Movatterモバイル変換


[0]ホーム

URL:


CN108614089A - Compacted fill freeze thawing and weathering environmental simulation system and its test method - Google Patents

Compacted fill freeze thawing and weathering environmental simulation system and its test method
Download PDF

Info

Publication number
CN108614089A
CN108614089ACN201810436684.8ACN201810436684ACN108614089ACN 108614089 ACN108614089 ACN 108614089ACN 201810436684 ACN201810436684 ACN 201810436684ACN 108614089 ACN108614089 ACN 108614089A
Authority
CN
China
Prior art keywords
freeze thawing
model casing
soil sample
nitrogen
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810436684.8A
Other languages
Chinese (zh)
Inventor
邱珍锋
李施衡
曹婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Jiaotong University
Original Assignee
Chongqing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Jiaotong UniversityfiledCriticalChongqing Jiaotong University
Priority to CN201810436684.8ApriorityCriticalpatent/CN108614089A/en
Publication of CN108614089ApublicationCriticalpatent/CN108614089A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

A kind of compacted fill freeze thawing of invention offer and weathering environmental simulation system and its test method.The device includes the LED daylight lamp being placed on experiment porch, liquid nitrogen frozen recycle unit, freeze thawing model casing, nitrogen heating recycle unit and wind devices processed.Soil sample is housed in the inner cavity of the freeze thawing model casing.When work, computer controls refrigerating cycle apparatus, nitrogen heating recycle unit and wind devices processed.The dynamic video camera monitoring soil sample freezes character.The test method of the device, including lay sensor, hit the test procedures such as real soil sample, installation monitoring device, tune-up data Acquisition Processor and Frozen-thawed cycled controller.The device can control the action time of Frozen-thawed cycled, realize the automation of winter frozen soil simulation.It can observe and measure the change in displacement of the soil body.Thin sight characteristic during observable specimen test.

Description

Translated fromChinese
压实土体冻融和风化环境模拟系统及其试验方法Freeze-thaw and weathering environment simulation system and test method for compacted soil

技术领域technical field

本发明涉及工程冻土学技术领域,具体涉及一种压实土体冻融和风化环境模拟系统。The invention relates to the technical field of engineering permafrost science, in particular to a compacted soil freeze-thaw and weathering environment simulation system.

背景技术Background technique

冻土是指温度在0℃或0℃以下,并含有冰的各种岩石和土壤,对温度极为敏感,含有丰富的地下冰。因此,冻土具有流变性,其长期强度远低于瞬时强度特征。正是由于这些特性,在冻土区修筑工程构筑物就必须面临两大危险:冻胀和融沉。其中起重要作用的是水的存在形态,当水变成冰时体积增大,使土体膨胀,地表因此而拱起升高,这就是冻胀;当土中的冰转变为水时,体积收缩了,地表便发生融化下沉,简称融沉。在这两种现象的反复作用下,道路或房屋的基底就会出现破裂或者塌陷。因此,在冻土地区进行水利工程、工业与民用建筑及交通运输工程的建设,就必须对冻土及其与工程建筑物相互作用的一系列工程冻土学理论和实践问题做出解答,以确保冻土地基上工程建筑物的稳定性、耐久性及经济合理性。Frozen soil refers to various rocks and soils with a temperature at or below 0°C and contains ice. It is extremely sensitive to temperature and contains abundant underground ice. Therefore, permafrost has rheological properties, and its long-term strength is much lower than the instantaneous strength characteristics. Because of these characteristics, construction of engineering structures in permafrost must face two major dangers: frost heaving and thawing. What plays an important role is the existence form of water. When the water turns into ice, the volume increases, which makes the soil expand, and the surface of the earth is arched and raised, which is frost heaving; when the ice in the soil turns into water, the volume increases. When it shrinks, the surface will melt and sink, which is referred to as melting and sinking. Under the repeated action of these two phenomena, the foundation of roads or houses will crack or collapse. Therefore, in the construction of water conservancy projects, industrial and civil buildings, and transportation projects in permafrost areas, it is necessary to answer a series of engineering permafrost theory and practical issues related to the interaction between permafrost and engineering buildings, so as to Ensure the stability, durability and economic rationality of engineering buildings on permafrost foundations.

现有技术中,只单纯的模拟了冻土的冻融作用,与现实条件有所欠缺。没有考虑现场风化以及阳光辐射对冻土作用的影响,并监测其中的变化。In the prior art, the freezing and thawing effect of frozen soil is simply simulated, which is lacking in reality. The effects of on-site weathering and solar radiation on permafrost were not considered, and the changes were monitored.

因此,亟需开发一种可详细模拟冬季施工土体冻融变化的模拟装置。Therefore, it is urgent to develop a simulation device that can simulate the freeze-thaw changes of construction soil in winter in detail.

发明内容Contents of the invention

本发明的目的是提供一种压实土体冻融和风化环境模拟系统及其试验方法,以解决现有技术中存在的问题。The object of the present invention is to provide a compacted soil freeze-thaw and weathering environment simulation system and its test method to solve the problems in the prior art.

为实现本发明目的而采用的技术方案是这样的,压实土体冻融和风化环境模拟系统,包括放置在实验平台上的冻融模型箱,以及布置在冻融模型箱外的LED日光灯、液氮冷冻循环设备、氮气制热循环设备和制风设备。The technical scheme adopted for realizing the purpose of the present invention is such that the compacted soil freeze-thaw and weathering environment simulation system includes a freeze-thaw model box placed on the experimental platform, and an LED fluorescent lamp arranged outside the freeze-thaw model box, Liquid nitrogen refrigeration cycle equipment, nitrogen heating cycle equipment and wind equipment.

所述冻融模型箱整体为上端敞口的透明矩形箱体。所述冻融模型箱的外壁敷有透明隔热材料。所述冻融模型箱的内壁上布置有若干个传感器引线口。所述传感器引线口接入温度或位移数据采集系统。所述冻融模型箱的内腔中装有土试样。所述土试样中埋设有若干个位移感应器和对应数量的温度传感器。所述冻融模型箱的箱壁内封装有内腔室。所述内腔室通过弯管与液氮冷冻循环设备及氮气制热循环设备连通。The whole freeze-thaw model box is a transparent rectangular box with an open upper end. The outer wall of the freeze-thaw model box is covered with transparent heat insulating material. Several sensor lead-in openings are arranged on the inner wall of the freeze-thaw model box. The sensor leads are connected to a temperature or displacement data acquisition system. A soil sample is housed in the inner cavity of the freeze-thaw model box. Several displacement sensors and a corresponding number of temperature sensors are embedded in the soil sample. An inner chamber is sealed in the wall of the freeze-thaw model box. The inner chamber communicates with liquid nitrogen refrigeration cycle equipment and nitrogen heating cycle equipment through elbow pipes.

所述LED日光灯包括支撑架、连接杆与日光灯本体。所述支撑架包括固定横梁。所述固定横梁布置在冻融模型箱上方。所述连接杆上端与固定横梁活动连接,下端与日光灯本体活动连接。所述连接杆可沿固定横梁水平滑动。所述日光灯本体可绕连接杆下端旋转。The LED fluorescent lamp includes a support frame, a connecting rod and a fluorescent lamp body. The support frame includes a fixed beam. The fixed beam is arranged above the freeze-thaw model box. The upper end of the connecting rod is movably connected with the fixed beam, and the lower end is movably connected with the fluorescent lamp body. The connecting rod can slide horizontally along the fixed beam. The fluorescent lamp body can rotate around the lower end of the connecting rod.

所述冻融模型箱外还布置有数据采集处理器和动态摄像仪。所述动态摄像仪、位移感应器和温度传感器均与数据采集处理器相连。所述数据采集处理器与计算机相连。A data acquisition processor and a dynamic camera are arranged outside the freeze-thaw model box. The dynamic camera, the displacement sensor and the temperature sensor are all connected with the data acquisition processor. The data acquisition processor is connected with a computer.

工作时,所述日光灯本体照射土试样。所述制风设备13产生气流均匀传递至土试样表面。所述计算机控制液氮冷冻循环设备或氮气制热循环设备工作。所述液氮冷冻循环设备将液氮通入内腔室内,冷却土体试样。所述氮气制热循环设备将加热氮气通入内腔室内,对土体试样进行制热,实现冻融循环。所述温度传感器实时监测试样内的温度变化。所述位移感应器记录土试样内部不同位置的位移数据。所述动态摄像仪拍摄土试样的变化图像信息。所述数据采集处理器采集存储动态摄像仪、位移感应器和温度传感器的监测数据后,传递至计算机。When working, the fluorescent lamp body irradiates the soil sample. The wind making device 13 generates an air flow that is evenly transmitted to the surface of the soil sample. The computer controls the work of liquid nitrogen refrigeration cycle equipment or nitrogen heating cycle equipment. The liquid nitrogen freezing cycle equipment passes liquid nitrogen into the inner chamber to cool the soil sample. The nitrogen heating cycle equipment passes heated nitrogen gas into the inner chamber to heat the soil sample to realize a freeze-thaw cycle. The temperature sensor monitors the temperature change in the sample in real time. The displacement sensor records displacement data at different positions inside the soil sample. The dynamic camera captures changing image information of the soil sample. The data collection processor collects and stores the monitoring data of the dynamic camera, displacement sensor and temperature sensor, and transmits them to the computer.

进一步,所述制风设备包括气体源、冷热温度控制、加湿除湿控制和平行出风口。所述制风设备可产生含有一定量水分和温度的气流。Further, the wind-making equipment includes a gas source, heating and cooling temperature control, humidification and dehumidification control, and parallel air outlets. The air-making equipment can generate airflow containing a certain amount of moisture and temperature.

进一步,液氮从内腔室底部通入,上部流出,并回流到冷冻循环控制设备中。加热氮气从内腔室底部通入,上部流出,并回流到氮气制热循环设备中。Further, the liquid nitrogen is introduced from the bottom of the inner chamber, flows out from the upper part, and returns to the refrigeration cycle control device. The heated nitrogen gas is passed in from the bottom of the inner chamber, flows out from the upper part, and returns to the nitrogen heating cycle equipment.

进一步,所述位移感应器为环状位移磁感应器。所述温度传感器球状温度传感器。所述球状温度传感器稳固嵌套在对应的环状位移磁感应器内。Further, the displacement sensor is a circular displacement magnetic sensor. The temperature sensor is a spherical temperature sensor. The spherical temperature sensor is firmly nested in the corresponding annular displacement magnetic sensor.

本发明还公开一种关于上述压实土体冻融和风化环境模拟系统的使用方法,包括以下步骤:The present invention also discloses a method for using the above-mentioned compacted soil freeze-thaw and weathering environment simulation system, including the following steps:

1)根据试验需求,在冻融模型箱内腔中布设位移感应器和温度传感器。在冻融模型箱的外壁设计为透明隔热材料。1) According to the test requirements, a displacement sensor and a temperature sensor are arranged in the inner cavity of the freeze-thaw model box. The outer wall of the freeze-thaw model box is designed as a transparent heat insulating material.

2)将土试样放入冻融模型箱内腔中并击实。2) Put the soil sample into the cavity of the freeze-thaw model box and compact it.

3)调试电脑、数据采集处理器和动态摄像仪。3) Debugging computer, data acquisition processor and dynamic camera.

4)液氮冷冻循环设备按设计要求进行制冷。氮气制热循环设备按设计要求进行制热。制风设备按设计要求产生平行气流。数据采集处理器采集并记录数据。4) The liquid nitrogen refrigeration cycle equipment is refrigerated according to the design requirements. The nitrogen heating cycle equipment performs heating according to the design requirements. The air-making equipment produces parallel airflow according to the design requirements. The data acquisition processor acquires and records data.

5)调整日光灯本体的位置、角度及强度,对土试样进行照射。制风设备按设计要求产生气流。数据采集处理器采集并记录数据。5) Adjust the position, angle and intensity of the fluorescent lamp body to irradiate the soil sample. Air-making equipment generates airflow according to design requirements. The data acquisition processor acquires and records data.

6)计算机对数据采集处理器记录数据进行分析处理。6) The computer analyzes and processes the data recorded by the data acquisition processor.

本发明的技术效果是毋庸置疑的:Technical effect of the present invention is beyond doubt:

A.可控制冻融循环的作用时间,实现冬季冻土模拟的自动化;A. The action time of the freeze-thaw cycle can be controlled to realize the automation of winter frozen soil simulation;

B.可模拟不同阳光下的冻融循环作用。可进行模拟冬季土体在风化环境下的冻融循环;B. It can simulate the freeze-thaw cycle under different sunlight. It can simulate the freeze-thaw cycle of soil in weathering environment in winter;

C.能够观察和测量土体的位移变化。可观察试样试验过程中的细观特性;C. Able to observe and measure the displacement changes of the soil. It can observe the mesoscopic characteristics of the sample during the test;

D.试验后的试样物品易于收集。D. The sample items after the test are easy to collect.

附图说明Description of drawings

图1为装置结构示意图;Fig. 1 is a schematic diagram of the device structure;

图2为冻融模型箱与LED日光灯布置图;Figure 2 is a layout diagram of the freeze-thaw model box and LED fluorescent lamps;

图3为冻融模型箱结构示意图;Fig. 3 is the schematic diagram of freeze-thaw model box structure;

图4为箱体结构剖切图;Figure 4 is a cutaway view of the box structure;

图5为试样剖切图;Figure 5 is a cutaway view of the sample;

图6为变形测试方法流程图。Fig. 6 is a flow chart of the deformation testing method.

图中:计算机1、数据采集处理器2、动态摄像仪3、LED日光灯4、支撑架401、固定横梁4011、连接杆402、日光灯本体403、位移感应器5、温度传感器6、透明隔热材料7、液氮冷冻循环设备8、冻融模型箱9、空腔体901、加热氮气入口902、液氮出口903、液氮入口904、加热氮气出口905、氮气制热循环设备10、土试样11、制风设备13、气体源1301、冷热温度控制1302、加湿除湿控制1303、平行出风口1304、传感器引线口14。In the figure: computer 1, data acquisition processor 2, dynamic camera 3, LED fluorescent lamp 4, support frame 401, fixed beam 4011, connecting rod 402, fluorescent lamp body 403, displacement sensor 5, temperature sensor 6, transparent heat insulating material 7. Liquid nitrogen refrigeration cycle equipment 8, freeze-thaw model box 9, cavity body 901, heating nitrogen inlet 902, liquid nitrogen outlet 903, liquid nitrogen inlet 904, heating nitrogen outlet 905, nitrogen heating cycle equipment 10, soil samples 11. Wind making equipment 13, gas source 1301, heating and cooling temperature control 1302, humidification and dehumidification control 1303, parallel air outlet 1304, sensor lead port 14.

具体实施方式Detailed ways

下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。The present invention will be further described below in conjunction with the examples, but it should not be understood that the scope of the subject of the present invention is limited to the following examples. Without departing from the above-mentioned technical ideas of the present invention, various replacements and changes made according to common technical knowledge and conventional means in this field shall be included in the protection scope of the present invention.

实施例1:Example 1:

参见图1,本实施例公开一种压实土体冻融和风化环境模拟系统,包括放置在实验平台上的冻融模型箱9,以及布置在冻融模型箱9外的LED日光灯4、液氮冷冻循环设备8、氮气制热循环设备10和制风设备13。Referring to Fig. 1, this embodiment discloses a compacted soil freeze-thaw and weathering environment simulation system, including a freeze-thaw model box 9 placed on the experimental platform, and an LED fluorescent lamp 4, liquid Nitrogen refrigeration cycle equipment 8 , nitrogen heating cycle equipment 10 and air making equipment 13 .

所述冻融模型箱9整体为上端敞口的透明矩形箱体。所述冻融模型箱9的外壁敷有透明隔热材料7。所述冻融模型箱9的内壁上布置有若干个传感器引线口14。所述传感器引线口14接入温度或位移数据采集系统。所述冻融模型箱9的内腔中装有土试样11。参见图5,所述土试样11中埋设有多个位移感应器5和对应数量的温度传感器6。所述位移感应器5为环状位移磁感应器。所述温度传感器6球状温度传感器。所述球状温度传感器稳固嵌套在对应的环状位移磁感应器内。所述冻融模型箱9的四侧箱壁依次标记为第一箱壁、第二箱壁、第三箱壁和第四箱壁。参见图3,所述冻融模型箱9的四侧箱壁均为空腔结构。四侧箱壁的空腔结构合围出内腔室901。所述第一箱壁的外壁上开设有加热氮气入口902和液氮出口903。所述液氮出口903布置在加热氮气入口902上方。所述第二箱壁的外壁上开设有液氮入口904和加热氮气出口905。所述加热氮气出口905布置在液氮入口904上方。所述第三箱壁的外壁上开设有加热氮气入口902和液氮出口903。所述液氮出口903布置在加热氮气入口902上方。所述第四箱壁的外壁上开设有液氮入口904和加热氮气出口905。所述加热氮气出口905布置在液氮入口904上方。所述加热氮气入口902、液氮出口903、液氮入口904和加热氮气出口905均连通内腔室901与外部。所述液氮冷冻循环设备8通过液氮出口903和液氮入口904与内腔室901连通。所述氮气制热循环设备10通过加热氮气入口902和加热氮气出口905与内腔室901连通。The freeze-thaw model box 9 is a transparent rectangular box with an open upper end as a whole. The outer wall of the freeze-thaw model box 9 is coated with a transparent heat insulating material 7 . Several sensor lead-in openings 14 are arranged on the inner wall of the freeze-thaw model box 9 . The sensor lead port 14 is connected to a temperature or displacement data acquisition system. A soil sample 11 is housed in the cavity of the freeze-thaw model box 9 . Referring to FIG. 5 , a plurality of displacement sensors 5 and a corresponding number of temperature sensors 6 are embedded in the soil sample 11 . The displacement sensor 5 is a circular displacement magnetic sensor. The temperature sensor 6 is a spherical temperature sensor. The spherical temperature sensor is firmly nested in the corresponding annular displacement magnetic sensor. The four sides of the freeze-thaw model box 9 are sequentially marked as the first box wall, the second box wall, the third box wall and the fourth box wall. Referring to Fig. 3, the four side walls of the freeze-thaw model box 9 are all cavity structures. The cavity structure of the four side walls encloses the inner chamber 901 . A heating nitrogen inlet 902 and a liquid nitrogen outlet 903 are opened on the outer wall of the first tank wall. The liquid nitrogen outlet 903 is arranged above the heating nitrogen inlet 902 . A liquid nitrogen inlet 904 and a heating nitrogen outlet 905 are opened on the outer wall of the second tank wall. The heated nitrogen outlet 905 is arranged above the liquid nitrogen inlet 904 . A heating nitrogen inlet 902 and a liquid nitrogen outlet 903 are opened on the outer wall of the third tank wall. The liquid nitrogen outlet 903 is arranged above the heating nitrogen inlet 902 . A liquid nitrogen inlet 904 and a heated nitrogen outlet 905 are opened on the outer wall of the fourth tank wall. The heated nitrogen outlet 905 is arranged above the liquid nitrogen inlet 904 . The heating nitrogen inlet 902 , the liquid nitrogen outlet 903 , the liquid nitrogen inlet 904 and the heating nitrogen outlet 905 are all connected to the inner chamber 901 and the outside. The liquid nitrogen refrigeration cycle device 8 communicates with the inner chamber 901 through a liquid nitrogen outlet 903 and a liquid nitrogen inlet 904 . The nitrogen heating cycle device 10 communicates with the inner chamber 901 through a heating nitrogen inlet 902 and a heating nitrogen outlet 905 .

参见图2,所述LED日光灯4包括支撑架401、连接杆402与日光灯本体403。所述支撑架401包括固定横梁4011。所述固定横梁4011布置在冻融模型箱9上方。所述连接杆402上端与固定横梁4011活动连接,下端与日光灯本体403活动连接。所述连接杆402可沿固定横梁4011水平滑动。所述日光灯本体403可绕连接杆402下端旋转。Referring to FIG. 2 , the LED fluorescent lamp 4 includes a support frame 401 , a connecting rod 402 and a fluorescent lamp body 403 . The support frame 401 includes a fixed beam 4011 . The fixed beam 4011 is arranged above the freeze-thaw model box 9 . The upper end of the connecting rod 402 is movably connected with the fixed beam 4011 , and the lower end is movably connected with the fluorescent lamp body 403 . The connecting rod 402 can slide horizontally along the fixed beam 4011 . The fluorescent lamp body 403 can rotate around the lower end of the connecting rod 402 .

所述冻融模型箱9外还布置有数据采集处理器2和动态摄像仪3。所述动态摄像仪3、位移感应器5和温度传感器6均与数据采集处理器2相连。所述数据采集处理器2与计算机1相连。A data acquisition processor 2 and a dynamic camera 3 are arranged outside the freeze-thaw model box 9 . The dynamic camera 3 , the displacement sensor 5 and the temperature sensor 6 are all connected to the data acquisition processor 2 . The data acquisition processor 2 is connected to the computer 1 .

所述制风设备13包括气体源1301、冷热温度控制1302、加湿除湿控制1303和平行出风口1304。所述制风设备13可产生含有一定量水分和温度的气流。The air making device 13 includes a gas source 1301 , a heating and cooling temperature control 1302 , a humidification and dehumidification control 1303 and a parallel air outlet 1304 . The wind making device 13 can generate airflow containing a certain amount of moisture and temperature.

工作时,所述日光灯本体403照射土试样11。所述制风设备13产生含有一定量水分、一定温度的气流均匀传递至土试样11表面。所述计算机1控制液氮冷冻循环设备8或氮气制热循环设备10工作。参见图3,图中箭头表示液氮或加热氮气的流动方向。所述液氮冷冻循环设备8将液氮通入内腔室901内,冷却土体试样11。液氮从内腔室901底部通入,上部流出,并回流到冷冻循环控制设备8中。所述氮气制热循环设备10将加热氮气通入内腔室901内,对土体试样11进行制热,实现冻融循环。加热氮气从内腔室901底部通入,上部流出,并回流到氮气制热循环设备10中。所述温度传感器6实时监测试样11内的温度变化。所述位移感应器5记录不同方位的土试样11位移数据。所述动态摄像仪3拍摄土试样11的变化图像信息。所述数据采集处理器2采集存储动态摄像仪3、位移感应器5和温度传感器6的监测数据后,传递至计算机1。When working, the fluorescent lamp body 403 irradiates the soil sample 11 . The wind-making device 13 generates an airflow containing a certain amount of moisture and a certain temperature, which is evenly transmitted to the surface of the soil sample 11 . The computer 1 controls the operation of the liquid nitrogen refrigeration cycle equipment 8 or the nitrogen heating cycle equipment 10 . Referring to Figure 3, the arrows in the figure indicate the flow direction of liquid nitrogen or heated nitrogen. The liquid nitrogen refrigeration cycle device 8 passes liquid nitrogen into the inner chamber 901 to cool the soil sample 11 . Liquid nitrogen flows in from the bottom of the inner chamber 901 , flows out from the top, and flows back into the refrigeration cycle control device 8 . The nitrogen heating cycle device 10 passes heated nitrogen gas into the inner chamber 901 to heat the soil sample 11 to realize a freeze-thaw cycle. The heated nitrogen gas flows in from the bottom of the inner chamber 901 , flows out from the top, and flows back into the nitrogen heating cycle device 10 . The temperature sensor 6 monitors the temperature change in the sample 11 in real time. The displacement sensor 5 records the displacement data of the soil sample 11 in different orientations. The dynamic camera 3 captures image information of changes in the soil sample 11 . The data collection processor 2 collects and stores the monitoring data of the dynamic camera 3 , the displacement sensor 5 and the temperature sensor 6 , and transmits them to the computer 1 .

实施例2:Example 2:

参见图6,本实施例公开一种关于实施例1所述压实土体冻融和风化环境模拟系统的试验方法,包括以下步骤:Referring to Figure 6, this embodiment discloses a test method for the compacted soil freeze-thaw and weathering environment simulation system described in Embodiment 1, including the following steps:

1)根据试验需求,在冻融模型箱9内腔中布设位移感应器5和温度传感器6。在冻融模型箱9的外壁敷设透明隔热材料7。1) According to the test requirements, the displacement sensor 5 and the temperature sensor 6 are arranged in the inner cavity of the freeze-thaw model box 9 . Lay transparent heat insulating material 7 on the outer wall of freeze-thaw model box 9.

2)将土试样11放入冻融模型箱9内腔中并击实。2) Put the soil sample 11 into the cavity of the freeze-thaw model box 9 and compact it.

3)调试电脑1、数据采集处理器2和动态摄像仪3。3) Debugging computer 1, data acquisition processor 2 and dynamic camera 3.

4)液氮冷冻循环设备8按设计要求进行制冷。氮气制热循环设备10按设计要求进行制热。制风设备13按设计要求产生带有水分的平行气流。数据采集处理器2采集并记录数据。4) The liquid nitrogen refrigeration cycle equipment 8 performs refrigeration according to design requirements. The nitrogen heating cycle equipment 10 performs heating according to design requirements. The wind making equipment 13 produces parallel airflows with moisture according to design requirements. The data collection processor 2 collects and records data.

5)调整日光灯本体403的位置、角度及强度,对土试样11进行照射。制风设备13按设计要求产生气流。数据采集处理器2采集并记录数据。5) Adjust the position, angle and intensity of the fluorescent lamp body 403 to irradiate the soil sample 11 . Air-making equipment 13 generates airflow according to design requirements. The data collection processor 2 collects and records data.

6)计算机1对数据采集处理器2记录数据进行分析处理。6) The computer 1 analyzes and processes the data recorded by the data acquisition processor 2 .

值得说明的是,本实施例通过模拟冬季土体的冻融循环,来实现对冻土危害的监测,由于考虑了风化的作用和阳光的作用,使模拟冻土的条件更加接近于现实中的冻土变化。It is worth noting that this embodiment realizes the monitoring of permafrost hazards by simulating the freeze-thaw cycle of soil in winter, and the conditions of simulated permafrost are closer to those in reality due to the consideration of the effects of weathering and sunlight. permafrost changes.

Claims (5)

The transparent rectangular babinet of the freeze thawing model casing (9) generally upper end opening;The outer wall of the freeze thawing model casing (9) is covered withTransparent heat-insulated material (7);Several sensor lead mouths (14) are disposed on the inner wall of the freeze thawing model casing (9);The biographySensor lead wire outlet (14) cut-in temperature or displacement data acquisition system;Soil sample is housed in the inner cavity of the freeze thawing model casing (9)(11);Several displacement sensors (5) and the temperature sensor (6) of corresponding number are embedded in the soil sample (11).It is describedInner cavity chamber (901) is packaged in the tank wall of freeze thawing model casing (9);The inner cavity chamber (901) is recycled by bend pipe and liquid nitrogen frozenEquipment (8) and nitrogen heating recycle unit (10) are connected to;
When work, fluorescent lamp ontology (403) the irradiation soil sample (11);The wind devices processed 13 generate air-flow uniformly transfer toSoil sample (11) surface;Computer (1) the control liquid nitrogen frozen recycle unit (8) or nitrogen heat recycle unit (10) workMake;Liquid nitrogen is passed through in inner cavity chamber (901) by the liquid nitrogen frozen recycle unit (8), cooling soil body sample (11);The nitrogen systemHeated nitrogen is passed through in inner cavity chamber (901) by heat circulating equipment (10), is heated to soil body sample (11), realizes that freeze thawing followsRing;The temperature sensor (6) monitors the temperature change in sample (11) in real time;The displacement sensor (5) records soil sample(11) displacement data of internal different location;The modified-image information of dynamic video camera (3) the shooting soil sample (11);It is describedThe monitoring data of data collection processor (2) acquisition storage dynamic video camera (3), displacement sensor (5) and temperature sensor (6)Afterwards, it is transferred to computer (1).
CN201810436684.8A2018-05-092018-05-09Compacted fill freeze thawing and weathering environmental simulation system and its test methodPendingCN108614089A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201810436684.8ACN108614089A (en)2018-05-092018-05-09Compacted fill freeze thawing and weathering environmental simulation system and its test method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201810436684.8ACN108614089A (en)2018-05-092018-05-09Compacted fill freeze thawing and weathering environmental simulation system and its test method

Publications (1)

Publication NumberPublication Date
CN108614089Atrue CN108614089A (en)2018-10-02

Family

ID=63662419

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201810436684.8APendingCN108614089A (en)2018-05-092018-05-09Compacted fill freeze thawing and weathering environmental simulation system and its test method

Country Status (1)

CountryLink
CN (1)CN108614089A (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN109342486A (en)*2018-10-092019-02-15水利部交通运输部国家能源局南京水利科学研究院 Experimental device for simulating the wet-dry-freeze-thaw cycle of expansive soil channel under hypergravity field
CN109490103A (en)*2018-12-182019-03-19重庆交通大学Frost zone direct shear test system and its test method
CN109490043A (en)*2018-12-182019-03-19重庆交通大学Frozen soil Frozen-thawed cycled SHPB testing equipment and its test method under stress state
CN110133215A (en)*2019-05-152019-08-16枣庄学院 Experimental device for simulating subgrade mud-flooding disaster
CN110133219A (en)*2019-05-152019-08-16水利部交通运输部国家能源局南京水利科学研究院 A Simulating Loading Device of Soil Freeze-thaw Wind Erosion Coupling Under Centrifugal Field
CN110749653A (en)*2019-11-212020-02-04中交第三航务工程局有限公司南京分公司Indoor simulation method and device for in-service light soil ultrasonic detection
US11079725B2 (en)2019-04-102021-08-03Deere & CompanyMachine control using real-time model
CN113466286A (en)*2021-06-302021-10-01中国科学院西北生态环境资源研究院Freeze-thaw test equipment for simulating concrete ultralow-temperature-large-temperature-difference freeze-thaw process
US11178818B2 (en)2018-10-262021-11-23Deere & CompanyHarvesting machine control system with fill level processing based on yield data
CN113804718A (en)*2021-09-082021-12-17西安科技大学 Test device and test method for multi-dimensional parameters of water-ice phase transition and frost heave
US11234366B2 (en)2019-04-102022-02-01Deere & CompanyImage selection for machine control
US11240961B2 (en)2018-10-262022-02-08Deere & CompanyControlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en)2020-10-092022-04-14Deere & CompanyCrop moisture map generation and control system
CN114428098A (en)*2021-12-032022-05-03兰州交通大学 A model test system for freeze-thaw cycle test
CN114485516A (en)*2022-01-262022-05-13重庆交通大学 Real-time early warning method and system for dangerous rock collapse considering the effect of frost heave force in fractures
US11467605B2 (en)2019-04-102022-10-11Deere & CompanyZonal machine control
US11474523B2 (en)2020-10-092022-10-18Deere & CompanyMachine control using a predictive speed map
US11477940B2 (en)2020-03-262022-10-25Deere & CompanyMobile work machine control based on zone parameter modification
CN115575609A (en)*2022-11-032023-01-06中国农业科学院农田灌溉研究所Test device for soil freezing slowing-soil moisture changing
US11592822B2 (en)2020-10-092023-02-28Deere & CompanyMachine control using a predictive map
US11589509B2 (en)2018-10-262023-02-28Deere & CompanyPredictive machine characteristic map generation and control system
US11635765B2 (en)2020-10-092023-04-25Deere & CompanyCrop state map generation and control system
US11641800B2 (en)2020-02-062023-05-09Deere & CompanyAgricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en)2020-10-092023-05-16Deere & CompanyPredictive power map generation and control system
US11653588B2 (en)2018-10-262023-05-23Deere & CompanyYield map generation and control system
US11672203B2 (en)2018-10-262023-06-13Deere & CompanyPredictive map generation and control
US11675354B2 (en)2020-10-092023-06-13Deere & CompanyMachine control using a predictive map
US11711995B2 (en)2020-10-092023-08-01Deere & CompanyMachine control using a predictive map
US11727680B2 (en)2020-10-092023-08-15Deere & CompanyPredictive map generation based on seeding characteristics and control
US11778945B2 (en)2019-04-102023-10-10Deere & CompanyMachine control using real-time model
US11825768B2 (en)2020-10-092023-11-28Deere & CompanyMachine control using a predictive map
US11844311B2 (en)2020-10-092023-12-19Deere & CompanyMachine control using a predictive map
US11845449B2 (en)2020-10-092023-12-19Deere & CompanyMap generation and control system
US11849672B2 (en)2020-10-092023-12-26Deere & CompanyMachine control using a predictive map
US11849671B2 (en)2020-10-092023-12-26Deere & CompanyCrop state map generation and control system
US11864483B2 (en)2020-10-092024-01-09Deere & CompanyPredictive map generation and control system
US11874669B2 (en)2020-10-092024-01-16Deere & CompanyMap generation and control system
US11889787B2 (en)2020-10-092024-02-06Deere & CompanyPredictive speed map generation and control system
US11889788B2 (en)2020-10-092024-02-06Deere & CompanyPredictive biomass map generation and control
US11895948B2 (en)2020-10-092024-02-13Deere & CompanyPredictive map generation and control based on soil properties
US11927459B2 (en)2020-10-092024-03-12Deere & CompanyMachine control using a predictive map
US11946747B2 (en)2020-10-092024-04-02Deere & CompanyCrop constituent map generation and control system
US11957072B2 (en)2020-02-062024-04-16Deere & CompanyPre-emergence weed detection and mitigation system
US11983009B2 (en)2020-10-092024-05-14Deere & CompanyMap generation and control system
US12013245B2 (en)2020-10-092024-06-18Deere & CompanyPredictive map generation and control system
US12035648B2 (en)2020-02-062024-07-16Deere & CompanyPredictive weed map generation and control system
US12058951B2 (en)2022-04-082024-08-13Deere & CompanyPredictive nutrient map and control
US12069978B2 (en)2018-10-262024-08-27Deere & CompanyPredictive environmental characteristic map generation and control system
US12069986B2 (en)2020-10-092024-08-27Deere & CompanyMap generation and control system
US12082531B2 (en)2022-01-262024-09-10Deere & CompanySystems and methods for predicting material dynamics
US12127500B2 (en)2021-01-272024-10-29Deere & CompanyMachine control using a map with regime zones
US12178158B2 (en)2020-10-092024-12-31Deere & CompanyPredictive map generation and control system for an agricultural work machine
US12229886B2 (en)2021-10-012025-02-18Deere & CompanyHistorical crop state model, predictive crop state map generation and control system
US12225846B2 (en)2020-02-062025-02-18Deere & CompanyMachine control using a predictive map
US12245549B2 (en)2022-01-112025-03-11Deere & CompanyPredictive response map generation and control system
US12250905B2 (en)2020-10-092025-03-18Deere & CompanyMachine control using a predictive map
US12284934B2 (en)2022-04-082025-04-29Deere & CompanySystems and methods for predictive tractive characteristics and control
US12298767B2 (en)2022-04-082025-05-13Deere & CompanyPredictive material consumption map and control
US12295288B2 (en)2022-04-052025-05-13Deere &CompanyPredictive machine setting map generation and control system
US12302791B2 (en)2021-12-202025-05-20Deere & CompanyCrop constituents, predictive mapping, and agricultural harvester control
US12310286B2 (en)2021-12-142025-05-27Deere & CompanyCrop constituent sensing
US12329148B2 (en)2020-02-062025-06-17Deere & CompanyPredictive weed map and material application machine control
US12358493B2 (en)2022-04-082025-07-15Deere & CompanySystems and methods for predictive power requirements and control
US12386354B2 (en)2020-10-092025-08-12Deere & CompanyPredictive power map generation and control system
US12422847B2 (en)2020-10-092025-09-23Deere & CompanyPredictive agricultural model and map generation
US12419220B2 (en)2020-10-092025-09-23Deere & CompanyPredictive map generation and control system

Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CZ304120B6 (en)*2011-12-202013-11-06Prírodovedecká fakulta Univerzity Karlovy v PrazeIdentification method of regelation cycles
CN104316391A (en)*2014-10-102015-01-28同济大学Freezing and thawing test model device and method of simulating artificial ground freezing method
CN204154664U (en)*2014-10-152015-02-11中国科学院寒区旱区环境与工程研究所Soil sample freezing-thawing test device
CN105136837A (en)*2015-07-242015-12-09中国矿业大学Liquid nitrogen circulating freeze-thawing permeability-increasing simulation test system and method for coal rock sample
CN105300808A (en)*2015-11-092016-02-03重庆交通大学Soil freezing and thawing cycle test device in triaxial test conditions and test method
CN105628595A (en)*2015-12-192016-06-01长安大学 A soft rock weathering and crushing experimental device and its testing method
CN205826656U (en)*2016-07-272016-12-21长安大学A kind of frozen soil freeze thawing laboratory testing rig
CN107462594A (en)*2017-08-162017-12-12内蒙古农业大学A kind of lab simulation method of freeze-thawing process of soil
CN206756814U (en)*2017-04-262017-12-15沈阳市水利局Permafrost region freeze-thawing process of soil heat and water flow observation device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CZ304120B6 (en)*2011-12-202013-11-06Prírodovedecká fakulta Univerzity Karlovy v PrazeIdentification method of regelation cycles
CN104316391A (en)*2014-10-102015-01-28同济大学Freezing and thawing test model device and method of simulating artificial ground freezing method
CN204154664U (en)*2014-10-152015-02-11中国科学院寒区旱区环境与工程研究所Soil sample freezing-thawing test device
CN105136837A (en)*2015-07-242015-12-09中国矿业大学Liquid nitrogen circulating freeze-thawing permeability-increasing simulation test system and method for coal rock sample
CN105300808A (en)*2015-11-092016-02-03重庆交通大学Soil freezing and thawing cycle test device in triaxial test conditions and test method
CN105628595A (en)*2015-12-192016-06-01长安大学 A soft rock weathering and crushing experimental device and its testing method
CN205826656U (en)*2016-07-272016-12-21长安大学A kind of frozen soil freeze thawing laboratory testing rig
CN206756814U (en)*2017-04-262017-12-15沈阳市水利局Permafrost region freeze-thawing process of soil heat and water flow observation device
CN107462594A (en)*2017-08-162017-12-12内蒙古农业大学A kind of lab simulation method of freeze-thawing process of soil

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周幼吾 等: "《中国冻土》", 31 August 2000*
郭东信: "《中国的冻土》", 30 September 1999*
陈继 等: "冻土地区风的作用分析-以青藏铁路沿线多年冻土为例", 《地球科学进展》*

Cited By (81)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN109342486B (en)*2018-10-092024-06-07水利部交通运输部国家能源局南京水利科学研究院Test device for simulating wet, dry, freeze-thawing cycle of expansive soil channel under supergravity field
CN109342486A (en)*2018-10-092019-02-15水利部交通运输部国家能源局南京水利科学研究院 Experimental device for simulating the wet-dry-freeze-thaw cycle of expansive soil channel under hypergravity field
US11589509B2 (en)2018-10-262023-02-28Deere & CompanyPredictive machine characteristic map generation and control system
US11653588B2 (en)2018-10-262023-05-23Deere & CompanyYield map generation and control system
US11672203B2 (en)2018-10-262023-06-13Deere & CompanyPredictive map generation and control
US12069978B2 (en)2018-10-262024-08-27Deere & CompanyPredictive environmental characteristic map generation and control system
US12010947B2 (en)2018-10-262024-06-18Deere & CompanyPredictive machine characteristic map generation and control system
US12178156B2 (en)2018-10-262024-12-31Deere & CompanyPredictive map generation and control
US12171153B2 (en)2018-10-262024-12-24Deere & CompanyYield map generation and control system
US11178818B2 (en)2018-10-262021-11-23Deere & CompanyHarvesting machine control system with fill level processing based on yield data
US11240961B2 (en)2018-10-262022-02-08Deere & CompanyControlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
CN109490043A (en)*2018-12-182019-03-19重庆交通大学Frozen soil Frozen-thawed cycled SHPB testing equipment and its test method under stress state
CN109490103A (en)*2018-12-182019-03-19重庆交通大学Frost zone direct shear test system and its test method
US11650553B2 (en)2019-04-102023-05-16Deere & CompanyMachine control using real-time model
US11829112B2 (en)2019-04-102023-11-28Deere & CompanyMachine control using real-time model
US11079725B2 (en)2019-04-102021-08-03Deere & CompanyMachine control using real-time model
US11234366B2 (en)2019-04-102022-02-01Deere & CompanyImage selection for machine control
US11467605B2 (en)2019-04-102022-10-11Deere & CompanyZonal machine control
US11778945B2 (en)2019-04-102023-10-10Deere & CompanyMachine control using real-time model
CN110133215A (en)*2019-05-152019-08-16枣庄学院 Experimental device for simulating subgrade mud-flooding disaster
CN110133219A (en)*2019-05-152019-08-16水利部交通运输部国家能源局南京水利科学研究院 A Simulating Loading Device of Soil Freeze-thaw Wind Erosion Coupling Under Centrifugal Field
CN110133215B (en)*2019-05-152021-09-24枣庄学院 An experimental device for simulating subgrade surging disasters
CN110749653A (en)*2019-11-212020-02-04中交第三航务工程局有限公司南京分公司Indoor simulation method and device for in-service light soil ultrasonic detection
US12329148B2 (en)2020-02-062025-06-17Deere & CompanyPredictive weed map and material application machine control
US11641800B2 (en)2020-02-062023-05-09Deere & CompanyAgricultural harvesting machine with pre-emergence weed detection and mitigation system
US11957072B2 (en)2020-02-062024-04-16Deere & CompanyPre-emergence weed detection and mitigation system
US12035648B2 (en)2020-02-062024-07-16Deere & CompanyPredictive weed map generation and control system
US12225846B2 (en)2020-02-062025-02-18Deere & CompanyMachine control using a predictive map
US11477940B2 (en)2020-03-262022-10-25Deere & CompanyMobile work machine control based on zone parameter modification
US11871697B2 (en)2020-10-092024-01-16Deere & CompanyCrop moisture map generation and control system
US12048271B2 (en)2020-10-092024-07-30Deere &CompanyCrop moisture map generation and control system
US11727680B2 (en)2020-10-092023-08-15Deere & CompanyPredictive map generation based on seeding characteristics and control
US12419220B2 (en)2020-10-092025-09-23Deere & CompanyPredictive map generation and control system
US11675354B2 (en)2020-10-092023-06-13Deere & CompanyMachine control using a predictive map
US11825768B2 (en)2020-10-092023-11-28Deere & CompanyMachine control using a predictive map
US11844311B2 (en)2020-10-092023-12-19Deere & CompanyMachine control using a predictive map
US11845449B2 (en)2020-10-092023-12-19Deere & CompanyMap generation and control system
US11849672B2 (en)2020-10-092023-12-26Deere & CompanyMachine control using a predictive map
US11849671B2 (en)2020-10-092023-12-26Deere & CompanyCrop state map generation and control system
US11864483B2 (en)2020-10-092024-01-09Deere & CompanyPredictive map generation and control system
US11650587B2 (en)2020-10-092023-05-16Deere & CompanyPredictive power map generation and control system
US11874669B2 (en)2020-10-092024-01-16Deere & CompanyMap generation and control system
US11889787B2 (en)2020-10-092024-02-06Deere & CompanyPredictive speed map generation and control system
US11889788B2 (en)2020-10-092024-02-06Deere & CompanyPredictive biomass map generation and control
US11895948B2 (en)2020-10-092024-02-13Deere & CompanyPredictive map generation and control based on soil properties
US11927459B2 (en)2020-10-092024-03-12Deere & CompanyMachine control using a predictive map
US11946747B2 (en)2020-10-092024-04-02Deere & CompanyCrop constituent map generation and control system
US11635765B2 (en)2020-10-092023-04-25Deere & CompanyCrop state map generation and control system
US11983009B2 (en)2020-10-092024-05-14Deere & CompanyMap generation and control system
US11592822B2 (en)2020-10-092023-02-28Deere & CompanyMachine control using a predictive map
US12013245B2 (en)2020-10-092024-06-18Deere & CompanyPredictive map generation and control system
US12013698B2 (en)2020-10-092024-06-18Deere & CompanyMachine control using a predictive map
US12422847B2 (en)2020-10-092025-09-23Deere & CompanyPredictive agricultural model and map generation
US11474523B2 (en)2020-10-092022-10-18Deere & CompanyMachine control using a predictive speed map
US11711995B2 (en)2020-10-092023-08-01Deere & CompanyMachine control using a predictive map
US12386354B2 (en)2020-10-092025-08-12Deere & CompanyPredictive power map generation and control system
US12271196B2 (en)2020-10-092025-04-08Deere &CompanyMachine control using a predictive map
US12069986B2 (en)2020-10-092024-08-27Deere & CompanyMap generation and control system
US12080062B2 (en)2020-10-092024-09-03Deere & CompanyPredictive map generation based on seeding characteristics and control
US12250905B2 (en)2020-10-092025-03-18Deere & CompanyMachine control using a predictive map
US12216472B2 (en)2020-10-092025-02-04Deere & CompanyMap generation and control system
US12193350B2 (en)2020-10-092025-01-14Deere & CompanyMachine control using a predictive map
US12178158B2 (en)2020-10-092024-12-31Deere & CompanyPredictive map generation and control system for an agricultural work machine
US20220110251A1 (en)2020-10-092022-04-14Deere & CompanyCrop moisture map generation and control system
US12127500B2 (en)2021-01-272024-10-29Deere & CompanyMachine control using a map with regime zones
CN113466286A (en)*2021-06-302021-10-01中国科学院西北生态环境资源研究院Freeze-thaw test equipment for simulating concrete ultralow-temperature-large-temperature-difference freeze-thaw process
CN113804718A (en)*2021-09-082021-12-17西安科技大学 Test device and test method for multi-dimensional parameters of water-ice phase transition and frost heave
US12229886B2 (en)2021-10-012025-02-18Deere & CompanyHistorical crop state model, predictive crop state map generation and control system
CN114428098A (en)*2021-12-032022-05-03兰州交通大学 A model test system for freeze-thaw cycle test
US12310286B2 (en)2021-12-142025-05-27Deere & CompanyCrop constituent sensing
US12302791B2 (en)2021-12-202025-05-20Deere & CompanyCrop constituents, predictive mapping, and agricultural harvester control
US12245549B2 (en)2022-01-112025-03-11Deere & CompanyPredictive response map generation and control system
CN114485516A (en)*2022-01-262022-05-13重庆交通大学 Real-time early warning method and system for dangerous rock collapse considering the effect of frost heave force in fractures
US12082531B2 (en)2022-01-262024-09-10Deere & CompanySystems and methods for predicting material dynamics
CN114485516B (en)*2022-01-262023-07-14重庆交通大学 Real-time warning method and system for dangerous rock collapse considering frost heaving force in cracks
US12295288B2 (en)2022-04-052025-05-13Deere &CompanyPredictive machine setting map generation and control system
US12298767B2 (en)2022-04-082025-05-13Deere & CompanyPredictive material consumption map and control
US12284934B2 (en)2022-04-082025-04-29Deere & CompanySystems and methods for predictive tractive characteristics and control
US12358493B2 (en)2022-04-082025-07-15Deere & CompanySystems and methods for predictive power requirements and control
US12058951B2 (en)2022-04-082024-08-13Deere & CompanyPredictive nutrient map and control
CN115575609A (en)*2022-11-032023-01-06中国农业科学院农田灌溉研究所Test device for soil freezing slowing-soil moisture changing

Similar Documents

PublicationPublication DateTitle
CN108614089A (en)Compacted fill freeze thawing and weathering environmental simulation system and its test method
CN205826656U (en)A kind of frozen soil freeze thawing laboratory testing rig
CN104267172B (en)A kind of multifunctional all formula soil body freezing-thawing test system
CN106525661B (en)Unsaturated soil vapour complex characteristic test device and its test method
CN101788552B (en)Device and method for simulating migration and transformation of pollutants in freeze-thawing process of soil
CN207764217U (en) A closed soil column device for simulating one-dimensional water, heat and salt migration in frozen soil
CN204154664U (en)Soil sample freezing-thawing test device
CN112557436B (en)Method and device for simulating expansion and shrinkage and water migration of soil body under complex environmental conditions
CN203720123U (en) Indoor test device for tunnels in cold regions
CN103743771A (en)Freeze-thawing circulation detection apparatus for nature saline soil
CN207300936U (en)A kind of side slope tests indoor simulation device
CN103454304A (en)Concrete specimen temperature testing device for simulating natural environments and testing method of concrete specimen temperature testing device
CN108732057A (en)Ring shear test equipment and its test method under a kind of soil body Frozen-thawed cycled and weathering environment
CN104122381A (en)High and low temperature vacuum lunar soil environment simulator
CN106645261B (en)Large-scale multifunctional manual freezing platform
CN102129806B (en)Atmospheric environmental simulation device
CN205317708U (en)Test device of han qu tunnel country rock and distinguished and admirable heat transfer
CN105588774A (en)Model test system for materials of surrounding rock and lining structures of high-ground-temperature diversion tunnel
CN103364266A (en)Two-dimensional temperature gradient frozen soil test device and use method thereof
CN204302097U (en)A kind of Rock And Soil based on inside and outside combined heat moves/static(al) three axle temperature control experimental rig
CN218956580U (en) A model experiment system for ice-rock debris slopes under the action of freeze-thaw cycles
CN103439357A (en)Method for testing moisture-heat transfer performance of exterior wall and dedicated climate simulation test chamber therefor
CN110895275A (en)Device and method for measuring soil respiration and water migration by simulating temperature rise rainfall
CN107462594A (en)A kind of lab simulation method of freeze-thawing process of soil
CN107655930A (en)Frost heave parameter determinator under controllable temperature complicated boundary condition

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
RJ01Rejection of invention patent application after publication
RJ01Rejection of invention patent application after publication

Application publication date:20181002


[8]ページ先頭

©2009-2025 Movatter.jp