaging system include: a first working mode and a second working mode;

所述互补型压缩感知成像系统的控制方法包括步骤:The control method of the complementary compressed sensing imaging system comprises steps:

根据互补型压缩感知成像系统的成像目标场景的先验模型,建立不同轨道像移参数下的像移数学模型;According to the prior model of the imaging target scene of the complementary compressed sensing imaging system, the mathematical model of image motion under different orbital image motion parameters is established;

选取不同参数及工作模式进行组合计算,得到恢复图像的峰值信噪比;Select different parameters and working modes for combined calculation to obtain the peak signal-to-noise ratio of the restored image;

将某个像移数据下的获取最高峰值信噪比时所对应的不同分块数、不同观测压缩比和工作模式作为该像移数据下的系统设置;The different number of blocks, different observation compression ratios and working modes corresponding to obtaining the highest peak signal-to-noise ratio under a certain image motion data are used as the system settings under the image motion data;

分别计算不同像移数据下的系统参数设置,建立互补型压缩感知成像系统最优成像质量参数库。The system parameter settings under different image motion data are calculated separately, and the optimal imaging quality parameter library of the complementary compressed sensing imaging system is established.

本发明的技术效果:本发明公开的并行压缩感知成像系统包括数字微镜阵列,第一匹配镜组,第二匹配镜组,第一探测器以及第二探测器,并可以通过对数字微镜阵列,第一匹配镜组,第二匹配镜组,第一探测器以及第二探测器的控制来使所述并行压缩感知成像系统工作在不同的工作模式下,在此并行压缩感知成像系统基础上可以实现两种工作模式及不同并行处理参数的切换,在对大规模场景进行成像时,可应用在不同的成像场合,增加了所述并行压缩感知成像系统的通用性。Technical effects of the present invention: the parallel compressed sensing imaging system disclosed in the present invention includes a digital micromirror array, a first matching mirror group, a second matching mirror group, a first detector and a second detector, and can pass through the digital micromirror The array, the first matching mirror group, the second matching mirror group, the first detector and the second detector are controlled to make the parallel compressed sensing imaging system work in different working modes, and the parallel compressed sensing imaging system is based on It can realize switching between two working modes and different parallel processing parameters, and can be applied to different imaging occasions when imaging large-scale scenes, which increases the versatility of the parallel compressed sensing imaging system.

附图说明Description of drawings

图1是根据本发明一个实施例的并行压缩感知成像系统的结构示意图;FIG. 1 is a schematic structural diagram of a parallel compressed sensing imaging system according to an embodiment of the present invention;

图2是根据本发明一个实施例的并行压缩感知成像系统中目标场景、数字微镜阵列、面阵探测器对应关系示意图;Fig. 2 is a schematic diagram of the corresponding relationship between a target scene, a digital micromirror array, and an area array detector in a parallel compressed sensing imaging system according to an embodiment of the present invention;

图3是根据本发明一个实施例的并行压缩感知成像系统在第一工作模式下的工作流程图;Fig. 3 is a working flowchart of the parallel compressed sensing imaging system in the first working mode according to an embodiment of the present invention;

图4是根据本发明一个实施例的并行压缩感知成像系统在第二工作模式下的工作流程图;Fig. 4 is a working flowchart of the parallel compressed sensing imaging system in the second working mode according to one embodiment of the present invention;

图5是根据本发明一个实施例的并行压缩感知成像系统在像移率p=0.002时,采用第一工作模式的峰值信噪比随分块数M和观测压缩比D的变化趋势图;FIG. 5 is a trend diagram of the peak signal-to-noise ratio in the first working mode with the number of blocks M and the observed compression ratio D when the image motion rate p=0.002 of the parallel compressed sensing imaging system according to an embodiment of the present invention;

图6是根据本发明一个实施例的并行压缩感知成像系统在像移率p=0.002时,采用第二工作模式的峰值信噪比随分块数M和观测压缩比D的变化趋势图;Fig. 6 is a parallel compressed sensing imaging system according to an embodiment of the present invention, when the image motion rate p=0.002, the peak signal-to-noise ratio in the second working mode varies with the number of blocks M and the observed compression ratio D;

图7是根据本发明一个实施例的并行压缩感知成像系统在像移率p=0.03时,采用第一工作模式的峰值信噪比随分块数M和观测压缩比D的变化趋势图;FIG. 7 is a trend diagram of the peak signal-to-noise ratio in the first working mode with the number of blocks M and the observed compression ratio D when the image motion rate p=0.03 of the parallel compressed sensing imaging system according to an embodiment of the present invention;

图8是根据本发明一个实施例的并行压缩感知成像系统在像移率p=0.03时,采用第二工作模式的峰值信噪比随分块数M和观测压缩比D的变化趋势图。Fig. 8 is a graph showing the variation trend of the peak signal-to-noise ratio in the second working mode with the number of blocks M and the observed compression ratio D of the parallel compressed sensing imaging system according to an embodiment of the present invention when the image motion rate p=0.03.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,而不构成对本发明的限制。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention.

参考图1至图2所示,示意出了根据本发明一个实施例的并行压缩感知成像系统100。本发明实施例提供的并行压缩感知成像系统100包括:前端镜组2,数字微镜阵列(DMD)3,第一匹配镜组4,第二匹配镜组5,第一探测器6以及第二探测器7;Referring to FIG. 1 to FIG. 2 , a parallel compressed sensing imaging system 100 according to an embodiment of the present invention is schematically shown. The parallel compressed sensing imaging system 100 provided by the embodiment of the present invention includes: a front-end mirror group 2, a digital micromirror array (DMD) 3, a first matching mirror group 4, a second matching mirror group 5, a first detector 6 and a second detector 7;

所述前端镜组2,用于实现目标场景1和所述数字微镜阵列3的匹配,所述前端镜组2设置在所述目标场景1和所述数字微镜阵列3之间,所述目标场景1可经所述前端镜组2入射到数字微镜阵列3上;The front-end mirror group 2 is used to realize the matching of the target scene 1 and the digital micromirror array 3, the front-end mirror group 2 is arranged between the target scene 1 and the digital micromirror array 3, the The target scene 1 can be incident on the digital micromirror array 3 through the front-end mirror group 2;

所述数字微镜阵列(DMD)3,可将所述目标场景1的光线沿着两个方向反射,分别反射至第一匹配镜组4和第二匹配镜组5;The digital micromirror array (DMD) 3 can reflect the light of the target scene 1 along two directions, respectively to the first matching mirror group 4 and the second matching mirror group 5;

所述第一匹配镜组4,用于实现数字微镜阵列(DMD)3与所述第一探测器6的匹配,The first matching mirror group 4 is used to realize the matching between the digital micromirror array (DMD) 3 and the first detector 6,

所述第一匹配镜组4将由所述数字微镜阵列(DMD)3反射的所述目标场景1的光线输出至所述第一探测器6;The first matching mirror group 4 outputs the light of the target scene 1 reflected by the digital micromirror array (DMD) 3 to the first detector 6;

所述第二匹配镜组5,用于实现数字微镜阵列(DMD)3与所述第二探测器7的匹配,The second matching mirror group 5 is used to realize the matching between the digital micromirror array (DMD) 3 and the second detector 7,

所述第二匹配镜组5将由所述数字微镜阵列(DMD)3反射的所述目标场景1的光线输出至所述第二探测器7。The second matching mirror group 5 outputs the light of the target scene 1 reflected by the digital micromirror array (DMD) 3 to the second detector 7 .

在一些实施例中,所述第一匹配镜组4,将由所述数字微镜阵列3反射的所述目标场景1的光线输出至所述第一探测器6的焦面;In some embodiments, the first matching mirror group 4 outputs the light of the target scene 1 reflected by the digital micromirror array 3 to the focal plane of the first detector 6;

在一些实施例中,所述第二匹配镜组5,将由所述数字微镜阵列3反射的所述目标场景1的光线输出至所述第二探测器7的焦面。In some embodiments, the second matching mirror group 5 outputs the light of the target scene 1 reflected by the digital micromirror array 3 to the focal plane of the second detector 7 .

在一些实施例中,所述数字微镜阵列(DMD)3可将所述目标场景1的光线沿着两个方向反射,所述方向为分别为偏转-12°和+12°。In some embodiments, the digital micromirror array (DMD) 3 can reflect the light of the target scene 1 along two directions, and the directions are respectively deflected by -12° and +12°.

在一些实施例中,所述并行压缩感知成像系统100的工作模式包括:第一工作模式和第二工作模式。In some embodiments, the working modes of the parallel compressed sensing imaging system 100 include: a first working mode and a second working mode.

在一些实施例中,如图3所示,当所述并行压缩感知成像系统100工作在第一工作模式时:In some embodiments, as shown in FIG. 3 , when the parallel compressed sensing imaging system 100 works in the first working mode:

所述并行压缩感知成像系统100驱动数字微镜阵列3完成目标场景1的编码,并控制所述第一探测器6和所述第二探测器7同时曝光;The parallel compressed sensing imaging system 100 drives the digital micromirror array 3 to complete the encoding of the target scene 1, and controls the simultaneous exposure of the first detector 6 and the second detector 7;

在曝光完成后,所述并行压缩感知成像系统100将所述第一探测器6和所述第二探测器7采集图像的对应数据进行作差,得到一组观测数据并完成对应次数的编码观测;最后完成原始图像的恢复。After the exposure is completed, the parallel compressed sensing imaging system 100 makes a difference between the corresponding data of the images collected by the first detector 6 and the second detector 7 to obtain a set of observation data and complete the corresponding number of encoded observations ; Finally complete the restoration of the original image.

在一些实施例中,如图4所示,当所述并行压缩感知成像系统100工作在第二工作模式时:In some embodiments, as shown in FIG. 4, when the parallel compressed sensing imaging system 100 works in the second working mode:

所述并行压缩感知成像系统100驱动数字微镜阵列3完成目标场景1的编码,并控制所述第一探测器6曝光;The parallel compressed sensing imaging system 100 drives the digital micromirror array 3 to complete the encoding of the target scene 1, and controls the exposure of the first detector 6;

在曝光完成后,所述并行压缩感知成像系统100驱动数字微镜阵列3完成目标场景1的编码,并控制第二探测器7曝光;After the exposure is completed, the parallel compressed sensing imaging system 100 drives the digital micromirror array 3 to complete the encoding of the target scene 1, and controls the exposure of the second detector 7;

得到一组观测数据并完成对应次数的编码观测;Obtain a set of observation data and complete the corresponding number of coded observations;

最后完成原始图像的恢复。Finally, the restoration of the original image is completed.

在一些实施例中,所述完成原始图像的恢复为采用图像复原算法完成原始图像的恢复。In some embodiments, the restoration of the original image is to use an image restoration algorithm to restore the original image.

在一些实施例中,所述第一探测器为面阵探测器;述第二探测器为面阵探测器。In some embodiments, the first detector is an area array detector; the second detector is an area array detector.

另一方面,本发明实施例还提供了一种互补型压缩感知成像系统的控制方法。所述互补型压缩感知成像系统包括:前端镜组2,数字微镜阵列3,第一匹配镜组4,第二匹配镜组5,第一面阵探测器6以及第二面阵探测器7;On the other hand, the embodiment of the present invention also provides a control method of a complementary compressed sensing imaging system. The complementary compressed sensing imaging system includes: a front-end mirror group 2, a digital micromirror array 3, a first matching mirror group 4, a second matching mirror group 5, a first area array detector 6 and a second area array detector 7 ;

所述前端镜组2,用于实现目标场景1和所述数字微镜阵列3的匹配,所述前端镜组2设置在所述目标场景1和所述数字微镜阵列3之间,所述目标场景1可经所述前端镜组2入射到数字微镜阵列3上;The front-end mirror group 2 is used to realize the matching of the target scene 1 and the digital micromirror array 3, the front-end mirror group 2 is arranged between the target scene 1 and the digital micromirror array 3, the The target scene 1 can be incident on the digital micromirror array 3 through the front-end mirror group 2;

所述数字微镜阵列3,可将所述目标场景1的光线沿着两个方向反射,分别反射至第一匹配镜组4和第二匹配镜组5;The digital micromirror array 3 can reflect the light of the target scene 1 along two directions, respectively to the first matching mirror group 4 and the second matching mirror group 5;

所述第一匹配镜组4,用于实现数字微镜阵列3与所述第一面阵探测器6的匹配,The first matching mirror group 4 is used to realize the matching of the digital micromirror array 3 and the first area array detector 6,

所述第一匹配镜组4将由所述数字微镜阵列3反射的所述目标场景1的光线输出至所述第一面阵探测器6;The first matching mirror group 4 outputs the light of the target scene 1 reflected by the digital micromirror array 3 to the first area array detector 6;

所述第二匹配镜组5,用于实现数字微镜阵列3与所述第二面阵探测器7的匹配,The second matching mirror group 5 is used to realize the matching between the digital micromirror array 3 and the second area detector 7,

所述第二匹配镜组5将由所述数字微镜阵列3反射的所述目标场景1的光线输出至所述第二面阵探测器7;The second matching mirror group 5 outputs the light of the target scene 1 reflected by the digital micromirror array 3 to the second area array detector 7;

所述互补型压缩感知成像系统的工作模式包括:第一工作模式和第二工作模式;The working modes of the complementary compressed sensing imaging system include: a first working mode and a second working mode;

所述互补型压缩感知成像系统的控制方法包括步骤:The control method of the complementary compressed sensing imaging system comprises steps:

根据互补型压缩感知成像系统的成像目标场景的先验模型,建立不同轨道像移参数下的像移数学模型;According to the prior model of the imaging target scene of the complementary compressed sensing imaging system, the mathematical model of image motion under different orbital image motion parameters is established;

选取不同参数及工作模式进行组合计算,得到恢复图像的峰值信噪比(PSNR);Select different parameters and working modes for combined calculation to obtain the peak signal-to-noise ratio (PSNR) of the restored image;

将某个像移数据下的获取最高峰值信噪比(PSNR)时所对应的不同分块数、不同观测压缩比和工作模式作为该像移数据下的系统设置;The different number of blocks, different observation compression ratios and working modes corresponding to obtaining the highest peak signal-to-noise ratio (PSNR) under a certain image motion data are used as the system settings under the image motion data;

分别计算不同像移数据下的系统参数设置,建立互补型压缩感知成像系统最优成像质量参数库。The system parameter settings under different image motion data are calculated separately, and the optimal imaging quality parameter library of the complementary compressed sensing imaging system is established.

本发明的技术效果:本发明公开的并行压缩感知成像系统包括数字微镜阵列,第一匹配镜组,第二匹配镜组,第一探测器以及第二探测器,并可以通过对数字微镜阵列,第一匹配镜组,第二匹配镜组,第一探测器以及第二探测器的控制来使所述并行压缩感知成像系统工作在不同的工作模式下,在此并行压缩感知成像系统基础上可以实现两种工作模式及不同并行处理参数的切换,第一工作模式相比于0,1序列的观测矩阵,该观测矩阵的性能更好,在相同观测压缩比的条件下能够实现更高的图像恢复质量。第二工作模式通过交替曝光的方式,等效于将探测器的帧频提高了一倍,在相同观测次数的条件下,该工作模式使系统观测时间减半,从而削弱了系统对像移参数的敏感度。在对大规模场景进行成像时,可应用在不同的成像场合,增加了所述并行压缩感知成像系统的通用性。Technical effects of the present invention: the parallel compressed sensing imaging system disclosed in the present invention includes a digital micromirror array, a first matching mirror group, a second matching mirror group, a first detector and a second detector, and can pass through the digital micromirror The array, the first matching mirror group, the second matching mirror group, the first detector and the second detector are controlled to make the parallel compressed sensing imaging system work in different working modes, and the parallel compressed sensing imaging system is based on It can switch between two working modes and different parallel processing parameters. Compared with the observation matrix of 0, 1 sequence in the first working mode, the performance of the observation matrix is better, and it can achieve higher under the same observation compression ratio. image recovery quality. The second working mode is equivalent to doubling the frame rate of the detector by means of alternate exposure. Under the condition of the same number of observations, this working mode halves the observation time of the system, thus weakening the system's image motion parameters. sensitivity. When imaging a large-scale scene, it can be applied to different imaging occasions, which increases the versatility of the parallel compressed sensing imaging system.

本发明公开的并行压缩感知成像系统的控制方法通过目标场景的先验模型,建立最优成像质量参数库,并以此作为在轨成像模式及参数的控制策略,航天器在轨运行时,根据实时轨道像移数据,依据参数库选取合理的成像模式及并行处理参数,可以实现最优的成像质量。The control method of the parallel compressed sensing imaging system disclosed in the present invention establishes the optimal imaging quality parameter library through the prior model of the target scene, and uses this as the control strategy of the on-orbit imaging mode and parameters. When the spacecraft is in orbit, according to For real-time orbital image motion data, a reasonable imaging mode and parallel processing parameters can be selected according to the parameter library to achieve optimal imaging quality.

下面结合具体的实施例对本发明提供的并行压缩感知成像系统100进行详细的说明。The parallel compressed sensing imaging system 100 provided by the present invention will be described in detail below in conjunction with specific embodiments.

实施例1:Example 1:

如图1至图2所示,为本发明实施例提供的并行压缩感知成像系统100。包括:前端镜组2,数字微镜阵列3,第一匹配镜组4,第二匹配镜组5,第一探测器6以及第二探测器7;As shown in FIG. 1 to FIG. 2 , it is a parallel compressed sensing imaging system 100 provided by an embodiment of the present invention. Including: front-end mirror group 2, digital micromirror array 3, first matching mirror group 4, second matching mirror group 5, first detector 6 and second detector 7;

所述前端镜组2,用于实现目标场景1和所述数字微镜阵列3的匹配,所述前端镜组2设置在所述目标场景1和所述数字微镜阵列3之间,所述目标场景1可经所述前端镜组2入射到数字微镜阵列3上;The front-end mirror group 2 is used to realize the matching of the target scene 1 and the digital micromirror array 3, the front-end mirror group 2 is arranged between the target scene 1 and the digital micromirror array 3, the The target scene 1 can be incident on the digital micromirror array 3 through the front-end mirror group 2;

所述数字微镜阵列3,可将所述目标场景1的光线沿着两个方向反射,分别反射至第一匹配镜组4和第二匹配镜组5;The digital micromirror array 3 can reflect the light of the target scene 1 along two directions, respectively to the first matching mirror group 4 and the second matching mirror group 5;

所述第一匹配镜组4,用于实现数字微镜阵列3与所述第一探测器6的匹配,The first matching mirror group 4 is used to realize the matching between the digital micromirror array 3 and the first detector 6,

所述第一匹配镜组4将由所述数字微镜阵列3反射的所述目标场景1的光线输出至所述第一探测器6的焦面;The first matching mirror group 4 outputs the light of the target scene 1 reflected by the digital micromirror array 3 to the focal plane of the first detector 6;

所述第二匹配镜组5,用于实现数字微镜阵列3与所述第二探测器7的匹配,The second matching mirror group 5 is used to realize the matching between the digital micromirror array 3 and the second detector 7,

所述第二匹配镜组5将由所述数字微镜阵列3反射的所述目标场景1的光线输出至所述第二探测器7的焦面。The second matching mirror group 5 outputs the light of the target scene 1 reflected by the digital micromirror array 3 to the focal plane of the second detector 7 .

该并行压缩感知成像系统中通过数字微镜阵列完成对目标场景的编码,数字微镜阵列的两种工作状态分别为偏转-12°和+12°,分别将对应光线反射到两个探测器中,因此两个探测器接收到的数据为目标场景的互补型编码观测结果。系统中前端镜组主要实现目标场景和数字微镜阵列的匹配,匹配镜组主要实现数字微镜阵列与面阵探测器的匹配。In this parallel compressed sensing imaging system, the coding of the target scene is completed through the digital micromirror array. The two working states of the digital micromirror array are deflection -12° and +12° respectively, and the corresponding light is reflected to the two detectors respectively. , so the data received by the two detectors are complementary coded observations of the target scene. The front-end mirror group in the system mainly realizes the matching between the target scene and the digital micromirror array, and the matching mirror group mainly realizes the matching between the digital micromirror array and the area array detector.

该并行压缩感知成像系统对目标场景的分辨率取决于数字微镜阵列的规模,设数字微镜阵列的规模为N×N,面阵探测器的像元规模为M×M,则一个探测器像元对应的数字微镜微镜数目为n×n,其中n=N/M。系统并行处理的分块规模也即为M×M。并行观测能够减小编码观测时间及恢复算法计算时间,因此分块数M越大,系统的实时性越好,但同时由于图像分块导致的系统稀疏特性恶化,进而带来的图像恢复质量降低。同时采用压缩观测时,系统采集数据要小于传统方法采集到的数据,二者之比即为观测压缩比D,表示为D=m/n2,其中m为观测次数。该参数与系统总数据量成正相关,同时也决定了一幅图像的总观测时间。因此上述分块数M和观测压缩比D是系统两项重要参数。如图2所示,为根据本发明一个实施例的并行压缩感知成像系统中目标场景、数字微镜阵列、面阵探测器对应关系示意图。The resolution of the target scene by the parallel compressed sensing imaging system depends on the scale of the digital micromirror array, assuming that the scale of the digital micromirror array is N×N, and the pixel size of the area array detector is M×M, then a detector The number of digital micromirrors corresponding to a pixel is n×n, where n=N/M. The block size of the parallel processing of the system is also M×M. Parallel observation can reduce the encoding observation time and recovery algorithm calculation time. Therefore, the larger the number of blocks M, the better the real-time performance of the system, but at the same time, the sparseness of the system caused by image blocks deteriorates, which in turn reduces the quality of image restoration. . At the same time, when compressed observation is used, the data collected by the system is smaller than that collected by traditional methods. The ratio between the two is the observation compression ratio D, expressed as D=m/n2 , where m is the number of observations. This parameter is positively correlated with the total data volume of the system, and also determines the total observation time of an image. Therefore, the number of blocks M and the observed compression ratio D are two important parameters of the system. As shown in FIG. 2 , it is a schematic diagram of the corresponding relationship among a target scene, a digital micromirror array, and an area array detector in a parallel compressed sensing imaging system according to an embodiment of the present invention.

基于本发明实施例提供的并行压缩感知成像系统,本发明本发明实施例提供的并行压缩感知成像系统包括两种工作模式。Based on the parallel compressed sensing imaging system provided by the embodiment of the present invention, the parallel compressed sensing imaging system provided by the embodiment of the present invention includes two working modes.

第一工作模式的成像流程如图3所示。第一工作模式:并行压缩感知成像系统上电及参数初始化完成后,通过并行压缩感知成像系统生成的二进制随机测量矩阵驱动数字微镜阵列(DMD)完成目标场景的编码,然后驱动两个探测器同时曝光。在曝光完成后,将两个探测器采集到的一幅图像的对应数据进行作差,得到一组观测数据。根据系统参数设置要求,完成对应次数的编码观测。最后采用图像复原算法完成原始图像的恢复。The imaging process of the first working mode is shown in FIG. 3 . The first working mode: After the parallel compressed sensing imaging system is powered on and parameter initialization is completed, the binary random measurement matrix generated by the parallel compressed sensing imaging system drives the digital micromirror array (DMD) to complete the encoding of the target scene, and then drives two detectors Simultaneous exposure. After the exposure is completed, the corresponding data of an image collected by the two detectors are subtracted to obtain a set of observation data. According to the system parameter setting requirements, complete the corresponding number of coded observations. Finally, an image restoration algorithm is used to restore the original image.

由于是两个探测器同时曝光,两个探测器所采集的数据为互补的,将两个探测器的对应数据作差,采用此种工作模式时,实现的观测矩阵为-1,1序列的观测矩阵。相比于0,1序列的观测矩阵,该观测矩阵的性能更好,在相同观测压缩比的条件下能够实现更高的图像恢复质量。Since the two detectors are exposed at the same time, the data collected by the two detectors are complementary, and the corresponding data of the two detectors are subtracted. When this working mode is adopted, the realized observation matrix is -1, 1 sequence observation matrix. Compared with the observation matrix of 0, 1 sequence, the performance of the observation matrix is better, and higher image restoration quality can be achieved under the same observation compression ratio.

第二工作模式的成像流程如图4所示,并行压缩感知成像系统上电及参数初始化完成后,通过并行压缩感知成像系统生成的二进制随机测量矩阵驱动数字微镜阵列(DMD)完成目标场景的编码,其中一个探测器首先曝光。在曝光完成后,系统再生成一组二进制随机测量矩阵驱动数字微镜阵列编码,另一个探测器再进行曝光。如此实现两个探测器的交替曝光,直到达到系统参数设置要求的编码观测次数。最后采用图像复原算法完成原始图像的恢复。The imaging process of the second working mode is shown in Figure 4. After the parallel compressed sensing imaging system is powered on and the parameters are initialized, the digital micromirror array (DMD) is driven by the binary random measurement matrix generated by the parallel compressed sensing imaging system to complete the imaging of the target scene. Encoded, one of the detectors is exposed first. After the exposure is completed, the system generates a set of binary random measurement matrix to drive the digital micromirror array code, and another detector is exposed again. In this way, the alternate exposure of the two detectors is realized until the number of coded observations required by the system parameter setting is reached. Finally, an image restoration algorithm is used to restore the original image.

与第一工作模式相比,该工作模式只能实现0、1序列的观测矩阵,但采用两个探测器交替曝光编码的方式,等效于将探测器的帧频提高了一倍。而在实际系统中,探测器的帧频往往是影响观测时间的参数瓶颈。在相同观测次数的条件下,该工作模式使系统观测时间减半,从而削弱了系统对像移参数的敏感度。Compared with the first working mode, this working mode can only realize the observation matrix of 0 and 1 sequence, but the method of alternate exposure encoding of two detectors is equivalent to doubling the frame rate of the detectors. In practical systems, the frame rate of the detector is often the parameter bottleneck that affects the observation time. Under the condition of the same number of observations, this working mode halves the observation time of the system, thereby weakening the sensitivity of the system to image motion parameters.

参考图2所示,在并行压缩感知成像系统中,对目标场景的分辨率取决于数字微镜阵列的规模,设数字微镜阵列的规模为N×N,面阵探测器的像元规模为M×M,则一个探测器像元对应的数字微镜微镜数目为n×n,其中n=N/M。系统并行处理的分块规模也即为M×M。并行观测能够减小编码观测时间及恢复算法计算时间,因此分块数M越大,系统的实时性越好,但同时由于图像分块导致的系统稀疏特性恶化,进而带来的图像恢复质量降低。同时采用压缩观测时,系统采集数据要小于传统方法采集到的数据,二者之比即为观测压缩比D,表示为D=m/n2,其中m为观测次数。该参数与系统总数据量成正相关,同时也决定了一幅图像的总观测时间。因此上述分块数M和观测压缩比D是系统两项重要参数。As shown in Figure 2, in the parallel compressed sensing imaging system, the resolution of the target scene depends on the scale of the digital micromirror array, assuming that the scale of the digital micromirror array is N×N, and the pixel size of the area array detector is M×M, then the number of digital micromirrors corresponding to one detector pixel is n×n, where n=N/M. The block size of the parallel processing of the system is also M×M. Parallel observation can reduce the encoding observation time and recovery algorithm calculation time. Therefore, the larger the number of blocks M, the better the real-time performance of the system, but at the same time, the sparseness of the system caused by image blocks deteriorates, which in turn reduces the quality of image restoration. . At the same time, when compressed observation is used, the data collected by the system is smaller than that collected by traditional methods. The ratio between the two is the observation compression ratio D, expressed as D=m/n2 , where m is the number of observations. This parameter is positively correlated with the total data volume of the system, and also determines the total observation time of an image. Therefore, the number of blocks M and the observed compression ratio D are two important parameters of the system.

基于本发明实施例提供的并行压缩感知成像系统参数和工作模式,本发明实施例还提出了并行压缩感知成像系统的控制方法。所述控制方法包括:Based on the parameters and working modes of the parallel compressed sensing imaging system provided by the embodiment of the present invention, the embodiment of the present invention also proposes a control method for the parallel compressed sensing imaging system. The control methods include:

首先,根据系统成像目标场景的先验模型,建立不同轨道像移参数下的像移数学模型,并选取不同参数及工作模式进行组合计算,包括不同分块数M、不同观测压缩比D和不同工作模式。具体执行步骤如下:First, according to the prior model of the system imaging target scene, the mathematical model of image motion under different orbital image motion parameters is established, and different parameters and working modes are selected for combined calculation, including different number of blocks M, different observation compression ratio D and different Operating mode. The specific execution steps are as follows:

步骤一:选取与待观测场景具有相似属性的图像,本实例以一幅2048×2048分辨率的图像为目标。Step 1: Select an image with similar attributes to the scene to be observed. In this example, an image with a resolution of 2048×2048 is used as the target.

步骤二:建立不同轨道像移参数下的像移数学模型。建模过程下:Step 2: Establish a mathematical model of image motion under different orbital image motion parameters. During the modeling process:

设探测器像元尺寸为a,一个探测器像元对应数字微镜阵列的大小为n,像移速度为v,单次观测所需时间为Δt,那么定义相邻两次观测的像移因子p为:Assuming that the detector pixel size is a, the size of a detector pixel corresponding to the digital micromirror array is n, the image movement speed is v, and the time required for a single observation is Δt, then define the image movement factor of two adjacent observations p is:

设在第一次观测时像移为零,则第k次观测像移Pk可以表示为:Assuming that the image motion is zero at the first observation, the image motion Pk of the k-th observation can be expressed as:

Pk=(k-1)·pPk = (k-1)·p

设所要观测的子区域(i,j)的原始数据为n×n的矩阵xi,j(i,j∈[1,M]):Let the original data of the sub-region (i, j) to be observed be an n×n matrix xi, j (i, j∈[1,M]):

进行m次观测的结果为m×1的矩阵yi,j(i,j∈[1,M]):The result of making m observations is an m×1 matrix yi, j (i, j∈[1,M]):

yi,j=[b1,1 … bm,1]Tyi,j =[b1,1 … bm,1 ]T

进行第一次观测时,像移为零,x1i,j=xi,j,x1i,j变为列表示:When the first observation is made, the image motion is zero, x1i,j =xi,j , and x1i,j becomes a column representation:

cx1i,j=[a11,1 … a11,n a12,1 … a12,n a1n,1 … a1n,n]Tcx1i,j =[a11,1 ... a11,n a12,1 ... a12,n a1n,1 ... a1n,n ]T

根据下式得到第一个观测结果b1,1,其中Φ1,:为测量矩阵的第一行。Obtain the first observation result b1,1 according to the following formula, where Φ1,: is the first row of the measurement matrix.

b1,1=Φ1,:cx1i,jb1,1 =Φ1,: cx1i,j

对该子块进行第k次观测时,xki,j变为:When the sub-block is observed for the kth time, xki,j becomes:

其中为向下取整,为向上取整。in for rounding down, is rounded up.

将xki,j变为列表示:Turn xki,j into a column representation:

cxki,j=[ak1,1 … ak1,n ak2,1 … ak2,n akn,1 … akn,n]Tcxki,j =[ak1,1 ... ak1,n ak2,1 ... ak2,n akn,1 ... akn,n ]T

利用use

bk,1=φk,:cxki,jbk,1 =φk,: cxki,j

得到第k个观测结果bk,1Obtain the kth observation result bk,1 .

步骤三:根据上述像移模型,在某个像移参数下,选取不同分块数M和不同观测压缩比D和不同工作模式进行组合计算,得到恢复图像的峰值信噪比值。如图5所示为像移率p=0.002时,采用第一工作模式的峰值信噪比随分块数M和观测压缩比D的变化趋势图,图6所示为像移率p=0.002时,采用第二工作模式的峰值信噪比随分块数M和观测压缩比D的变化趋势图。图7所示为像移率p=0.03时,采用第一工作模式的峰值信噪比随分块数M和观测压缩比D的变化趋势图,图8所示为像移率p=0.03时,采用第二工作模式的峰值信噪比随分块数M和观测压缩比D的变化趋势图。取图5、图6中峰值信噪比最大值点对应的参数M、D和工作模式作为p=0.002时的系统成像参数设置。取图7、图8中峰值信噪比最大值点对应的参数M、D和工作模式作为p=0.03时的系统成像参数设置。从图5至图8是根据本发明一个具体实施例的模型仿真结果,直观地给出不同像移参数下,不同分块数M及不同观测压缩比D等参数对应的恢复图像效果。Step 3: According to the above image motion model, under a certain image motion parameter, select different block numbers M, different observation compression ratios D and different working modes for combined calculation to obtain the peak signal-to-noise ratio value of the restored image. As shown in Figure 5, when the image motion rate p=0.002, the peak signal-to-noise ratio of the first working mode varies with the number of blocks M and the observed compression ratio D. Figure 6 shows the time when the image motion rate p=0.002 , the variation trend diagram of the peak signal-to-noise ratio with the number of blocks M and the observed compression ratio D in the second working mode. Figure 7 shows the variation trend diagram of the peak signal-to-noise ratio with the number of blocks M and the observed compression ratio D in the first working mode when the image motion rate p=0.03, and Figure 8 shows that when the image motion rate p=0.03, The variation trend diagram of the peak signal-to-noise ratio with the number of blocks M and the observed compression ratio D in the second working mode. Take the parameters M, D and working mode corresponding to the peak signal-to-noise ratio maximum point in Figure 5 and Figure 6 as the system imaging parameter settings when p=0.002. Take the parameters M, D and working mode corresponding to the peak signal-to-noise ratio maximum point in Fig. 7 and Fig. 8 as the system imaging parameter setting when p=0.03. From Fig. 5 to Fig. 8 are the model simulation results according to a specific embodiment of the present invention, which visually show the restored image effects corresponding to parameters such as different number of blocks M and different observed compression ratios under different image motion parameters.

步骤四:分别计算不同像移参数下,峰值信噪比(PSNR)最大值点对应的参数不同分块数M、不同观测压缩比D和工作模式,进而建立不同像移参数的最优成像参数设置库。Step 4: Calculate the parameters corresponding to the peak signal-to-noise ratio (PSNR) maximum point under different image motion parameters, different block numbers M, different observation compression ratios D, and working modes, and then establish optimal imaging parameters for different image motion parameters Set up the library.

步骤五:航天器在轨运行时,根据实时的轨道运行参数,从最优成像质量参数库中选择与当前轨道参数对应的参数值,并完成系统的初始化参数设置。Step 5: When the spacecraft is in orbit, according to the real-time orbit operation parameters, select the parameter values corresponding to the current orbit parameters from the optimal imaging quality parameter library, and complete the initialization parameter setting of the system.

本领域内的技术人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those skilled in the art should further realize that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software, or a combination of the two. Interchangeability of hardware and software, the composition and steps of each example have been generally described in terms of functions in the above description. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.

结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of the methods or algorithms described in connection with the embodiments disclosed herein may be implemented by hardware, software modules executed by a processor, or a combination of both. Software modules can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other Any other known storage medium.

在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", " Back", "Left", "Right", "Vertical", "Horizontal", "Top", "Bottom", "Inner", "Outer", "Clockwise", "Counterclockwise", "Axial", The orientation or positional relationship indicated by "radial", "circumferential", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying the referred device or element Must be in a particular orientation, be constructed in a particular orientation, and operate in a particular orientation, and therefore should not be construed as limiting the invention.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features.

在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components or the interaction relationship between two components, unless otherwise specified limit. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.

在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch. Moreover, "above", "above" and "above" the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. "Below", "beneath" and "beneath" the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions with reference to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.

以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所作出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。The specific embodiments of the present invention described above do not constitute a limitation to the protection scope of the present invention. Any other corresponding changes and modifications made according to the technical concept of the present invention shall be included in the protection scope of the claims of the present invention.

Claims (10)

Translated fromChinese
1.一种并行压缩感知成像系统,其特征在于,包括:1. A parallel compressed sensing imaging system, comprising:前端镜组,数字微镜阵列,第一匹配镜组,第二匹配镜组,第一探测器以及第二探测器;Front-end mirror group, digital micromirror array, first matching mirror group, second matching mirror group, first detector and second detector;所述前端镜组,用于实现目标场景和所述数字微镜阵列的匹配,所述前端镜组设置在所述目标场景和所述数字微镜阵列之间,所述目标场景可经所述前端镜组入射到数字微镜阵列上;The front-end mirror group is used to realize the matching of the target scene and the digital micromirror array, the front-end mirror group is arranged between the target scene and the digital micromirror array, and the target scene can be passed through the The front-end mirror group is incident on the digital micromirror array;所述数字微镜阵列,可将所述目标场景的光线沿着两个方向反射,分别反射至第一匹配镜组和第二匹配镜组;The digital micromirror array can reflect the light of the target scene along two directions, respectively to the first matching mirror group and the second matching mirror group;所述第一匹配镜组,用于实现数字微镜阵列与所述第一探测器的匹配,将由所述数字微镜阵列反射的所述目标场景的光线输出至所述第一探测器;The first matching mirror group is used to realize the matching between the digital micromirror array and the first detector, and output the light of the target scene reflected by the digital micromirror array to the first detector;所述第二匹配镜组,用于实现数字微镜阵列与所述第二探测器的匹配,将由所述数字微镜阵列反射的所述目标场景的光线输出至所述第二探测器。The second matching mirror group is used to realize the matching between the digital micromirror array and the second detector, and output the light of the target scene reflected by the digital micromirror array to the second detector.2.根据权利要求1所述的并行压缩感知成像系统,其特征在于,所述第一匹配镜组将由所述数字微镜阵列反射的所述目标场景的光线输出至所述第一探测器的焦面。2. The parallel compressed sensing imaging system according to claim 1, wherein the first matching mirror group outputs the light of the target scene reflected by the digital micromirror array to the first detector. focal surface.3.根据权利要求1所述的并行压缩感知成像系统,其特征在于,所述第二匹配镜组将由所述数字微镜阵列反射的所述目标场景的光线输出至所述第二探测器的焦面。3. The parallel compressed sensing imaging system according to claim 1, wherein the second matching mirror group outputs the light of the target scene reflected by the digital micromirror array to the second detector. focal surface.4.根据权利要求1所述的并行压缩感知成像系统,其特征在于,所述数字微镜阵列可将所述目标场景的光线沿着两个方向反射,所述方向为分别为偏转-12°和+12°。4. The parallel compressed sensing imaging system according to claim 1, wherein the digital micromirror array can reflect the light of the target scene along two directions, and the directions are deflection-12° respectively and +12°.5.根据权利要求1所述的并行压缩感知成像系统,其特征在于,所述并行压缩感知成像系统的工作模式包括:第一工作模式和第二工作模式。5. The parallel compressed sensing imaging system according to claim 1, wherein the working modes of the parallel compressed sensing imaging system include: a first working mode and a second working mode.6.根据权利要求5所述的并行压缩感知成像系统,其特征在于,当所述并行压缩感知成像系统工作在第一工作模式时:6. The parallel compressed sensing imaging system according to claim 5, wherein when the parallel compressed sensing imaging system works in the first mode of operation:所述并行压缩感知成像系统驱动数字微镜阵列完成目标场景的编码,并控制所述第一探测器和所述第二探测器同时曝光;The parallel compressed sensing imaging system drives the digital micromirror array to complete the encoding of the target scene, and controls the simultaneous exposure of the first detector and the second detector;在曝光完成后,所述并行压缩感知成像系统将所述第一探测器和所述第二探测器采集图像的对应数据进行作差,得到一组观测数据并完成对应次数的编码观测;最后完成原始图像的恢复。After the exposure is completed, the parallel compressed sensing imaging system makes a difference between the corresponding data of the images collected by the first detector and the second detector to obtain a set of observation data and complete the corresponding number of coded observations; finally complete Restoration of the original image.7.根据权利要求5所述的并行压缩感知成像系统,其特征在于,当所述并行压缩感知成像系统工作在第二工作模式时:7. The parallel compressed sensing imaging system according to claim 5, wherein when the parallel compressed sensing imaging system works in the second mode of operation:所述并行压缩感知成像系统驱动数字微镜阵列完成目标场景的编码,并控制所述第一探测器曝光;The parallel compressed sensing imaging system drives the digital micromirror array to complete the encoding of the target scene, and controls the exposure of the first detector;在曝光完成后,所述并行压缩感知成像系统驱动数字微镜阵列完成目标场景的编码,并控制所述第二探测器曝光;After the exposure is completed, the parallel compressed sensing imaging system drives the digital micromirror array to complete the encoding of the target scene, and controls the exposure of the second detector;得到一组观测数据并完成对应次数的编码观测;Obtain a set of observation data and complete the corresponding number of coded observations;最后完成原始图像的恢复。Finally, the restoration of the original image is completed.8.根据权利要求6所述的并行压缩感知成像系统,其特征在于,所述完成原始图像的恢复为采用图像复原算法完成原始图像的恢复。8. The parallel compressed sensing imaging system according to claim 6, wherein the restoration of the original image is completed by using an image restoration algorithm to restore the original image.9.根据权利要求7所述的并行压缩感知成像系统,其特征在于,所述完成原始图像的恢复为采用图像复原算法完成原始图像的恢复。9. The parallel compressed sensing imaging system according to claim 7, wherein the restoration of the original image is completed by using an image restoration algorithm to restore the original image.10.根据权利要求1所述的并行压缩感知成像系统,其特征在于,所述第一探测器为面阵探测器;10. The parallel compressed sensing imaging system according to claim 1, wherein the first detector is an area array detector;所述第二探测器为面阵探测器。The second detector is an area array detector.
CN201810299539.XA2018-04-042018-04-04 A Parallel Compressed Sensing Imaging SystemActiveCN108844899B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201810299539.XACN108844899B (en)2018-04-042018-04-04 A Parallel Compressed Sensing Imaging System

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201810299539.XACN108844899B (en)2018-04-042018-04-04 A Parallel Compressed Sensing Imaging System

Publications (2)

Publication NumberPublication Date
CN108844899Atrue CN108844899A (en)2018-11-20
CN108844899B CN108844899B (en)2020-12-01

Family

ID=64211990

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201810299539.XAActiveCN108844899B (en)2018-04-042018-04-04 A Parallel Compressed Sensing Imaging System

Country Status (1)

CountryLink
CN (1)CN108844899B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110632000A (en)*2019-09-062019-12-31中国科学院西安光学精密机械研究所 Dynamic dual-arm multi-channel staring spectral imaging system based on compressed sensing
CN113365014A (en)*2021-05-112021-09-07中国科学院国家空间科学中心Parallel compressed sensing GPU (graphics processing Unit) acceleration real-time imaging system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN202485671U (en)*2010-11-262012-10-10北京空间机电研究所Compression perception theory based imaging device of aerospace camera
CN103326779A (en)*2013-06-212013-09-25中国科学院空间科学与应用研究中心Free space light communication system and method based on compressed sensing
CN103575396A (en)*2013-11-192014-02-12中国科学院空间科学与应用研究中心Imaging spectral system and method based on compressed sensing and Hadamard transformation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN202485671U (en)*2010-11-262012-10-10北京空间机电研究所Compression perception theory based imaging device of aerospace camera
CN103326779A (en)*2013-06-212013-09-25中国科学院空间科学与应用研究中心Free space light communication system and method based on compressed sensing
CN103575396A (en)*2013-11-192014-02-12中国科学院空间科学与应用研究中心Imaging spectral system and method based on compressed sensing and Hadamard transformation

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A.D.RODRÍGUEZ等1: ""Dual-mode optical microscope based on single-pixel imaging"", 《OPTICS AND LASERS IN ENGINEERING》*
RUO-MINGLAN等: ""Single-pixel complementary compressive sampling spectrometer"", 《OPTICS COMMUNICATIONS》*
WEN-KAI YU等: ""Complementary compressive imaging for the telescopic system"", 《SCIENTIFIC REPORTS》*
WEN-KAIYU等: ""Compressive microscopic imaging with "positive–negative" light modulation"", 《OPTICS COMMUNICATIONS》*
YUN-HUI LI等: ""Analysis and reduction of the TDI CCD charge transfer image shift"", 《APPLIED OPTICS》*
杨扬: ""双像素压缩成像系统研究"", 《中国优秀硕士学位论文全文数据库》*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110632000A (en)*2019-09-062019-12-31中国科学院西安光学精密机械研究所 Dynamic dual-arm multi-channel staring spectral imaging system based on compressed sensing
CN113365014A (en)*2021-05-112021-09-07中国科学院国家空间科学中心Parallel compressed sensing GPU (graphics processing Unit) acceleration real-time imaging system and method

Also Published As

Publication numberPublication date
CN108844899B (en)2020-12-01

Similar Documents

PublicationPublication DateTitle
US9628738B2 (en)Motion detection image sensors and methods for controlling a motion detection image sensor
CN103209307B (en)Coding refocusing is calculated image capture method and device
KR102157610B1 (en)System and method for automatically detecting structural damage by generating super resolution digital images
CN107248139B (en) A Compressed Sensing Imaging Method Based on Saliency Vision and DMD Array Partition Control
CN116245726B (en) Compressed sensing polarization super-resolution imaging method based on deep learning framework
CN108965736A (en)A kind of sub-pixel super-resolution imaging method, device, equipment, system and medium
CN113487658B (en) A dynamic scene shooting method and device for scanning light field imaging system
CN113436130B (en) An unstructured light field intelligent perception system and device
CN102186025A (en)CMOS (complementary metal-oxide-semiconductor transistor) imaging measured value obtaining system based on compressed sensing and method thereof
CN114820299B (en) A method and device for super-resolution image restoration of non-uniform motion blur
CN114157852B (en) A three-dimensional imaging method and system of a virtual camera array based on a rotating biprism
CN103442221A (en)Virtual PTZ system and method based on image zooming and cropping
CN108844899B (en) A Parallel Compressed Sensing Imaging System
CN103595922A (en)Imaging method based on electronic shutter exposure coding
CN103595923A (en)Double-camera high-speed imaging system and method based on code exposure
CN108564542A (en)A kind of control method of parallelly compressed perception imaging system
CN107727238A (en)Infrared parallelly compressed imaging system and imaging method based on mask plate modulation
US20140354777A1 (en)Apparatus and method for obtaining spatial information using active array lens
CN104410789A (en)Staring super-resolution imaging device and method
CN103986936B (en)A kind of video compress acquisition system and its acquisition method
JP2014086968A (en)Image processing device, image processing method, and program
JP2011023885A (en)Video encoder and video encoding method
CN108537804A (en)A kind of interesting target extracting method of parallelly compressed perception imaging system
CN104184936A (en)Image focusing processing method and system based on light field camera
Zhang et al.Unveiling the potential of spike streams for foreground occlusion removal from densely continuous views

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp