Movatterモバイル変換


[0]ホーム

URL:


CN108814593B - Electroencephalogram signal feature extraction method based on complex network - Google Patents

Electroencephalogram signal feature extraction method based on complex network
Download PDF

Info

Publication number
CN108814593B
CN108814593BCN201810637789.XACN201810637789ACN108814593BCN 108814593 BCN108814593 BCN 108814593BCN 201810637789 ACN201810637789 ACN 201810637789ACN 108814593 BCN108814593 BCN 108814593B
Authority
CN
China
Prior art keywords
frequency
matrix
network
cross
synchronization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810637789.XA
Other languages
Chinese (zh)
Other versions
CN108814593A (en
Inventor
于海涛
武欣昱
王江
邓斌
魏熙乐
刘晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin UniversityfiledCriticalTianjin University
Priority to CN201810637789.XApriorityCriticalpatent/CN108814593B/en
Publication of CN108814593ApublicationCriticalpatent/CN108814593A/en
Application grantedgrantedCritical
Publication of CN108814593BpublicationCriticalpatent/CN108814593B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

The invention relates to an electroencephalogram signal feature extraction method based on a complex network, which comprises the following steps: decomposing the wavelet packet; calculating the frequency cross synchronism of the EEG signals; constructing a frequency cross network; and extracting network characteristic parameters for revealing EEG frequency cross-coupling characteristics. The invention quantifies the frequency band cross synchronization relation of the EEG signals, constructs a frequency cross network of a comprehensive frequency domain and a space domain, and reveals the characteristics of EEG signal frequency cross coupling through the extraction and analysis of network parameters.

Description

Electroencephalogram signal feature extraction method based on complex network
Technical Field
The invention belongs to a network construction method based on electroencephalogram signals, and particularly relates to an electroencephalogram signal feature extraction method.
Background
Electroencephalography (EEG) is a non-invasive method of measuring voltage fluctuations due to ionic currents in neurons in the brain, which are directly reflected in the electrophysiological activity of brain neurons in the cerebral cortex. Electroencephalography is a non-linear time-domain representation of electroencephalogram, which is recorded by a plurality of electrodes placed on the scalp and contains a large amount of physiological and pathological information. The electroencephalogram signal is the comprehensive expression of a large number of neuron cluster postsynaptic currents in brain tissues on the surface of a cerebral cortex or a scalp, and can be regarded as the result of the superposition of different oscillation frequency components on different time scales. As an objective evaluation index of brain function, the electroencephalogram signal has very high time precision, can dynamically observe the state change of the brain, and provides a basis for real-time diagnosis and treatment of brain diseases. And the human brain health care product has rich contents including feelings, thinking, spirit and psychological activities, so that the human brain health care product becomes an important research method for high-level functions of human brain learning, memory, understanding and the like.
The frequency cross coupling is an important method for researching the electric potential of the electroencephalogram related event, and can be used for researching the mutual relation among signals with different frequencies. Frequency cross-coupling of synchronous phases describes the phase independence of low frequency signals from high frequency signals, which has some relationship to recognized cognitive processing mechanisms such as language, memory, etc. Brain diseases such as alzheimer's, epilepsy, and parkinson's cause impairment of cognitive function in the human brain. Therefore, the study of the nonlinear characteristics of the phase cross frequency of the electroencephalogram signals has important significance for the study and detection of brain diseases.
However, the existing nonlinear synchronization algorithm only surrounds the phase synchronization of the electroencephalogram signal under a certain specific frequency, neglects the phase synchronization coupling characteristic among frequencies, and if the algorithm is used for constructing a frequency cross synchronization network of the electroencephalogram signal, the calculated phase coupling has errors, and an accurate phase synchronization relation cannot be obtained.
Disclosure of Invention
The invention aims to provide an electroencephalogram signal feature extraction method which can obtain an accurate phase synchronism relation by considering the phase synchronism coupling characteristic among frequencies. The technical scheme is as follows:
an electroencephalogram signal feature extraction method based on a complex network comprises the following steps:
(1) wavelet packet decomposition
Collecting X-channel electroencephalogram signals through an electroencephalogram machine, carrying out eight-level wavelet packet decomposition on each channel electroencephalogram signal, decomposing the signals into a low-frequency part and a high-frequency part at the first level, decomposing the decomposed low-frequency part into a low-frequency part and a high-frequency part at the second level, decomposing the high-frequency part into a low-frequency part and a high-frequency part, and so on, averagely dividing the frequency of the original signals into 2 parts through the eighth-level wavelet packet decomposition8And (4) decomposing each lead brain electrical signal into Q sub-band brain electrical signals according to frequency band components.
(2) Calculating the frequency cross-synchronization of EEG signals
Two coefficients n and m are defined,
Figure BDA0001701991490000011
wherein f isx,fyThe center frequencies of the sub-bands where the electroencephalogram signals x and y are located are respectively, n and m respectively take the minimum positive integer which meets the proportional relation, and therefore the phase difference delta phi between the electroencephalogram signals of any two sub-bands is calculated to be n phix-mφyAnd calculating two EEG signal synchronism indexes by using the obtained phase difference delta phi, wherein the synchronism index range is between 0 and 1, the larger the value is, the higher the phase synchronism is, and a weighting matrix M containing the cross phase synchronism degree of the frequencies of the same sub-band and different sub-bands is obtained.
(3) Constructing a frequency crossover network
Performing proportional thresholding on the weighting matrix M obtained in thestep 2, wherein the matrix is subjected to threshold value T, T is more than 0 and less than 10, T represents an element which retains the maximum value of T × 10/100 in the matrix, so as to obtain a thresholded matrix, each element in the matrix represents the synchronism between two leads, and the leads represent nodes in the network; and constructing a frequency cross network according to the obtained thresholded matrix.
(4) Network feature parameter extraction
Extracting characteristic parameters of the frequency crossing network obtained in thestep 3, setting all node sets as G for the network with N nodes, and defining the length of the shortest node path of the network as:
Figure BDA0001701991490000021
lijdefined as the number of edges on the shortest path connecting two nodes i and j.
The local efficiency of the network is defined as:
Figure BDA0001701991490000022
global efficiency is the average of the local efficiency sums of all nodes:
Figure BDA0001701991490000023
calculating the frequency cross network obtained in thestep 3 according to the formula (2), the formula (3) and the formula (4) to obtain a phase
The corresponding network parameter characteristics are used for revealing the EEG frequency cross-coupling characteristics.
The method has the effects of quantifying the frequency band cross synchronization relation of the electroencephalogram signals, constructing a frequency cross network of a comprehensive frequency domain and a space domain, and revealing the frequency cross coupling characteristics of the electroencephalogram signals through extraction and analysis of network parameters.
Drawings
FIG. 1 is a functional block diagram of a feature extraction algorithm of the present invention;
FIG. 2 is a schematic diagram of wavelet packet decomposition;
FIG. 3 is a diagram of a frequency cross-adjacency matrix constructed using the method of the present invention;
FIG. 4 is a graph of a frequency crossover network of delta-alpha bands constructed using the method of the present invention;
FIG. 5 shows the local efficiency corresponding to the AD electroencephalogram signal extracted by the method of the present invention;
FIG. 6 shows the global efficiency corresponding to the AD electroencephalogram signal extracted by the method of the present invention;
Detailed Description
As shown in FIG. 1, the method for extracting the electroencephalogram signal features comprises the following steps:
1. wavelet packet decomposition
The original brain wave data is collected, and in the embodiment, 16 brain wave signals are collected for 20 Alzheimer patients and 20 age-matched normal persons. All experimenters lie on the special bed for electroencephalogram acquisition quietly, and eyes are closed in the whole process.
Wavelet packet decomposition reconstruction is carried out on the electroencephalogram signals by utilizing a one-dimensional wavelet packet decomposer (wavelet packet decomposition 1-D), and 4 sub-band physiological rhythms are extracted. The wpdec function in MATLAB 2015b used for data analysis is used for carrying out 8-level wavelet packet decomposition on an original signal, and the sub-frequency band is realized: delta (0.5-4Hz), theta (4-8Hz), alpha (8-16Hz) and beta (16-30Hz) rhythms. The wavelet reconstruction principle is shown in fig. 2.
1. Calculating the frequency cross-synchronization of EEG signals
For the extracted sub-band multi-lead electrical time sequence signal (4 sub-bands with 16 lead electrical data in each band). Firstly, the phase phi of each pilot sequence signal is calculated through Hilbertchangei1,2,3, 64. Calculating phase difference between brain electrical signals (n phi)x-y1,2,3, 64 and x ≠ y, wherein
Figure BDA0001701991490000024
fx,fyIs the center frequency of the sub-band where the electroencephalogram signals x and y are located. Then, the phase difference between the two electroencephalogram signals is converted into a phase synchronism index by formula (1), thereby obtaining a frequency cross adjacency matrix M, as shown in fig. 3. The matrix comprises the following parts: { MijI, j ═ 1,2,3.., 16} represents the delta in-band adjacency matrix; { MijI, j ═ 17,18,19.., 32} represents the θ in-band synchronization matrix; { MijI, j 33,34,35., 48} represents an α -in-band synchronization matrix; { MijI, j ═ 49,50,51.., 64} represents the β in-band synchronization matrix; {Mij1,2,3, 16, j 17,18,19, 32 represents a frequency cross synchronization matrix of δ - θ; {Mij1,2,3, 16, j 33,34,35, 48 represents a frequency cross synchronization matrix of δ - α; {Mij1,2,3, 16, j 49,50,51, 64 represents a frequency cross synchronization matrix of δ - β; { Mij17,18,19, 32, j 33,34,35, 48 represents a frequency cross-synchronization matrix of θ - α; { Mij17,18,19, 32, j 49,50,51, 64 represents a frequency cross-synchronization matrix of θ - β; { Mij33,34,35., 48, j 49,50,51., 64 represents a frequency cross-synchronization matrix of α - β;
3. constructing a frequency crossover network
And (3) taking a 0.2 proportional threshold value for the frequency cross adjacency matrix M obtained in the step (2) to obtain a two-dimensional threshold value matrix. The matrix is used to construct a frequency crossover network, as shown in fig. 4.
4. Network feature parameter extraction
And (4) extracting characteristic parameters of the frequency cross network obtained in the step (3), and setting all node sets as G.
The shortest path length of a node of the network is defined as:
Figure BDA0001701991490000031
lijdefined as the number of edges on the shortest path connecting two nodes i and j.
The local efficiency of the network is defined as:
Figure BDA0001701991490000032
global efficiency is the average of the local efficiency sums of all nodes:
Figure BDA0001701991490000033
and (3) calculating the local efficiency and the global efficiency of the frequency cross network according to the formula (2), the formula (3) and the formula (4), and finishing the feature extraction of the electroencephalogram signals. The extraction results are shown in fig. 5 and 6. FIG. 4 vertical axis is local efficiency E of the networkiThe abscissa represents two sub-bands corresponding to the frequency cross network, and the network with the delta band crossing other frequency bands has a significant increase in local efficiency compared with the normal control group under the influence of the alzheimer. FIG. 5 ordinate is the global efficiency E of the networkgThe abscissa is two frequency sub-bands corresponding to the frequency cross network, and in the alzheimer group, the global efficiency of all the frequency cross networks is increased relative to the normal control group. Under the influence of the Alzheimer, the extracted local efficiency and the global efficiency are obviously improved, so that the characteristic value can be used for distinguishing the Alzheimer patient from a healthy person.

Claims (1)

1. An electroencephalogram signal feature extraction method based on a complex network comprises the following steps:
(1) wavelet packet decomposition
Collecting X-channel electroencephalogram signals through an electroencephalogram machine, carrying out eight-level wavelet packet decomposition on each channel electroencephalogram signal, decomposing the signals into a low-frequency part and a high-frequency part at the first level, decomposing the decomposed low-frequency part into a low-frequency part and a high-frequency part at the second level, decomposing the high-frequency part into a low-frequency part and a high-frequency part, and so on, averagely dividing the frequency of the original signals into 2 parts through the eighth-level wavelet packet decomposition8Each lead brain electrical signal is decomposed into Q sub-band brain electrical signals;
(2) calculating the frequency cross-synchronization of EEG signals
Two coefficients n and m are defined,
Figure FDA0002950979420000011
wherein f isx,fyThe center frequencies of the sub-bands where the electroencephalogram signals x and y are located are respectively, n and m respectively take the minimum positive integer which meets the proportional relation, and therefore the phase difference delta phi between the electroencephalogram signals of any two sub-bands is calculated to be n phix-mφyCalculating two EEG signal synchronism indexes by using the obtained phase difference delta phi, wherein the synchronism index range is between 0 and 1, the larger the value is, the higher the phase synchronism is, and a weighting matrix M containing the cross phase synchronism degree of the same sub-band frequency and different sub-band frequencies is obtained; the matrix includes: the matrix comprises the following parts: { MijI, j ═ 1,2,3 …,16} represents the δ in-band adjacency matrix; { MijI, j ═ 17,18,19 …,32} represents the θ in-band synchronization matrix; { MijI, j ═ 33,34,35 …,48} represents the α in-band synchronization matrix; { MijI, j ═ 49,50,51 …,64 represents the β in-band synchronization matrix; { Mij1,2,3 …,16, j 17,18,19 …,32 represents a frequency cross synchronization matrix of δ - θ; { MijWherein i is 1,2,3 …,16, j is 33,34,35 …,48 represents delta-A frequency cross synchronization matrix of α; { MijI-1, 2,3 …,16, j-49, 50,51 …,64 represents a frequency cross synchronization matrix of δ - β; { MijI-17, 18,19 …,32, j-33, 34,35 …,48 represents a frequency cross-synchronization matrix of θ - α; { MijI-17, 18,19 …,32, j-49, 50,51 …,64 represents a frequency cross-synchronization matrix of θ - β; { MijI 33,34,35 …,48, j 49,50,51 …,64 represents a frequency cross synchronization matrix of α - β;
(3) constructing a frequency crossover network
Performing proportional thresholding on the weighting matrix M obtained in the step 2, wherein the matrix is subjected to threshold value T, T is more than 0 and less than 10, T represents an element which retains the maximum value of T × 10/100 in the matrix, so as to obtain a thresholded matrix, each element in the matrix represents the synchronism between two leads, and the leads represent nodes in the network; constructing a frequency cross network according to the obtained thresholded matrix;
(4) network feature parameter extraction
Extracting characteristic parameters of the frequency crossing network obtained in the step 3, setting all node sets as G for the network with N nodes, and defining the length of the shortest node path of the network as:
Figure FDA0002950979420000012
lijdefining the number of edges on the shortest path connecting two nodes i and j;
the local efficiency of the network is defined as:
Figure FDA0002950979420000013
global efficiency is the average of the local efficiency sums of all nodes:
Figure FDA0002950979420000014
and (4) calculating the frequency cross network obtained in the step (3) according to the formula (2), the formula (3) and the formula (4) to obtain corresponding network parameter characteristics for revealing the EEG signal frequency cross coupling characteristics.
CN201810637789.XA2018-06-202018-06-20Electroencephalogram signal feature extraction method based on complex networkExpired - Fee RelatedCN108814593B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201810637789.XACN108814593B (en)2018-06-202018-06-20Electroencephalogram signal feature extraction method based on complex network

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201810637789.XACN108814593B (en)2018-06-202018-06-20Electroencephalogram signal feature extraction method based on complex network

Publications (2)

Publication NumberPublication Date
CN108814593A CN108814593A (en)2018-11-16
CN108814593Btrue CN108814593B (en)2021-06-08

Family

ID=64142925

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201810637789.XAExpired - Fee RelatedCN108814593B (en)2018-06-202018-06-20Electroencephalogram signal feature extraction method based on complex network

Country Status (1)

CountryLink
CN (1)CN108814593B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110101384B (en)*2019-04-222022-01-28自然资源部第一海洋研究所Functional network analysis system and analysis method for complex network
CN113576494B (en)*2021-07-282022-07-29生物岛实验室 EEG signal processing method, device and computer-readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102715903A (en)*2012-07-092012-10-10天津市人民医院Method for extracting electroencephalogram characteristic based on quantitative electroencephalogram
CN103425983A (en)*2013-07-252013-12-04电子科技大学Brain network topology difference fast extracting method based on network synchronicity
CN104883100A (en)*2009-07-172015-09-02依必安-派特穆尔芬根股份有限两合公司Method And Control System For Controlling A Brushless Electric Motor
WO2016146265A1 (en)*2015-03-172016-09-22Zynaptiq GmbhMethods for extending frequency transforms to resolve features in the spatio-temporal domain
CN106963370A (en)*2017-03-272017-07-21广州视源电子科技股份有限公司Electroencephalogram relaxation degree identification method and device based on support vector machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN1179704C (en)*2001-07-132004-12-15天津大学 Method for Generating Brain Scalp Potential Information Graphics
CN103110418B (en)*2013-01-242015-04-08天津大学Electroencephalogram signal characteristic extracting method
JP2017521129A (en)*2014-06-092017-08-03ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア System and method for restoring cognitive function
WO2016074103A1 (en)*2014-11-142016-05-19Neurochip CorporationMethod and apparatus for processing electroencephalogram (eeg) signals
CN105242784B (en)*2015-10-122018-02-09中国医学科学院生物医学工程研究所Steady State Visual Evoked Potential brain-machine interface method based on crossmodulation frequency
US10264996B2 (en)*2015-10-192019-04-23Sayfe KiaeiMethod and apparatus for wirelessly monitoring repetitive bodily movements
US10426364B2 (en)*2015-10-272019-10-01Cardiologs Technologies SasAutomatic method to delineate or categorize an electrocardiogram

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104883100A (en)*2009-07-172015-09-02依必安-派特穆尔芬根股份有限两合公司Method And Control System For Controlling A Brushless Electric Motor
CN102715903A (en)*2012-07-092012-10-10天津市人民医院Method for extracting electroencephalogram characteristic based on quantitative electroencephalogram
CN103425983A (en)*2013-07-252013-12-04电子科技大学Brain network topology difference fast extracting method based on network synchronicity
WO2016146265A1 (en)*2015-03-172016-09-22Zynaptiq GmbhMethods for extending frequency transforms to resolve features in the spatio-temporal domain
CN106963370A (en)*2017-03-272017-07-21广州视源电子科技股份有限公司Electroencephalogram relaxation degree identification method and device based on support vector machine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Epileptic seizure detection from EEG signals with phase-amplitude cross-frequency coupling and support vector machine;Liu, Yang; Wang, Jiang; Cai, Lihui; 等.;《INTERNATIONAL JOURNAL OF MODERN PHYSICS B 》;20180330;第32卷(第8期);1850086 1-13*
Intranasal oxytocin decreases cross-frequency coupling of neural oscillations at rest;Rutherford, Helena J. V.; Guo, Xiaoyue M.; Wu, Jia; 等.;《INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY》;20180131;第123卷;第143-151页*

Also Published As

Publication numberPublication date
CN108814593A (en)2018-11-16

Similar Documents

PublicationPublication DateTitle
Gandhi et al.A comparative study of wavelet families for EEG signal classification
Al Ghayab et al.Epileptic seizures detection in EEGs blending frequency domain with information gain technique
Khare et al.SchizoNET: a robust and accurate Margenau–Hill time-frequency distribution based deep neural network model for schizophrenia detection using EEG signals
CN112741638B (en)Medical diagnosis auxiliary system based on EEG signal
CN113723557B (en) An EEG classification system for depression based on multi-band spatio-temporal convolutional network
Guerrero-Mosquera et al.EEG signal processing for epilepsy
Li et al.Distinguishing epileptiform discharges from normal electroencephalograms using adaptive fractal and network analysis: A clinical perspective
CN111184509A (en)Emotion-induced electroencephalogram signal classification method based on transfer entropy
Joshi et al.Computer aided detection of abnormal EMG signals based on tunable-Q wavelet transform
CN112806994A (en)System and method for predicting individual stress coping mode based on physiological signal
CN113017627A (en)Depression and bipolar disorder brain network analysis method based on two-channel phase synchronization feature fusion
Hasan et al.Fine-grained emotion recognition from eeg signal using fast fourier transformation and cnn
Miranda et al.Classification of EEG signals using genetic programming for feature construction
CN112244880A (en)Emotion-induced electroencephalogram signal analysis method based on variable-scale symbol compensation transfer entropy
Asanza et al.EEG signal clustering for motor and imaginary motor tasks on hands and feet
CN108814593B (en)Electroencephalogram signal feature extraction method based on complex network
BehzadfarA brief overview on analysis and feature extraction of electroencephalogram signals
Li et al.Epileptic Seizure Detection in SEEG Signals using a Signal Embedding Temporal-Spatial-Spectral Transformer Model
Dasgupta et al.Analyzing epileptogenic brain connectivity networks using clinical EEG data
Wei et al.Mild cognitive impairment classification convolutional neural network with attention mechanism
Chen et al.EEG-based seizure detection using discrete wavelet transform through full-level decomposition
CN113558637B (en)Music perception brain network construction method based on phase transfer entropy
Samarpita et al.Differentiating mental stress levels: Analysing machine learning algorithms comparatively for EEG-based mental stress classification using MNE-Python
Chandran et al.EEG based strategies for human gustation classification using Spartan—6 FPGA
Yousefipour et al.Evaluation of brain cortical connectivity in drug abusers using EEG data

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20210608

CF01Termination of patent right due to non-payment of annual fee

[8]ページ先頭

©2009-2025 Movatter.jp