技术领域technical field
本发明涉及临床医疗中所使用的骨固定器械,尤其涉及一种可吸收的骨固定装置及其制备方法。The invention relates to a bone fixation device used in clinical medicine, in particular to an absorbable bone fixation device and a preparation method thereof.
背景技术Background technique
基于聚乳酸的可吸收骨固定装置在临床医疗中得到了越来越广泛的应用。骨、软骨、肌腱、韧带等的连接和固定中广泛用到聚乳酸类可吸收固定器械。聚乳酸在体内环境中可以降解为乳酸:左旋乳酸可在人体内通过三羧酸循环代谢为二氧化碳和水,最终排出体外;右旋乳酸可经肾脏排除。聚乳酸类骨固定医疗器械替代金属类器械可以免去患者经历二次手术取出金属的痛苦和经济负担。但是,纯聚乳酸类材料所制骨钉等骨固定装置在使用过程中发现仍存在以下问题:(1)、聚乳酸降解产物呈酸性,容易引起因酸性导致的体内炎症反应,阻碍骨的愈合和修复;(2)、聚乳酸降解产物聚集处因骨细胞/骨组织无法长入而形成空洞,进而降低新骨的强度,存在再次骨折的风险;(3)、聚乳酸材料的力学性能对热非常敏感,常规采用的熔融注塑加工方法一方面加速聚乳酸本体的热降解,大大降低其分子量,另一方面,因聚乳酸本身结晶速度慢,常规的注塑冷却让其无法形成有效结晶(结晶度与产品强度成正比),这两方面的因素导致了聚乳酸类骨固定装置的强度低,不能满足骨科需求。Absorbable bone fixation devices based on polylactic acid have been more and more widely used in clinical medicine. Polylactic acid absorbable fixation devices are widely used in the connection and fixation of bones, cartilage, tendons, ligaments, etc. Polylactic acid can be degraded into lactic acid in the internal environment: L-lactic acid can be metabolized into carbon dioxide and water through the tricarboxylic acid cycle in the human body, and finally excreted; D-lactic acid can be excreted by the kidneys. The replacement of metal devices by polylactic acid bone fixation medical devices can save patients the pain and financial burden of undergoing a second operation to remove the metal. However, bone fixation devices such as bone nails made of pure polylactic acid materials still have the following problems during use: (1) The degradation products of polylactic acid are acidic, which can easily cause inflammatory reactions in the body caused by acidity and hinder bone healing and repair; (2), the bone cells/bone tissue cannot grow into the cavity where the polylactic acid degradation product gathers, thereby reducing the strength of new bone, and there is a risk of fracture again; (3), the mechanical properties of polylactic acid material have a great impact on Heat is very sensitive. On the one hand, the conventional melt injection molding processing method accelerates the thermal degradation of the polylactic acid body and greatly reduces its molecular weight. On the other hand, due to the slow crystallization rate of polylactic acid itself, conventional injection cooling prevents it from forming effective crystallization (crystallization The strength is proportional to the product strength), these two factors lead to the low strength of the polylactic acid bone fixation device, which cannot meet the needs of orthopedics.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种可避免降解产物的酸性导致的炎症反应,加速骨的修复和愈合,防止产生骨中空洞,且可大大提高装置强度的可吸收的骨固定装置及其制备方法。The technical problem to be solved by the present invention is to provide an absorbable bone fixation device that can avoid the inflammatory response caused by the acidity of degradation products, accelerate bone repair and healing, prevent the generation of hollows in the bone, and greatly improve the strength of the device and its Preparation.
本发明解决上述技术问题所采用的技术方案为:一种可吸收的骨固定装置,包括材料为聚酯类聚合物的基体,所述的基体内设置有空腔,所述的空腔内填充有钙磷陶瓷。The technical solution adopted by the present invention to solve the above-mentioned technical problems is: an absorbable bone fixation device, comprising a matrix made of polyester polymer, a cavity is arranged in the matrix, and the cavity is filled with There are calcium phosphorus ceramics.
进一步地,所述的基体的形状为圆棒形或板状。Further, the shape of the base is round rod or plate.
进一步地,所述的圆棒形的基体的外表面设置有外螺纹。Further, the outer surface of the round rod-shaped base is provided with external threads.
进一步地,所述的聚酯类聚合物为聚ε-己内酯、聚左旋乳酸、聚消旋乳酸、聚乙醇酸中的至少一种,其中:聚ε-己内酯的分子量>80000。Further, the polyester polymer is at least one of polyε-caprolactone, poly-L-lactic acid, polyracemic lactic acid and polyglycolic acid, wherein the molecular weight of polyε-caprolactone is >80000.
进一步地,所述的钙磷陶瓷为磷酸三钙、羟基磷灰石、生物玻璃中的至少一种。Further, the calcium phosphorus ceramic is at least one of tricalcium phosphate, hydroxyapatite, and bioglass.
一种可吸收的骨固定装置的制备方法,包括以下具体步骤:A method for preparing an absorbable bone fixation device, comprising the following specific steps:
(1)、取固态的聚酯类聚合物将其加工成圆棒形或板状,作为基体;(1) Take the solid polyester polymer and process it into a round rod or plate as the matrix;
(2)、在基体上开孔以形成内腔;(2) Holes are opened on the substrate to form an inner cavity;
(3)、在内腔中填充钙磷陶瓷,得到骨固定装置。(3) Calcium-phosphorus ceramics are filled in the inner cavity to obtain a bone fixation device.
进一步地,所述的步骤(1)中,在圆棒形的基体的外表面加工螺纹,形成螺钉。Further, in the step (1), threads are processed on the outer surface of the round bar-shaped base to form screws.
进一步地,所述的聚酯类聚合物为聚ε-己内酯、聚左旋乳酸、聚消旋乳酸、聚乙醇酸中的至少一种,其中:聚ε-己内酯的分子量>80000。Further, the polyester polymer is at least one of polyε-caprolactone, poly-L-lactic acid, polyracemic lactic acid and polyglycolic acid, wherein the molecular weight of polyε-caprolactone is >80000.
进一步地,所述的钙磷陶瓷为磷酸三钙、羟基磷灰石、生物玻璃中的至少一种。Further, the calcium phosphorus ceramic is at least one of tricalcium phosphate, hydroxyapatite, and bioglass.
与现有技术相比,本发明的优点是:Compared with prior art, the advantage of the present invention is:
(1)、由于在材料为聚酯类聚合物的基体的空腔中填充钙磷陶瓷,以物理方法在聚酯类聚合物中填充钙磷陶瓷成份,使得骨固定装置中钙磷陶瓷成份的重量比最高可达80%左右,这一方面可保持聚合物的微观结构,使用少量的聚合物即可达到高强度;另一方面,促骨生长的钙磷陶瓷的添加量可根据实际需要进行添加。(1) Since calcium-phosphorus ceramics are filled in the cavity of the polyester polymer matrix, calcium-phosphorus ceramics are filled in the polyester polymer by physical methods, so that the calcium-phosphorus ceramics in the bone fixation device The weight ratio can reach up to about 80%. On the one hand, the microstructure of the polymer can be maintained, and high strength can be achieved with a small amount of polymer; on the other hand, the amount of calcium-phosphorus ceramics that promotes bone growth can be adjusted according to actual needs. Add to.
(2)、该骨固定装置进入体内后,材料为聚酯类聚合物的基体降解后形成的酸性可被填充的碱性钙磷陶瓷中和,以防止炎症反应,同时其中的钙磷陶瓷还可发挥诱导骨细胞/骨组织生长的功能,加速骨的修复与愈合,避免再生骨中空洞的形成,确保了再生骨的强度。(2) After the bone fixation device enters the body, the acidity formed after the degradation of the polyester polymer matrix can be neutralized by the filled alkaline calcium-phosphorus ceramics to prevent inflammation. It can induce the growth of bone cells/bone tissue, accelerate bone repair and healing, avoid the formation of cavities in regenerated bone, and ensure the strength of regenerated bone.
附图说明Description of drawings
图1为本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
具体实施方式Detailed ways
以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
如图所示,一种可吸收的骨固定装置,包括材料为聚酯类聚合物的基体1,基体1内设置有空腔,空腔内填充有钙磷陶瓷2。As shown in the figure, an absorbable bone fixation device includes a matrix 1 made of a polyester polymer. The matrix 1 is provided with a cavity, and the cavity is filled with calcium phosphorus ceramics 2 .
上述实施例中,基体的形状可以为圆棒形或板状,也可在圆棒形的基体的外表面设置外螺纹,使其作为骨钉使用;此外,聚酯类聚合物为聚ε-己内酯、聚左旋乳酸、聚消旋乳酸、聚乙醇酸中的至少一种,其中:聚ε-己内酯的分子量>80000;钙磷陶瓷为磷酸三钙、羟基磷灰石、生物玻璃中的至少一种。In the above-mentioned embodiment, the shape of the base body can be round rod or plate shape, and external threads can also be set on the outer surface of the round rod-shaped base body, so that it can be used as a bone nail; in addition, the polyester polymer is polyε- At least one of caprolactone, poly-L-lactic acid, poly-racemic lactic acid, and polyglycolic acid, wherein: the molecular weight of poly-ε-caprolactone is >80,000; the calcium-phosphorus ceramics are tricalcium phosphate, hydroxyapatite, and bioglass at least one of the
上述可吸收的骨固定装置的制备方法,包括以下具体步骤:The preparation method of the above-mentioned absorbable bone fixation device comprises the following specific steps:
(1)、取固态的聚酯类聚合物将其加工成圆棒形或板状,作为基体1;(1) Take a solid polyester polymer and process it into a round rod or plate as the substrate 1;
(2)、在基体1上开孔以形成内腔;(2) Holes are opened on the substrate 1 to form an inner cavity;
(3)、在内腔中填充钙磷陶瓷2,得到骨固定装置。(3) Calcium-phosphorus ceramics 2 are filled in the inner cavity to obtain a bone fixation device.
当需要将骨固定装置作为骨钉使用时,在步骤(1)中,在圆棒形的基体1的外表面加工螺纹即可。When the bone fixation device needs to be used as a bone nail, in step (1), it is enough to process threads on the outer surface of the round rod-shaped base 1 .
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810888658.9ACN108578787A (en) | 2018-08-07 | 2018-08-07 | A kind of absorbable bone anchoring device and preparation method thereof |
| PCT/CN2018/121388WO2020029502A1 (en) | 2018-08-07 | 2019-01-30 | Absorbable bone fixation device and preparation method thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810888658.9ACN108578787A (en) | 2018-08-07 | 2018-08-07 | A kind of absorbable bone anchoring device and preparation method thereof |
| Publication Number | Publication Date |
|---|---|
| CN108578787Atrue CN108578787A (en) | 2018-09-28 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810888658.9APendingCN108578787A (en) | 2018-08-07 | 2018-08-07 | A kind of absorbable bone anchoring device and preparation method thereof |
| Country | Link |
|---|---|
| CN (1) | CN108578787A (en) |
| WO (1) | WO2020029502A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020029502A1 (en)* | 2018-08-07 | 2020-02-13 | 宁波宝亭生物科技有限公司 | Absorbable bone fixation device and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05146501A (en)* | 1991-11-29 | 1993-06-15 | Takiron Co Ltd | Bonesetting device |
| WO1996019248A2 (en)* | 1994-12-21 | 1996-06-27 | Board Of Regents, The University Of Texas System | METHOD OF CONTROLLING pH IN THE VICINITY OF BIODEGRADABLE IMPLANTS, AND METHOD OF INCREASING SURFACE POROSITY |
| EP1433489A1 (en)* | 2002-12-23 | 2004-06-30 | Degradable Solutions AG | Biodegradable porous bone implant with a barrier membrane sealed thereto |
| CN1546180A (en)* | 2003-12-08 | 2004-11-17 | 华中科技大学 | A kind of degradable composite support material and preparation method thereof |
| US20050042253A1 (en)* | 2003-08-22 | 2005-02-24 | David Farrar | Tissue repair and replacement |
| CN1613512A (en)* | 2003-11-04 | 2005-05-11 | 中南大学 | Internal fixer composite material with living things absorption and preparation |
| CN102940910A (en)* | 2012-12-07 | 2013-02-27 | 北京中奥汇成生物材料科技有限公司 | Absorbable bone screw as well as preparation method and application of absorbable bone screw |
| JP5237180B2 (en)* | 2009-04-20 | 2013-07-17 | 株式会社イケヤフォ−ミュラ | Shifting operation device |
| CN103767776A (en)* | 2012-10-25 | 2014-05-07 | 苏州瑞世医疗科技有限公司 | Composite bioactive type anterior cruciate ligament fastening nail |
| CN105264014A (en)* | 2013-05-16 | 2016-01-20 | 株式会社索夫塞拉 | Biodegradable material |
| CN106063949A (en)* | 2015-09-30 | 2016-11-02 | 圆容生物医药无锡有限公司 | Fixing composite material in a kind of high-strength degradable bone |
| CN106178122A (en)* | 2016-08-31 | 2016-12-07 | 东北大学 | A kind of adsorbable bone repair materials and preparation method thereof |
| CN106924822A (en)* | 2015-12-31 | 2017-07-07 | 先健科技(深圳)有限公司 | Implanted medical device is fixed in available iron based alloy |
| US20170296711A1 (en)* | 2012-09-12 | 2017-10-19 | The Regents Of The University Of California | Immunomodulatory materials for implantable medical devices |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3010279B2 (en)* | 1992-02-28 | 2000-02-21 | タキロン株式会社 | Osteosynthesis device |
| ATE333861T1 (en)* | 1999-05-20 | 2006-08-15 | Univ Boston | POLYMER REINFORCED ANATOMIC SHAPED BIOACTIVE PROSTHESES |
| US8012501B2 (en)* | 2004-06-10 | 2011-09-06 | Synthes Usa, Llc | Flexible bone composite |
| US20130211466A1 (en)* | 2012-02-15 | 2013-08-15 | Warsaw Orthopedic, Inc. | Bone fastener and methods of use |
| CN105457106B (en)* | 2016-01-11 | 2019-02-01 | 光钰科技股份有限公司 | Bone nail suitable for hot melt implantation to bone correction or diseased bone |
| CN106691525A (en)* | 2017-01-06 | 2017-05-24 | 南京市六合区人民医院 | Fixing system for transplant in anterior cruciate ligament reconstruction |
| CN108578787A (en)* | 2018-08-07 | 2018-09-28 | 宁波宝亭生物科技有限公司 | A kind of absorbable bone anchoring device and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05146501A (en)* | 1991-11-29 | 1993-06-15 | Takiron Co Ltd | Bonesetting device |
| WO1996019248A2 (en)* | 1994-12-21 | 1996-06-27 | Board Of Regents, The University Of Texas System | METHOD OF CONTROLLING pH IN THE VICINITY OF BIODEGRADABLE IMPLANTS, AND METHOD OF INCREASING SURFACE POROSITY |
| EP1433489A1 (en)* | 2002-12-23 | 2004-06-30 | Degradable Solutions AG | Biodegradable porous bone implant with a barrier membrane sealed thereto |
| US20050042253A1 (en)* | 2003-08-22 | 2005-02-24 | David Farrar | Tissue repair and replacement |
| CN1613512A (en)* | 2003-11-04 | 2005-05-11 | 中南大学 | Internal fixer composite material with living things absorption and preparation |
| CN1546180A (en)* | 2003-12-08 | 2004-11-17 | 华中科技大学 | A kind of degradable composite support material and preparation method thereof |
| JP5237180B2 (en)* | 2009-04-20 | 2013-07-17 | 株式会社イケヤフォ−ミュラ | Shifting operation device |
| US20170296711A1 (en)* | 2012-09-12 | 2017-10-19 | The Regents Of The University Of California | Immunomodulatory materials for implantable medical devices |
| CN103767776A (en)* | 2012-10-25 | 2014-05-07 | 苏州瑞世医疗科技有限公司 | Composite bioactive type anterior cruciate ligament fastening nail |
| CN102940910A (en)* | 2012-12-07 | 2013-02-27 | 北京中奥汇成生物材料科技有限公司 | Absorbable bone screw as well as preparation method and application of absorbable bone screw |
| CN105264014A (en)* | 2013-05-16 | 2016-01-20 | 株式会社索夫塞拉 | Biodegradable material |
| CN106063949A (en)* | 2015-09-30 | 2016-11-02 | 圆容生物医药无锡有限公司 | Fixing composite material in a kind of high-strength degradable bone |
| CN106924822A (en)* | 2015-12-31 | 2017-07-07 | 先健科技(深圳)有限公司 | Implanted medical device is fixed in available iron based alloy |
| CN106178122A (en)* | 2016-08-31 | 2016-12-07 | 东北大学 | A kind of adsorbable bone repair materials and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020029502A1 (en)* | 2018-08-07 | 2020-02-13 | 宁波宝亭生物科技有限公司 | Absorbable bone fixation device and preparation method thereof |
| Publication number | Publication date |
|---|---|
| WO2020029502A1 (en) | 2020-02-13 |
| Publication | Publication Date | Title |
|---|---|---|
| Kanno et al. | Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery | |
| Peltoniemi et al. | The use of bioabsorbable osteofixation devices in craniomaxillofacial surgery | |
| Heidemann et al. | Degradation of poly (D, L) lactide implants with or without addition of calciumphosphates in vivo | |
| JP2860663B2 (en) | Biodegradable and absorbable surgical molding | |
| CN1162187C (en) | Inorganic bone adhesive and its application in human hard tissue repair | |
| Rokkanen | Absorbable materials in orthopaedic surgery | |
| Felfel et al. | In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods | |
| CN101991881B (en) | Controllablely degradable internal fixation composite material and preparation method and application thereof | |
| EP3530297B1 (en) | Method of manufacture of a high-strength absorbable internal fixation bone screw for fractures | |
| WO2015043496A1 (en) | Bone injury repair and fixation instrument and method of manufacturing same | |
| Demina et al. | Biodegradable nanostructured composites for surgery and regenerative medicine | |
| Prabhu et al. | Bioresorbable materials for orthopedic applications (Lactide and glycolide based) | |
| Kangas et al. | Comparison of strength properties of poly‐l/d‐lactide (PLDLA) 96/4 and polyglyconate (Maxon®) sutures: In vitro, in the subcutis, and in the achilles tendon of rabbits | |
| Thaller et al. | Use of biodegradable plates and screws in a rabbit model | |
| JPH11206871A (en) | In vivo degradable and absorptive bone fixing material and its manufacture | |
| Prasad et al. | Introduction to Next‐Generation Materials for Biomedical Applications | |
| Szczepanska et al. | Influence of ceramic phosphate powders on the physicochemical and biological properties of Poly (L-lactide) | |
| CN108578787A (en) | A kind of absorbable bone anchoring device and preparation method thereof | |
| CN104906638B (en) | Bone fixation assembly and use thereof | |
| CN118384322A (en) | Novel artificial bone based on nerve vessel regeneration promotion and preparation method thereof | |
| Duan et al. | Effects of mechanical loading on the degradability and mechanical properties of the nanocalcium-deficient hydroxyapatite–multi (amino acid) copolymer composite membrane tube for guided bone regeneration | |
| Vatchha et al. | Biodegradable implants in orthopaedics | |
| CN101618586B (en) | Preparation method of orthopaedics inner fixing apparatus based on polyhydroxyalkanote material | |
| WO2003059409A2 (en) | Biodegradable implant materials | |
| KR20150038519A (en) | Resorbable and radiopaque device for bone fixation |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20180928 |