本申请是申请日为2013年10月8日、申请号为201380064664.8(国际申请号为PCT/US2013/063793)、名称为“用于时分双工(TDD)传输的上行链路(UL)和下行链路(DL)帧资源的动态配置”的发明专利申请的分案申请。The application date is October 8, 2013, the application number is 201380064664.8 (the international application number is PCT/US2013/063793), and the name is "uplink (UL) and downlink for time division duplex (TDD) transmission A divisional application of the invention patent application "Dynamic Configuration of Link (DL) Frame Resources".
技术领域technical field
本申请涉及用于时分双工(TDD)传输的上行链路(UL)和下行链路(DL)帧资源的动态配置。The present application relates to dynamic configuration of uplink (UL) and downlink (DL) frame resources for time division duplex (TDD) transmission.
背景技术Background technique
无线移动通信技术使用各种标准和协议来在节点(比如,发送站或收发机节点)和无线设备(比如,移动设备)之间传输数据。一些无线设备通过在下行链路(DL)传输中使用正交频分多址(OFDMA)、在上行链路(UL)传输中使用单载波频分多址(SC-FDMA)来进行通信。使用正交频分复用(OFDM)用于信号传输的标准和协议包括第三代合作伙伴计划(3GPP)长期演进(LTE)、电气与电子工程师协会(IEEE)802.16标准(比如,802.16e、802.16m)(其被行业团体俗称为WiMAX(全球微波接入互操作性))以及IEEE802.11标准(其被行业团体俗称为WiFi)。Wireless mobile communication technologies use various standards and protocols to transmit data between nodes (eg, transmitting stations or transceiver nodes) and wireless devices (eg, mobile devices). Some wireless devices communicate by using Orthogonal Frequency Division Multiple Access (OFDMA) for downlink (DL) transmissions and Single-Carrier Frequency Division Multiple Access (SC-FDMA) for uplink (UL) transmissions. Standards and protocols that use Orthogonal Frequency Division Multiplexing (OFDM) for signal transmission include Third Generation Partnership Project (3GPP) Long Term Evolution (LTE), Institute of Electrical and Electronics Engineers (IEEE) 802.16 standards (e.g., 802.16e, 802.16m) (which is commonly referred to as WiMAX (Worldwide Interoperability for Microwave Access) by industry groups) and the IEEE802.11 standard (which is commonly referred to as WiFi by industry groups).
在3GPP无线电接入网络(RAN)LTE系统中,节点可以是演进的通用陆地无线电接入网络(E-UTRAN)Node B(通常也表示为演进的NodeB、增强型Node B、eNodeB或eNB)和无线电网络控制器(RNC)的组合,其与无线设备(称为用户设备(UE))进行通信。下行链路(DL)传输可以是从节点(比如,eNodeB)到无线设备(比如,UE)的通信,上行链路(UL)传输可以是从无线设备到节点的通信。In a 3GPP Radio Access Network (RAN) LTE system, a node can be an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (also commonly denoted Evolved NodeB, Enhanced Node B, eNodeB, or eNB) and A combination of radio network controllers (RNCs) that communicate with wireless devices, known as user equipment (UEs). A downlink (DL) transmission can be a communication from a node (eg, eNodeB) to a wireless device (eg, a UE), and an uplink (UL) transmission can be a communication from a wireless device to a node.
在同构网络中,节点(也称为宏节点)可以为小区中的无线设备提供基本的无线覆盖。小区可以是无线设备在其中可操作来与宏节点进行通信的区域。异构网络(HetNet)可以被用于处理宏节点上由于所部署的小区的密度增加而增加的流量负载。HetNet可以包括计划好的高功率宏节点(或宏-eNB)层,该层之上覆盖有较低功率节点(小-eNB、微-eNB、微微-eNB、毫微微-eNB或家庭eNB(HeNB))层,这些较低功率节点层可以以计划得不太好的或甚至完全未协调的方式被部署在宏节点的覆盖区域(小区)内。较低功率节点(LPN)一般可以被称为“低功率节点”、小节点或小小区。In a homogeneous network, a node (also called a macro node) can provide basic wireless coverage for wireless devices in a cell. A cell may be an area within which a wireless device is operable to communicate with a macro node. A heterogeneous network (HetNet) can be used to handle the increased traffic load on the macro nodes due to the increased density of deployed cells. A HetNet may include a planned layer of high-power macro-nodes (or macro-eNBs) overlaid with lower-power nodes (small-eNBs, micro-eNBs, pico-eNBs, femto-eNBs, or home eNBs (HeNBs). )) layers, these layers of lower power nodes may be deployed within the coverage area (cell) of the macro node in a poorly planned or even completely uncoordinated manner. A lower power node (LPN) may generally be referred to as a "low power node", a small node or a small cell.
宏节点可以被用于基本覆盖。低功率节点可以被用于填充覆盖盲区、提高热区容量或宏节点的覆盖区域之间的边界处的容量、在建筑结构阻碍信号传输的地方改善室内覆盖。小区间干扰协调(ICIC)或增强的ICIC(eICIC)可以被用于资源协调以减小节点(比如,HetNet中的宏节点和低功率节点)间的干扰。Macro nodes can be used for basic coverage. Low power nodes can be used to fill coverage holes, increase hot zone capacity or capacity at the boundaries between coverage areas of macro nodes, and improve indoor coverage where building structures impede signal transmission. Inter-cell interference coordination (ICIC) or enhanced ICIC (eICIC) can be used for resource coordination to reduce interference between nodes (eg, macro nodes and low power nodes in HetNet).
同构网络或HetNet可以使用时分双工(TDD)或频分双工(FDD)用于DL或UL传输。时分双工(TDD)是时分多路复用(TDM)的应用,以分离下行链路和上行链路信号。在TDD中,下行链路信号和上行链路信号可以被承载在相同的载波频率上,其中下行链路信号使用与上行链路信号不同的时间间隔,使得下行链路信号和上行链路信号不对彼此产生干扰。TDM是一种类型的数字多路复用,其中两个或更多个比特流或信号(比如,下行链路或上行链路)看起来作为一个通信信道中的子信道被同时传输,但在物理上在不同的时间资源上被传送。在频分双工(FDD)中,上行链路传输和下行链路传输可以使用不同的频率载波进行操作。在FDD中,因为下行链路信号使用与上行链路信号不同的频率载波,DL-UL干扰可以被避免。A homogeneous network or HetNet can use time division duplex (TDD) or frequency division duplex (FDD) for DL or UL transmission. Time Division Duplexing (TDD) is the application of Time Division Multiplexing (TDM) to separate downlink and uplink signals. In TDD, the downlink signal and uplink signal can be carried on the same carrier frequency, where the downlink signal uses a different time interval than the uplink signal, so that the downlink signal and the uplink signal are not aligned interfere with each other. TDM is a type of digital multiplexing in which two or more bit streams or signals (for example, downlink or uplink) are physically transmitted on different time resources. In Frequency Division Duplex (FDD), uplink and downlink transmissions may operate using different frequency carriers. In FDD, since the downlink signal uses a different frequency carrier than the uplink signal, DL-UL interference can be avoided.
发明内容Contents of the invention
在一个示例性方面,本申请提供了一种用于动态地对上行链路-下行链路(UL-DL)时分双工(TDD)配置进行重新配置的用户设备(UE),所述用户设备具有计算机电路,所述计算机电路被配置为:从节点接收UL-DL重新配置指示符,所述重新配置指示符用于动态地将灵活子帧(FlexSF)从半静态UL-DL配置重新配置到不同的UL-DL传输方向,其中所述FlexSF能够改变UL-DL传输方向;基于有利于DL的UL-DL配置应用DL信道时序,其中所述有利于DL的UL-DL配置比半静态UL-DLTDD配置包括更多的用于UE的DL子帧;以及基于有利于UL的UL-DL配置应用UL信道时序,其中所述有利于UL的UL-DL配置比半静态UL-DL TDD配置包括更多的用于UE的UL子帧。In one exemplary aspect, the present application provides a user equipment (UE) for dynamically reconfiguring an uplink-downlink (UL-DL) time division duplex (TDD) configuration, the user equipment Having computer circuitry configured to receive a UL-DL reconfiguration indicator from a node for dynamically reconfiguring a flexible subframe (FlexSF) from a semi-static UL-DL configuration to Different UL-DL transmission directions, where the FlexSF is capable of changing the UL-DL transmission direction; applying DL channel timing based on DL-friendly UL-DL configurations, where the DL-friendly UL-DL configurations are more efficient than semi-static UL-DL The DLTDD configuration includes more DL subframes for the UE; and applying UL channel timing based on the UL-friendly UL-DL configuration including more UL-DL configurations than the semi-static UL-DL TDD configuration More UL subframes for UE.
附图说明Description of drawings
根据下面的详细描述并结合附图,本公开的特征和优点将是显而易见的,附图一起以示例的方式示出本公开的特征;并且其中:Features and advantages of the present disclosure will become apparent from the following detailed description taken in conjunction with the accompanying drawings, which together illustrate features of the disclosure by way of example; and in which:
图1示出根据示例的图,该图关于时分双工(TDD)系统中动态上行链路-下行链路(UL-DL)重新配置的使用;Figure 1 shows a diagram according to an example about the use of dynamic uplink-downlink (UL-DL) reconfiguration in a time division duplex (TDD) system;
图2示出根据示例的图,该图关于具有灵活子帧(FlexSF)的老式长期演进(LTE)帧结构2(FS2);Fig. 2 shows a diagram according to an example, which relates to an old-fashioned long-term evolution (LTE) frame structure 2 (FS2) with flexible subframes (FlexSF);
图3示出根据示例的表(表2),该表用于对一组老式长期演进(LTE)上行链路-下行链路(UL-DL)时分双工(TDD)配置进行混合自动重复请求(HARQ)定时;Figure 3 shows a table (Table 2) for Hybrid Automatic Repeat Request for a set of legacy Long Term Evolution (LTE) Uplink-Downlink (UL-DL) Time Division Duplex (TDD) configurations according to an example (HARQ) timing;
图4示出根据示例的图,该图关于在一组老式长期演进(LTE)上行链路-下行链路(UL-DL)时分双工(TDD)配置中的灵活子帧(FlexSF);Figure 4 shows a diagram, according to an example, about flexible subframes (FlexSF) in a set of legacy Long Term Evolution (LTE) Uplink-Downlink (UL-DL) Time Division Duplex (TDD) configurations;
图5示出根据示例的图,该图关于具有动态上行链路-下行链路(UL-DL)重新配置的用户设备(UE)的混合自动重复请求(HARQ)操作;Fig. 5 shows a diagram according to an example, which relates to the operation of hybrid automatic repeat request (HARQ) of a user equipment (UE) with dynamic uplink-downlink (UL-DL) reconfiguration;
图6描绘根据示例的流程图,该流程图关于长期演进(LTE)时分双工(TDD)网络中具有动态上行链路-下行链路(UL-DL)重新配置的用户设备(UE)和演进的Node B(eNB)的行为模型;FIG. 6 depicts a flow diagram according to an example regarding user equipment (UE) and evolution with dynamic uplink-downlink (UL-DL) reconfiguration in a long term evolution (LTE) time division duplex (TDD) network. Behavior model of Node B (eNB);
图7描绘根据示例的流程图,该流程图关于由演进的Node B(eNB)动态地对上行链路-下行链路(UL-DL)时分双工(TDD)配置进行重新配置的方法;FIG. 7 depicts a flow chart according to an example, about a method for dynamically reconfiguring an uplink-downlink (UL-DL) time division duplex (TDD) configuration by an evolved Node B (eNB);
图8描绘根据示例的用户设备(UE)的计算机电路,该用户设备可操作来动态地对上行链路-下行链路(UL-DL)时分双工(TDD)配置进行重新配置;8 depicts computer circuitry of a user equipment (UE) operable to dynamically reconfigure an uplink-downlink (UL-DL) time division duplex (TDD) configuration according to an example;
图9示出根据示例的节点(比如,eNB)和无线设备(比如,UE)的框图;以及9 shows a block diagram of a node (eg, eNB) and a wireless device (eg, UE) according to an example; and
图10示出根据示例的无线设备(比如,UE)的图。10 shows a diagram of a wireless device, such as a UE, according to an example.
现在将参考所示出的示例性实施例,并且具体的语言将在本文中被用于描述这些示例性实施例。然而,应当理解的是,本发明的范围不旨在由此受到限制。Reference will now be made to the illustrated exemplary embodiments, and specific language will be used herein to describe these exemplary embodiments. It should be understood, however, that the scope of the present invention is not intended to be limited thereby.
具体实施方式Detailed ways
详细描述Detailed Description
在公开和描述本发明之前,应当理解的是,本发明不限于本文中所公开的特定结构、处理步骤或材料,而是扩展到本领域普通技术人员会认识到的等同物。还应当理解的是,本文所采用的技术仅用于描述特定示例的目的,而不旨在进行限制。在不同的附图中相同的标号代表相同的元件。流程图和步骤中所提供的数字是为了清楚地示出步骤和操作而被提供,并不一定指示特定的顺序或次序。Before the present invention is disclosed and described, it is to be understood that this invention is not limited to the particular structures, process steps or materials disclosed herein, but extends to equivalents that those skilled in the art will recognize. It should also be understood that the techniques employed herein are for the purpose of describing particular examples only and are not intended to be limiting. The same reference numerals in different drawings represent the same elements. Numbers provided in flowcharts and steps are provided for clarity of illustration of steps and operations and do not necessarily indicate a particular order or sequence.
示例实施例example embodiment
下面提供技术实施例的初步概述,随后更详细地描述具体的技术实施例。本初步总结旨在帮助读者更快速地理解本技术,而不旨在标识本技术的关键特征或必要特征,也不旨在限制所要求保护的主题的范围。A preliminary overview of technical embodiments is provided below, followed by a more detailed description of specific technical embodiments. This preliminary summary is intended to help readers understand the technology more quickly, not to identify key features or essential features of the technology, nor to limit the scope of the claimed subject matter.
时分双工(TDD)可以提供灵活的部署,而无需使用一对频谱资源。对于TDD部署,当在网络中的小区之间使用不同的上行链路-下行链路(UL-DL)配置时,上行链路(UL)和下行链路(DL)传输之间的干扰(包括基站到基站(BS到BS)干扰和UE到UE干扰)可以被考虑。Time division duplexing (TDD) can provide flexible deployment without using a pair of spectrum resources. For TDD deployments, interference between uplink (UL) and downlink (DL) transmissions (including Base station to base station (BS to BS) interference and UE to UE interference) can be considered.
图1示出使用时分双工(TDD)的具有不同的节点传输功率的分层HetNet部署。节点传输功率可以指由节点类型(比如,宏小区中的宏节点(比如,宏演进Node B(eNB))和相应的小小区中的多个低功率节点(LPN或小eNB))产生的功率。本文中所使用的小区可以指节点或节点的覆盖区域。宏节点可以以较高的功率水平(例如,约5瓦特(W)到40W)进行发射以覆盖宏小区。HetNet可以被低功率节点(LPN)覆盖,这些低功率节点可以以低得多的功率水平(比如,约100毫瓦(mW)到2W)进行发射。在示例中,宏节点的可用传输功率可以是低功率节点的可用传输功率的至少十倍。LPN可以在热点或热区(指具有高无线流量负载或大量主动传输的无线设备(比如,用户设备(UE))的区域)中使用。LPN可以在微小区、微微小区、毫微微小区和/或家庭网络中使用。小小区0示出无线设备(比如,UE)大量使用下行链路流量,小小区1示出无线设备大量使用上行链路流量。在FDD示例中,宏小区可以为DL使用频带F1、为UL使用F2,小小区可以为DL使用频带F3、为UL使用F4。在TDD示例中,频带F1(或F2)可以被宏小区用于DL或UL,频带F3/F4可以被小小区用于DL和UL。在另一示例中,宏小区和小小区可以使用相同的频带F1、F2、F3或F4。Figure 1 shows a hierarchical HetNet deployment with different node transmission powers using time division duplexing (TDD). Node transmit power may refer to the power generated by a node type such as a macro node (e.g. macro evolved Node B (eNB)) in a macro cell and multiple low power nodes (LPN or small eNBs) in a corresponding small cell . A cell as used herein may refer to a node or a coverage area of a node. A macro node may transmit at a higher power level (eg, about 5 watts (W) to 40W) to cover a macro cell. The HetNet can be covered by low power nodes (LPNs) that can transmit at much lower power levels (eg, about 100 milliwatts (mW) to 2W). In an example, the available transmit power of the macro node may be at least ten times the available transmit power of the low power node. LPNs may be used in hotspots or hot zones (referring to areas with high wireless traffic loads or large numbers of wireless devices (eg, user equipment (UE)) actively transmitting). LPNs may be used in microcells, picocells, femtocells, and/or home networks. Small cell 0 shows heavy use of downlink traffic by wireless devices (eg, UEs), and small cell 1 shows heavy use of uplink traffic by wireless devices. In an FDD example, a macro cell may use frequency band F1 for DL and F2 for UL, and a small cell may use frequency band F3 for DL and F4 for UL. In a TDD example, frequency band F1 (or F2) may be used by macro cells for DL or UL, and frequency bands F3/F4 may be used by small cells for DL and UL. In another example, the macro cell and the small cell may use the same frequency band F1, F2, F3 or F4.
在一些示例中,允许自适应UL-DL配置可以显著提高系统性能,这种自适应UL-DL配置取决于不同小区中的流量状况。图1示出的示例中,不同的小区中可以考虑不同的UL-DL配置。网络(比如,HetNet或同构网络)可以涉及被单个运营商或不同运营商部署在同一频带中且采用相同或不同的上行链路-下行链路(UL-DL)配置的相同的载波或不同的载波。不同的UL-DL配置可以被网络(比如,HetNet)中不同的小区使用,被不同的运营商部署在同一频带中的不同的载波可以通过采用相同或不同的上行链路-下行链路配置被使用。干扰可以包括相邻信道干扰(当不同的载波频率被使用时)以及同信道干扰(当相同的载波频率被使用时),比如远程节点到节点干扰(或BS到BS干扰或eNB到eNB干扰)。In some examples, system performance can be significantly improved by allowing adaptive UL-DL configurations depending on traffic conditions in different cells. In the example shown in Fig. 1, different UL-DL configurations may be considered in different cells. A network (e.g. a HetNet or a homogeneous network) may involve the same carrier or different carriers deployed in the same frequency band and with the same or different uplink-downlink (UL-DL) carrier. Different UL-DL configurations can be used by different cells in the network (for example, HetNet), and different carriers deployed in the same frequency band by different operators can be configured by using the same or different uplink-downlink configurations. use. Interference can include adjacent channel interference (when different carrier frequencies are used) as well as co-channel interference (when the same carrier frequency is used), such as remote node-to-node interference (or BS-to-BS interference or eNB-to-eNB interference) .
各种无线电接入技术(RAT)(比如,老式(legacy)LTE TDD版本(Release)8、9、10或11以及先行(advance)LTE TDD版本12)可以通过提供七种不同的半静态配置的上行链路-下行链路配置(即,老式UL-DL TDD配置)来支持非对称UL-DL分配。老式UL-DL TDD配置可以指LTE TDD版本8、9、10或11中所描述的UL-DL TDD配置。表1示出LTE中所用的七种UL-DL配置,其中“D”代表下行链路子帧,“S”代表特殊子帧,“U”代表上行链路子帧。在示例中,特殊子帧可以起到下行链路子帧的作用或者被作为下行链路子帧来对待。Various radio access technologies (RATs) (for example, legacy (legacy) LTE TDD release (Release) 8, 9, 10 or 11 and advanced (advance) LTE TDD release 12) can provide seven different semi-static configurations Uplink-downlink configuration (ie legacy UL-DL TDD configuration) to support asymmetric UL-DL allocation. Legacy UL-DL TDD configurations may refer to UL-DL TDD configurations described in LTE TDD Release 8, 9, 10 or 11. Table 1 shows seven UL-DL configurations used in LTE, where "D" represents a downlink subframe, "S" represents a special subframe, and "U" represents an uplink subframe. In an example, a special subframe may function as or be treated as a downlink subframe.
表1Table 1
如表1所示出的,UL-DL配置0可以包括6个上行链路子帧(子帧2、3、4、7、8和9)以及4个下行链路和特殊子帧(子帧0、1、5和6);UL-DL配置5可以包括一个上行链路子帧(子帧2)以及9个下行链路和特殊子帧(子帧0、1、3-9)。As shown in Table 1, UL-DL configuration 0 may include 6 uplink subframes (subframes 2, 3, 4, 7, 8, and 9) and 4 downlink and special subframes (subframes 0, 1, 5 and 6); UL-DL configuration 5 may include one uplink subframe (subframe 2) and 9 downlink and special subframes (subframes 0, 1, 3-9).
老式LTE UL-DL TDD配置集合可以提供40%-90%的DL子帧分配以及10%-60%的UL子帧分配,如表1中所示出的。在任何给定时刻,半静态分配可能不与瞬时流量情况相匹配。用于改变UL-DL分配的一种机制可以基于系统信息变更程序,在该程序中,无线电帧内的UL和DL子帧分配可以通过系统信息广播信令(比如,系统信息块1(SIB1))被重新配置。因此,可以预计被配置过的UL-DL分配半静态地变化。对于基于SIB1的机制,约640毫秒(ms)的最小时延可以被用于重新配置。The legacy LTE UL-DL TDD configuration set may provide 40%-90% DL subframe allocation and 10%-60% UL subframe allocation, as shown in Table 1. At any given moment, a semi-static allocation may not match the instantaneous flow situation. One mechanism for changing the UL-DL allocation can be based on a system information change procedure, where the UL and DL subframe allocations within a radio frame can be signaled through system information broadcasts (e.g., System Information Block 1 (SIB1) ) is reconfigured. Therefore, the configured UL-DL allocation can be expected to vary semi-statically. For SIB1 based mechanisms, a minimum latency of about 640 milliseconds (ms) can be used for reconfiguration.
因此,基于特定于小区的瞬时流量需求,老式LTE网络可能不适应UL-DL配置。整个网络上DL和UL帧资源的半静态配置可能不允许基于瞬时流量需求对DL和UL资源的量进行调整。由于小小区中的流量状况可以变化很大,无法基于瞬时流量情况调整DL和UL资源可能限制宏小区覆盖区域中所部署的小小区。DL和UL帧资源数的动态分配可以提高操作在TDD频谱中的LTE小小区网络的性能。Therefore, legacy LTE networks may not be suitable for UL-DL configurations based on cell-specific instantaneous traffic demands. The semi-static configuration of DL and UL frame resources across the network may not allow the amount of DL and UL resources to be adjusted based on instantaneous traffic demands. Since traffic conditions in small cells can vary greatly, the inability to adjust DL and UL resources based on instantaneous traffic conditions may limit small cells deployed in macrocell coverage areas. The dynamic allocation of DL and UL frame resource numbers can improve the performance of LTE small cell networks operating in TDD spectrum.
例如,可以使用一些机制来以较低的时延(比如,10ms)支持UL和DL子帧(比如,图2中所示出的“灵活子帧”(FlexSF))的动态分配。灵活子帧能够改变一组老式UL-DL TDD配置的上行链路-下行链路传输方向。例如,在七种不同的半静态配置的老式LTE UL-DL TDD配置(图4)中,子帧索引为3、4、7、8和9的子帧可以在UL或DL子帧间变化。因为对于七种不同的半静态配置的老式LTE UL-DL TDD配置,子帧0、1、2、5和6的传输方向可以被固定为主要是UL子帧(比如,子帧2)或DL子帧(比如,DL子帧0和5,特殊子帧1,或者DL或特殊子帧6),这些子帧(子帧0、1、2、5和6)可以被称为固定子帧。For example, mechanisms may be used to support dynamic allocation of UL and DL subframes (eg, "Flexible Subframes" (FlexSF) shown in FIG. 2 ) with low latency (eg, 10 ms). Flexible subframes can change the uplink-downlink transmission direction of a set of legacy UL-DL TDD configurations. For example, in seven different semi-statically configured legacy LTE UL-DL TDD configurations (Fig. 4), subframes with subframe indices 3, 4, 7, 8 and 9 can vary between UL or DL subframes. Because for seven different semi-statically configured legacy LTE UL-DL TDD configurations, the transmission direction of subframes 0, 1, 2, 5, and 6 can be fixed to be primarily UL subframes (say, subframe 2) or DL subframes. subframes (eg, DL subframes 0 and 5, special subframe 1, or DL or special subframe 6), these subframes (subframes 0, 1, 2, 5, and 6) may be referred to as fixed subframes.
本文所描述的技术(比如,方法、计算机电路、节点、配置设备、处理器、收发机或UE)可以使得信令机制和老式UL-DL配置中子帧类型(比如,UL或DL)的动态变化能够支持LTE物理帧结构中DL和UL资源的动态分配。该技术可以与老式LTE网络(即,LTE版本8、9、10或11)兼容并可能对老式终端(例如,UE)影响最小,并且可以为动态改变提供较低的实现复杂性。该技术可以为LTE TDD小小区中DL和UL帧资源的动态重新配置提供快速适应时间标度(比如,10ms)。The techniques (e.g., methods, computer circuits, nodes, configuration devices, processors, transceivers, or UEs) described herein can enable the dynamics of subframe types (e.g., UL or DL) in signaling mechanisms and legacy UL-DL configurations. Changes can support dynamic allocation of DL and UL resources in the LTE physical frame structure. This technique may be compatible with legacy LTE networks (ie, LTE Release 8, 9, 10 or 11) and may have minimal impact on legacy terminals (eg, UEs), and may provide low implementation complexity for dynamic changes. This technique can provide a fast adaptive time scale (eg, 10 ms) for dynamic reconfiguration of DL and UL frame resources in an LTE TDD small cell.
支持UL-DL TDD重新配置的先进UE(比如,支持LTE版本12的功能的UE)可以通过将FlexSF配置到不同的传输方向(比如,UL到DL,或DL到UL)来动态地将半静态配置的老式LTEUL-DL TDD配置重新配置为另一种配置。FlexSF对于使用LTE TDD版本8、9、10或11的老式UE可以是透明的,通过系统信息块类型1(SIB1)信息比特,可以对于老式UE半静态地改变FlexSF的UL或DL配置。节点可以负责正确地安排老式UE的数据传输,以确保即使当支持FlexSF的先进UE的TDD配置被改变时,相应的物理上行链路共享信道(PUSCH)以及物理下行链路共享信道(PDSCH)和PUSCH的混合自动重复请求-确认(HARQ-ACK)资源仍然有效。Advanced UEs that support UL-DL TDD reconfiguration (e.g., UEs that support LTE Release 12 functionality) can dynamically convert the semi-static Configured legacy LTE UL-DL TDD configuration reconfigured into another configuration. FlexSF can be transparent to legacy UEs using LTE TDD Release 8, 9, 10 or 11, and the UL or DL configuration of FlexSF can be semi-statically changed for legacy UEs through System Information Block Type 1 (SIB1) information bits. Nodes can be responsible for properly scheduling data transmissions for legacy UEs to ensure that the corresponding Physical Uplink Shared Channel (PUSCH) as well as Physical Downlink Shared Channel (PDSCH) and The hybrid automatic repeat request-acknowledgement (HARQ-ACK) resource of PUSCH is still valid.
下行链路信号或信道可以包括物理下行链路共享信道(PDSCH)上的数据或物理下行链路控制信道(PDCCH)上的控制信息。PDCCH(或增强的PDCCH)可以承载被称为下行链路控制信息(DCI)的消息,该消息可以包括传输资源分配(比如,PDSCH或PUSCH),以及用于UE或UE群组的其它的控制信息。许多PDCCH可以在子帧中被传送。上行链路信号或信道可以包括物理上行链路共享信道(PUSCH)上的数据或物理上行链路控制信道(PUCCH)上的控制信息。自动重复请求是一种反馈机制,通过这种反馈机制,接收终端请求被检测为错误的分组进行重传。混合ARQ是将自动重发请求(ARQ)和前向纠错(FEC)同时组合。当HARQ被使用并且如果错误可以被FEC校正,则可以不要求整个重发,否则如果错误可以被检测到但是不能被校正,则可以请求整个重发。确认(ACK)信号可以被发送以指示一个或多个数据块(比如,PDSCH中的数据块)已经成功地被接收和解码。HARQ-ACK/否定确认(NACK或NAK)信息可以包括从接收机到发射机的反馈以确认对分组的正确接收或要求新的重传(经由NACK或NAK)。PDSCH HARQ可以在下行链路子帧中的PDSCH之后在上行链路子帧中被发送,PUSCH HARQ可以在上行链路子帧中的PUSCH之后在下行链路子帧中被发送。在老式系统中,UL/UL授权(grant)之间的时序(timing)关系、DL/UL数据分配以及DL/ULHARQ反馈可以是预定的。The downlink signal or channel may include data on a Physical Downlink Shared Channel (PDSCH) or control information on a Physical Downlink Control Channel (PDCCH). The PDCCH (or enhanced PDCCH) can carry messages called Downlink Control Information (DCI), which can include transmission resource allocations (such as PDSCH or PUSCH), and other controls for UEs or groups of UEs information. Many PDCCHs may be transmitted in a subframe. The uplink signals or channels may include data on a Physical Uplink Shared Channel (PUSCH) or control information on a Physical Uplink Control Channel (PUCCH). Automatic repeat request is a feedback mechanism by which a receiving terminal requests retransmission of packets detected as errors. Hybrid ARQ combines Automatic Repeat Request (ARQ) and Forward Error Correction (FEC) at the same time. When HARQ is used and if the error can be corrected by FEC, the full retransmission may not be required, otherwise if the error can be detected but cannot be corrected, the full retransmission may be requested. An acknowledgment (ACK) signal may be sent to indicate that one or more data blocks (eg, data blocks in the PDSCH) have been successfully received and decoded. HARQ-ACK/Negative Acknowledgment (NACK or NAK) information may include feedback from the receiver to the transmitter to confirm correct receipt of the packet or to require a new retransmission (via NACK or NAK). The PDSCH HARQ may be transmitted in the uplink subframe after the PDSCH in the downlink subframe, and the PUSCH HARQ may be transmitted in the downlink subframe after the PUSCH in the uplink subframe. In legacy systems, the timing relationship between UL/UL grants, DL/UL data allocation, and DL/UL HARQ feedback may be predetermined.
在老式LTE中,七种半静态配置的UL-DL TDD配置中的每种配置可以具有与UL子帧相对应的PDSCH HARQ时序以及与DL子帧相对应的PUSCH调度时序和PUSCH HARQ时序。例如,表2示出LTE中所用的七种UL-DL配置的PDSCH HARQ时序,如图3所示。PDSCH传输可以通过检测到相应的PDCCH或者指示(一个或多个)子帧n-k内下行链路的SPS版本的PDCCH被指示,其中k∈K并且表2中所定义的K(也在3GPP技术规范(TS)36.213V11.0.0(2012-09)的表10.1.3.1-1中被示出)是取决于子帧n的M个元素{k0,k1,…,kM-1}的集合。例如,表2中的上行链路子帧n可以被用于传输(一个或多个)子帧n-k中的PDSCH的(一个或多个)PDSCH HARQ-ACK。In legacy LTE, each of the seven semi-statically configured UL-DL TDD configurations may have PDSCH HARQ timing corresponding to UL subframes and PUSCH scheduling timing and PUSCH HARQ timing corresponding to DL subframes. For example, Table 2 shows the PDSCH HARQ timing of seven UL-DL configurations used in LTE, as shown in FIG. 3 . PDSCH transmission can be indicated by detecting the corresponding PDCCH or PDCCH indicating the SPS version of the downlink in subframe(s) nk, where k∈K and K as defined in Table 2 (also in 3GPP Technical Specification (shown in Table 10.1.3.1-1 of TS) 36.213V11.0.0 (2012-09)) is a set of M elements {k0 ,k1 ,...,kM-1 } depending on subframe n . For example, uplink subframe n in Table 2 may be used to transmit PDSCH HARQ-ACK(s) of PDSCH in subframe(s) nk.
例如,在SIB1所指示的TDD配置1中,UL子帧2可以提供PDSCHHARQ-ACK用于此前无线电帧的DL子帧5和6,UL子帧3可以提供PDSCH HARQ-ACK用于此前帧的DL子帧9,UL子帧7可以提供PDSCH HARQ-ACK用于此前帧的DL子帧0和1,UL子帧8可以提供PDSCH HARQ-ACK用于此前帧的DL子帧4。在示例中,下行链路子帧和上行链路子帧间可以发生至少四个子帧,以允许下行链路传输、PDCCH和/或上行链路传输的传输、解码和处理。For example, in TDD configuration 1 indicated by SIB1, UL subframe 2 may provide PDSCH HARQ-ACK for DL subframes 5 and 6 of the previous radio frame, and UL subframe 3 may provide PDSCH HARQ-ACK for DL subframes of the previous frame. Subframe 9 and UL subframe 7 can provide PDSCH HARQ-ACK for DL subframes 0 and 1 of the previous frame, and UL subframe 8 can provide PDSCH HARQ-ACK for DL subframe 4 of the previous frame. In an example, at least four subframes may occur between a downlink subframe and an uplink subframe to allow transmission, decoding and processing of downlink transmissions, PDCCH and/or uplink transmissions.
表3示出LTE中所用的七种UL-DL配置的PUSCH调度时序。对于属于{1,2,3,4,5,6}的UL-参考(reference)UL/DL配置和正常HARQ操作,当在子帧n(该子帧n旨在用于UE)中检测到PDCCH或具有上行链路DCI格式的增强的物理下行链路控制信道(EPDCCH或ePDCCH)和/或物理混合自动重复请求(ARQ)指示符信道(PHICH)传输时,UE可以根据PDCCH/EPDCCH信息和PHICH信息调整子帧n+k中的相应的PUSCH传输,其中k在表3(也在3GPP技术规范(TS)36.213V11.0.0(2012-09)的表8-2中被示出)中给出。物理混合ARQ指示符信道(PHICH)是承载HARQ ACK/NACK信息的下行链路物理信道,该信息指示节点是否已经正确地接收PUSCH上的传输。对于UL-参考UL/DL配置0和正常的HARQ操作,DCI格式0/4中的UL索引的最低有效位(LSB)可以在子帧n中被置为1或者PHICH可以在与IPHICH=1相对应的资源中的子帧n=0或5中被接收,或者PHICH可以在子帧n=1或6被接收,UE可以调整子帧n+7中相应的PUSCH传输。Table 3 shows the PUSCH scheduling timings of seven UL-DL configurations used in LTE. For UL-reference UL/DL configurations belonging to {1,2,3,4,5,6} and normal HARQ operation, when detected in subframe n (the subframe n is intended for UE) When PDCCH or enhanced physical downlink control channel (EPDCCH or ePDCCH) with uplink DCI format and/or physical hybrid automatic repeat request (ARQ) indicator channel (PHICH) transmission, the UE can according to the PDCCH/EPDCCH information and The PHICH information adjusts the corresponding PUSCH transmission in subframe n+k, where k is given in Table 3 (also shown in Table 8-2 of 3GPP Technical Specification (TS) 36.213V11.0.0 (2012-09)) out. Physical Hybrid ARQ Indicator Channel (PHICH) is a downlink physical channel that carries HARQ ACK/NACK information indicating whether a node has correctly received a transmission on PUSCH. For UL-reference UL/DL configuration 0 and normal HARQ operation, the least significant bit (LSB) of the UL index in DCI format 0/4 can be set to 1 in subframe n or PHICH can be set to 1 with IPHICH = 1 The corresponding resource is received in subframe n=0 or 5, or the PHICH can be received in subframe n=1 or 6, and the UE can adjust the corresponding PUSCH transmission in subframe n+7.
表3table 3
例如在SIB1所指示的TDD配置1中,DL子帧1可以将PUSCH调度在UL子帧7中,DL子帧4可以将PUSCH调度在UL子帧8中,DL子帧6可以将PUSCH调度在随后的无线电帧的UL子帧2中,DL子帧9可以将PUSCH调度在随后的帧的UL子帧3中。在示例中,至少四个子帧可以出现在下行链路子帧和上行链路子帧之间,以允许对下行链路传输、PDCCH和/或上行链路传输的传输、解码以及处理。For example, in TDD configuration 1 indicated by SIB1, DL subframe 1 may schedule PUSCH in UL subframe 7, DL subframe 4 may schedule PUSCH in UL subframe 8, and DL subframe 6 may schedule PUSCH in UL subframe 8. In UL subframe 2 of the following radio frame, DL subframe 9 may schedule the PUSCH in UL subframe 3 of the following frame. In an example, at least four subframes may occur between a downlink subframe and an uplink subframe to allow transmission, decoding and processing of downlink transmissions, PDCCH and/or uplink transmissions.
表4示出LTE中所用的七种UL/DL配置的PUSCH HARQ的时序。对于子帧n中的服务小区c所调度的PUSCH传输,UE可以判定子帧n+kPHICH中服务小区c的相应的PHICH,其中kPHICH在表4中被给定(也在3GPP技术规范(TS)36.213V11.0.0(2012-09)的表9.1.2-1中被示出)。Table 4 shows the timing of PUSCH HARQ for seven UL/DL configurations used in LTE. For the PUSCH transmission scheduled by serving cell c in subframe n, UE can determine the corresponding PHICH of serving cell c in subframe n+kPHICH , where kPHICH is given in Table 4 (also in 3GPP technical specification ( TS) 36.213V11.0.0 (2012-09) is shown in Table 9.1.2-1).
表4Table 4
例如在SIB1所指示的TDD配置0中,UL子帧2的PUSCH HARQ-ACK可以在DL子帧6中被发送,UL子帧3的PUSCH HARQ-ACK可以在DL子帧9中被发送,UL子帧7的PUSCH HARQ-ACK可以在随后的无线电帧的DL子帧1中被发送,UL子帧8的PUSCH HARQ-ACK可以在随后的帧的DL子帧4中被发送。在示例中,至少四个子帧可以出现在上行链路子帧和下行链路子帧之间,以允许对下行链路传输、上行链路传输和/或PHICH的解码和处理。For example, in TDD configuration 0 indicated by SIB1, the PUSCH HARQ-ACK of UL subframe 2 can be sent in DL subframe 6, the PUSCH HARQ-ACK of UL subframe 3 can be sent in DL subframe 9, and the UL subframe 2 can be sent in DL subframe 9. The PUSCH HARQ-ACK of subframe 7 may be transmitted in DL subframe 1 of the subsequent radio frame, and the PUSCH HARQ-ACK of UL subframe 8 may be transmitted in DL subframe 4 of the subsequent frame. In an example, at least four subframes may occur between an uplink subframe and a downlink subframe to allow decoding and processing of downlink transmissions, uplink transmissions and/or PHICH.
本文中所描述的动态重新配置技术(比如,方法、计算机电路、节点、配置设备、处理器、收发机或UE)可以在保留流量适应能力的完全的灵活性的同时,以对UE终端和LTE规范的最小的改变向UL-DL TDD配置提供动态重新配置。此外,该技术可以不增加新的物理(PHY)层信令或改变PHY层信令来支持时间标度大约为10ms的快速适应。The dynamic reconfiguration techniques (e.g., methods, computer circuits, nodes, configuration devices, processors, transceivers, or UEs) described herein can be used for both UE terminals and LTE Minimal change of specification provides dynamic reconfiguration to UL-DL TDD configuration. In addition, the technique can support fast adaptation with a time scale of approximately 10 ms without adding new physical (PHY) layer signaling or changing PHY layer signaling.
在示例中,该技术可以使用现有的老式LTE UL-DL配置而不增加新的UL-DL配置。老式UE(比如,LTE版本8-11UE)可以使用SIB1中所广播的半静态UL-DL配置来进行操作,以使得动态重新配置对老式UE行为的影响最小或没有影响。动态重新配置技术可以支持先进的UE(比如,LTE版本12UE)的快速适应时间标度,而不引入附加的物理层信令,并且不改变LTE PHY物理结构。动态重新配置技术可以重复使用针对老式UE所定义的HARQ操作时间线,并保留小小区中的灵活的流量适应能力。In an example, the technique can use existing legacy LTE UL-DL configurations without adding new UL-DL configurations. Legacy UEs (eg, LTE Release 8-11 UEs) may operate using the semi-static UL-DL configuration broadcast in SIB1 such that dynamic reconfiguration has minimal or no impact on legacy UE behavior. Dynamic reconfiguration techniques can support fast adaptive time scaling of advanced UEs (eg, LTE Release 12 UEs) without introducing additional physical layer signaling and without changing the LTE PHY physical structure. The dynamic reconfiguration technology can reuse the HARQ operation timeline defined for legacy UEs, and retain the flexible traffic adaptation capability in small cells.
动态重新配置技术可以利用灵活子帧(FlexSF)机制,如图4所示。在具有动态UL-DL重新配置的LTE TDD系统中,子帧可以根据它们在老式LTE UL-DL配置之间改变传输方向的可能性被分类。例如,因为7种老式LTE UL-DL配置的子帧0、1、5和6不可能从DL传输方向发生变化,这些子帧可以被分类为正常的(或静态的)DL子帧(即,包括DL子帧和特殊子帧)。因为子帧2不可能从UL传输方向发生变化,7种老式LTE UL-DL配置的子帧2可以被分类为正常的或静态的UL子帧。因为7种老式LTE UL-DL配置的子帧3、4、7、8和9可以被配置为DL子帧或UL子帧(即,针对7种老式LTE UL-DL配置,将传输方向从DL变为UL或从UL变为DL)(取决于老式LTE UL-DL配置),这些子帧可以被分类为灵活子帧。例如,子帧3可以针对LTE UL-DL配置0、1、3、4和6被配置为UL子帧,或者针对LTE UL-DL配置2和5被配置为DL子帧。图4示出7种老式LTE UL-DL配置(即,LTE UL-DL配置0-6)的灵活子帧的传输方向。The dynamic reconfiguration technique can utilize the flexible subframe (FlexSF) mechanism, as shown in FIG. 4 . In LTE TDD systems with dynamic UL-DL reconfiguration, subframes can be classified according to their likelihood of changing transmission direction between legacy LTE UL-DL configurations. For example, because subframes 0, 1, 5, and 6 of the seven legacy LTE UL-DL configurations are unlikely to change from the DL transmission direction, these subframes can be classified as normal (or static) DL subframes (i.e., including DL subframes and special subframes). Since subframe 2 is unlikely to change from the UL transmission direction, subframe 2 of the seven legacy LTE UL-DL configurations can be classified as a normal or static UL subframe. Because subframes 3, 4, 7, 8, and 9 of the 7 legacy LTE UL-DL configurations can be configured as DL subframes or UL subframes (i.e., for the 7 legacy LTE UL-DL configurations, the transmission direction is changed from DL to UL or from UL to DL) (depending on legacy LTE UL-DL configuration), these subframes may be classified as flexible subframes. For example, subframe 3 may be configured as a UL subframe for LTE UL-DL configurations 0, 1, 3, 4, and 6, or as a DL subframe for LTE UL-DL configurations 2 and 5. FIG. 4 shows the transmission directions of flexible subframes of seven legacy LTE UL-DL configurations (ie, LTE UL-DL configurations 0-6).
在另一示例中,针对先进的UE,被SIB1中的UL-DL配置1配置为UL的灵活子帧(即,子帧3、7和8)的传输方向可以被改变为DL。先进的UE的动态重新配置可以意味着老式UE的兼容操作,因为如果老式UE不被调度或者不被配置为传输UL信号,则老式UE可以仅仅跳过UL子帧。此外,如果用有利于UL的UL-DL配置(比如,UL-DL配置0)对服务小区进行配置,先进的UE的动态重新配置可以不对流量适应特性有影响,因为每个灵活子帧可以动态地将传输方向从UL变为DL并变回UL,如图1中所示出的。In another example, for advanced UEs, the transmission direction of flexible subframes (ie, subframes 3, 7 and 8) configured as UL by UL-DL configuration 1 in SIB1 may be changed to DL. Dynamic reconfiguration of advanced UEs may imply compatible operation of legacy UEs, since legacy UEs may just skip UL subframes if they are not scheduled or configured to transmit UL signals. In addition, if the serving cell is configured with a UL-friendly UL-DL configuration (e.g., UL-DL configuration 0), the dynamic reconfiguration of advanced UEs may not affect the traffic adaptation characteristics, because each flexible subframe can dynamically ground to change the transmission direction from UL to DL and back to UL, as shown in FIG. 1 .
默认情况下,网络中的UE可以遵循根据SIB1中所广播的UL-DL配置的老式行为。如果网络判定动态资源分配(比如,流量不对称)可以改善流量状况,则网络(比如,经由eNB)可以对所服务的先进的UE进行配置,以操作于支持子帧类型的重新配置的动态模式。更高层信令(比如,无线电资源控制(PRC)信令)或物理层信令可以被用于激活链接到小区的先进的UE的动态UL-DL配置模式(比如,使用特定于小区的机制)。先进的UE的动态UL-DL配置模式的激活可以以特定于UE的方式被执行,使得每个先进的UE可以被独立地配置以在动态UL-DL重新配置模式中启动操作。动态UL-DL配置模式可以通过使用UL-DL重新配置指示符被激活。例如,DCI(比如,DL DCI授权或UL DCI授权)或PRC信令可以承载UL-DL重新配置指示符并可以被用于以特定于UE的方式激活动态UL-DL重新配置模式。动态UL-DL重新配置模式的激活可以被eNB确认,使得eNB和UE之间在随后的子帧中在UL/DL操作方面不存在歧义。ACK/NACK信令可以被用于动态UL-DL重新配置模式确认。老式UE可能不提供ACK或者可能没有能力提供ACK。By default, UEs in the network may follow legacy behavior according to the UL-DL configuration broadcast in SIB1. If the network determines that dynamic resource allocation (e.g., traffic asymmetry) can improve traffic conditions, the network (e.g., via the eNB) may configure the served advanced UE to operate in a dynamic mode that supports reconfiguration of subframe types . Higher layer signaling (e.g. radio resource control (PRC) signaling) or physical layer signaling can be used to activate dynamic UL-DL configuration mode for advanced UEs linked to a cell (e.g. using cell-specific mechanisms) . Activation of the advanced UE's dynamic UL-DL configuration mode may be performed in a UE-specific manner such that each advanced UE may be independently configured to initiate operation in the dynamic UL-DL reconfiguration mode. Dynamic UL-DL configuration mode can be activated by using a UL-DL reconfiguration indicator. For example, DCI (eg DL DCI grant or UL DCI grant) or PRC signaling may carry a UL-DL reconfiguration indicator and may be used to activate the dynamic UL-DL reconfiguration mode in a UE-specific manner. Activation of the dynamic UL-DL reconfiguration mode can be confirmed by the eNB so that there is no ambiguity between the eNB and the UE regarding UL/DL operation in subsequent subframes. ACK/NACK signaling may be used for dynamic UL-DL reconfiguration mode confirmation. Legacy UEs may not provide ACKs or may not be able to provide ACKs.
无线电帧的DL子帧的默认数量可以由SIB1中所广播的UL-DL配置进行控制。动态UL-DL重新配置技术可以提供一种机制,用于判定哪些子帧可以被看作或被用作先进的UE的附加的DL子帧,这种先进的UE具有动态UL-DL重新配置能力。在示例中,UL-DL重新配置指示符可以指示该组附加的灵活子帧将被配置为使用现有的一组UL-DL重新配置的DL子帧。例如,有利于UL的UL-DL配置0可以被RRC信令配置,或者有利于UL的UL-DL配置0可以经由SIB1被设置或者与SIB1所广播的UL-DL配置相关联,如图5中所示出的。有利于DL的UL-DL配置5也可以被RRC信令配置。UL-DL重新配置指示符可以将子帧4、7、8和9配置为DL子帧(比如,将传输方向从UL切换为DL),其可以动态地将无线电帧从老式LTE UL-DL配置0变为老式LTE UL-DL配置4(206),其中子帧3被从有利于DL的UL-DL配置重新配置(230)。在另一配置中,有利于DL的UL-DL配置5连同UL-Dl重新配置指示符可以将子帧3配置为UL子帧(比如,将传输方向从DL切换为UL),其可以动态地将无线电帧从有利于DL的UL-DL配置5(204)变为老式LTE UL-DL配置4(206)。在另一示例中,由于UL-DL配置不与7种老式LTE UL-DL配置中的一种相对应,UL-DL重新配置指示符可以不将子帧3配置为DL子帧而使子帧4仍然作为UL子帧。UL-DL重新配置指示符可以被用于将先进的UE从一种老式LTE UL-DL配置动态地配置为另一种老式LTE UL-DL而不改变SIB1。The default number of DL subframes of a radio frame may be controlled by the UL-DL configuration broadcast in SIB1. Dynamic UL-DL reconfiguration technology can provide a mechanism to determine which subframes can be considered or used as additional DL subframes for advanced UEs with dynamic UL-DL reconfiguration capability . In an example, the UL-DL reconfiguration indicator may indicate that the additional set of flexible subframes is to be configured as DL subframes using an existing set of UL-DL reconfiguration. For example, UL-favorable UL-DL configuration 0 may be configured by RRC signaling, or UL-favorable UL-DL configuration 0 may be set via SIB1 or associated with the UL-DL configuration broadcast by SIB1, as shown in FIG. 5 shown. The UL-DL configuration 5 that facilitates DL can also be configured by RRC signaling. The UL-DL reconfiguration indicator can configure subframes 4, 7, 8, and 9 as DL subframes (e.g., switch transmission direction from UL to DL), which can dynamically change the radio frame from legacy LTE UL-DL configuration 0 becomes legacy LTE UL-DL configuration 4 (206), where subframe 3 is reconfigured from a DL-favorable UL-DL configuration (230). In another configuration, DL-favorable UL-DL configuration 5 together with a UL-D1 reconfiguration indicator may configure subframe 3 as a UL subframe (e.g., switch transmission direction from DL to UL), which may dynamically The radio frame is changed from DL-favorable UL-DL configuration 5 (204) to legacy LTE UL-DL configuration 4 (206). In another example, since the UL-DL configuration does not correspond to one of the seven legacy LTE UL-DL configurations, the UL-DL reconfiguration indicator may not configure subframe 3 as a DL subframe but make subframe 4 is still used as a UL subframe. The UL-DL reconfiguration indicator can be used to dynamically configure an advanced UE from one legacy LTE UL-DL configuration to another legacy LTE UL-DL without changing SIB1.
在另一示例中,网络可以使用现有的这组老式LTEUL-DL配置并指示先进的UE使用有利于DL的、具有指定数目个DL子帧的UL-DL配置(比如,图5中的老式LTE UL-DL配置5(204))。有利于DL的可以以半静态的方式向有利于DL的UL-DL配置发信号(比如,RRC信令)并且不频繁地对其进行更新。一旦先进的UE已经被eNB配置了附加的、有利于DL的UL-DL配置,则先进的UE可以假设附加的这组DL灵活子帧可用于将来的操作。因此,先进的UE可以开始监视这些灵活子帧用于DL授权和数据传输的分配。因此,有利于UL的UL-DL配置以及有利于DL的UL-DL配置可以提供关于灵活子帧的数量的边界,以监视DL授权和数据传输的分配。例如,如图5中所示出的,有利于UL的UL-DL配置可以是老式LTE UL-DL配置0(208),有利于DL的UL-DL配置可以是老式LTE UL-DL配置5(204),使得所有的7种老式LTE UL-DL配置可以是可用于动态重新配置的,并且先进的UE可以监视子帧3、4、7、8和9用于DL授权和数据传输的分配。在另一示例中,有利于UL的UL-DL配置可以是老式LTE UL-DL配置6,有利于DL的UL-DL配置可以是老式LTE UL-DL配置2,使得3种LTE UL-DL配置(即,老式LTE UL-DL配置1、2和6)可以是可用于动态重新配置的,并且先进的UE可以监视子帧3、4和8用于DL授权以及数据传输的分配。对有利于UL的UL-DL配置以及有利于DL的UL-DL配置进行配置可以提供“DL灵活子帧”的保留。In another example, the network can use the existing set of legacy LTE UL-DL configurations and instruct advanced UEs to use DL-friendly UL-DL configurations with a specified number of DL subframes (for example, legacy LTE UL-DL configurations in FIG. 5 ). LTE UL-DL configuration 5 (204)). DL-favorable The DL-favorable UL-DL configuration may be signaled in a semi-static manner (eg, RRC signaling) and updated infrequently. Once the advanced UE has been configured with the additional, DL-favorable UL-DL configuration by the eNB, the advanced UE may assume that this additional set of DL flexible subframes is available for future operation. Therefore, advanced UEs can start monitoring these flexible subframes for allocation of DL grants and data transmissions. Therefore, the UL-favorable UL-DL configuration and the DL-favorable UL-DL configuration can provide a boundary on the number of flexible subframes to monitor the allocation of DL grants and data transmissions. For example, as shown in FIG. 5, the UL-favorable UL-DL configuration may be legacy LTE UL-DL configuration 0 (208), and the DL-favorable UL-DL configuration may be legacy LTE UL-DL configuration 5 ( 204), so that all 7 legacy LTE UL-DL configurations may be available for dynamic reconfiguration, and advanced UEs may monitor subframes 3, 4, 7, 8 and 9 for allocation of DL grants and data transmissions. In another example, the UL-favorable UL-DL configuration may be legacy LTE UL-DL configuration 6, and the DL-favorable UL-DL configuration may be legacy LTE UL-DL configuration 2, such that 3 LTE UL-DL configurations (ie legacy LTE UL-DL configurations 1, 2 and 6) may be available for dynamic reconfiguration, and advanced UEs may monitor subframes 3, 4 and 8 for DL grants and allocation of data transmission. Configuring UL-favorable UL-DL configurations and DL-favorable UL-DL configurations may provide for the reservation of "DL flexible subframes".
从“DL灵活子帧”到UL子帧的动态变化可以使用各种调度机制。DL DCI授权可以在DL授权被发送的情况下调度子帧的DL数据分配。因此,如果eNB确定使用老式UL子帧用于到它的先进的12个UE(被配置处于动态操作模式)的其中一个的DL数据传输,则eNB可以仅将DL授权调度在所监视的“DL灵活子帧”之一中(比如,发送下行链路DCI授权)。The dynamic change from "DL flexible subframes" to UL subframes can use various scheduling mechanisms. A DL DCI grant may schedule DL data allocation for a subframe if a DL grant is sent. Therefore, if the eNB determines to use legacy UL subframes for DL data transmission to one of its advanced 12 UEs (configured in dynamic operation mode), the eNB may only schedule DL grants in the monitored "DL in one of the "flexible subframes" (for example, sending a downlink DCI grant).
如果eNB确定将“DL灵活子帧”用作UL子帧,则至少两个选项是可用的。在一个选项中,eNB可以使用现有DCI消息并在之前的子帧240的其中一个中分配UL授权以将UL传输调度在“DL灵活子帧”的其中一个中。对于老式UE,“DL灵活子帧”可以被解释为UL子帧,如图5中老式LTE UL-DL配置0(202)所示出的。对于老式和先进的UE,eNB可以使用之前的DL子帧用于调度UL授权。因此,eNB可以使用相同的子帧为配置在动态模式中的先进的UE或老式UE分配UL授权。如果所分配的UL授权指向“DL灵活子帧”中的一个,则UE可以将该灵活子帧解释为UL子帧并为灵活子帧处将来的传输准备数据。使用现有DCI消息的一个优点是动态模式的UL授权可以不对现有DCI消息进行任何变化,并且还可以通过使用现有老式HARQ时间线被实现。If the eNB determines to use "DL flexible subframes" as UL subframes, at least two options are available. In one option, the eNB may use existing DCI messages and allocate UL grants in one of the previous subframes 240 to schedule UL transmissions in one of the "DL flexible subframes". For legacy UEs, "DL flexible subframes" can be interpreted as UL subframes, as shown in Figure 5 for legacy LTE UL-DL configuration 0 (202). For legacy and advanced UEs, eNB can use previous DL subframes for scheduling UL grants. Therefore, the eNB can use the same subframe to allocate UL grants for advanced UEs or legacy UEs configured in dynamic mode. If the allocated UL grant points to one of the "DL flexible subframes", the UE can interpret that flexible subframe as a UL subframe and prepare data for future transmission at the flexible subframe. One advantage of using existing DCI messages is that dynamic mode UL grants may not make any changes to existing DCI messages and can also be implemented by using existing legacy HARQ timelines.
在另一选项中,新的DCI消息(包括UL-DL重新配置指示符)可以被引入,以指示特定的DL子帧可以被解释为DL并被用于UL传输。使用新的DCI消息(比如,不同的DCI消息类型)可以定义新的HARQ时间线。该DCI消息可以承载将被应用到当前或下一帧的UL-DL配置,并且可以在静态DL子帧之一中被实现。这种新的UL-DL配置可以是老式UL-DL配置的子集,并且DL子帧的数量可以比所配置的有利于DL的UL-DL配置少。In another option, a new DCI message (including UL-DL reconfiguration indicator) can be introduced to indicate that a specific DL subframe can be interpreted as DL and used for UL transmission. New HARQ timelines may be defined using new DCI messages (eg, different DCI message types). This DCI message may carry the UL-DL configuration to be applied to the current or next frame, and may be implemented in one of the static DL subframes. This new UL-DL configuration may be a subset of the legacy UL-DL configuration, and the number of DL subframes may be less than the configured DL-friendly UL-DL configuration.
LTE HARQ时序(或者HARQ时间线)可以在DL数据传输中采取异步操作以及在UL数据传输中采取同步操作。例如,在DL调度授权和ULHARQ反馈(即,DL数据传输)之间可以存在固定的时间;然而,对于数据的DL重传并没有严格的时序关系。对于上行链路操作(即,UL数据传输),UL授权、UL传输、DL HARQ反馈的分配可以由严格的时序关系来确定,这些时序关系可以取决于SIB1中所广播的UL-DL配置。LTE HARQ timing (or HARQ timeline) may operate asynchronously in DL data transmission and synchronously in UL data transmission. For example, there may be a fixed time between DL scheduling grant and UL HARQ feedback (ie, DL data transmission); however, there is no strict timing relationship for DL retransmission of data. For uplink operation (ie, UL data transmission), allocation of UL grants, UL transmissions, DL HARQ feedback may be determined by strict timing relationships, which may depend on the UL-DL configuration broadcast in SIB1.
对于具有UL和DL资源的动态分配的网络系统,由于子帧可以动态地改变传输方向,老式HARQ时间线可以被修改。生成新的HARQ时间线可能在UE终端和eNodeB侧引入额外的复杂性。针对各种被动态地配置的LTE UL-DL配置,对具有特定于UE的时间线(用于DL和ULHARQ操作(比如,重用老式HARQ时间线))的终端(比如,UE)进行配置可以移除实现HARQ时间线的一些复杂性,并在动态UL-DL重新配置的情况下为DL和UL HARQ操作提供更简单的解决方案。为了使能动态UL-DL重新配置,对于先进的UE,可以通过配置两个独立的HARQ时间线来重用现有的HARQ时间线:一个HARQ时间线用于UL操作224,一个HARQ时间线用于DL操作212,如图5中所示出的。针对小区中的每个UE,这些UL-DL配置可以被独立地配置,可以被覆盖在老式UL-DL配置上。有利于UL的和有利于DL的UL-DL配置可以自动改变可用于先进的UE的操作的HARQ过程的数目。根据规范(比如,LTE规范的表2(图3)),DL HARQ过程的数目可以由有利于DL的UL-DL配置来定义。根据规范(比如,LTE规范的表4),UL HARQ过程的数目可以由有利于UL的UL-DL配置来定义。For network systems with dynamic allocation of UL and DL resources, legacy HARQ timelines can be modified since subframes can dynamically change transmission directions. Generating a new HARQ timeline may introduce additional complexity at UE terminal and eNodeB side. Configuring a terminal (e.g. UE) with UE-specific timelines for DL and UL HARQ operations (e.g. reusing legacy HARQ timelines) for various dynamically configured LTE UL-DL configurations can move Remove some of the complexity of implementing the HARQ timeline and provide a simpler solution for DL and UL HARQ operation in case of dynamic UL-DL reconfiguration. To enable dynamic UL-DL reconfiguration, for advanced UEs, the existing HARQ timeline can be reused by configuring two independent HARQ timelines: one HARQ timeline for UL operation 224 and one HARQ timeline for DL operation 212, as shown in FIG. 5 . These UL-DL configurations can be configured independently for each UE in the cell, and can be overlaid on legacy UL-DL configurations. UL-favorable and DL-favorable UL-DL configurations can automatically change the number of HARQ processes available for advanced UE's operation. According to a specification (eg, Table 2 (FIG. 3) of the LTE specification), the number of DL HARQ processes may be defined by the UL-DL configuration in favor of DL. According to a specification (eg, Table 4 of the LTE specification), the number of UL HARQ processes may be defined by the UL-DL configuration that favors UL.
在示例中,对于老式UE,UL HARQ时间线可以被设置为与SIB1所传送的UL-DL配置所定义的UL HARQ时间线相同(即,相同的HARQ时间线可以被用于UL HARQ操作)。在另一示例中,DL HARQ时间线可以被更高级别的信令(比如,RRC信令)配置。图5示出在有利于UL的LTE UL-DL配置0以及有利于DL的LTE UL-DL配置5的情况下,经修改的HARQ时序操作以及PUSCH传输时序的示例。例如,DL配置的子帧可以使用有利于DL的UL-DL配置用于DL信道时序(例如,PDSCH调度授权传输时序210、PDSCH传输时序210以及PDSCH HARQ反馈时序212(比如,表2(图3)))。UL配置的子帧可以使用有利于UL的UL-DL配置用于UL信道时序(例如,PUSCH调度授权时序220、PUSCH传输时序222(比如,表3)、PUSCH HARQ反馈时序224(比如,表4)以及PUSCH HARQ重传时序)。对于先进的UE动态UL/DL配置206,DL子帧5可以使用DL信道时序210和212,而UL配置的灵活子帧3可以使用UL信道时序220、222和224。通过使用所说明的原理,可以存在许多不同的组合和变化。In an example, for legacy UEs, the UL HARQ timeline may be set to be the same as the UL HARQ timeline defined by the UL-DL configuration transmitted by SIB1 (ie, the same HARQ timeline may be used for UL HARQ operation). In another example, the DL HARQ timeline can be configured by higher level signaling (eg, RRC signaling). Figure 5 shows an example of modified HARQ timing operation and PUSCH transmission timing in case of UL-favored LTE UL-DL configuration 0 and DL-favored LTE UL-DL configuration 5. For example, the subframe of the DL configuration can use the UL-DL configuration beneficial to DL for DL channel timing (for example, PDSCH scheduling grant transmission timing 210, PDSCH transmission timing 210, and PDSCH HARQ feedback timing 212 (for example, Table 2 (FIG. 3 ))). UL configured subframes may use UL-friendly UL-DL configurations for UL channel timing (eg, PUSCH scheduling grant timing 220, PUSCH transmission timing 222 (eg, Table 3), PUSCH HARQ feedback timing 224 (eg, Table 4 ) and PUSCH HARQ retransmission timing). For advanced UE dynamic UL/DL configuration 206 , DL subframe 5 may use DL channel timing 210 and 212 , while flexible subframe 3 of the UL configuration may use UL channel timing 220 , 222 and 224 . Many different combinations and variations are possible by using the principles described.
图6示出用于LTE TDD网络中支持动态流量适应的先进的UE的流程图300的示例。网络(经由eNB)可以根据一组老式UL-DL配置对有利于UL的UL-DL配置或者DL/UL平衡的UL-DL配置(比如,有利于DL的UL-DL配置)进行配置(302)。先进的UE(比如。LTE版本12UE)可以获取SIB1中所广播的UL-DL配置(即,老式UL-DL配置)(304)。SIB1老式UL-DL配置可以是有利于UL的UL-DL配置(相对于动态重新配置中所用的其它UL-DL配置)。先进的UE可以遵循该老式UL-DL配置所定义的HARQ时序时间线开始正常操作(306)。网络可以判定是否需要更多的DL资源(308)。如果不需要附加的DL资源,则先进的UE和eNB可以继续正常操作(操作306)。如果需要附加的资源,则eNB可以激活动态UL/DL重新配置(比如,经由RRC信令或者物理层信令发送UL-DL重新配置指示符)(310)。eNB可以根据该组老式LTEUL-DL配置对DL和有利于UL的UL-DL配置进行配置(312)。先进的UE可以遵循用于DL和UL HARQ时间线的新的配置,被新的有利于DL的UL-DL配置指定为DL的UL老式子帧可以被作为潜在的DL子帧对待(314)。eNB可以分配UL授权(316)。如果UL授权被分配,则先进的UE可以使用UL HARQ时间线来判定用来发送UL数据的子帧(如果UL授权指向DL子帧,则子帧类型被变为DL子帧)。网络可以判定DL和UL传输中的流量的量是否是均衡的(318)。如果DL和UL流量不均衡,则网络和先进的UE可以维持该新的网络配置,如操作314所示出的。如果DL和UL流量是均衡的,则eNB可以停用动态UL-DL重新配置320并从302重新开始。FIG. 6 shows an example of a flowchart 300 for an advanced UE supporting dynamic traffic adaptation in an LTE TDD network. The network (via the eNB) may configure (302) a UL-favorable UL-DL configuration or a DL/UL balanced UL-DL configuration (eg, a DL-favorable UL-DL configuration) according to a set of legacy UL-DL configurations . Advanced UEs (eg, LTE Release 12 UEs) may acquire the UL-DL configuration (ie, legacy UL-DL configuration) broadcast in SIB1 (304). The SIB1 legacy UL-DL configuration may be a UL-favorable UL-DL configuration (relative to other UL-DL configurations used in dynamic reconfiguration). Advanced UEs may begin normal operation following the HARQ timing timeline defined by the legacy UL-DL configuration (306). The network can determine whether more DL resources are needed (308). If no additional DL resources are needed, the advanced UE and eNB may continue to operate normally (operation 306). If additional resources are needed, the eNB may activate dynamic UL/DL reconfiguration (eg, send a UL-DL reconfiguration indicator via RRC signaling or physical layer signaling) (310). The eNB may configure DL and UL-favorable UL-DL configurations according to the set of legacy LTE UL-DL configurations (312). Advanced UEs may follow the new configuration for DL and UL HARQ timelines, UL legacy subframes designated as DL by the new DL-friendly UL-DL configuration may be treated as potential DL subframes (314). The eNB may allocate UL grants (316). If a UL grant is allocated, the advanced UE can use the UL HARQ timeline to decide the subframe to send UL data (if the UL grant points to a DL subframe, the subframe type is changed to DL subframe). The network may determine whether the amount of traffic in the DL and UL transmissions is balanced (318). If the DL and UL traffic is not balanced, the network and the advanced UE may maintain the new network configuration, as indicated by operation 314 . If DL and UL traffic are balanced, the eNB can disable dynamic UL-DL reconfiguration 320 and start over from 302 .
本文所描述的动态重新配置技术可以为LTE TDD系统提供各种优点和益处。例如,所描述的技术通过动态改变DL和UL资源的量来使能快速流量适应能力。在仍然支持快速10ms适应时间标度的同时可以不需要附加的物理层信令,这可以提供改善性能的优点。所描述的技术可以为与老式(比如,LTE版本11)兼容的操作提供对于老式和先进的(LTE版本12UE或终端)的动态UL-DL重新配置。所描述的技术可以通过灵活的流量适应能力重新使用现有HARQ时间线。所描述的技术可以不向LTE系统引入新的UL-DL配置;然而,通过一些微小变化(比如,HARQ时序处理),该技术可以被扩展为支持新的UL-DL配置。The dynamic reconfiguration techniques described herein may provide various advantages and benefits for LTE TDD systems. For example, the described techniques enable fast traffic adaptability by dynamically changing the amount of DL and UL resources. Additional physical layer signaling may not be required while still supporting a fast 10 ms adaptation time scale, which may provide the advantage of improved performance. The described techniques may provide dynamic UL-DL reconfiguration for legacy and advanced (LTE Release 12 UEs or terminals) for legacy (eg, LTE Release 11 ) compatible operation. The described technique can reuse existing HARQ timelines with flexible traffic adaptability. The described techniques may not introduce new UL-DL configurations to the LTE system; however, with some minor changes (eg, HARQ timing processing), the techniques can be extended to support new UL-DL configurations.
另一示例提供方法500,该方法用于由演进的节点B(eNB)动态地重新配置上行链路-下行链路(UL-DL)时分双工(TDD)配置,如图7中的流程图所示出的。该方法可以作为机器、计算机电路或UE的处理器上的指令被执行,其中指令被包括在至少一个计算机可读介质或一个非暂态机器可读存储介质上。该方法包括使用半静态UL-DL TDD配置(属于一组老式UL-DL TDD配置)对用户设备(UE)进行配置的操作,如框510。该方法的下一操作可以是在数据流量需要附加的DL或UL资源时激活动态UL-DL重新配置模式,如框520。该方法还可以包括使用UL-DL重新配置指示符动态地将半静态UL-DL TDD配置重新配置到另一老式UL-DLTDD配置来改变灵活子帧(FlexSF)的UL-DL传输方向,其中灵活子帧能够改变一组老式UL-DL TDD配置的上行链路-下行链路传输方向,如框530。Another example provides a method 500 for dynamically reconfiguring an uplink-downlink (UL-DL) time division duplex (TDD) configuration by an evolved Node B (eNB), as shown in the flowchart in FIG. 7 shown. The method may be executed as instructions on a machine, computer circuitry, or a processor of a UE, where the instructions are embodied on at least one computer-readable medium or a non-transitory machine-readable storage medium. The method includes the operation of configuring a user equipment (UE) with a semi-static UL-DL TDD configuration (of a set of legacy UL-DL TDD configurations), as in block 510 . The next operation of the method may be to activate a dynamic UL-DL reconfiguration mode when data traffic requires additional DL or UL resources, as in block 520 . The method may also include changing the UL-DL transmission direction of a flexible subframe (FlexSF) by dynamically reconfiguring the semi-static UL-DL TDD configuration to another legacy UL-DL TDD configuration using a UL-DL reconfiguration indicator, where the flexible A subframe can change the uplink-downlink transmission direction for a set of legacy UL-DL TDD configurations, block 530 .
在示例中,将半静态UL-DL TDD配置动态地重新配置到其它老式UL-DL TDD配置还可以包括:基于有利于DL的UL-DL配置重新配置DL信道时序;基于有利于UL的UL-DL配置重新配置UL信道时序;以及分别使用DL信道时序或UL信道时序传达针对帧中的子帧的HARQ反馈。有利于DL的UL-DL配置可以比半静态UL-DL TDD配置包括更多针对UE的DL子帧,DL信道时序可以包括物理下行链路共享信道(PDSCH)调度授权传输时序(比如,图5中的210)、PDSCH传输时序(比如,图5中的210)以及PDSCH混合自动重复请求(HARQ)反馈时序(比如,图5中的212;表2(图3))。有利于UL的UL-DL配置可以比半静态UL-DL TDD配置包括更多针对UE的UL子帧或者与SIB1所广播的半静态UL-DL TDD配置相同,UL信道时序可以包括物理上行链路共享信道(PUSCH)调度授权时序(比如,图5中的220)、PUSCH传输时序(比如,图5中的222;表3)、PUSCH HARQ反馈时序(比如,图5中的224;表4)以及PUSCH HARQ重传时序。In an example, dynamically reconfiguring the semi-static UL-DL TDD configuration to other legacy UL-DL TDD configurations may further include: reconfiguring the DL channel timing based on the DL-favorable UL-DL configuration; DL configuration reconfigures UL channel timing; and communicates HARQ feedback for subframes in a frame using DL channel timing or UL channel timing, respectively. DL-friendly UL-DL configurations may include more DL subframes for UEs than semi-static UL-DL TDD configurations, and DL channel timing may include physical downlink shared channel (PDSCH) scheduling grant transmission timing (e.g., Figure 5 210 in ), PDSCH transmission timing (eg, 210 in FIG. 5 ) and PDSCH Hybrid Automatic Repeat Request (HARQ) feedback timing (eg, 212 in FIG. 5; Table 2 (FIG. 3 )). UL-friendly UL-DL configuration can include more UL subframes for UE than semi-static UL-DL TDD configuration or same as semi-static UL-DL TDD configuration broadcast by SIB1, UL channel timing can include physical uplink Shared channel (PUSCH) scheduling grant timing (for example, 220 in Figure 5), PUSCH transmission timing (for example, 222 in Figure 5; Table 3), PUSCH HARQ feedback timing (for example, 224 in Figure 5; Table 4) And PUSCH HARQ retransmission timing.
在另一示例中,第三代合作伙伴计划(3GPP)长期演进(LTE)UL-DL配置0提供有利于UL的UL-DL配置用于UL-DL配置6、1、3、2、4和5。LTE UL-DL配置1提供有利于DL的UL-DL配置用于UL-DL配置6和0并提供有利于UL的UL-DL配置用于UL-DL配置3、2、4和5。LTE UL-DL配置2提供有利于DL的UL-DL配置用于UL-DL配置3、1、6和0并提供有利于UL的UL-DL配置用于UL-DL配置5。LTE UL-DL配置3提供有利于DL的UL-DL配置用于UL-DL配置1、6和0并提供有利于UL的UL-DL配置用于UL-DL配置2、4和5。LTE UL-DL配置4提供有利于DL的UL-DL配置用于UL-DL配置3、1、6和0并提供有利于UL的UL-DL配置用于UL-DL配置5。LTE UL-DL配置5提供有利于DL的UL-DL配置用于UL-DL配置4、2、3、1、6和0。LTE UL-DL配置6提供有利于DL的UL-DL配置用于UL-DL配置0并提供有利于UL的UL-DL配置用于UL-DL配置1、3、2、4和5。In another example, 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) UL-DL configuration 0 provides UL-favorable UL-DL configurations for UL-DL configurations 6, 1, 3, 2, 4 and 5. LTE UL-DL configuration 1 provides DL-favorable UL-DL configurations for UL-DL configurations 6 and 0 and provides UL-favorable UL-DL configurations for UL-DL configurations 3, 2, 4 and 5. LTE UL-DL configuration 2 provides a DL-favorable UL-DL configuration for UL-DL configurations 3, 1, 6 and 0 and a UL-favorable UL-DL configuration for UL-DL configuration 5. LTE UL-DL configuration 3 provides a DL-favorable UL-DL configuration for UL-DL configurations 1, 6 and 0 and a UL-favorable UL-DL configuration for UL-DL configurations 2, 4 and 5. LTE UL-DL configuration 4 provides a DL-favorable UL-DL configuration for UL-DL configurations 3, 1, 6 and 0 and a UL-favorable UL-DL configuration for UL-DL configuration 5. LTE UL-DL configuration 5 provides a DL-friendly UL-DL configuration for UL-DL configurations 4, 2, 3, 1, 6 and 0. LTE UL-DL configuration 6 provides a DL-favorable UL-DL configuration for UL-DL configuration 0 and provides a UL-favorable UL-DL configuration for UL-DL configurations 1, 3, 2, 4 and 5.
在另一配置中,使用半静态UL-DL TDD配置对UE进行配置的操作还包括经由系统信息块类型1(SIB1)向UE广播半静态UL-DL TDD配置。在另一示例中,UL-DL重新配置指示符可以通过使用DL下行链路控制信息(DCI)授权或DCI授权子帧中的UL DCI授权被指示。DLDCI授权或UL DCI授权可以为FlexSF提供授权。In another configuration, configuring the UE with the semi-static UL-DL TDD configuration further includes broadcasting the semi-static UL-DL TDD configuration to the UE via System Information Block Type 1 (SIB1). In another example, the UL-DL reconfiguration indicator may be indicated by using a DL Downlink Control Information (DCI) grant or a UL DCI grant in a DCI grant subframe. DLDCI authorization or UL DCI authorization can provide authorization for FlexSF.
在另一配置中,当针对数据流量的半静态UL-DL TDD配置被均衡时,该方法还可以包括停用动态UL-DL重新配置模式。在另一示例中,激活动态UL-DL重新配置模式的操作还可以包括:向UE传送用于激活动态UL-DL重新配置模式的动态UL-DL重新配置模式激活指示符,从UE接收指示UE处于动态UL-DL重新配置模式的确认(ACK)。动态UL-DL重新配置模式激活指示符可以经由DCI或无线电资源控制(RRC)信令被传送。停用动态UL-DL重新配置模式的操作还可以包括:向UE传送用于停用动态UL-DL重新配置模式的动态UL-DL重新配置模式停用指示符;从UE接收指示UE停用动态UL-DL重新配置模式的确认(ACK)。停用指示符可以经由DCI或无线电资源控制(RRC)信令被传送。FlexSF可以包括被半静态UL-DL TDD配置配置为UL或DL子帧的子帧3、4、7、8或9。In another configuration, when the semi-static UL-DL TDD configuration for data traffic is equalized, the method may further include disabling the dynamic UL-DL reconfiguration mode. In another example, the operation of activating the dynamic UL-DL reconfiguration mode may further include: transmitting a dynamic UL-DL reconfiguration mode activation indicator for activating the dynamic UL-DL reconfiguration mode to the UE, and receiving an indication from the UE Acknowledgment (ACK) in dynamic UL-DL reconfiguration mode. The dynamic UL-DL reconfiguration mode activation indicator may be conveyed via DCI or Radio Resource Control (RRC) signaling. The operation of deactivating the dynamic UL-DL reconfiguration mode may further include: transmitting to the UE a dynamic UL-DL reconfiguration mode deactivation indicator for deactivating the dynamic UL-DL reconfiguration mode; receiving from the UE indicating that the UE deactivates the dynamic UL-DL reconfiguration mode Acknowledgment (ACK) for UL-DL reconfiguration mode. The deactivation indicator may be conveyed via DCI or Radio Resource Control (RRC) signaling. FlexSF may include subframes 3, 4, 7, 8 or 9 configured as UL or DL subframes by a semi-static UL-DL TDD configuration.
在另一配置中,将半静态UL-DL TDD配置动态地重新配置为另一老式UL-DL TDD配置的操作可以发生在大约一个无线电帧或大约10毫秒(ms)的时段内。老式UL-DL TDD配置可以包括第三代合作伙伴(3GPP)长期演进(LTE)UL-DL配置0-6。物理下行链路控制信道(PDCCH)或增强的PDCCH(EPDCCH)可以传送DL DCI授权。In another configuration, dynamically reconfiguring a semi-static UL-DL TDD configuration to another legacy UL-DL TDD configuration may occur within about one radio frame or a period of about 10 milliseconds (ms). Legacy UL-DL TDD configurations may include Third Generation Partnership (3GPP) Long Term Evolution (LTE) UL-DL configurations 0-6. A Physical Downlink Control Channel (PDCCH) or Enhanced PDCCH (EPDCCH) may convey DL DCI grants.
另一示例提供用户设备(UE)上的计算机电路600的功能,该用户设备可操作来动态重新配置上行链路-下行链路(UL-DL)时分双工(TDD)配置,如图8中的流程图中所示出的。该功能可以被实现为方法或者可以作为机器上的指令被执行,其中指令被包括在至少一个计算机可读介质或者一个非暂态机器可读存储介质上。计算机电路可以从节点接收UL-DL重新配置指示符,该UL-DL重新配置指示符用于动态地将灵活子帧从半静态UL-DL配置重新配置到不同的UL-DL传输方向,其中FlexSF能够改变UL-DL传输方向,如框610。计算机电路还可以被配置为基于有利于DL的UL-DL配置应用DL信道时序,其中有利于DL的UL-DL配置比半静态UL-DL TDD配置包括更多针对UE的DL子帧,如框620。计算机电路还可以被配置为基于有利于UL的UL-DL配置应用UL信道时序,其中有利于UL的UL-DL配置比半静态UL-DL TDD包括更多用于UE的UL子帧,如框630。在另一示例中,计算机电路还可以被配置为基于有利于UL的UL-DL配置应用UL信道时序,其中有利于UL的UL-DL配置比半静态UL-DL TDD包括更多用于UE的UL子帧或者与SIB1所广播的半静态UL-DL TDD配置相同。Another example provides the functionality of computer circuitry 600 on a user equipment (UE) operable to dynamically reconfigure an uplink-downlink (UL-DL) time division duplex (TDD) configuration, as in FIG. 8 shown in the flow chart. The functionality may be implemented as a method or may be executed as instructions on a machine embodied on at least one computer-readable medium or a non-transitory machine-readable storage medium. The computer circuit may receive a UL-DL reconfiguration indicator from a node for dynamically reconfiguring a flexible subframe from a semi-static UL-DL configuration to a different UL-DL transmission direction, where the FlexSF The UL-DL transmission direction can be changed, block 610 . The computer circuitry may also be configured to apply DL channel timing based on a DL-favorable UL-DL configuration, wherein the DL-favorable UL-DL configuration includes more DL subframes for the UE than the semi-static UL-DL TDD configuration, as shown in block 620. The computer circuitry may also be configured to apply UL channel timing based on a UL-favorable UL-DL configuration, wherein the UL-favorable UL-DL configuration includes more UL subframes for the UE than the semi-static UL-DL TDD, as in block 630. In another example, the computer circuitry may be further configured to apply UL channel timing based on a UL-favorable UL-DL configuration, wherein the UL-favorable UL-DL configuration includes more time for the UE than the semi-static UL-DL TDD The UL subframe may be the same as the semi-static UL-DL TDD configuration broadcast by SIB1.
在示例中,计算机电路还可以被配置为使用DL信道时序或UL信道时序传送针对帧中的子帧的HARQ反馈。当FlexSF被配置为DL子帧时,DL信道时序可以包括用于帧中的子帧的物理下行链路共享信道(PDSCH)调度授权传输时序(比如,授权可以是PDCCH或EPDCCH所承载的DCI)、PDSCH传输时序(比如,可以是与PDSCH调度授权相同的子帧)或者PDSCH混合自动重复请求(HARQ)反馈时序(比如,可以被承载在PUCCH或PUSCH中)。当FlexSF被配置为UL子帧时,UL信道时序可以包括用于帧中的子帧的物理上行链路共享信道(PUSCH)调度授权传输时序(比如,授权可以是PDCCH或EPDCCH所承载的DCI)、PUSCH传输时序或者PUSCH HARQ反馈时序(比如,可以被物理混合ARQ指示符信道(PUICH)承载)。In an example, the computer circuit may also be configured to transmit HARQ feedback for subframes in a frame using DL channel timing or UL channel timing. When the FlexSF is configured as a DL subframe, the DL channel timing can include the timing of the transmission of the Physical Downlink Shared Channel (PDSCH) scheduling grant for the subframe in the frame (for example, the grant can be DCI carried by PDCCH or EPDCCH) , PDSCH transmission timing (for example, may be the same subframe as the PDSCH scheduling grant) or PDSCH Hybrid Automatic Repeat Request (HARQ) feedback timing (for example, may be carried in PUCCH or PUSCH). When the FlexSF is configured as a UL subframe, the UL channel timing can include the timing of the transmission of the Physical Uplink Shared Channel (PUSCH) scheduling grant for the subframe in the frame (for example, the grant can be DCI carried by PDCCH or EPDCCH) , PUSCH transmission timing or PUSCH HARQ feedback timing (for example, may be carried by a Physical Hybrid ARQ Indicator Channel (PUICH)).
在另一示例中,计算机电路还可以被配置为:经由无线电资源控制(RRC)信令配置有利于DL的UL-DL配置;以及经由无线电资源控制(RRC)配置有利于UL的UL-DL配置,或者将有利于UL的UL-DL配置设置为系统信息块类型1(SIB1)中所传送的老式UL-DL TDD配置。在另一配置中,计算机电路还可以被配置为:监视DL DCI授权或者ULDCI授权(其提供针对FlexSF的授权)的下行链路控制信息(DCI)授权子帧;当DCI授权子帧包括针对FlexSF的ULDCI授权时,将FlexSF配置为UL子帧;以及当DCI授权子帧包括针对FlexSF的DL DCI授权时,将FlexSF配置为DL子帧。UL-DL重新配置指示符可以被授权指示。具有DL DCI授权的DCI授权子帧包括FlexSF,物理下行链路共享信道(PDSCH)在FlexSF中被接收。具有UL DCI授权的DCI授权子帧包括在FlexSF之前的DL子帧,物理上行链路共享信道(PUSCH)在FlexSF中被发送。物理下行链路控制信道(PDCCH)或增强的PDCCH(EPDCCH)可以在DCI授权子帧中被传送。In another example, the computer circuit may be further configured to: configure a DL-favorable UL-DL configuration via radio resource control (RRC) signaling; and configure a UL-favorable UL-DL configuration via radio resource control (RRC) , or set the UL-favorable UL-DL configuration to the legacy UL-DL TDD configuration conveyed in System Information Block Type 1 (SIB1). In another configuration, the computer circuit may also be configured to: monitor a downlink control information (DCI) grant subframe for a DL DCI grant or ULDCI grant (which provides grants for FlexSF); When the UL DCI grant for the FlexSF is configured, the FlexSF is configured as a UL subframe; and when the DCI grant subframe includes a DL DCI grant for the FlexSF, the FlexSF is configured as a DL subframe. The UL-DL reconfiguration indicator may be indicated by authorization. A DCI grant subframe with a DL DCI grant includes a FlexSF in which a Physical Downlink Shared Channel (PDSCH) is received. A DCI grant subframe with a UL DCI grant includes a DL subframe preceding the FlexSF in which a Physical Uplink Shared Channel (PUSCH) is transmitted. A Physical Downlink Control Channel (PDCCH) or Enhanced PDCCH (EPDCCH) may be transmitted in a DCI grant subframe.
在另一示例中,第三代合作伙伴计划(3GPP)长期演进(LTE)UL-DL配置0提供有利于UL的UL-DL配置用于UL-DL配置6、1、3、2、4和5。LTE UL-DL配置1提供有利于DL的UL-DL配置用于UL-DL配置6和0并提供有利于UL的UL-DL配置用于UL-DL配置3、2、4和5。LTE UL-DL配置2提供有利于DL的UL-DL配置用于UL-DL配置3、1、6和0并提供有利于UL的UL-DL配置用于UL-DL配置5。LTE UL-DL配置3提供有利于DL的UL-DL配置用于UL-DL配置1、6和0并提供有利于UL的UL-DL配置用于UL-DL配置2、4和5。LTE UL-DL配置4提供有利于DL的UL-DL配置用于UL-DL配置3、1、6和0并提供有利于UL的UL-DL配置用于UL-DL配置5。LTE UL-DL配置5提供有利于DL的UL-DL配置用于UL-DL配置4、2、3、1、6和0。LTE UL-DL配置6提供有利于DL的UL-DL配置用于UL-DL配置0并提供有利于UL的UL-DL配置用于UL-DL配置1、3、2、4和5。In another example, 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) UL-DL configuration 0 provides UL-favorable UL-DL configurations for UL-DL configurations 6, 1, 3, 2, 4 and 5. LTE UL-DL configuration 1 provides DL-favorable UL-DL configurations for UL-DL configurations 6 and 0 and provides UL-favorable UL-DL configurations for UL-DL configurations 3, 2, 4 and 5. LTE UL-DL configuration 2 provides a DL-favorable UL-DL configuration for UL-DL configurations 3, 1, 6 and 0 and a UL-favorable UL-DL configuration for UL-DL configuration 5. LTE UL-DL configuration 3 provides a DL-favorable UL-DL configuration for UL-DL configurations 1, 6 and 0 and a UL-favorable UL-DL configuration for UL-DL configurations 2, 4 and 5. LTE UL-DL configuration 4 provides a DL-favorable UL-DL configuration for UL-DL configurations 3, 1, 6 and 0 and a UL-favorable UL-DL configuration for UL-DL configuration 5. LTE UL-DL configuration 5 provides a DL-friendly UL-DL configuration for UL-DL configurations 4, 2, 3, 1, 6 and 0. LTE UL-DL configuration 6 provides a DL-favorable UL-DL configuration for UL-DL configuration 0 and provides a UL-favorable UL-DL configuration for UL-DL configurations 1, 3, 2, 4 and 5.
在另一配置中,计算机电路还可以被配置为:从节点接收用于激活动态UL-DL重新配置的动态UL-DL重新配置模式激活指示符;激活动态UL-DL重新配置模式;并传送对动态UL-Dl重新配置模式的确认(ACK)。动态UL-DL重新配置模式激活指示符可以经由DCI或者无线电资源控制(RRC)信令被接收。计算机电路还可以被配置为:从节点接收动态UL-DL重新配置模式停用指示符;停用动态UL-DL模式;以及传送对停用动态UL-DL重新配置模式的确认(ACK)。停用指示符可以经由DCI或者无线电资源控制(RRC)信令被接收。In another configuration, the computer circuit may be further configured to: receive from the node a dynamic UL-DL reconfiguration mode activation indicator for activating dynamic UL-DL reconfiguration; activate the dynamic UL-DL reconfiguration mode; Acknowledgment (ACK) for dynamic UL-D1 reconfiguration mode. The dynamic UL-DL reconfiguration mode activation indicator may be received via DCI or Radio Resource Control (RRC) signaling. The computer circuitry may be further configured to: receive the dynamic UL-DL reconfiguration mode deactivation indicator from the node; deactivate the dynamic UL-DL mode; and transmit an acknowledgment (ACK) of deactivating the dynamic UL-DL reconfiguration mode. The deactivation indicator may be received via DCI or Radio Resource Control (RRC) signaling.
在另一示例中,计算机电路还可以被配置为在接收UL-DL重新配置指示符之前,经由系统信息块类型1(SIB1)接收半静态UL-DL TDD配置(属于一组老式UL-DL TDD配置)。计算机电路可以在大约一个无线电帧或大约10毫秒(ms)的时段内动态地将UL-DL TDD配置重新配置为另一老式UL-DL TDD配置。老式UL-DL TDD配置可以包括第三代合作伙伴计划(3GPP)长期演进(LTE)UL-DL配置0-6。FlexSF可以包括子帧3、4、7、8或9。In another example, the computer circuitry may be further configured to receive a semi-static UL-DL TDD configuration (belonging to a group of legacy UL-DL TDD configuration). The computer circuitry can dynamically reconfigure the UL-DL TDD configuration to another legacy UL-DL TDD configuration within about one radio frame, or a period of about 10 milliseconds (ms). Legacy UL-DL TDD configurations may include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) UL-DL configurations 0-6. FlexSF may include subframes 3, 4, 7, 8 or 9.
在另一配置中,计算机电路还可以被配置为:基于所接收到的UL-DL重新配置指示符,将半静态UL-DL TDD配置转换为另一老式UL-DL TDD配置;基于有利于DL的UL-DL TDD配置重新配置DL信道时序;以及基于有利于UL的UL-DL TDD配置重新配置UL信道时序。DL信道时序可以包括物理下行链路共享信道(PDSCH)调度授权纯属时序、PDSCH传输时序或PDSCH混合自动重复请求(HARQ)反馈时序。UL信道时序可以包括物理上行链路共享信道(PUSCH)调度授权时序、PUSCH传输时序、PUSCH HARQ反馈时序或PUSCH HARQ重传时序。In another configuration, the computer circuitry may be further configured to: convert the semi-static UL-DL TDD configuration to another legacy UL-DL TDD configuration based on the received UL-DL reconfiguration indicator; The UL-DL TDD configuration reconfigures the DL channel timing; and reconfigures the UL channel timing based on the UL-DL TDD configuration favorable to UL. DL channel timing may include physical downlink shared channel (PDSCH) scheduling grant pure timing, PDSCH transmission timing or PDSCH hybrid automatic repeat request (HARQ) feedback timing. The UL channel timing may include physical uplink shared channel (PUSCH) scheduling grant timing, PUSCH transmission timing, PUSCH HARQ feedback timing or PUSCH HARQ retransmission timing.
图9示出了示例节点710(例如,eNB)和示例无线设备720(例如,UE)。节点可以被配置为动态地重新配置上行链路-下行链路(UL-DL)时分双工(TDD)配置,如图7的500中所描述的。回顾图9,节点可以包括配置设备712。配置设备或节点可以被配置为与无线设备进行通信。配置设备可以被配置为动态地重新配置上行链路-下行链路(UL-DL)时分双工(TDD)配置。配置设备可以包括处理器714和收发机716。处理器可以被配置为通过使用下行链路控制信息(DCI)授权子帧中的DL DCI授权或UL DCI授权来动态地将半静态UL-DL TDD配置重新配置到另一老式UL-DL TDD配置。DL DCI授权或UL DCI授权可以提供针对灵活子帧的(FlexSF)的授权。灵活子帧可以能够改变一组老式UL-DL TDD配置的上行链路-下行链路传输方向。收发机可以被配置为在DCI授权子帧中向用户设备(UE)传送DL DCI授权或者ULDCI授权。9 illustrates an example node 710 (eg, eNB) and an example wireless device 720 (eg, UE). A node may be configured to dynamically reconfigure an uplink-downlink (UL-DL) time division duplex (TDD) configuration, as depicted in 500 of FIG. 7 . Referring back to FIG. 9 , a node may include a configuration device 712 . A configuration device or node may be configured to communicate with a wireless device. The configuration device may be configured to dynamically reconfigure an uplink-downlink (UL-DL) time division duplex (TDD) configuration. The configuration device may include a processor 714 and a transceiver 716 . The processor may be configured to dynamically reconfigure a semi-static UL-DL TDD configuration to another legacy UL-DL TDD configuration by using a DL DCI grant or a UL DCI grant in a downlink control information (DCI) grant subframe . A DL DCI grant or a UL DCI grant may provide a grant for flexible subframes (FlexSF). Flexible subframes may be able to change the uplink-downlink transmission direction for a set of legacy UL-DL TDD configurations. The transceiver may be configured to transmit a DL DCI grant or a U DCI grant to a user equipment (UE) in a DCI grant subframe.
在另一配置中,处理器714还可以被配置为:基于有利于DL的UL-DL配置应用DL信道时序;基于有利于UL的UL-DL配置应用UL信道时序。有利于DL的UL-DL配置可以比半静态UL-DL TDD配置包括更多针对UE的DL子帧,DL信道时序可以包括物理下行链路共享信道(PDSCH)调度授权传输时序、PDSCH传输时序以及PDSCH混合自动重复请求(HARQ)反馈时序。有利于UL的UL-DL配置可以比半静态UL-DL TDD配置包括更多针对UE的UL子帧,UL信道时序可以包括物理上行链路共享信道(PUSCH)调度授权时序、PUSCH传输时序、PUSCHHARQ反馈时序以及PUSCH HARQ重传时序。收发机716还可以被配置为使用DL信道时序或UL信道时序传送针对帧中的子帧的HARQ反馈。In another configuration, the processor 714 may be further configured to: apply DL channel timing based on the DL-favorable UL-DL configuration; apply UL channel timing based on the UL-favorable UL-DL configuration. DL-friendly UL-DL configurations can include more DL subframes for UEs than semi-static UL-DL TDD configurations, and DL channel timing can include physical downlink shared channel (PDSCH) scheduling grant transmission timing, PDSCH transmission timing, and PDSCH Hybrid Automatic Repeat Request (HARQ) feedback timing. UL-friendly UL-DL configuration can include more UL subframes for UE than semi-static UL-DL TDD configuration, UL channel timing can include physical uplink shared channel (PUSCH) scheduling grant timing, PUSCH transmission timing, PUSCHHARQ Feedback timing and PUSCH HARQ retransmission timing. The transceiver 716 may also be configured to transmit HARQ feedback for subframes in a frame using DL channel timing or UL channel timing.
在另一示例中,处理器714还可以可操作来进行以下操作:当数据流量需要附加的DL资源时,激活动态UL-DL重新配置模式;当针对数据流量的半静态UL-DL TDD配置被均衡时,停用动态UL-DL重新配置模式;收发机716还可以被配置为:向UE传送用于激活动态UL-DL重新配置模式的动态UL-DL重新配置模式激活指示符,其中激活指示符可以经由DCI或无线电资源控制(RRC)信令被传送;从UE接收确认(ACK),该确认指示UE激活动态UL-DL重新配置模式;向UE传送用于停用动态UL-DL重新配置模式的动态UL-DL重新配置模式停用指示符,其中停用指示符可以经由DCI或无线电资源控制(RRC)信令被传送;从UE接收确认(ACK),该确认指示UE停用动态UL-DL重新配置模式。In another example, the processor 714 may be further operable to: activate a dynamic UL-DL reconfiguration mode when data traffic requires additional DL resources; activate a dynamic UL-DL reconfiguration mode when the semi-static UL-DL TDD configuration for data traffic is During equalization, the dynamic UL-DL reconfiguration mode is deactivated; the transceiver 716 may also be configured to: transmit a dynamic UL-DL reconfiguration mode activation indicator for activating the dynamic UL-DL reconfiguration mode to the UE, wherein the activation indication The indicator can be transmitted via DCI or radio resource control (RRC) signaling; receive an acknowledgment (ACK) from the UE indicating that the UE activates the dynamic UL-DL reconfiguration mode; transmit to the UE a message for deactivating the dynamic UL-DL reconfiguration Dynamic UL-DL reconfiguration mode deactivation indicator for the mode, where the deactivation indicator may be transmitted via DCI or radio resource control (RRC) signaling; receive an acknowledgment (ACK) from the UE indicating that the UE deactivates the dynamic UL -DL reconfiguration mode.
处理器714可以在大约一个无线电帧或大约10毫秒(ms)的时段内动态地将半静态UL-DL TDD配置重新配置为其它老式UL-DL TDD配置。老式UL-DL TDD配置可以包括第三代合作伙伴计划(3GPP)长期演进(LTE)UL-DL配置0-6。FlexSF可以包括子帧3、4、7、8或9。物理下行链路控制信道(PDCCH)或增强的PDCCH(EPDCCH)可以在DCI授权子帧中被传送。具有DLDCI授权的DCI授权子帧可以包括FlexSF,物理下行链路共享信道(PDSCH)可以在FlexSF中被接收;具有UL DCI的DCI授权子帧可以包括在FlexSF之前的DL子帧,物理上行链路共享信道(PUSCH)可以在FlexSF中被发送。The processor 714 may dynamically reconfigure the semi-static UL-DL TDD configuration to the other legacy UL-DL TDD configuration within about one radio frame, or a period of about 10 milliseconds (ms). Legacy UL-DL TDD configurations may include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) UL-DL configurations 0-6. FlexSF may include subframes 3, 4, 7, 8 or 9. A Physical Downlink Control Channel (PDCCH) or Enhanced PDCCH (EPDCCH) may be transmitted in a DCI grant subframe. DCI grant subframes with DL DCI grants may include FlexSF, in which Physical Downlink Shared Channel (PDSCH) may be received; DCI grant subframes with UL DCI may include DL subframes before FlexSF, physical uplink A shared channel (PUSCH) can be transmitted in FlexSF.
节点710可以包括基站(BS)、节点B(NB)、演进的节点B(eNB)、基带单元(BBU)、射频拉远单元(RRU)、中央处理模块(CPM)。The node 710 may include a base station (BS), a node B (NB), an evolved node B (eNB), a baseband unit (BBU), a remote radio unit (RRU), and a central processing module (CPM).
无线设备720可以包括收发机724和处理器722。无线设备可以被配置为动态地重新配置上行链路-下行链路(UL-DL)时分双工(TDD)配置,如图8的600中所描述的。Wireless device 720 may include a transceiver 724 and a processor 722 . A wireless device may be configured to dynamically reconfigure an uplink-downlink (UL-DL) time division duplex (TDD) configuration, as depicted in 600 of FIG. 8 .
图10提供了无线设备(例如,用户设备(UE)、移动站(MS)、移动无线设备、移动通信设备、平板电脑、手机或其他类型的无线设备)的示例图示。该无线设备可包括一个或多个天线,该一个或多个天线被配置为与节点、宏节点、低功率节点(LPN)或发射站(例如,基站(BS)、演进的节点B(eNB)、基带单元(BBU)、射频拉远头(RRH)、射频拉远设备(RRE)、中继站(RS)、中央处理模块(CPM)或其它类型的无线广域网(WWAN)接入点)通信。该无线设备可被配置为使用至少一个无线通信标准进行通信,该无线通信标准包括:3GPP LTE、WiMAX、高速分组接入(HSPA)、蓝牙和WiFi。该无线设备可以使用用于每个无线通信标准的分离的天线进行通信,也可以使用用于多个无线通信标准的共享的天线进行通信。该无线设备可在无线局域网(WLAN)、无线个人区域网(WPAN)和/或WWAN中进行通信。10 provides an example illustration of a wireless device, such as a user equipment (UE), mobile station (MS), mobile wireless device, mobile communication device, tablet computer, cell phone, or other type of wireless device. The wireless device may include one or more antennas configured to communicate with a node, macro node, low power node (LPN) or transmitting station (e.g., base station (BS), evolved Node B (eNB) , baseband unit (BBU), remote radio head (RRH), remote radio equipment (RRE), relay station (RS), central processing module (CPM) or other types of wireless wide area network (WWAN) access points) communication. The wireless device can be configured to communicate using at least one wireless communication standard including: 3GPP LTE, WiMAX, High Speed Packet Access (HSPA), Bluetooth, and WiFi. The wireless device may communicate using separate antennas for each wireless communication standard, or may communicate using a shared antenna for multiple wireless communication standards. The wireless device may communicate in a wireless local area network (WLAN), a wireless personal area network (WPAN), and/or a WWAN.
图10还提供了可被用于该无线设备的音频输入和输出的麦克风和一个或多个扬声器的图示。显示器屏幕可以是液晶显示器(LCD)屏幕或其它类型的显示器屏幕(例如,有机发光二极管(OLED)显示器)。显示器屏幕可被配置为触摸屏。触摸屏可使用电容、电阻或另一类型的触摸屏技术。应用处理器和图形处理器可被耦接到内部存储器以提供处理和显示功能。非易失性存储器端口还可被用于向用户提供数据输入/输出选项。非易失性存储器端口还可被用于扩展无线设备的存储能力。键盘可与无线设备集成或被无线连接到该无线设备以提供额外的用户输入。虚拟键盘也可使用触摸屏来提供。FIG. 10 also provides an illustration of a microphone and one or more speakers that may be used for audio input and output of the wireless device. The display screen may be a liquid crystal display (LCD) screen or another type of display screen (eg, an organic light emitting diode (OLED) display). The display screen may be configured as a touch screen. Touch screens may use capacitive, resistive, or another type of touch screen technology. An application processor and a graphics processor can be coupled to the internal memory to provide processing and display functions. A non-volatile memory port can also be used to provide data input/output options to the user. The non-volatile memory port can also be used to expand the storage capabilities of the wireless device. A keyboard can be integrated with or wirelessly connected to a wireless device to provide additional user input. A virtual keyboard can also be provided using a touch screen.
各种技术或其某些方面或部分可采用在有形介质(例如,软盘、只读光盘存储器(CD-ROM)、硬盘驱动器、非暂态计算机可读存储介质或任意其它机器可读存储介质)中实现的程序代码的形式(即,指令),其中,当程序代码被加载到机器(例如,计算机)中并被机器执行时,机器变为用于实施各种技术的装置。电路可包括:硬件、固件、程序代码、可执行代码、计算机指令和/或软件。非暂态计算机可读存储介质可以是不包括信号的计算机可读存储介质。在可编程计算机执行程序指令的情况下,计算设备可包括:处理器、可被处理器读取的存储介质(包括易失和非易失存储器和/或存储元件)、至少一个输入设备以及至少一个输出设备。易失和非易失存储器和/或存储元件可以是:随机存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、闪速驱动器、光盘驱动器、磁硬盘驱动器、固态驱动器或用于存储电子数据的其他介质。节点和无线设备还可包括:收发机模块(即,收发器)、计数器模块(即,计数器)、处理模块(即,处理器)和/或时钟模块(即,时钟)或定时器模块(即,定时器)。可实现或使用本申请中所描述的各种技术的一个或多个程序可使用应用程序接口(API)、可重用控件等。这些程序可用高级程序语言或面向对象的编程语言来实现以与计算机系统通信。然而,必要时,(一个或多个)程序可用汇编语言或机器语言来实现。在任何情况下,语言可以是编译语言或解释性语言,并且可与硬件实现相结合。Various technologies or aspects or portions thereof may be embodied on tangible media (e.g., floppy disks, compact disc read-only memory (CD-ROM), hard drives, non-transitory computer-readable storage media, or any other machine-readable storage media) In the form of program codes (ie, instructions) implemented in a machine (eg, a computer), when the program codes are loaded into a machine (eg, a computer) and executed by the machine, the machine becomes a means for implementing various techniques. Circuitry may include: hardware, firmware, program code, executable code, computer instructions and/or software. A non-transitory computer readable storage medium may be a computer readable storage medium that does not include a signal. In the case of a programmable computer executing program instructions, the computing device may include: a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one an output device. Volatile and non-volatile memory and/or storage elements can be: random access memory (RAM), erasable programmable read-only memory (EPROM), flash drives, optical drives, magnetic hard drives, solid-state drives, or other media for storing electronic data. Nodes and wireless devices may also include: transceiver modules (i.e., transceivers), counter modules (i.e., counters), processing modules (i.e., processors), and/or clock modules (i.e., clocks) or timer modules (i.e., , timer). One or more programs that may implement or use the various techniques described in this application may use an application programming interface (API), reusable controls, and the like. These programs can be implemented in a high-level programming language or an object-oriented programming language to communicate with the computer system. However, the program(s) can be implemented in assembly or machine language, if desired. In any case, the language may be compiled or interpreted and combined with hardware implementation.
应当理解的是,为了更特别地强调本说明书中所描述的很多功能单元的实现独立性,这些单元已被标记为模块。例如,模块可被实现为硬件电路,该硬件电路包括:定制超大规模集成(VLSI)电路或门阵列、现成半导体(例如,逻辑芯片、晶体管或其它离散组件)。模块还可在可编程硬件设备(例如,现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等)中实现。It will be appreciated that in order to more particularly emphasize the implementation independence of many of the functional units described in this specification, these units have been labeled as modules. For example, a module may be implemented as a hardware circuit comprising: custom very large scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors (eg, logic chips, transistors, or other discrete components). A module may also be implemented in programmable hardware devices (eg, field programmable gate arrays, programmable array logic, programmable logic devices, etc.).
模块还可在软件中实现,以被各种类型的处理器执行。可执行代码的识别模块例如可以包括计算机指令的一个或多个物理或逻辑块,这些块例如可以被组织为对象、程序或功能。然而,识别模块的可执行代码不必在物理上位于一起,而是可以包括存储在不同位置的不同指令,当这些指令在逻辑上结合在一起时,组成了该模块并实现该模块的所述目的。Modules may also be implemented in software to be executed by various types of processors. An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions which may, for instance, be organized as an object, procedure, or function. However, the executable code of an identification module need not be physically located together, but may comprise different instructions stored in different locations which, when logically combined, make up the module and achieve the stated purpose of the module .
事实上,可执行代码的模块可以是单个指令,也可以是很多指令,甚至可以被分布在若干不同的代码段上、在不同的程序间并跨若干存储设备。类似地,操作数据在本申请中可在模块内被标识和说明,并且可以以任意适当的形式被实现并在任意适当类型的数据结构内被组织。操作数据可被收集为单个数据集,或者可被分布在不同位置上(包括分布在不同存储设备上),并且可至少部分只作为系统或网络上的电子信号而存在。这些模块可以是无源的或有源的,包括可操作为执行所希望的功能的代理。In fact, a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several storage devices. Similarly, operational data may be identified and described herein within modules, and may be implemented in any suitable form and organized within any suitable type of data structure. Operational data may be collected as a single data set, or may be distributed across different locations (including across different storage devices), and may exist at least in part only as electronic signals on a system or network. These modules may be passive or active, including agents operable to perform desired functions.
本说明书中对“示例”或“示例性”的引用意味着结合示例所描述的具体特征、结构或特性被包括在本发明的至少一个实施例中。因此,在本说明书的各个地方出现的短语“在示例中”或词语“示例性”不一定全部指代相同实施例。References to "example" or "exemplary" in this specification mean that a specific feature, structure, or characteristic described in connection with the example is included in at least one embodiment of the present invention. Thus, appearances of the phrase "in an example" or the word "exemplary" in various places in this specification are not necessarily all referring to the same embodiment.
如本申请中所使用的,多个项目、结构元件、组成元件和/或材料可被呈现在共同列表中以便使用。然而,这些列表应被解释为仿佛列表的每个部件被独立地标识为单独且唯一的部件。因此,该列表的独立部件不应仅基于它们呈现在共同的组中而没有相反指示而被解释为相同列表的任意其它部件的实质等同形式。此外,本发明的各种实施例和示例在本申请中可与其各种组件的替换选择一起被参考。应当理解的是,这些实施例、示例和替换选择不应被解释为彼此的实质等同形式,而应被解释为本发明的分离且自治的表示。As used in this application, multiple items, structural elements, constituent elements and/or materials may be presented in a common list for use. However, these listings should be interpreted as if each component of the listing is independently identified as a separate and unique component. Thus, no individual element of this list should be construed as a substantial equivalent of any other element of the same list merely based on their presentation in a common group without indications to the contrary. In addition, various embodiments and examples of the invention may be referred to in this application together with alternatives for its various components. It should be understood that these embodiments, examples and alternatives are not to be construed as substantial equivalents to each other, but as separate and autonomous representations of the present invention.
此外,所述特征、结构或特性可以任意适当的方式在一个或多个实施例中被组合,在以下描述中提供了很多具体细节(例如,布局示例、距离、网络示例等)以提供对本发明的实施例的全面理解。然而,相关领域技术人员将认识到,本发明可在没有一个或多个具体细节的情况下被实现,或者用其他方法、组件、布局等来实现。在其它实例中,熟知的结构、材料或操作未被示出或详细描述以避免使本发明的方面模糊。Furthermore, the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments, the following description providing numerous specific details (eg, layout examples, distances, network examples, etc.) to provide an understanding of the present invention. A comprehensive understanding of the examples. One skilled in the relevant art will recognize, however, that the invention may be practiced without one or more of the specific details, or with other methods, components, arrangements, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
虽然以上示例在一个或多个具体应用中对本发明的原理进行了说明,但是对于本领域普通技术人员而言,在没有发明人员的帮助下可对实现方式的形式、用途和细节做出很多修改而不背离本发明的原理和概念。因此,本发明不意图被限制,除了被所附权利要求限制。While the above examples illustrate the principles of the invention in one or more specific applications, many modifications in form, purpose, and details of implementation will readily occur to those of ordinary skill in the art without assistance from the inventor without departing from the principles and concepts of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US201361753914P | 2013-01-17 | 2013-01-17 | |
| US61/753,914 | 2013-01-17 | ||
| CN201380064664.8ACN104885389B (en) | 2013-01-17 | 2013-10-08 | Dynamic configuration of uplink (UL) and downlink (DL) frame resources for time division duplex (TDD) transmission | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| CN201380064664.8ADivisionCN104885389B (en) | 2013-01-17 | 2013-10-08 | Dynamic configuration of uplink (UL) and downlink (DL) frame resources for time division duplex (TDD) transmission | 
| Publication Number | Publication Date | 
|---|---|
| CN108683485Atrue CN108683485A (en) | 2018-10-19 | 
| CN108683485B CN108683485B (en) | 2021-03-12 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| CN201810332068.8AActiveCN108683485B (en) | 2013-01-17 | 2013-10-08 | Method and device for dynamically configuring UL/DL frame resource of TDD transmission | 
| Country | Link | 
|---|---|
| JP (1) | JP6418665B2 (en) | 
| CN (1) | CN108683485B (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN110086567A (en)* | 2019-03-22 | 2019-08-02 | 西安电子科技大学 | The Enhancement Method that HARQ such as stops at the pattern information of processes is carried in a kind of DCI | 
| WO2020087456A1 (en)* | 2018-11-01 | 2020-05-07 | 富士通株式会社 | Resource indication method and apparatus as well as communication system | 
| CN111385858A (en)* | 2018-12-29 | 2020-07-07 | 华为技术有限公司 | Communication method and communication device | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN102017758A (en)* | 2008-04-29 | 2011-04-13 | 爱立信电话股份有限公司 | Aggregation of resources over multiple frames in a TDD communication system | 
| CN102075949A (en)* | 2010-12-22 | 2011-05-25 | 大唐移动通信设备有限公司 | Carrier aggregation (CA) technology-based data transmission method and device | 
| US20120284785A1 (en)* | 2011-05-05 | 2012-11-08 | Motorola Mobility, Inc. | Method for facilitating access to a first access nework of a wireless communication system, wireless communication device, and wireless communication system | 
| US20120300685A1 (en)* | 2010-01-12 | 2012-11-29 | Samsung Electronics Co. Ltd. | Method and apparatus for supporting discontinuous reception operation in mobile communication system | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| ATE531183T1 (en)* | 2008-02-08 | 2011-11-15 | Ericsson Telefon Ab L M | METHOD AND DEVICE FOR AUTHORIZING THE PROVISION OF INDIRECTED CONTENT ASSOCIATED WITH A PRESENTITY OF A PRESENCE SERVICE | 
| EP2359612B1 (en)* | 2008-11-10 | 2017-01-04 | Telefonaktiebolaget LM Ericsson (publ) | Method and apparatus for enabling services and media in a communication network | 
| EP2636201B1 (en)* | 2010-11-02 | 2019-02-27 | Telefonaktiebolaget LM Ericsson (publ) | Methods and devices for media description delivery | 
| US8769076B2 (en)* | 2011-02-14 | 2014-07-01 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and systems for presence publication using SIP register feature tags | 
| US8849950B2 (en)* | 2011-04-07 | 2014-09-30 | Qualcomm Incorporated | Network streaming of video data using byte range requests | 
| US9160779B2 (en)* | 2011-06-30 | 2015-10-13 | Qualcomm Incorporated | Dynamic adaptive streaming proxy for unicast or broadcast/multicast services | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN102017758A (en)* | 2008-04-29 | 2011-04-13 | 爱立信电话股份有限公司 | Aggregation of resources over multiple frames in a TDD communication system | 
| US20120300685A1 (en)* | 2010-01-12 | 2012-11-29 | Samsung Electronics Co. Ltd. | Method and apparatus for supporting discontinuous reception operation in mobile communication system | 
| CN102075949A (en)* | 2010-12-22 | 2011-05-25 | 大唐移动通信设备有限公司 | Carrier aggregation (CA) technology-based data transmission method and device | 
| US20120284785A1 (en)* | 2011-05-05 | 2012-11-08 | Motorola Mobility, Inc. | Method for facilitating access to a first access nework of a wireless communication system, wireless communication device, and wireless communication system | 
| Title | 
|---|
| SAMSUNG: "Dynamic reconfiguration of TDD UL-DL configuration", 《3GPP TSG-RAN WG1 #69 R1-122267》* | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| WO2020087456A1 (en)* | 2018-11-01 | 2020-05-07 | 富士通株式会社 | Resource indication method and apparatus as well as communication system | 
| US11997655B2 (en) | 2018-11-01 | 2024-05-28 | Fujitsu Limited | Resource indication method and apparatus and communication system | 
| CN111385858A (en)* | 2018-12-29 | 2020-07-07 | 华为技术有限公司 | Communication method and communication device | 
| CN111385858B (en)* | 2018-12-29 | 2022-04-05 | 华为技术有限公司 | Communication method and communication device | 
| CN110086567A (en)* | 2019-03-22 | 2019-08-02 | 西安电子科技大学 | The Enhancement Method that HARQ such as stops at the pattern information of processes is carried in a kind of DCI | 
| CN110086567B (en)* | 2019-03-22 | 2021-11-23 | 西安电子科技大学 | Method for enhancing DCI (Downlink control information) carrying mode information of HARQ (hybrid automatic repeat request) stop process | 
| Publication number | Publication date | 
|---|---|
| HK1258360A1 (en) | 2019-11-08 | 
| CN108683485B (en) | 2021-03-12 | 
| JP6418665B2 (en) | 2018-11-07 | 
| JP2018057027A (en) | 2018-04-05 | 
| Publication | Publication Date | Title | 
|---|---|---|
| US11139932B2 (en) | Dynamic configuration of uplink (UL) and downlink (DL) frame resources for a time division duplex (TDD) transmission | |
| CN104285392B (en) | The scheduling and hybrid automatic repeat-request (HARQ) timing that uplink (UL DL) reconfigures indicate | |
| US10405310B2 (en) | Time division duplex (TDD) uplink downlink (UL-DL) reconfiguration | |
| CN107517096B (en) | Physical uplink control channel resource allocation for hybrid automatic repeat request-acknowledgement transmissions | |
| CN104584475B (en) | Transmission of uplink control information in inter-eNB carrier aggregation | |
| CN108476129B (en) | Delay Control Feedback Using Common Bursts in Time Division Duplex Carriers | |
| JP2018152856A (en) | System and method for modulation coding scheme selection and setting | |
| CN118432775A (en) | Downlink control indicator distribution for cross-carrier scheduling | |
| CN104080187B (en) | Dynamic time division duplex configuration method and base station using same | |
| CN112219444B (en) | Communication resource configuration for dual connectivity | |
| CN108683485B (en) | Method and device for dynamically configuring UL/DL frame resource of TDD transmission | |
| US12369222B2 (en) | Discontinuous reception alignment grouping for sidelink and cellular communication | |
| HK1258360B (en) | Method and apparatus for dynamic configuration of ul/dl frame resources for a tdd transmission | |
| HK1259064B (en) | Delayed control feedback in a time division duplex carrier utilizing common bursts | 
| Date | Code | Title | Description | 
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| REG | Reference to a national code | Ref country code:HK Ref legal event code:DE Ref document number:1258360 Country of ref document:HK | |
| TA01 | Transfer of patent application right | Effective date of registration:20200401 Address after:California, USA Applicant after:INTEL Corp. Address before:California, USA Applicant before:INTEL IP Corp. Effective date of registration:20200401 Address after:California, USA Applicant after:Apple Inc. Address before:California, USA Applicant before:INTEL Corp. | |
| TA01 | Transfer of patent application right | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |