







技术领域technical field
本发明属于光学技术领域,具体涉及一种发光装置及其制备方法。The invention belongs to the technical field of optics, and in particular relates to a light-emitting device and a preparation method thereof.
背景技术Background technique
近年来,随着高品质绿色照明及高端显示技术的飞速发展,激光半导体(laserdiodes,LD)、大功率白光LED等高能量密度激发方式的应用对荧光材料耐辐照性能及结构稳定性提出了更高的要求,以荧光粉和硅胶为主要原材料的光波长转换材料已被广泛应用于激光光源和LED(Light Emitting Diode,发光二极管)光源中。随着人们对于亮度的要求不断提高,激发光的光功率也越来越高,这种以荧光粉和硅胶制备的光波长转换片,在耐高温和导热方面已经很难满足应用的要求。In recent years, with the rapid development of high-quality green lighting and high-end display technology, the application of high-energy density excitation methods such as laser diodes (LD), high-power white LEDs, etc., has put forward some suggestions on the radiation resistance and structural stability of fluorescent materials. Higher requirements, light wavelength conversion materials with phosphors and silica gel as the main raw materials have been widely used in laser light sources and LED (Light Emitting Diode, light-emitting diode) light sources. With the continuous improvement of people's requirements for brightness, the optical power of the excitation light is also getting higher and higher. This kind of optical wavelength conversion sheet made of phosphor powder and silica gel has been difficult to meet the application requirements in terms of high temperature resistance and thermal conductivity.
目前,以玻璃粉(或氧化铝粉)和YAG相的荧光粉为主要原材料制备的光波长转换材料,如发光玻璃,其中玻璃粉作为透明粘结介质,YAG相的荧光粉作为发光体,已逐渐被应用在大功率的LED和激光光源之中。但是,这种制备成的复相荧光体在应用过程中需要进行研磨、抛光等加工过程。由于玻璃粉(或氧化铝粉)的Mohs硬度与YAG相的所述荧光粉的Mohs硬度不同,在相同的研磨条件下,二者的磨损速率不同,因此,经过研磨抛光后,所述发光装置表面会存在“浮凸”现象,从而使得在后期的镀膜工艺中,会存在许多的工艺问题。At present, light wavelength conversion materials prepared with glass powder (or alumina powder) and YAG-phase fluorescent powder as the main raw materials, such as luminescent glass, in which glass powder is used as a transparent bonding medium, and YAG-phase fluorescent powder is used as a luminous body. It is gradually used in high-power LED and laser light sources. However, the prepared complex-phase phosphor needs grinding, polishing and other processing processes during the application process. Since the Mohs hardness of the glass powder (or alumina powder) is different from that of the phosphor powder in the YAG phase, under the same grinding conditions, the wear rates of the two are different. Therefore, after grinding and polishing, the light-emitting device There will be a "relief" phenomenon on the surface, so that there will be many process problems in the later coating process.
另外,相关技术中采用梯度浓度制备发光陶瓷的方法,即采用多孔陶瓷的一个端面浸渍在荧光物质溶液中,利用毛细虹吸的作用使得荧光物质溶液进入陶瓷之中,再进行热处理,制得不同浓度梯度的发光陶瓷,但这种方式制备的发光陶瓷结构中会存在大量的孔洞,不够致密,另外浓度的分布不可控,且这种虹吸作用渗入的荧光物质非常有限,很难做到高浓度的掺杂。In addition, in the related art, a method of preparing luminescent ceramics with gradient concentration is used, that is, one end face of porous ceramics is immersed in a fluorescent substance solution, and the fluorescent substance solution is made into the ceramics by the action of capillary siphon, and then heat treatment is performed to obtain different concentrations. Gradient luminescent ceramics, but the luminescent ceramics prepared in this way will have a large number of holes in the structure, which is not dense enough, and the concentration distribution is uncontrollable, and the fluorescent substances infiltrated by this siphon effect are very limited, so it is difficult to achieve high concentrations. doping.
又或者,采用浆料印刷的方法来制作梯度浓度结构的发光装置,将不同浓度的荧光粉与烧结粘结材料一起加入大量的有机载体(如树脂、助剂、溶剂等),配制成可印刷的浆料,再进行逐层的印刷,该方式使每层之间在印刷下一层的时候,需要等待上一层预烘烤干燥固化后方可进行操作,目的是除去小分子有机物(低沸点的溶剂和助剂),由于是颗粒浆料印刷,因此在两个浓度界面表面是不平整的,二者的结合是由于第二浓度层中的有机载体流入或者渗入第一浓度层的干燥面,因此在界面处主要富集液态的有机载体和小颗粒的固体材料;进入烧结制程后,到一定温度段时,有机物大分子开始分解成小分子并挥发,各个浓度层开始收缩;随着温度进一步升高,树脂开始分解气化,这时候,原本有机树脂所占的位置空间,就会形成一些孔洞,孔道等缺陷;随着温度再继续上升,粘结介质的物质材料开始熔融,逐渐变成液相,在之前形成的孔洞和孔道间流动,这时各个浓度层的体积开始进一步收缩,粘结介质液相会填补大部分孔洞和孔道,由于粘结介质液相与荧光材料的浸润问题,以及表面张力问题,会有大部分的孔洞无法填补,或者只填补了部分的孔洞,形成所谓的闭合气孔;无法填补的孔道形成开口气孔,这种气孔与外界相同,对陶瓷的抛光加工危害最大,是无法通过加工完全去除的。由于有机载体介质在第一浓度和第二浓度面聚集,因此上述现象更加明显,严重会造成开裂;这种工艺的缺点就是气孔率高,致密度低。Alternatively, a light-emitting device with a gradient concentration structure is fabricated by slurry printing, and phosphors of different concentrations are added together with sintered bonding materials into a large amount of organic carriers (such as resins, additives, solvents, etc.) to prepare a printable device. The paste is then printed layer by layer. In this way, when printing the next layer between each layer, it is necessary to wait for the previous layer to be pre-baked, dried and cured before operation. The purpose is to remove small molecular organic compounds (low boiling point). The solvent and auxiliary agent), because it is particle paste printing, the surface of the interface between the two concentrations is uneven, and the combination of the two is due to the organic carrier in the second concentration layer flowing into or penetrating into the dry surface of the first concentration layer. , so liquid organic carriers and small particles of solid materials are mainly enriched at the interface; after entering the sintering process, at a certain temperature, the organic macromolecules begin to decompose into small molecules and volatilize, and each concentration layer begins to shrink; with the temperature When the temperature rises further, the resin begins to decompose and gasify. At this time, some holes, channels and other defects will be formed in the space originally occupied by the organic resin; as the temperature continues to rise, the material of the bonding medium begins to melt and gradually changes At this time, the volume of each concentration layer begins to shrink further, and the liquid phase of the bonding medium will fill most of the holes and channels. Due to the infiltration of the liquid phase of the bonding medium and the fluorescent material , and the problem of surface tension, there will be most of the holes that cannot be filled, or only some of the holes will be filled, forming so-called closed pores; the pores that cannot be filled form open pores, which are the same as the outside world, which is harmful to the polishing process of ceramics The largest, it cannot be completely removed by machining. Since the organic carrier medium aggregates at the first concentration and the second concentration surface, the above phenomenon is more obvious, which will seriously cause cracking; the disadvantage of this process is that the porosity is high and the density is low.
因此,实有必要提供一种新的发光装置及其制备方法解决上述问题。Therefore, it is necessary to provide a new light-emitting device and a manufacturing method thereof to solve the above problems.
发明内容SUMMARY OF THE INVENTION
针对以上现有技术的不足,本发明提出一种具有梯度浓度的发光装置,通过控制荧光材料在各层的质量分数和分布,设计低浓度层,一方面解决了现有技术中因发光材料和粘结介质硬度不同产生的镀膜界面“浮凸”结构而造成镀膜工艺难度增加的问题;另一方面该结构的各浓度层界面之间气孔率较低,也不存在浓度差异过大的情况,避免了烧结过程中因膨胀系数差异大造成的开裂、剥离和脱落等质量问题;In view of the above deficiencies in the prior art, the present invention proposes a light-emitting device with gradient concentration. By controlling the mass fraction and distribution of fluorescent materials in each layer, a low-concentration layer is designed. The "embossed" structure of the coating interface caused by the different hardness of the bonding medium causes the problem of increasing the difficulty of the coating process; on the other hand, the porosity between the interfaces of each concentration layer of this structure is low, and there is no excessive concentration difference. It avoids quality problems such as cracking, peeling and falling off caused by the large difference in expansion coefficient during the sintering process;
本发明提供了一种发光装置,其组份包括荧光粉和用于起粘结作用的粘结剂,所述发光装置为包括发光层、层叠于所述发光层上的功能层的一体烧结体;所述发光层包括第一发光层,所述第一发光层中荧光粉的质量分数为50%~99%,所述第一发光层的厚度为150~200μm;所述功能层包括第一功能层,所述第一功能层中荧光粉的质量分数为5%~50%,所述第一功能层的厚度为5~50μm;所述发光层与所述功能层之间存在连续致密的过渡层;所述荧光粉与所述粘结剂的莫氏硬度不同。The present invention provides a light-emitting device, the components of which include phosphor powder and a binder for bonding, and the light-emitting device is an integrated sintered body including a light-emitting layer and a functional layer laminated on the light-emitting layer the light-emitting layer comprises a first light-emitting layer, the mass fraction of phosphors in the first light-emitting layer is 50%-99%, and the thickness of the first light-emitting layer is 150-200 μm; the functional layer comprises a first light-emitting layer functional layer, the mass fraction of phosphors in the first functional layer is 5% to 50%, the thickness of the first functional layer is 5 to 50 μm; there is a continuous dense layer between the light emitting layer and the functional layer transition layer; the phosphor powder and the binder have different Mohs hardnesses.
优选的,所述第一功能层由至少两个第一子功能层层叠组成,每个所述第一子功能层之间存在连续致密的过渡层,各个所述第一子功能层中荧光粉的质量分数沿自所述第一功能层向所述第一发光层延伸的方向以特定梯度递增,所述特定梯度的范围为5%~10%;每个所述第一子功能层中的荧光粉均匀分布。Preferably, the first functional layer is composed of at least two first sub-functional layers stacked, and there is a continuous and dense transition layer between each of the first sub-functional layers, and phosphor powder in each of the first sub-functional layers The mass fraction of α increases with a specific gradient along the direction extending from the first functional layer to the first light-emitting layer, and the specific gradient ranges from 5% to 10%; The phosphor is evenly distributed.
优选的,所述第一发光层由至少两个第一子发光层层叠组成,每个所述第一子发光层之间存在连续致密的过渡层,各个所述第一子发光层中荧光粉的质量分数沿自所述第一功能层向所述第一发光层延伸的方向以特定梯度递增,所述特定梯度的范围为5%~10%;每个所述第一子发光层中的荧光粉均匀分布。Preferably, the first light-emitting layer is composed of at least two first sub-light-emitting layers stacked, and there is a continuous and dense transition layer between each of the first sub-light-emitting layers, and phosphor powder in each of the first sub-light-emitting layers The mass fraction of α increases with a specific gradient along the direction extending from the first functional layer to the first light-emitting layer, and the specific gradient ranges from 5% to 10%; The phosphor is evenly distributed.
优选的,所述第一功能层由至少两个第一子功能层层叠组成,每个所述第一子功能层之间存在连续致密的过渡层,各个所述第一子功能层中荧光粉的质量分数沿自所述第一功能层向所述第一发光层延伸的方向以特定梯度递增,所述特定梯度的范围为5%~10%;每个所述第一子功能层中的荧光粉均匀分布;所述第一发光层由至少两个第一子发光层层叠组成,每个所述第一子发光层之间存在连续致密的过渡层,所述第一发光层中各个第一子发光层中荧光粉的质量分数以相同的所述特定梯度递增,每个所述第一子发光层中的荧光粉均匀分布;相邻接的第一子发光层与第一子功能层中荧光粉的质量分数差为0或所述特定梯度。Preferably, the first functional layer is composed of at least two first sub-functional layers stacked, and there is a continuous and dense transition layer between each of the first sub-functional layers, and phosphor powder in each of the first sub-functional layers The mass fraction of α increases with a specific gradient along the direction extending from the first functional layer to the first light-emitting layer, and the specific gradient ranges from 5% to 10%; The phosphor powder is uniformly distributed; the first light-emitting layer is composed of at least two first sub-light-emitting layers stacked, and there is a continuous and dense transition layer between each of the first sub-light-emitting layers, and each of the first light-emitting layers in the first light-emitting layer. The mass fraction of phosphors in a sub-emitting layer increases with the same specific gradient, and the phosphors in each of the first sub-emitting layers are uniformly distributed; the adjacent first sub-emitting layer and the first sub-functional layer are adjacent to each other. The difference in mass fraction of phosphors in the medium is 0 or the specific gradient.
优选的,所述过渡层气孔率为2%~6.4%。Preferably, the porosity of the transition layer is 2% to 6.4%.
优选的,在所述第一功能层上远离所述第一发光层一侧设置有光学镀膜,所述光学镀膜包括反射膜、增透膜。Preferably, an optical coating is provided on the side of the first functional layer away from the first light-emitting layer, and the optical coating includes a reflective film and an anti-reflection film.
优选的,所述功能层还包括第二功能层,所述第二功能层层叠于所述第一功能层并远离所述第一发光层一侧,与所述第一功能层形成一体烧结体,所述第二功能层中的荧光粉质量分数为0,所述第二功能层厚度为0.1~5μm,所述第二功能层与所述第一功能层之间存在连续致密的过渡层。Preferably, the functional layer further includes a second functional layer, the second functional layer is laminated on the first functional layer and is away from the first light-emitting layer, and forms an integral sintered body with the first functional layer , the mass fraction of phosphor in the second functional layer is 0, the thickness of the second functional layer is 0.1-5 μm, and there is a continuous and dense transition layer between the second functional layer and the first functional layer.
优选的,所述功能层还包括层叠于所述第一发光层并远离所述第一功能层一侧的第三功能层和层叠于所述第三功能层并远离所述第一发光层的第四功能层,所述第三功能层中的荧光粉质量分数为5%~50%,所述第三功能层的厚度为5~50μm;所述第四功能层中的荧光粉质量分数为0,所述第四功能层的厚度为0.1~5μm;所述第一发光层与所述第三功能层之间存在连续致密的所述过渡层;所述第四功能层与所述第三功能层之间存在连续致密的所述过渡层。Preferably, the functional layer further comprises a third functional layer stacked on the first light-emitting layer and away from the first functional layer, and a third functional layer stacked on the third functional layer and away from the first light-emitting layer The fourth functional layer, the mass fraction of phosphor in the third functional layer is 5%-50%, the thickness of the third functional layer is 5-50 μm; the mass fraction of phosphor in the fourth functional layer is 0, the thickness of the fourth functional layer is 0.1-5 μm; there is a continuous and dense transition layer between the first light-emitting layer and the third functional layer; the fourth functional layer and the third There is a continuous and dense transition layer between the functional layers.
优选的,所述的荧光粉为Y3Al5O12:Ce3+荧光粉或Lu3Al5O12:Ce3+荧光粉;所述粘结剂为玻璃粉或氧化铝粉或Y3Al5O12粉或Lu3Al5O12粉。Preferably, the phosphor is Y3 Al5 O12 :Ce3+ phosphor or Lu3 Al5 O12 :Ce3+ phosphor; the binder is glass powder or alumina powder or Y3 Al5 O12 powder or Lu3 Al5 O12 powder.
本发明还提供一种发光装置的制备方法,包括如下步骤:The present invention also provides a method for preparing a light-emitting device, comprising the following steps:
步骤S1:混料;将粘结剂经球磨得到球磨坯料;向所述球磨坯料中加入荧光粉,继续球磨得到混合初料;Step S1: mixing; ball-milling the binder to obtain a ball-milling blank; adding phosphor powder to the ball-milling blank, and continuing to ball-mill to obtain a mixed initial material;
步骤S2:装料;将所述混合初料装填于模具中;Step S2: charging; charging the mixed initial material in the mold;
步骤S3:预压制;将所述模具中的所述混合初料预压制得到预成型坯体;Step S3: pre-pressing; pre-pressing the mixed raw material in the mold to obtain a preform;
步骤S4:烧结;所述预成型坯体经冷等静压处理得到素坯,将所述素坯烧结以获得所述发光装置;Step S4: sintering; the preform is subjected to cold isostatic pressing to obtain a green body, and the green body is sintered to obtain the light-emitting device;
所述步骤S1还包括将所述混合坯料分为包括第一部分和第二部分的至少两部分,所述第一部分中加入与所述第一部分中粘结剂的质量比为1:1或99:1的荧光粉,所述第二部分加入与所述第二部分中粘结剂的质量比为1:19的荧光粉,分别再继续球磨得到第一混合初料和第二混合初料;所述步骤S2具体为将所述第一混合初料和所述第二混合初料依次装填于所述模具中;所述步骤S4得到的素坯包括含有质量分数为50%或99%的荧光粉的发光素坯层和含有质量分数为5%的荧光粉的功能素坯层,所述发光素坯层的厚度大于功能素坯层的厚度。The step S1 also includes dividing the mixed blank into at least two parts including a first part and a second part, and the mass ratio of the binder added in the first part to the first part is 1:1 or 99: 1 phosphor powder, the second part is added with a phosphor powder whose mass ratio to the binder in the second part is 1:19, and the ball milling is continued to obtain the first mixed preliminary material and the second mixed preliminary material; The step S2 is specifically filling the first mixed raw material and the second mixed raw material into the mold in turn; the china obtained in the step S4 includes phosphor powder with a mass fraction of 50% or 99%. The luminescent green layer and the functional green layer containing phosphor powder with a mass fraction of 5%, the thickness of the luminescent green layer is greater than the thickness of the functional green layer.
与相关技术相比,本发明的发光装置及其制备方法设计具有差异的浓度,甚至梯度差异浓度,形成一个低浓度层,在该层抛光镀膜。因为荧光粉和粘接介质硬度不同,在高浓度层抛光会出现磨损状态不同,形成“浮凸”。而低浓度层的荧光粉较少,甚至没有,抛光的表面较为平整,便于镀膜。本发明通过低浓度层的荧光粉含量调整,从而解决了这种复相材料的所述发光装置中由于两相介质的硬度差异使得表面抛光后严重不平整,加工简单方便;由于所述发光装置中,荧光粉的含量直接影响到其发光效率,因此,在保证了主体荧光效率的同时,在浅表层做适当梯度浓度调整,使得抛光表面接近纯相,降低了表面的抛光缺陷;同时各层的荧光粉浓度可控,避免了烧结时体积收缩不一致而使得在不同浓度层的脱离现象,由于一体成型,层与层之间气孔率较低,进一步避免烧结脱离现象,提高了所述发光装置的可靠性和成品良率。Compared with the related art, the light-emitting device and the preparation method thereof of the present invention are designed to have different concentrations, even gradients, to form a low-concentration layer, on which the coating is polished. Because the hardness of the phosphor and the bonding medium is different, polishing in the high-concentration layer will cause different wear states, resulting in "embossed". The low-concentration layer has less or no phosphor powder, and the polished surface is relatively flat, which is convenient for coating. The present invention solves the serious unevenness of the surface after polishing due to the hardness difference of the two-phase medium in the light-emitting device of the multi-phase material by adjusting the phosphor powder content of the low-concentration layer, and the processing is simple and convenient; The content of phosphor powder directly affects its luminous efficiency. Therefore, while ensuring the main fluorescence efficiency, appropriate gradient concentration adjustment is made in the superficial layer to make the polished surface close to pure phase and reduce the polishing defects on the surface; at the same time, each layer The concentration of the phosphor powder is controllable, which avoids the detachment of layers with different concentrations due to inconsistent volume shrinkage during sintering. Due to the integral molding, the porosity between the layers is low, which further avoids the phenomenon of sintering and detachment, and improves the light-emitting device. reliability and yield.
附图说明Description of drawings
下面结合附图详细说明本发明。通过结合以下附图所作的详细描述,本发明的上述或其他方面的内容将变得更清楚和更容易理解。附图中:The present invention will be described in detail below with reference to the accompanying drawings. The above and other aspects of the present invention will become clearer and easier to understand from the detailed description taken in conjunction with the following drawings. In the attached picture:
图1为本发明发光装置实施例一结构示意图;FIG. 1 is a schematic structural diagram of a first embodiment of a light-emitting device according to the present invention;
图2为本发明发光装置实施例二结构示意图;FIG. 2 is a schematic structural diagram of Embodiment 2 of the light-emitting device of the present invention;
图3为本发明发光装置实施例三结构示意图;FIG. 3 is a schematic structural diagram of Embodiment 3 of the light-emitting device of the present invention;
图4为本发明发光装置实施例四结构示意图;FIG. 4 is a schematic structural diagram of Embodiment 4 of the light-emitting device of the present invention;
图5为本发明发光装置实施例五结构示意图;FIG. 5 is a schematic structural diagram of Embodiment 5 of the light-emitting device of the present invention;
图6为本发明发光装置实施例六结构示意图;FIG. 6 is a schematic structural diagram of Embodiment 6 of the light-emitting device of the present invention;
图7为本发明发光装置的制备方法的流程框图;FIG. 7 is a flow chart of a method for preparing a light-emitting device of the present invention;
图8为图7中混料步骤流程框图。FIG. 8 is a flow chart of the mixing step in FIG. 7 .
具体实施方式Detailed ways
下面结合附图详细说明本发明的具体实施方式。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
在此记载的具体实施方式/实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本发明的保护范围之内。The specific implementations/examples described herein are specific implementations of the present invention, and are used to illustrate the concept of the present invention. They are all illustrative and exemplary, and should not be construed as limiting the implementation of the present invention and the scope of the present invention. limit. In addition to the embodiments described herein, those skilled in the art can also adopt other obvious technical solutions based on the contents disclosed in the claims and the description of the present application, and these technical solutions include any obvious technical solutions to the embodiments described herein. The technical solutions of replacement and modification are all within the protection scope of the present invention.
实施例一Example 1
请参图1,本发明提供了一种发光装置10,其组份包括荧光粉和用于起粘结作用的粘结剂。Referring to FIG. 1, the present invention provides a light-emitting
本实施方式中,所述荧光粉为市售Y3Al5O12:Ce3+荧光粉;所述粘结剂为玻璃粉或氧化铝粉或Y3Al5O12粉,主要起到粘结其他几种组分的作用。所述粘结剂的硬度与所述荧光粉的硬度存不相同,比如:所述玻璃粉的Mohs硬度为5.5~6,所述荧光粉的Mohs硬度为8~8.5,所述氧化铝粉的Mohs硬度为9。本发明的发光装置设计一个低浓度层,可在该层抛光镀膜。因为荧光粉和粘接介质硬度不同,在高浓度层抛光会出现磨损状态不同,形成“浮凸”。而低浓度层的荧光粉较少,甚至没有,抛光的表面较为平整,便于镀膜。In this embodiment, the fluorescent powder is commercially available Y3 Al5 O12 :Ce3+ fluorescent powder; the binder is glass powder, alumina powder or Y3 Al5 O12 powder, which mainly acts as a sticking agent. effect of several other components. The hardness of the binder is different from the hardness of the phosphor powder. For example, the Mohs hardness of the glass powder is 5.5-6, the Mohs hardness of the phosphor is 8-8.5, and the aluminum oxide powder has a Mohs hardness of 5.5-6. The Mohs hardness is 9. The light-emitting device of the present invention is designed with a low-concentration layer on which the coating can be polished. Because the hardness of the phosphor and the bonding medium is different, polishing in the high-concentration layer will cause different wear states, resulting in "embossed". The low-concentration layer has less or no phosphor powder, and the polished surface is relatively flat, which is convenient for coating.
所述发光装置10采用差异浓度配比方式设计进行压片烧结,其为包括发光层11、层叠于所述发光层11上的功能层12的一体烧结体。The light-emitting
所述发光层11包括第一发光层111,所述第一发光层111中荧光粉的质量分数为50%~99%。由于所述第一发光层111通常作为主要的波长转换层,发明人通过实验得到当荧光材料浓度一样时,光效随着所述第一发光层111的厚度增加而增加,当所述第一发光层111的厚度增加到150μm时,该点的曲线斜率接近0,说明光效接近最大,当厚度增加到200μm以上时曲线斜率为0,光效达到最大。因此,为了保证光效特征,本实施方式中,所述第一发光层111的厚度为150~200μm。The light-emitting
所述功能层12包括第一功能层121,所述第一功能121层中荧光粉的质量分数为5%~50%,所述第一功能层121的厚度为5~50μm。所述发光层11与所述功能层12之间存在连续致密的过渡层(未图示)。The
由于所述第一功能层121主要作为镀膜层,需要考虑到加工精度及光效损失。由于膨胀系数的不同,高浓度层和低浓度层填充装配后的烧结工艺会出现收缩率不同的情况,厚度太小则加工不可控,厚度太大会出现开裂现象。另一方面,由于所述第一发光层111作为主要的波长转换层,光源从第一发光层111的远离第一功能层121的一侧入射,激发光先进入所述第一发光层111,被所述第一发光层111荧光粉吸收发出第一受激光,第一受激光进入所述第一功能层121,并透过该层出射;此外,一部分未被第一发光层111内荧光粉完全吸收的激发光同样穿透第一发光层111进入所述第一功能层121被所述第一功能层121的荧光粉吸收发出第二受激光,第二受激光透过该层出射;如果所述第一功能层121过厚则第一受激光在透过该层出射时会出现横向传播的现象,造成光损失;如果所述第一功能层121过薄,则未被所述第一发光层111内荧光粉完全吸收的激发光很容易穿透所述第一功能层121,造成光损失。综合加工精度和光损失情况,本实施方式中,发明人通过实验得出所述第一功能层121厚度控制在5~50μm最佳。Since the first
所述第一功能层121和所述第一发光层111的具体厚度设置需要根据烧结后发生体积收缩的比例来确定,只需要满足烧结得到的发光装置的发光层厚度满足150~200μm,功能层厚度满足5~50μm。The specific thickness settings of the first
另外,本实施方式中,由于采用压片烧结方式,因此过渡层连续致密,气孔率经检测为2%~6.4%。In addition, in the present embodiment, since the tablet sintering method is adopted, the transition layer is continuous and dense, and the porosity is detected to be 2% to 6.4%.
本实施方式中,具体的,所述的荧光粉还可以是Lu3Al5O12:Ce3+荧光粉;相应的,所述粘结剂为玻璃粉或氧化铝粉或Lu3Al5O12粉。In this embodiment, specifically, the phosphor powder may also be Lu3 Al5 O12 :Ce3+ phosphor powder; correspondingly, the binder is glass powder or alumina powder or Lu3 Al5 O12 powder.
实施例二Embodiment 2
请结合参图2,本发明提供了一种发光装置20,其组份包括荧光粉和用于起粘结作用的粘结剂。Please refer to FIG. 2 , the present invention provides a light-emitting device 20 , the components of which include phosphor powder and a binder for bonding.
本实施方式中,所述荧光粉为市售Y3Al5O12:Ce3+荧光粉;所述粘结剂为玻璃粉或氧化铝粉或Y3Al5O12粉,主要起到粘结其他几种组分的作用。所述粘结剂的硬度与所述荧光粉的硬度存不相同,比如:所述玻璃粉的Mohs硬度为5.5~6,所述荧光粉的Mohs硬度为8~8.5,所述氧化铝粉的Mohs硬度为9。In this embodiment, the fluorescent powder is commercially available Y3 Al5 O12 :Ce3+ fluorescent powder; the binder is glass powder, alumina powder or Y3 Al5 O12 powder, which mainly acts as a sticking agent. effect of several other components. The hardness of the binder is different from the hardness of the phosphor powder. For example, the Mohs hardness of the glass powder is 5.5-6, the Mohs hardness of the phosphor is 8-8.5, and the aluminum oxide powder has a Mohs hardness of 5.5-6. The Mohs hardness is 9.
所述发光装置20采用具有梯度的差异浓度配比方式设计进行压片烧结,其包括发光层21、层叠于所述发光层21上的功能层22的一体烧结体。The light-emitting device 20 is designed to be pressed and sintered in a gradient-differentiated concentration ratio, and includes an integrated sintered body of a light-emitting
所述发光层21包括第一发光层211,所述第一发光层211中荧光粉的质量分数为50%~99%。由于所述第一发光层211通常作为主要的波长转换层,发明人通过实验得到当荧光材料浓度一样时,光效随着所述第一发光层211的厚度增加而增加,当所述第一发光层211的厚度增加到150μm时,该点的曲线斜率接近0,说明光效接近最大,当厚度增加到200μm以上时曲线斜率为0,光效达到最大。因此,为了保证光效特征,本实施方式中,所述第一发光层211的厚度为150~200μm。The light-emitting
所述功能层22包括第一功能层221,所述第一功能221层中荧光粉的质量分数为5%~50%,所述第一功能层221的厚度为5~50μm。所述发光层与所述功能层之间存在连续致密的过渡层(未图示)。The
由于所述第一功能层221主要作为镀膜层,需要考虑到加工精度及光效损失。由于膨胀系数的不同,高浓度层和低浓度层填充装配后的烧结工艺会出现收缩率不同的情况,厚度太小则加工不可控,厚度太大会出现开裂现象。另一方面,由于所述第一发光层211作为主要的波长转换层,光源从第一发光层211的远离第一功能层221的一侧入射,激发光先进入所述第一发光层211,被所述第一发光层211荧光粉吸收发出第一受激光,第一受激光进入所述第一功能层221,并透过该层出射;此外,一部分未被第一发光层211内荧光粉完全吸收的激发光同样穿透第一发光层211进入所述第一功能层221被所述第一功能层221的荧光粉吸收发出第二受激光,第二受激光透过该层出射;如果所述第一功能层221过厚则第一受激光在透过该层出射时会出现横向传播的现象,造成光损失;如果所述第一功能层221过薄,则未被所述第一发光层211内荧光粉完全吸收的激发光很容易穿透所述第一功能层221,造成光损失。综合加工精度和光损失情况,本实施方式中,发明人通过实验得出所述第一功能层221厚度控制在5~50μm最佳。Since the first
与实施例一不同的是:所述第一功能层221由至少两个第一子功能层2211层叠组成,每个所述第一子功能层2211之间存在连续致密的过渡层(未图示),每个所述第一子功能层2211中荧光粉的质量分数沿自所述第一功能层221向所述第一发光层211延伸的方向以特定梯度递增,所述特定梯度的范围为5%~10%;每个所述第一子功能层2211中的荧光粉均匀分布。The difference from the first embodiment is that the first
本实施例中,可以在第一功能层221上远离所述第一发光层211一侧设置光学镀膜23,所述光学镀膜23包括反射膜、增透膜,镀膜方式包括但不限于磁控溅镀、真空蒸镀。In this embodiment, an
由于荧光粉和粘结剂硬度不同,在高浓度层抛光会出现磨损状态不同,形成“浮凸”;而直接将发光层的荧光粉的浓度降低会影响发光效率,因此设计第一功能层221,并在第一功能层221上镀膜,同时又需要考虑到若第一功能层221的浓度过低将在后续的烧结工艺中出现第一发光层211与第一功能层221因收缩系数差异过大而断裂。Due to the different hardness of the phosphor and the binder, the polishing of the high-concentration layer will cause different wear states, resulting in "embossed"; and directly reducing the concentration of the phosphor in the light-emitting layer will affect the light-emitting efficiency. Therefore, the design of the first
因此与第一实施例不同的是,本实施例中所述第一功能层221由至少两个第一子功能层2211层叠组成,每个所述第一子功能层2211之间存在连续致密的过渡层,每个所述第一子功能层2211的荧光粉含量不同,并沿自所述第一功能层221向所述第一发光层211延伸的方向以特定的梯度递增,该结构的优点在于,靠近第一发光层211的第一子功能层2211中荧光粉浓度较高,与第一发光层211中的荧光粉浓度差值小,甚至相等;而远离第一发光层211的第一子功能层2211中荧光粉浓度较低,接近纯相,甚至浓度为0。在远离第一发光层211的第一子功能层2211上镀光学膜23则容易的多。这种梯度浓度的变化不会存在某一处因收缩系数差异过大而断裂,且保证了第一发光层211的发光效率。另外,本实施方式中,所述过渡层气孔率为2%~6.4%。Therefore, the difference from the first embodiment is that the first
同样的,本实施方式中,所述的荧光粉还可以是Lu3Al5O12:Ce3+荧光粉;所述粘结剂相应为玻璃粉或氧化铝粉或Lu3Al5O12粉。Similarly, in this embodiment, the phosphor can also be Lu3 Al5 O12 :Ce3+ phosphor; the binder is correspondingly glass powder or alumina powder or Lu3 Al5 O12 powder .
所述第一功能层221和所述第一发光层211的具体厚度设置需要根据烧结后发生体积收缩的比例来确定,只需要满足烧结得到的发光装置的发光层厚度满足150~200μm,功能层厚度满足5~50μm。当然,各个所述的第一子功能层2211的具体厚度也可参考按上述条件来确定。The specific thickness settings of the first
实施例三Embodiment 3
请结合参图3,本发明提供了一种发光装置30,其组份包括荧光粉和用于起粘结作用的粘结剂。Please refer to FIG. 3 , the present invention provides a light-emitting device 30 , the components of which include phosphor powder and a binder for bonding.
本实施方式中,所述荧光粉为市售Y3Al5O12:Ce3+荧光粉;所述粘结剂为玻璃粉或氧化铝粉或Y3Al5O12粉,主要起到粘结其他几种组分的作用。所述粘结剂的硬度与所述荧光粉的硬度存不相同,比如:所述玻璃粉的Mohs硬度为5.5~6,所述荧光粉的Mohs硬度为8~8.5,所述氧化铝粉的Mohs硬度为9。本发明的发光装置设计梯度浓度,形成一个低浓度层,在该层抛光镀膜。因为荧光粉和粘接介质硬度不同,在高浓度层抛光会出现磨损状态不同,形成“浮凸”。而低浓度层的荧光粉较少,甚至没有,抛光的表面较为平整,便于镀膜。In this embodiment, the fluorescent powder is commercially available Y3 Al5 O12 :Ce3+ fluorescent powder; the binder is glass powder, alumina powder or Y3 Al5 O12 powder, which mainly acts as a sticking agent. effect of several other components. The hardness of the binder is different from the hardness of the phosphor powder. For example, the Mohs hardness of the glass powder is 5.5-6, the Mohs hardness of the phosphor is 8-8.5, and the aluminum oxide powder has a Mohs hardness of 5.5-6. The Mohs hardness is 9. The light-emitting device of the present invention is designed with gradient concentration to form a low-concentration layer, on which the coating is polished. Because the hardness of the phosphor and the bonding medium is different, polishing in the high-concentration layer will cause different wear states, resulting in "embossed". The low-concentration layer has less or no phosphor powder, and the polished surface is relatively flat, which is convenient for coating.
本实施例的发光装置30与实施例一所述的发光装置类似,其包括发光层31、层叠于所述发光层31上的功能层32的一体烧结体。The light-emitting device 30 of this embodiment is similar to the light-emitting device described in the first embodiment, and includes an integrated sintered body of a light-emitting
所述发光层31包括第一发光层311,所述第一发光层311中荧光粉的质量分数为50%~99%。为了保证光效特征,本实施方式中,所述第一发光层311的厚度为150~200μm。第一发光层311的厚度设定依据在实施例一中已描述,此处不再赘述。The light-emitting
所述功能层32包括第一功能层321,所述第一功能层321中荧光粉的质量分数为5%~50%,所述第一功能层321的厚度为5~50μm。第一功能层321的厚度设定依据在实施例一中已描述,此处也不再赘述。所述发光层31与所述功能层32之间存在连续致密的过渡层(未图示)。与实施例一不同的是:所述第一发光层311由至少两个第一子发光层3111层叠组成,每个所述第一子发光层3111之间存在连续致密的过渡层,各个所述第一子发光层3111中荧光粉的质量分数沿自所述第一功能层321向所述第一发光层311延伸的方向以特定梯度递增,所述特定梯度的范围为5%~10%;每个所述第一子发光层3111中的荧光粉均匀分布。The
由于第一功能层321的厚度较低,在第一功能层321上进行如实施例二所描述的梯度浓度的设计要求较高,如果在一些对发光效率要求不是特别高的环境使用该发光装置,其成本相应较高。因此,本实施例在第一发光层311设计梯度差异浓度,由于第一发光层311厚度较高,设计多个具有梯度浓度变化的第一子发光层3111组成第一发光层311将易于实现,靠近第一功能层321的第一子发光层3111中荧光粉浓度与第一功能层321中荧光粉浓度差值较小,甚至相等;远离第一功能层321的第一子发光层3111中荧光粉浓度设计的更高,这样保证发光效率。Since the thickness of the first
同实施例二理,可在所述第一功能层321远离所述第一发光层311的一侧设置光学镀膜33,所述光学镀膜33包括反射膜、增透膜,镀膜方式包括但不限于磁控溅镀、真空蒸镀。Similar to the second embodiment, an
本实施例中所述的发光装置30优点与实施例二所述的发光装置优点相同,即发光装置30中的荧光粉浓度整体呈梯度变化,在烧结时不会出现断裂现象,同时由于浓度可控,在第一功能层321上设计低浓度使镀膜工艺也易于实现。The advantages of the light-emitting device 30 described in this embodiment are the same as those of the light-emitting device described in the second embodiment, that is, the concentration of the phosphor powder in the light-emitting device 30 changes in a gradient as a whole, and no fracture occurs during sintering. Controlling, the design of low concentration on the first
本实施方式中,所述过渡层气孔率为2%~6.4%。In this embodiment, the porosity of the transition layer is 2% to 6.4%.
同样,本实施方式中所述的荧光粉还可以是Lu3Al5O12:Ce3+荧光粉;所述粘结剂相应为玻璃粉或氧化铝粉或Lu3Al5O12粉。Similarly, the phosphor in this embodiment can also be Lu3 Al5 O12 :Ce3+ phosphor; the binder is correspondingly glass powder or alumina powder or Lu3 Al5 O12 powder.
各层厚度的确定可参考实施例一或实施例二,此处不再赘述。For the determination of the thickness of each layer, reference may be made to Embodiment 1 or Embodiment 2, which will not be repeated here.
实施例四Embodiment 4
请结合参图4,本实施方式为对于上述实施例二和实施例三的扩展,即将实施例二和实施例三组合成实施例四:Please refer to FIG. 4 , this embodiment is an extension of the second embodiment and the third embodiment, that is, the second embodiment and the third embodiment are combined into the fourth embodiment:
即所述发光装置40的所述第一功能层421由至少两个第一子功能层层4211叠组成,每个所述第一子功能层4211之间存在连续致密的过渡层(未图示),各个所述第一子功能层4211中荧光粉的质量分数沿自所述第一功能层421向所述第一发光层411延伸的方向以特定梯度递增,所述特定梯度的范围为5%~10%;每个所述第一子功能层4211中的荧光粉均匀分布。That is, the first
所述发光层41的所述第一发光层411由至少两个第一子发光层4111层叠组成,每个所述第一子发光层4111之间存在连续致密的过渡层,所述第一发光层411中各个第一子发光层4111中荧光粉的质量分数以相同的所述特定梯度递增,需要说明的是此处所述的以相同的所述特定梯度递增,即:当每个所述第一子功能层4211中荧光粉的质量分数沿自所述第一功能层421向所述第一发光层411延伸的方向按6%的梯度递增时,所述第一发光层411中各个第一子发光层4111中荧光粉的质量分数也以6%的梯度递增;每个所述第一子发光层4111中的荧光粉均匀分布;相邻接的第一子发光层4111与第一子功能层4211中荧光粉的质量分数差为0或所述特定梯度。The first light-emitting
当然,本实施例中还可以以不同的所述特定梯度递增,即在特定梯度的范围5%~10%内选取不同的两个数值,此时所述第一功能层421的递增梯度与所述第一发光层411的递增梯度不同,分别以各自的特定梯度变化,例如:每个所述第一子功能层4211中荧光粉的质量分数沿自所述第一功能层421向所述第一发光层411延伸的方向按6%的梯度递增,每个所述第一子发光层4111中荧光粉的质量分数沿自所述第一功能层421向所述第一发光层411延伸的方向按7%的梯度递增。每个所述第一子发光层4111中的荧光粉均匀分布;相邻接的第一子发光层4111与第一子功能层4211中荧光粉的质量分数差可以为0。Of course, in this embodiment, the specific gradient may also be incremented differently, that is, two different values may be selected within the range of 5% to 10% of the specific gradient. At this time, the incremental gradient of the first
在进行各个所述第一子功能层4211和/或各个所述第一子发光层4111厚度设计时,可参考如下方法:When designing the thickness of each of the first
通常所述第一发光层411作为主要的波长转换层,所述第一功能层421作为镀膜层,由于考虑到整个所述发光装置的性能优化问题,波长转换层的荧光粉质量分数为50%~99%,厚度为150~200μm,在进行波长转换层浓度梯度分配时,每层之间可以按5%~10%的质量分数(即特定梯度)差异(记为浓度公差d1)递增或递减,浓度梯度分级主要考虑到荧光粉含量,对烧结后的体积收缩影响,因此每两层之间浓度差异不能过大。因此所述第一发光层411(即波长转换层)的荧光粉梯度浓度层数T1=(Nmax-Nmin)/d1,其中,Nmax为各个所述第一子发光层4111中荧光粉质量分数最大值,Nmin为各个所述第一子功能层4211中荧光粉质量分数最小值;则每层(即所述第一发光层411的每层所述第一子发光层4111)厚度h与荧光粉浓度的对应关系为,厚度h1=H1/T1,H1为所述第一发光层411厚度,H1=150~200μm。d1可以为0,即所述第一发光层411中荧光粉整体呈均匀分布。Usually, the first light-emitting
同理,所述功能层42的所述第一功能层421的每层所述第一子功能层4211厚度h2=H2/T2,T2为所述第一功能层421(即镀膜层)的荧光粉梯度浓度层数,T2=(Mmax-Mmin)/d2,其中,Mmax为所述第一功能层421中荧光粉质量分数最大值,Mmin为所述第一功能层421中荧光粉质量分数最小值;d2为第一功能层421的浓度公差,d2为5%~10%的任一值;d2还可以为0,即所述第一功能层421中荧光体整体呈均匀分布。如前所述d1和d2可以相同也可以不同。Similarly, the thickness of each first
同样,本实施例中,也可以在第一功能层421上远离所述第一发光层411一侧设置光学镀膜43,所述光学镀膜43包括反射膜、增透膜,镀膜方式包括但不限于磁控溅镀、真空蒸镀。Similarly, in this embodiment, an
本实施例中关于荧光粉和粘结剂的选择可参考上述实施例一至三任一项的说明,此处不再赘述。Regarding the selection of the phosphor and the binder in this embodiment, reference may be made to the description of any one of the above-mentioned Embodiments 1 to 3, which will not be repeated here.
实施例五Embodiment 5
请结合参图5,实施例五为实施例一到四的另一种扩展。即在实施例一到四中任一实施例的所述发光装置基础上,本实施方式中的所发光装置50的所述功能层52还包括第二功能层522(即包括第一功能层521和第二功能层522),所述第二功能层522层叠于所述第一功能层521并远离所述发光层51的第一发光层511一侧,与所述第一功能层521形成一体烧结体。所述第二功能层522中的荧光粉质量分数为0,所述第二功能层522厚度为0.1~5μm,所述第二功能层522与所述第一功能层521之间存在连续致密的过渡层(未图示),所述过渡层气孔率为2%~6.4%。除此之外,本实施方式与实施例一到实施例四中任一实施例相同,在此不在赘述。Please refer to FIG. 5 , the fifth embodiment is another extension of the first to fourth embodiments. That is, on the basis of the light-emitting device in any one of the first to fourth embodiments, the
当选择本实施例的结构时,相应的可以在第二功能层522上远离所述第一发光层521一侧设置光学镀膜53,所述光学镀膜53包括反射膜、增透膜,镀膜方式包括但不限于磁控溅镀、真空蒸镀。When the structure of this embodiment is selected, correspondingly, an
实施例六Embodiment 6
请结合参图6,本实施方式为在实施例一至实施例五任一实施例的基础上进行扩展。Please refer to FIG. 6 , this implementation manner is extended on the basis of any one of the first embodiment to the fifth embodiment.
即区别在于:本实施方式中,所述发光装置60所述功能层62还包括层叠于所述发光层61的所述第一发光层611并远离所述第一功能层621一侧的第三功能层623和层叠于所述第三功能层623并远离所述第一发光层611的第四功能层624。即包括第一功能层621、第二功能层622、第三功能层623和第四功能层624。That is to say, the difference is that in this embodiment, the
所述第三功能层623中的荧光粉质量分数为5%~50%,所述第三功能层523的厚度为5~50μm;所述第四功能层624中的荧光粉质量分数为0,所述第四功能层624的厚度为0.1~5μm;所述第一发光层611与所述第三功能层623之间存在连续致密的所述过渡层(未图示);所述第四功能层624与所述第三功能层623之间存在连续致密的所述过渡层(未图示),所述过渡层气孔率为2%~6.4%。The mass fraction of phosphor in the third
本实施例中,所述第三功能层623可以是其荧光粉浓度整体呈均匀分布的,也可以是如实施例二中所述的第二功能层622一样通过设置多个子功能层呈梯度浓度分布,这都是本领域技术人员容易想到的,此处不再赘述。In this embodiment, the phosphor powder concentration of the third
当然,也可在本实施方式的基础上,在所述第四功能层624远离所述第一发光层611一侧层叠光学镀膜63,这也是可行的。Of course, on the basis of this embodiment, the
需要说明的是:在所述第二功能层622远离所述第一发光层611一侧,及在所述第四功能层624远离所述第一发光层611一侧均层叠光学镀膜63时:两侧的光学镀膜均为反射膜或均为增透膜;或者其中一侧为反射膜,另一侧为增透膜,这都是本领域技术人员容易想到的。It should be noted that: when the
另外,所述功能层63可包括第一功能层621、第二功能层622、第三功能层623及第四功能层624中的至少一层时,所述光学镀膜63的设置均位于所述第一功能层621或第二功能层622或第三功能层623或第四功能层624的远离所述发光层61的一侧,比如:In addition, when the
当只包括层叠于所述发光层61一侧的第一功能层621时,所述光学镀膜63设于所述第一功能层621远离所述发光层61一侧;When only the first
当包括依次层叠于所述发光层61的同一侧的第一功能层621和第二功能层622时,所述第二功能层622位于所述第一功能层621的远离所述发光层61一侧,所述光学镀膜63设于所述第二功能层622远离所述发光层61一侧;When the first
当包括叠于所述发光层的第一功能层621、第二功能层622和第三功能层623,所述第一功能层621与所述第二功能层622位于所述发光层61同一侧且所述第二功能层622位于所述第一功能层621远离所述发光层61一侧,所述第三功能层623位于所述发光层61的远离所述第一功能层621的一侧时,所述光学镀膜63可设于所述第二功能层622远离所述发光层61一侧或/和所述第三功能层623远离所述发光层61一侧。When including the first
以此类推,这都是可行的,其原理都一样,本领域技术人员依据上述描述很容易想到并实现。By analogy, this is all feasible, and the principles are the same, and those skilled in the art can easily conceive and realize it based on the above description.
请参图7-8,本发明还提供了一种发光装置的制备方法,该方法包括如下步骤:Referring to FIGS. 7-8 , the present invention also provides a method for preparing a light-emitting device, which includes the following steps:
步骤S1、混料:Step S1, mixing:
将有机载体和粘结剂经混合、球磨得到球磨坯料;向所述球磨坯料中加入荧光粉,继续球磨得到混合初料。The organic carrier and the binder are mixed and ball-milled to obtain a ball-milling blank; phosphor powder is added to the ball-milling blank, and the ball-milling is continued to obtain a mixed raw material.
具体的,步骤S1包括步骤S11、将氧化铝粉(或玻璃粉或Y3Al5O12粉或Lu3Al5O12粉)加入无水乙醇作为液相介质,加入浓度为1%~5%的PVA或PVB作为粘结剂,经混合得到混合原料。Specifically, step S1 includes step S11, adding alumina powder (or glass powder or Y3 Al5 O12 powder or Lu3 Al5 O12 powder) into absolute ethanol as a liquid phase medium, and the concentration of the addition is 1% to 5%. % PVA or PVB is used as a binder, and mixed raw materials are obtained.
步骤S12、将所述混合原料放入球磨罐中进行球磨混料,球墨处理4~8小时,形成球磨坯料。In step S12, the mixed raw materials are put into a ball-milling tank for ball-milling and mixing, and the ball-ink treatment is performed for 4-8 hours to form a ball-milling blank.
步骤S13、将所述球磨坯料分为包括第一部分和第二部分的至少两部分,所述第一部分中加入与所述第一部分中粘结剂的质量比为1~99:1的荧光粉,所述第二部分中加入与所述第二部分中粘结剂的质量比为1:1~19的荧光粉,分别再继续进行球磨,球磨时间设定为30~60分钟,再在80℃的条件下烘干以去除所述无水乙醇,然后分别分离出并进行研磨过筛,得到所述混合初料,包括第一混合初料和第二混合初料。Step S13: Divide the ball mill blank into at least two parts including a first part and a second part, and add phosphor powder with a mass ratio of 1 to 99:1 to the binder in the first part, Phosphor powder with a mass ratio of 1:1 to 19 to the binder in the second part is added to the second part, and the ball milling is continued respectively. The ball milling time is set to 30 to 60 minutes, and then the Drying under certain conditions to remove the anhydrous ethanol, and then separately separated, ground and sieved to obtain the mixed preliminary material, including the first mixed preliminary material and the second mixed preliminary material.
当然,所述混合胚料分成的份数并不限于此,还可以分为更多分数(部分)。本步骤中,更优的,所述混合胚料还包括被分的第三部分;所述第一部分加入组份含量为50%~75%的荧光粉,所述第二部分加入组份含量为5%~15%的荧光粉;所述第三部分不添加荧光粉。Of course, the number of parts into which the mixed billet is divided is not limited to this, and can also be divided into more parts (parts). In this step, more preferably, the mixed billet further includes a divided third part; the first part is added with fluorescent powder with a component content of 50% to 75%, and the second part is added with a component content of 5% to 15% of phosphor; the third part does not add phosphor.
步骤S2、装料:Step S2, charging:
将所述混合初料装填于模具中。The mixed raw material is filled into a mold.
具体为将所述第一混合初料和所述第二混合初料依次装填于所述模具中。Specifically, the first mixed raw material and the second mixed raw material are sequentially loaded into the mold.
步骤S3、预压制:Step S3, pre-press:
将所述模具中的所述混合初料铺平,并施加80~100kg/cm2的压力预压制得到预成型坯体。The mixed raw material in the mold is flattened, and pre-pressed by applying a pressure of 80-100 kg/cm2 to obtain a preform.
步骤S4、热处理、成型:Step S4, heat treatment, molding:
将所述预成型坯体放入高温炉中脱脂排胶后,使温度调节为所述粘结剂的分解温度,保持5~10个小时后,放入冷等静压的液压腔体中,在250Mpa~300Mpa的压强下保压1分钟,经冷等静压处理成型为素坯。After the preform is put into a high-temperature furnace for degreasing and degumming, the temperature is adjusted to the decomposition temperature of the binder. Hold the pressure for 1 minute under the pressure of 250Mpa~300Mpa, and form the green body after cold isostatic pressing.
本步骤中使得到的素坯包括含有质量分数为50%~99%的荧光粉的发光素坯层和含有质量分数为5%~50%的荧光粉的功能素坯层,所述发光素坯层的厚度大于功能素坯层的厚度。In this step, the obtained green body includes a luminescent green body layer containing phosphor powder with a mass fraction of 50% to 99% and a functional green body layer containing phosphor powder with a mass fraction of 5% to 50%. The thickness of the layer is greater than the thickness of the functional green layer.
当然,高温炉中保护的具体时间可依据所述预成型坯体的体积大小而定。Of course, the specific time of protection in the high temperature furnace can be determined according to the volume of the preform.
步骤S5、烧结:Step S5, sintering:
将所述素坯放入真空钨丝炉中,在真空度为10-4Pa的范围内、1500℃~1800℃温度的条件下,保温4~10小时,真空烧结以得到所述发光装置。The green body is placed in a vacuum tungsten filament furnace, and the light-emitting device is obtained by vacuum sintering for 4-10 hours under the condition of vacuum degree of 10-4 Pa and temperature of 1500°C to 1800°C.
上述制备方法采用压片烧结的工艺,粉体的颗粒经过混合后,堆积在一起,经过预压成型,再高温排胶,排除有机物,这时虽然也会形成一些孔洞,但接着进行冷等静压,再次对样品施加高压,让粉体之间的更加致密,在一定程度上消除了孔洞,进入烧结制程后,液相粘结材料进一步填补,孔隙率较上印刷方式致密度更高;The above preparation method adopts the process of tablet pressing and sintering. After mixing, the powder particles are stacked together, subjected to pre-compression molding, and then degummed at high temperature to exclude organic matter. Although some holes will also be formed at this time, the cold isostatic process is then carried out. Press, apply high pressure to the sample again, make the powder more dense, and eliminate the pores to a certain extent. After entering the sintering process, the liquid-phase bonding material is further filled, and the porosity is higher than that of the printing method.
当然,上述制备方法还可以采用热压烧结,这种方式粉体配料中无需添加有机成分,不需要进行排胶等工艺,直接使用玻璃粉(或氧化铝粉或Y3Al5O12粉或Lu3Al5O12粉)作为粘结剂,即上述制备方法所述的步骤S1的混料工艺不添加有机载体,直接将粘结剂进行球磨得到球磨原料,这样步骤S4热处理步骤可省略。由于该方法没有排胶工艺,不会增加气孔率,因此直接按照梯度浓度填装粉料,后再进行烧结制程,边烧结边加压;使得材料的致密度更进一步提升,气孔率能够进一步降低。Of course, the above preparation method can also be hot-pressed sintering. In this way, there is no need to add organic components to the powder ingredients, and there is no need to perform processes such asdebinding .The glass powder (or alumina powder orY3Al5O12 powder or Lu3 Al5 O12 powder) as a binder, that is, the mixing process of step S1 described in the above preparation method does not add an organic carrier, and the binder is directly ball-milled to obtain ball-milling raw materials, so that the heat treatment step of step S4 can be omitted. Since this method does not have a debinding process and does not increase the porosity, the powder is directly filled according to the gradient concentration, and then the sintering process is carried out, and the pressure is pressed while sintering; the density of the material is further improved, and the porosity can be further reduced. .
与相关技术相比,本发明的发光装置及其制备方法设计具有差异的浓度,甚至梯度差异浓度,形成一个低浓度层,可在该层抛光镀膜。因为荧光粉和粘结剂硬度不同,在高浓度层抛光会出现磨损状态不同,形成“浮凸”。而低浓度层的荧光粉较少,甚至没有,抛光的表面较为平整,便于镀膜。本发明通过低浓度层的荧光粉含量调整,从而解决了这种复相材料的所述发光装置中由于两相介质的硬度差异使得表面抛光后严重不平整,加工简单方便;由于所述发光装置中,荧光粉的含量直接影响到其发光效率,因此,在保证了主体荧光效率的同时,在浅表层做适当梯度浓度调整,使得抛光表面接近纯相,降低了表面的抛光缺陷;同时各层的荧光粉浓度可控,避免了烧结时体积收缩不一致而使得在不同浓度层的脱离现象,由于一体成型,层与层之间的气孔率较低,进一步避免烧结脱离现象,提高了所述发光装置的可靠性和成品良率。Compared with the related art, the light-emitting device and the preparation method thereof of the present invention are designed to have different concentrations, or even gradients of different concentrations, to form a low-concentration layer on which the coating can be polished. Because the hardness of the phosphor and the binder is different, polishing in the high-concentration layer will cause different wear conditions, resulting in "relief". The low-concentration layer has less or no phosphor powder, and the polished surface is relatively flat, which is convenient for coating. The present invention solves the serious unevenness of the surface after polishing due to the hardness difference of the two-phase medium in the light-emitting device of the multi-phase material by adjusting the phosphor powder content of the low-concentration layer, and the processing is simple and convenient; The content of phosphor powder directly affects its luminous efficiency. Therefore, while ensuring the main fluorescence efficiency, appropriate gradient concentration adjustment is made in the superficial layer to make the polished surface close to pure phase and reduce the polishing defects on the surface; at the same time, each layer The concentration of the phosphor powder is controllable, which avoids the detachment phenomenon of different concentration layers due to inconsistent volume shrinkage during sintering. Due to the integral molding, the porosity between the layers is low, which further avoids the sintering detachment phenomenon and improves the luminescence. Device reliability and yield.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710228640.1ACN108695422B (en) | 2017-04-10 | 2017-04-10 | Light-emitting device and method of making the same |
| PCT/CN2017/109313WO2018188326A1 (en) | 2017-04-10 | 2017-11-03 | Light emitting device and manufacturing method therefor |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710228640.1ACN108695422B (en) | 2017-04-10 | 2017-04-10 | Light-emitting device and method of making the same |
| Publication Number | Publication Date |
|---|---|
| CN108695422A CN108695422A (en) | 2018-10-23 |
| CN108695422Btrue CN108695422B (en) | 2020-10-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710228640.1AActiveCN108695422B (en) | 2017-04-10 | 2017-04-10 | Light-emitting device and method of making the same |
| Country | Link |
|---|---|
| CN (1) | CN108695422B (en) |
| WO (1) | WO2018188326A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110357424A (en)* | 2019-06-26 | 2019-10-22 | 中国计量大学 | A kind of complex phase fluorescent glass and its cryogenic high pressure sintering preparation method |
| KR20230104135A (en)* | 2020-11-19 | 2023-07-07 | 니폰 덴키 가라스 가부시키가이샤 | Wavelength conversion member and manufacturing method thereof |
| CN115846899B (en)* | 2022-11-30 | 2023-07-18 | 广州星熠新材料科技有限公司 | Processing technology of CVD diamond piece |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101939854A (en)* | 2008-01-04 | 2011-01-05 | 克里公司 | Light-emitting devices with high-efficiency fluorescent structures |
| CN102376847A (en)* | 2010-08-25 | 2012-03-14 | 海洋王照明科技股份有限公司 | Composite optical device, mold, preparation method and optical system |
| CN103978750A (en)* | 2014-05-16 | 2014-08-13 | 福耀玻璃工业集团股份有限公司 | Photoluminescence laminated glass and preparation method thereof |
| CN104112812A (en)* | 2014-02-18 | 2014-10-22 | 张红卫 | Ceramic fluorescent body capable of effectively eliminating edge aberration effect in white light LED light source packaging and preparation method thereof |
| CN104529442A (en)* | 2015-01-16 | 2015-04-22 | 河南理工大学 | Non-pressure infiltration preparation process of functionally graded piezoelectric material (FGPM) |
| CN104900786A (en)* | 2014-03-03 | 2015-09-09 | 科发伦材料株式会社 | Sintered compact for wavelength conversion |
| CN104953014A (en)* | 2014-03-28 | 2015-09-30 | 深圳市绎立锐光科技开发有限公司 | Multilayer structure glass fluorescent powder sheet, manufacturing method therefor, and light-emitting device |
| CN105674214A (en)* | 2014-11-21 | 2016-06-15 | 深圳市光峰光电技术有限公司 | Preparation method for wavelength conversion structure and related wavelength conversion structure |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007042686A (en)* | 2005-07-29 | 2007-02-15 | Toshiba Lighting & Technology Corp | Light emitting diode device |
| KR100887068B1 (en)* | 2006-08-04 | 2009-03-04 | 삼성전기주식회사 | Light emitting diode module and method of manufacturing the same |
| US20150123153A1 (en)* | 2013-11-06 | 2015-05-07 | General Electric Company | Led package with red-emitting phosphors |
| CN204894707U (en)* | 2015-04-14 | 2015-12-23 | 苏州东冠晶源光电科技股份有限公司 | The structure of a phosphor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101939854A (en)* | 2008-01-04 | 2011-01-05 | 克里公司 | Light-emitting devices with high-efficiency fluorescent structures |
| CN102376847A (en)* | 2010-08-25 | 2012-03-14 | 海洋王照明科技股份有限公司 | Composite optical device, mold, preparation method and optical system |
| CN104112812A (en)* | 2014-02-18 | 2014-10-22 | 张红卫 | Ceramic fluorescent body capable of effectively eliminating edge aberration effect in white light LED light source packaging and preparation method thereof |
| CN104900786A (en)* | 2014-03-03 | 2015-09-09 | 科发伦材料株式会社 | Sintered compact for wavelength conversion |
| CN104953014A (en)* | 2014-03-28 | 2015-09-30 | 深圳市绎立锐光科技开发有限公司 | Multilayer structure glass fluorescent powder sheet, manufacturing method therefor, and light-emitting device |
| CN103978750A (en)* | 2014-05-16 | 2014-08-13 | 福耀玻璃工业集团股份有限公司 | Photoluminescence laminated glass and preparation method thereof |
| CN105674214A (en)* | 2014-11-21 | 2016-06-15 | 深圳市光峰光电技术有限公司 | Preparation method for wavelength conversion structure and related wavelength conversion structure |
| CN104529442A (en)* | 2015-01-16 | 2015-04-22 | 河南理工大学 | Non-pressure infiltration preparation process of functionally graded piezoelectric material (FGPM) |
| Publication number | Publication date |
|---|---|
| CN108695422A (en) | 2018-10-23 |
| WO2018188326A1 (en) | 2018-10-18 |
| Publication | Publication Date | Title |
|---|---|---|
| KR101939246B1 (en) | Glass fluorescent powder slice with multi-layer structrure and preparation therefor, and light-emitting device | |
| TWI524130B (en) | Wavelength conversion device and method for making the same | |
| EP3543221B1 (en) | Light-emitting ceramic and light-emitting device | |
| CN108930919B (en) | A wavelength conversion device, preparation method thereof, and light source | |
| CN108695422B (en) | Light-emitting device and method of making the same | |
| CN108495831A (en) | Method for manufacturing silicon nitride sintered substrate, silicon nitride sintered substrate sheet, circuit substrate, and silicon nitride sintered substrate | |
| TW201341335A (en) | Barium borate glass encapsulating material for LED phosphor | |
| CN112441817B (en) | Fluorescent ceramic, preparation method thereof and light source device | |
| CN109798457B (en) | A transmissive blue laser lighting assembly | |
| WO2018205694A1 (en) | Wavelength conversion device and phosphor-converted laser light source | |
| CN105819882A (en) | Ceramic metal composite substrate and production method thereof | |
| CN110357424A (en) | A kind of complex phase fluorescent glass and its cryogenic high pressure sintering preparation method | |
| CN116813327B (en) | Preparation method of composite fluorescent ceramic | |
| CN102950844A (en) | Planar waveguide composite ceramic material and preparation thereof | |
| CN108623153A (en) | A kind of preparation method of remote fluorescence film for high-capacity LED | |
| CN108870119A (en) | Wavelength converter and preparation method thereof, laser fluorescence conversion hysteria light source | |
| CN108395222B (en) | Light conversion and heat dissipation integrated ceramic material for reflective laser display and preparation method thereof | |
| CN116177995B (en) | Preparation method of fluorescent ceramic based on 3D printing composite structure | |
| CN105084760A (en) | Preparation method for ultrathin light emitting glass and related light emitting device | |
| CN109388002B (en) | Fluorescent chip, its manufacturing method, and light-emitting device | |
| JP2013033798A (en) | Translucent wiring substrate | |
| CN117293643A (en) | Wavelength conversion device, preparation method of wavelength conversion device and light-emitting device | |
| CN119143508A (en) | Full-spectrum multilayer composite fluorescent ceramic with high thermal stability for laser illumination | |
| CN117781248A (en) | A composite fluorescent ceramic for high-power LD lighting and its preparation method | |
| CN117141063A (en) | Semi-coated fluorescent glass and preparation method and application thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| CB02 | Change of applicant information | ||
| CB02 | Change of applicant information | Address after:518000 20-22, 20-22 headquarters building, 63 high tech Zone, Xuefu Road, Nanshan District, Guangdong Province, Guangdong. Applicant after:Shenzhen Guangfeng Polytron Technologies Inc Address before:518000 Guangdong province Shenzhen Nanshan District Xili town Cha Guang road Shenzhen integrated circuit design application Industrial Park 401 Applicant before:Shenzhen Appotronics Co., Ltd. | |
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |