技术领域technical field
本发明属于雷达信号技术领域,特别涉及一种应用于三阶机动目标的相参积累检测方法。The invention belongs to the technical field of radar signals, in particular to a coherent accumulation detection method applied to third-order maneuvering targets.
背景技术Background technique
随着航空技术和隐身技术的蓬勃发展,机动目标检测逐渐成为了雷达信号处理领域的难题。通常情况下,长时间积累技术能够显著地提高雷达的检测性能。然而,机动目标的复杂运动(包括速度、加速度和加加速度)会引起距离徙动和多普勒徙动效应,它们会造成雷达积累检测性能的下降。因此,必须在相参积累检测之前消除距离徙动与多普勒徙动。With the vigorous development of aviation technology and stealth technology, maneuvering target detection has gradually become a difficult problem in the field of radar signal processing. Usually, long-term accumulation technology can significantly improve the detection performance of radar. However, the complex motion (including velocity, acceleration and jerk) of the maneuvering target will cause range migration and Doppler migration effects, which will cause the decline of radar cumulative detection performance. Therefore, range and Doppler migration must be eliminated prior to coherent accumulation detection.
为了校正由目标速度引起的一阶距离徙动,首先提出的算法是Keystone变换,这种方法能够通过插值对原有的坐标轴进行尺度变换,从而有效地校正一阶距离徙动。随后,许稼等人提出了RFT算法,该算法是通过在速度-距离域的二维联合搜索实现一阶距离徙动的校正同时获得目标的能量积累。此后被提出的AR-MTD算法则是利用坐标轴旋转来消除目标的一阶距离徙动。In order to correct the first-order distance migration caused by the target speed, the first proposed algorithm is the Keystone transformation, which can perform scale transformation on the original coordinate axis through interpolation, thereby effectively correcting the first-order distance migration. Subsequently, Xu Jia and others proposed the RFT algorithm, which is to achieve the correction of the first-order distance migration and obtain the energy accumulation of the target through the two-dimensional joint search in the velocity-distance domain. The AR-MTD algorithm proposed later uses the coordinate axis rotation to eliminate the first-order distance migration of the target.
当考虑到目标的加速度时,二阶距离徙动和一阶多普勒扩散效应会在长时间积累过程中出现。针对二阶距离徙动与一阶多普勒扩散问题,科研人员提出了多种解决方法。IAR-FRFT算法是通过改进旋转坐标轴校正一阶距离徙动并减缓二阶距离徙动,然后通过FRFT操作消除一阶多普勒扩散并实现能量的相参积累。此外,RFRFT、RLVD、RLCT等算法陆续被提出来解决上述问题。When the acceleration of the target is considered, second-order range migration and first-order Doppler spread effects appear in the long-term accumulation process. For the second-order distance migration and first-order Doppler diffusion problems, researchers have proposed a variety of solutions. The IAR-FRFT algorithm corrects the first-order range migration and slows down the second-order range migration by improving the rotating coordinate axis, and then eliminates the first-order Doppler spread through the FRFT operation and realizes the coherent accumulation of energy. In addition, algorithms such as RFRFT, RLVD, and RLCT have been proposed to solve the above problems.
对于以加加速度运动的目标,在其长时间积累过程中会出现三阶距离徙动和二阶多普勒扩散现象。之前提及的算法都只是考虑了速度或加速度,无法应用于三阶机动目标。针对三阶距离徙动和二阶多普勒扩散问题,许稼等人提出了GRFT算法,该算法是在参数域进行多维搜索实现相参积累。此外,李小龙等人提出的GKTGDP算法也能很好地解决上述问题。然而,这两种方法的运算量都很大。此外,GRFT算法中还有可能出现盲速旁瓣效应。ACCF算法能够快速实现相参积累检测,但是其检测性能会显著下降。For a target moving with jerk, the third-order distance migration and second-order Doppler diffusion phenomenon will appear in the long-term accumulation process. The algorithms mentioned above only consider velocity or acceleration and cannot be applied to third-order maneuvering targets. For the third-order distance migration and second-order Doppler diffusion problems, Xu Jia et al. proposed the GRFT algorithm, which is a multi-dimensional search in the parameter domain to achieve coherent accumulation. In addition, the GKTGDP algorithm proposed by Bruce Lee and others can also solve the above problems well. However, both methods are computationally intensive. In addition, the blind speed side lobe effect may appear in the GRFT algorithm. The ACCF algorithm can quickly realize coherent accumulation detection, but its detection performance will decrease significantly.
发明内容Contents of the invention
为了解决上述问题,本发明提供了一种应用于三阶机动目标的相参积累检测方法,消除了三阶机动目标的距离走动和多普勒徙动效应并实现目标能量的相参积累。In order to solve the above problems, the present invention provides a coherent accumulation detection method applied to a third-order maneuvering target, which eliminates the range walk and Doppler migration effect of the third-order maneuvering target and realizes coherent accumulation of target energy.
一种应用于三阶机动目标的相参积累检测方法,包括以下步骤:A coherent accumulation detection method applied to a third-order maneuvering target, comprising the following steps:
步骤1,雷达发射机发射线性调频信号,对雷达接收机接收到的多脉冲回波信号在快时间频域进行快速傅里叶变换并进行脉冲压缩处理,得到脉冲压缩后的信号Sc(f,tm),其中,f为快时间频率,tm为慢时间;Step 1, the radar transmitter transmits the chirp signal, performs fast Fourier transform and pulse compression processing on the multi-pulse echo signal received by the radar receiver in the fast time frequency domain, and obtains the pulse-compressed signal Sc (f ,tm ), where f is the fast time frequency, and tm is the slow time;
步骤2,将脉冲压缩处理后的回波信号Sc(f,tm)在快时间频域进行三阶Keystone变换,得到变换后的回波信号SKT(f,tn),其中,tn为慢时间变量,fc为雷达载频;Step 2: Perform third-order Keystone transformation on the pulse-compressed echo signal Sc (f,tm ) in the fast time-frequency domain to obtain the transformed echo signal SKT (f,tn ), where, tn is the slow time variable, fc is the radar carrier frequency;
步骤3,对变换后的回波信号SKT(f,tn)进行频移互相关变换得到Z(f,fd,tn),其中,fd为频移变量;对Z(f,fd,tn)沿方向进行求和得到P(fd,tn);Step 3, perform frequency-shift cross-correlation transformation on the transformed echo signal SKT (f,tn ) to obtain Z(f,fd ,tn ), where fd is the frequency shift variable; for Z(f, fd ,tn ) are summed along the direction to get P(fd ,tn );
步骤4,对P(fd,tn)进行尺度傅里叶变换得到Q(fd,fp),对Q(fd,fp)关于变量fd进行逆快速傅里叶变换得到Q(td,fp),通过Q(td,fp)峰值位置所对应的值得到定义速度其中,fp为与tn对应的频域变量;Step 4, perform scale Fourier transform on P(fd ,tn ) to obtain Q(fd ,fp ), and perform inverse fast Fourier transform on Q(fd ,fp ) with respect to the variable fd to obtain Q (td ,fp ), get the defined velocity by the value corresponding to the peak position of Q(td ,fp ) Among them, fp is the frequency domain variable corresponding to tn ;
步骤5,构造匹配滤波补偿方程,对SKT(f,tn)进行补偿,得到回波信号Smatch3(f,tn);Step 5, constructing a matched filter compensation equation to compensate SKT (f, tn ) to obtain the echo signal Smatch3 (f, tn );
步骤6,将补偿后的回波信号Smatch3(f,tn)沿快时间频率f方向进行逆快速傅里叶变换得到将沿慢时间tn方向进行傅里叶变换得到目标能量的相参积累。Step 6, perform inverse fast Fourier transform on the compensated echo signal Smatch3 (f,tn ) along the direction of fast time frequency f to obtain Will The coherent accumulation of the target energy is obtained by Fourier transform along the slow time tn direction.
进一步地,所述步骤1包括以下流程:Further, the step 1 includes the following process:
雷达发射机发射线性调频信号,对雷达接收机接收到的多脉冲回波信号在快时间频域进行快速傅里叶变换并进行脉冲压缩处理,得到脉冲压缩后的信号Sc(f,tm),其中,f为快时间频率,tm为慢时间;三阶机动目标与雷达在tm时刻的距离为其中,R0为目标与雷达的初始距离,a和k分别表示目标的加速度和加加速度;v=nvamb+v0为目标的速度,其中,n为折叠因子,vamb为模糊速度,v0为无模糊速度。The radar transmitter transmits a linear frequency modulation signal, performs fast Fourier transform and pulse compression processing on the multi-pulse echo signal received by the radar receiver in the fast time-frequency domain, and obtains the pulse-compressed signal Sc (f,tm ), where f is the fast time frequency, tm is the slow time; the distance between the third-order maneuvering target and the radar at time tm is Among them, R0 is the initial distance between the target and the radar, a and k represent the acceleration and jerk of the target respectively; v=nvamb +v0 is the velocity of the target, among them, n is the folding factor, vamb is the fuzzy velocity, v0 is no blur speed.
进一步地,所述步骤3包括以下流程:Further, the step 3 includes the following process:
对变换后的回波信号SKT(f,tn)进行频移互相关变换得到Z(f,fd,tn),其中,fd为频移变量;对Z(f,fd,tn)沿方向进行求和得到P(fd,tn);频移互相关变换的表达式为Perform frequency-shift cross-correlation transformation on the transformed echo signal SKT (f,tn ) to obtain Z(f,fd ,tn ), where fd is the frequency shift variable; for Z(f,fd , tn ) is summed along the direction to get P(fd ,tn ); the expression of frequency shift cross-correlation transformation is
其中,*为复共轭操作。Among them, * is the complex conjugate operation.
进一步地,所述步骤4包括以下流程:Further, the step 4 includes the following process:
对P(fd,tn)进行尺度傅里叶变换得到Q(fd,fp),对Q(fd,f)p关于变量fd进行逆快速傅里叶变换得到Q(td,fp),通过Q(td,fp)峰值位置所对应的值得到定义速度其中,fp为与tn对应的频域变量;尺度傅里叶变换的表达式为Perform scale Fourier transform on P(fd ,tn ) to get Q(fd ,fp ), and perform inverse fast Fourier transform on Q(fd ,f)p with respect to variable fd to get Q(td ,fp ), get the defined velocity by the value corresponding to the peak position of Q(td ,fp ) Among them, fp is the frequency domain variable corresponding to tn ; the expression of scale Fourier transform is
其中,ζ为尺度因子。Among them, ζ is the scale factor.
进一步地,所述步骤5包括以下流程:Further, the step 5 includes the following process:
根据所述定义速度构造一维匹配滤波补偿方程Define speed according to Constructing one-dimensional matched filter compensation equation
其中,为单位虚数,c为光速,exp(·)为自然底数e为底的指数函数;in, is the unit imaginary number, c is the speed of light, and exp(·) is the exponential function with the natural base e as the base;
将与SKT(f,tn)相乘,实现一阶距离走动的校正,校正后的回波信号为Smatch1(f,tn);Will Multiply with SKT (f,tn ) to realize the correction of the first-order distance walking, and the corrected echo signal is Smatch1 (f,tn );
设定目标加速度与加加速度组合的搜索范围并进行二维搜索,待搜索的加速度和加加速度的值分别为a′和k′,其中,a′的搜索范围为[a′min,a′max],k′的搜索范围为[k′min,k′max],待搜索加速度a′和加加速度k′的搜索步长分别为Δa和Δk,在搜索范围内以搜索步长为间隔遍历每个加速度和加加速度的组合;Set the search range of the target acceleration and jerk combination and perform a two-dimensional search. The values of the acceleration and jerk to be searched are a' and k' respectively, where the search range of a' is [a'min , a'max ], the search range of k′ is [k′min , k′max ], the search steps of acceleration a′ and jerk k′ to be searched are Δa and Δk respectively, and each A combination of acceleration and jerk;
以每个加速度a′和加加速度k′组合构造二维匹配滤波方程H2(f,tn;a′,k′)与回波信号Smatch1(f,tn)相乘,得到回波信号Smatch2(f,tn);由搜索目标加速度a′和加加速度k′组合构造的二维匹配滤波方程表达式为The two-dimensional matched filter equation H2 (f,tn ; a′,k′) is multiplied with the echo signal Smatch1 (f,tn ) to obtain the echo Signal Smatch2 (f,tn ); the expression of the two-dimensional matched filter equation constructed by the combination of search target acceleration a' and jerk k' is
将Smatch2(f,tn)对快时间频率f进行逆快速傅里叶变换,然后对慢时间tn进行快速傅里叶变换,得到每次搜索后能量的相参积累值;选取相参积累值中对应积累峰值最大的结果,该相参积累值对应的加速度和加加速度的组合为目标加速度与加加速度组合,分别为和Smatch2 (f,tn ) performs an inverse fast Fourier transform on the fast time frequency f, and then performs a fast Fourier transform on the slow time tn to obtain the coherent accumulation value of energy after each search; select the coherent The result corresponding to the largest accumulated peak value in the accumulated value, the combination of acceleration and jerk corresponding to the coherent accumulated value is the combination of target acceleration and jerk, respectively and
根据和构造二维匹配滤波方程并与Smatch1(f,tn)相乘,实现二阶距离走动校正和一二阶多普勒扩散效应的消除,得到回波信号Smatch3(f,tn)。according to and The two-dimensional matched filter equation is constructed and multiplied by Smatch1 (f,tn ) to realize the second-order distance walking correction and the elimination of first- and second-order Doppler diffusion effects, and obtain the echo signal Smatch3 (f,tn ).
进一步地,所述步骤6包括以下流程:Further, the step 6 includes the following process:
将补偿后的回波信号Smatch3(f,tn)沿快时间频率f方向进行逆快速傅里叶变换得到将沿慢时间tn方向进行傅里叶变换得到目标能量的相参积累相参积累结果中峰值大于门限值的为检测到的目标;Perform inverse fast Fourier transform on the compensated echo signal Smatch3 (f,tn ) along the direction of fast time frequency f to obtain Will Perform Fourier transform along the direction of slow time tn to obtain coherent accumulation of target energy In the coherent accumulation results, the peak value greater than the threshold is the detected target;
其中,fn为与tn对应的慢时间频率变量。Among them, fn is the slow time frequency variable corresponding to tn .
本发明的有益效果:本发明提供了一种应用于三阶机动目标的相参积累检测方法,同时利用目标回波的幅度与相位信息实现相参积累,能够显著地提高雷达的检测性能。此外,本发明的所有操作均可利用快速傅里叶变换实现,提高了本发明的实时性。Beneficial effects of the present invention: the present invention provides a coherent accumulation detection method applied to third-order maneuvering targets, and at the same time utilizes the amplitude and phase information of the target echo to realize coherent accumulation, which can significantly improve the detection performance of the radar. In addition, all operations of the present invention can be realized by fast Fourier transform, which improves the real-time performance of the present invention.
附图说明Description of drawings
图1为本发明实施例的流程图。Fig. 1 is a flowchart of an embodiment of the present invention.
图2为雷达接收到的目标回波脉冲压缩后的结果图。Fig. 2 is the result diagram of the compressed target echo pulse received by the radar.
图3为使用本发明匹配滤波处理后距离走动校正结果图。Fig. 3 is a diagram of the distance walking correction result after the matched filter processing of the present invention is used.
图4为使用本发明的相参积累结果图。Figure 4 is a graph of coherent accumulation results using the present invention.
图5为使用现有方法RFT的相参积累结果图。Figure 5 is a graph of coherent accumulation results using the existing method RFT.
具体实施方式Detailed ways
本发明主要采用Matlab仿真实验的方法进行验证,在科学计算软件MatlabR2014a上验证本发明的正确性和有效性。下面结合附图对本发明的实施例做作一步的说明。The present invention mainly adopts the method of Matlab simulation experiment to verify, and verifies the correctness and effectiveness of the present invention on the scientific computing software MatlabR2014a. Embodiments of the present invention will be described further below in conjunction with the accompanying drawings.
请参阅图1,本发明提出的一种应用于三阶机动目标的相参积累检测方法,具体通过以下流程实现:Please refer to Fig. 1, a coherent accumulation detection method applied to a third-order maneuvering target proposed by the present invention is specifically implemented through the following process:
步骤1,雷达发射机发射线性调频信号,对雷达接收机接收到的多脉冲回波信号在快时间频域进行快速傅里叶变换并进行脉冲压缩处理,得到脉冲压缩后的信号Sc(f,tm),其中,f为快时间频率,tm为慢时间。Step 1, the radar transmitter transmits the chirp signal, performs fast Fourier transform and pulse compression processing on the multi-pulse echo signal received by the radar receiver in the fast time frequency domain, and obtains the pulse-compressed signal Sc (f ,tm ), where f is the fast time frequency, and tm is the slow time.
本实施例中,雷达发射机发射线性调频信号,对雷达接收机接收到的多脉冲回波信号在快时间频域进行快速傅里叶变换(FFT)并进行脉冲压缩处理,得到脉冲压缩后的信号Sc(f,tm),其中,f为快时间频率,tm为慢时间;在雷达领域,一个脉冲从发射到接收所用的时间被称为快时间,也用来表示目标距离;慢时间表示多个脉冲所需的时间;三阶机动目标与雷达在tm时刻的距离为其中,R0为目标与雷达的初始距离,a和k分别表示目标的加速度和加加速度;v=nvamb+v0为目标的速度,其中,n为折叠因子,vamb为模糊速度,v0为无模糊速度。本实施例中采用的系统参数为:R0=300km,v=2459m/s,a=100m/s2,k=60m/s3,脉冲压缩后的SNR=6dB。脉冲压缩结果如图2所示,目标能量分布在不同的距离单元中,即发生了距离走动。In this embodiment, the radar transmitter transmits a chirp signal, performs fast Fourier transform (FFT) and pulse compression processing on the multi-pulse echo signal received by the radar receiver in the fast time frequency domain, and obtains the pulse-compressed Signal Sc (f,tm ), where f is the fast time frequency, and tm is the slow time; in the field of radar, the time taken for a pulse from transmission to reception is called fast time, which is also used to indicate the target distance; The slow time represents the time required for multiple pulses; the distance between the third-order maneuvering target and the radar at time tm is Among them, R0 is the initial distance between the target and the radar, a and k represent the acceleration and jerk of the target respectively; v=nvamb +v0 is the velocity of the target, among them, n is the folding factor, vamb is the fuzzy velocity, v0 is no blur speed. The system parameters used in this embodiment are: R0 =300km, v=2459m/s, a=100m/s2 , k=60m/s3 , SNR after pulse compression=6dB. The result of pulse compression is shown in Figure 2. The target energy is distributed in different distance units, that is, distance walking has occurred.
步骤2,将脉冲压缩处理后的回波信号Sc(f,tm)在快时间频域进行三阶Keystone变换,即进行变量代换:得到变换后的回波信号SKT(f,tn);其中,tn为新的慢时间变量,fc为雷达载频。Step 2, the echo signal Sc (f, tm ) after pulse compression processing is subjected to third-order Keystone transformation in the fast time and frequency domain, that is, variable substitution: The transformed echo signal SKT (f,tn ) is obtained; where, tn is the new slow time variable, and fc is the radar carrier frequency.
步骤3,对变换后的回波信号SKT(f,tn)进行频移互相关变换得到Z(f,fd,tn),其中,fd为频移变量;对Z(f,fd,tn)沿方向进行求和得到P(fd,tn)。Step 3, perform frequency-shift cross-correlation transformation on the transformed echo signal SKT (f,tn ) to obtain Z(f,fd ,tn ), where fd is the frequency shift variable; for Z(f, fd ,tn ) are summed along the direction to get P(fd ,tn ).
本实施例中,频移互相关变换的表达式为In this embodiment, the expression of the frequency shift cross-correlation transformation is
其中,*为复共轭操作。Among them, * is the complex conjugate operation.
步骤4,对P(fd,tn)进行尺度傅里叶变换得到Q(fd,fp),对Q(fd,fp)关于变量fd进行逆快速傅里叶变换得到Q(td,fp),通过Q(td,fp)峰值位置所对应的值得到定义速度其中,fp为与tn对应的频域变量。Step 4, perform scale Fourier transform on P(fd ,tn ) to obtain Q(fd ,fp ), and perform inverse fast Fourier transform on Q(fd ,fp ) with respect to the variable fd to obtain Q (td ,fp ), get the defined velocity by the value corresponding to the peak position of Q(td ,fp ) Among them, fp is the frequency domain variable corresponding to tn .
本实施例中,对P(fd,tn)进行尺度傅里叶变换得到Q(fd,fp),对Q(fd,fp)关于变量fd进行逆快速傅里叶变换得到Q(td,fp),通过Q(td,fp)峰值位置所对应的值得到定义速度其中,fp为与tn对应的频域变量;尺度傅里叶变换的表达式为In this embodiment, perform scale Fourier transform on P(fd , tn ) to obtain Q(fd , fp ), and perform inverse fast Fourier transform on Q(fd , fp ) with respect to the variable fd Get Q(td ,fp ), and get the defined speed by the value corresponding to the peak position of Q(td ,fp ) Among them, fp is the frequency domain variable corresponding to tn ; the expression of scale Fourier transform is
其中,ζ为尺度因子。本实施例中ζ=2.67×10-7。Among them, ζ is the scale factor. In this embodiment, ζ=2.67×10-7 .
步骤5,构造匹配滤波补偿方程,对SKT(f,tn)进行补偿,得到回波信号Smatch3(f,tn)。Step 5: Construct a matched filter compensation equation to compensate SKT (f, tn ) to obtain an echo signal Smatch3 (f, tn ).
本实施例中,根据得到的定义速度构造一维匹配滤波补偿方程In this example, according to the obtained definition speed Constructing one-dimensional matched filter compensation equation
其中,为单位虚数,c为光速,exp(·)为自然底数e为底的指数函数;in, is the unit imaginary number, c is the speed of light, and exp(·) is the exponential function with the natural base e as the base;
将与SKT(f,tn)相乘,实现一阶距离走动的校正,校正后的回波信号为Smatch1(f,tn);Will Multiply with SKT (f,tn ) to realize the correction of the first-order distance walking, and the corrected echo signal is Smatch1 (f,tn );
设定目标加速度与加加速度组合的搜索范围并进行二维搜索,待搜索的加速度和加加速度的值分别为a′和k′,其中,a′的搜索范围为[a′min,a′max],k′的搜索范围为[k′min,k′max],待搜索加速度a′和加加速度k′的搜索步长分别为Δa和Δk,在搜索范围内以搜索步长为间隔遍历每个加速度和加加速度的组合;Set the search range of the target acceleration and jerk combination and perform a two-dimensional search. The values of the acceleration and jerk to be searched are a' and k' respectively, where the search range of a' is [a'min , a'max ], the search range of k′ is [k′min , k′max ], the search steps of acceleration a′ and jerk k′ to be searched are Δa and Δk respectively, and each A combination of acceleration and jerk;
以每个加速度a′和加加速度k′组合构造二维匹配滤波方程H2(f,tn;a′,k′)与回波信号Smatch1(f,tn)相乘,得到回波信号Smatch2(f,tn);由搜索目标加速度a′和加加速度k′组合构造的二维匹配滤波方程表达式为The two-dimensional matched filter equation H2 (f,tn ; a′,k′) is multiplied with the echo signal Smatch1 (f,tn ) to obtain the echo Signal Smatch2 (f,tn ); the expression of the two-dimensional matched filter equation constructed by the combination of search target acceleration a' and jerk k' is
将Smatch2(f,tn)对快时间频率f进行逆快速傅里叶变换,然后对新的慢时间tn进行快速傅里叶变换,得到每次搜索后能量的相参积累值;选取相参积累值中对应积累峰值最大的结果,该相参积累值对应的加速度和加加速度的组合为目标加速度与加加速度组合,分别为和Smatch2 (f,tn ) performs inverse fast Fourier transform on the fast time frequency f, and then performs fast Fourier transform on the new slow time tn to obtain the coherent accumulation value of energy after each search; select In the coherent cumulative value, the result corresponding to the largest cumulative peak value, the combination of acceleration and jerk corresponding to the coherent cumulative value is the combination of target acceleration and jerk, respectively and
根据和构造二维匹配滤波方程并与Smatch1(f,tn)相乘,得到回波信号Smatch3(f,tn),实现二阶距离走动与多普勒扩散效应(包括一阶和二阶多普勒扩散)的消除。according to and Construct a two-dimensional matched filter equation and multiply it with Smatch1 (f,tn ) to obtain the echo signal Smatch3 (f,tn ), which realizes the second-order distance walking and Doppler diffusion effect (including first-order and second-order Elimination of Doppler spread).
步骤6,将补偿后的回波信号Smatch3(f,tn)沿快时间频率f方向进行逆快速傅里叶变换得到将沿慢时间tn方向进行傅里叶变换得到目标能量的相参积累。Step 6, perform inverse fast Fourier transform on the compensated echo signal Smatch3 (f,tn ) along the direction of fast time frequency f to obtain Will The coherent accumulation of the target energy is obtained by Fourier transform along the slow time tn direction.
本实施例中,将补偿后的回波信号Smatch3(f,tn)沿快时间频率f方向进行逆快速傅里叶变换得到如图3所示,此时目标的能量落在同一个距离单元内,即目标的距离走动被完全校正。将将沿新的慢时间tn方向进行傅里叶变换得到目标能量的相参积累其中,fn为与tn对应的慢时间频率变量。相参积累结果如图4所示,相参积累结果中峰值大于门限值的为检测到的目标。In this embodiment, the inverse fast Fourier transform is performed on the compensated echo signal Smatch3 (f,tn ) along the direction of the fast time frequency f to obtain As shown in Figure 3, the energy of the target falls within the same distance unit at this time, that is, the distance walking of the target is completely corrected. Will The Fourier transform will be performed along the direction of the new slow time tn to obtain the coherent accumulation of the target energy Among them, fn is the slow time frequency variable corresponding to tn . The result of coherent accumulation is shown in Figure 4, and the peak in the result of coherent accumulation is greater than the threshold value is the detected target.
为了说明本方法的有效性,图5给出了使用现有RFT算法的相参积累结果。由于三阶运动目标的机动性,现有的RFT算法积累失效。In order to illustrate the effectiveness of this method, Figure 5 shows the results of coherent accumulation using the existing RFT algorithm. Due to the maneuverability of the third-order moving target, the existing RFT algorithm fails cumulatively.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810840629.5ACN108549067B (en) | 2018-07-27 | 2018-07-27 | Coherent accumulation detection method applied to third-order maneuvering target |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810840629.5ACN108549067B (en) | 2018-07-27 | 2018-07-27 | Coherent accumulation detection method applied to third-order maneuvering target |
| Publication Number | Publication Date |
|---|---|
| CN108549067Atrue CN108549067A (en) | 2018-09-18 |
| CN108549067B CN108549067B (en) | 2020-06-02 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810840629.5AActiveCN108549067B (en) | 2018-07-27 | 2018-07-27 | Coherent accumulation detection method applied to third-order maneuvering target |
| Country | Link |
|---|---|
| CN (1) | CN108549067B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109085590A (en)* | 2018-10-16 | 2018-12-25 | 中国人民解放军国防科技大学 | Broadband direct acquisition data ISAR imaging method based on ARP (Address resolution protocol) segmented coherent accumulation |
| CN109541568A (en)* | 2019-01-24 | 2019-03-29 | 中国人民解放军海军航空大学 | A kind of radar maneuvering target span from the quick phase-coherent accumulation detection method of doppler cells |
| CN109581318A (en)* | 2019-01-10 | 2019-04-05 | 中国人民解放军海军航空大学 | Radar highly maneuvering target phase-coherent accumulation detection method based on time reversal nonuniform sampling |
| CN109633622A (en)* | 2019-01-24 | 2019-04-16 | 中国人民解放军海军航空大学 | Across the unit accumulation method of radar maneuvering target based on time reversal second order Keystone transformation |
| CN109799488A (en)* | 2019-01-10 | 2019-05-24 | 中国人民解放军海军航空大学 | A kind of radar maneuvering target long-time phase-coherent accumulation method of nonparametric search |
| CN110109091A (en)* | 2019-05-23 | 2019-08-09 | 中国人民解放军战略支援部队信息工程大学 | A kind of passive radar method for parameter estimation and device for high-speed target |
| CN110221268A (en)* | 2019-06-21 | 2019-09-10 | 西北核技术研究院 | A kind of method phase-magnitude calibration filter and promote the non-coherent radar signal processing performance of short pulse |
| CN110297219A (en)* | 2019-07-11 | 2019-10-01 | 北京遥感设备研究所 | A kind of FPGA coherent pulse signalf test method based on Ethernet data transmission |
| CN110398730A (en)* | 2019-06-26 | 2019-11-01 | 中国人民解放军战略支援部队信息工程大学 | Coherent detection method of maneuvering target based on coordinate rotation and non-uniform Fourier transform |
| CN110907910A (en)* | 2019-11-27 | 2020-03-24 | 中国船舶重工集团公司第七二四研究所 | Distributed coherent radar moving target echo coherent synthesis method |
| CN111123214A (en)* | 2019-12-18 | 2020-05-08 | 南京理工大学 | High-speed and high-maneuvering target detection method based on polynomial rotation-polynomial Fourier transform |
| CN111551922A (en)* | 2020-05-18 | 2020-08-18 | 西安电子科技大学 | Three-dimensional space double/multi-base radar high-speed target detection method |
| CN111580063A (en)* | 2020-05-27 | 2020-08-25 | 西安电子科技大学 | A radar target detection method based on generalized demodulation frequency-wedge transform |
| CN113111301A (en)* | 2021-04-15 | 2021-07-13 | 中国人民解放军海军航空大学 | Keystone transformation implementation method based on time scale |
| CN113885002A (en)* | 2021-08-16 | 2022-01-04 | 西安电子科技大学 | Coherent accumulation method for external radiation source radar frequency agile signals based on scale transformation |
| CN113900088A (en)* | 2021-09-17 | 2022-01-07 | 中国科学院国家空间科学中心 | Long-time coherent accumulation method and system for uniform acceleration maneuvering target |
| CN114047502A (en)* | 2021-10-20 | 2022-02-15 | 中国科学院国家空间科学中心 | Coherent accumulation method and coherent accumulation system for high-speed maneuvering target |
| CN114384484A (en)* | 2022-01-24 | 2022-04-22 | 电子科技大学 | Segmentation processing-based rapid coherent accumulation method for uniform accelerated motion target |
| CN114609606A (en)* | 2022-05-12 | 2022-06-10 | 艾索信息股份有限公司 | Parameter estimation method and device of target object and electronic equipment |
| CN114690128A (en)* | 2022-03-28 | 2022-07-01 | 西安电子科技大学 | Coherent accumulation method of plasma sheathed target based on Doppler frequency correlation cancellation |
| CN114966583A (en)* | 2022-01-21 | 2022-08-30 | 中国人民解放军战略支援部队信息工程大学 | Maneuvering target coherent detection method and system based on improved coordinate rotation and Lu distribution |
| CN115902784A (en)* | 2022-12-12 | 2023-04-04 | 电子科技大学 | Accumulation detection method for uniformly accelerating moving ultra-high-speed targets in large time-wide bandwidth area radar |
| CN116165619A (en)* | 2022-09-23 | 2023-05-26 | 中国人民解放军国防科技大学 | A Method of Motion Parameter Estimation and Coherent Accumulation Detection for Highly Maneuvering Targets |
| CN116299490A (en)* | 2023-01-17 | 2023-06-23 | 哈尔滨工程大学 | An Underwater Acoustic Multi-target Detection Method Based on Adaptive Doppler Filter-Radon Fourier Transform |
| CN117590347A (en)* | 2024-01-18 | 2024-02-23 | 四川天中星航空科技有限公司 | Target simulation method based on radar echo signals |
| CN116165619B (en)* | 2022-09-23 | 2025-10-17 | 中国人民解放军国防科技大学 | High maneuvering target motion parameter estimation and coherent accumulation detection method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2343571A1 (en)* | 2010-01-11 | 2011-07-13 | BAE Systems PLC | Method of providing a radar high range resolution profile |
| CN104076351A (en)* | 2014-06-30 | 2014-10-01 | 电子科技大学 | Phase-coherent accumulation detection method for high-speed high maneuvering target |
| CN104950295A (en)* | 2015-05-05 | 2015-09-30 | 电子科技大学 | High-speed maneuvering target detecting method based on correlation functions and scale changes |
| CN106970371A (en)* | 2017-04-28 | 2017-07-21 | 电子科技大学 | A kind of object detection method based on Keystone and matched filtering |
| CN107132534A (en)* | 2017-06-27 | 2017-09-05 | 西安电子科技大学 | A kind of optimization method of High-Speed RADAR target frequency domain detection |
| CN107450055A (en)* | 2017-07-15 | 2017-12-08 | 西安电子科技大学 | High-speed maneuver object detection method based on Discrete Linear frequency modulation Fourier transform |
| CN107561508A (en)* | 2017-08-24 | 2018-01-09 | 电子科技大学 | A kind of phase-coherent accumulation detection method for even accelerated motional objects |
| CN108089171A (en)* | 2018-02-07 | 2018-05-29 | 成都电科智达科技有限公司 | A kind of radar rapid detection method for unmanned plane target |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2343571A1 (en)* | 2010-01-11 | 2011-07-13 | BAE Systems PLC | Method of providing a radar high range resolution profile |
| CN104076351A (en)* | 2014-06-30 | 2014-10-01 | 电子科技大学 | Phase-coherent accumulation detection method for high-speed high maneuvering target |
| CN104950295A (en)* | 2015-05-05 | 2015-09-30 | 电子科技大学 | High-speed maneuvering target detecting method based on correlation functions and scale changes |
| CN106970371A (en)* | 2017-04-28 | 2017-07-21 | 电子科技大学 | A kind of object detection method based on Keystone and matched filtering |
| CN107132534A (en)* | 2017-06-27 | 2017-09-05 | 西安电子科技大学 | A kind of optimization method of High-Speed RADAR target frequency domain detection |
| CN107450055A (en)* | 2017-07-15 | 2017-12-08 | 西安电子科技大学 | High-speed maneuver object detection method based on Discrete Linear frequency modulation Fourier transform |
| CN107561508A (en)* | 2017-08-24 | 2018-01-09 | 电子科技大学 | A kind of phase-coherent accumulation detection method for even accelerated motional objects |
| CN108089171A (en)* | 2018-02-07 | 2018-05-29 | 成都电科智达科技有限公司 | A kind of radar rapid detection method for unmanned plane target |
| Title |
|---|
| JIANCHENG ZHANG等: "Novel Fast Coherent Detection Algorithm for Radar Maneuvering Target With Jerk Motion", 《IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109085590A (en)* | 2018-10-16 | 2018-12-25 | 中国人民解放军国防科技大学 | Broadband direct acquisition data ISAR imaging method based on ARP (Address resolution protocol) segmented coherent accumulation |
| CN109799488B (en)* | 2019-01-10 | 2022-07-15 | 中国人民解放军海军航空大学 | A long-term coherent accumulation method for radar maneuvering targets based on nonparametric search |
| CN109581318A (en)* | 2019-01-10 | 2019-04-05 | 中国人民解放军海军航空大学 | Radar highly maneuvering target phase-coherent accumulation detection method based on time reversal nonuniform sampling |
| CN109581318B (en)* | 2019-01-10 | 2022-07-15 | 中国人民解放军海军航空大学 | Coherent accumulation detection method for radar high maneuvering targets based on time-reversal non-uniform sampling |
| CN109799488A (en)* | 2019-01-10 | 2019-05-24 | 中国人民解放军海军航空大学 | A kind of radar maneuvering target long-time phase-coherent accumulation method of nonparametric search |
| CN109541568B (en)* | 2019-01-24 | 2022-08-05 | 中国人民解放军海军航空大学 | Radar maneuvering target cross-range and Doppler unit fast coherent accumulation detection method |
| CN109633622A (en)* | 2019-01-24 | 2019-04-16 | 中国人民解放军海军航空大学 | Across the unit accumulation method of radar maneuvering target based on time reversal second order Keystone transformation |
| CN109541568A (en)* | 2019-01-24 | 2019-03-29 | 中国人民解放军海军航空大学 | A kind of radar maneuvering target span from the quick phase-coherent accumulation detection method of doppler cells |
| CN110109091A (en)* | 2019-05-23 | 2019-08-09 | 中国人民解放军战略支援部队信息工程大学 | A kind of passive radar method for parameter estimation and device for high-speed target |
| CN110109091B (en)* | 2019-05-23 | 2021-11-09 | 中国人民解放军战略支援部队信息工程大学 | Passive radar parameter estimation method and device for high-speed target |
| CN110221268A (en)* | 2019-06-21 | 2019-09-10 | 西北核技术研究院 | A kind of method phase-magnitude calibration filter and promote the non-coherent radar signal processing performance of short pulse |
| CN110398730A (en)* | 2019-06-26 | 2019-11-01 | 中国人民解放军战略支援部队信息工程大学 | Coherent detection method of maneuvering target based on coordinate rotation and non-uniform Fourier transform |
| CN110398730B (en)* | 2019-06-26 | 2021-07-06 | 中国人民解放军战略支援部队信息工程大学 | Coherent detection method of maneuvering target based on coordinate rotation and non-uniform Fourier transform |
| CN110297219A (en)* | 2019-07-11 | 2019-10-01 | 北京遥感设备研究所 | A kind of FPGA coherent pulse signalf test method based on Ethernet data transmission |
| CN110297219B (en)* | 2019-07-11 | 2021-09-14 | 北京遥感设备研究所 | FPGA (field programmable Gate array) coherence test method based on Ethernet data transmission |
| CN110907910B (en)* | 2019-11-27 | 2022-06-03 | 中国船舶重工集团公司第七二四研究所 | Distributed coherent radar moving target echo coherent synthesis method |
| CN110907910A (en)* | 2019-11-27 | 2020-03-24 | 中国船舶重工集团公司第七二四研究所 | Distributed coherent radar moving target echo coherent synthesis method |
| CN111123214B (en)* | 2019-12-18 | 2023-09-01 | 南京理工大学 | Polynomial rotation-polynomial Fourier transform high-speed high-maneuvering target detection method |
| CN111123214A (en)* | 2019-12-18 | 2020-05-08 | 南京理工大学 | High-speed and high-maneuvering target detection method based on polynomial rotation-polynomial Fourier transform |
| CN111551922B (en)* | 2020-05-18 | 2023-03-28 | 西安电子科技大学 | Three-dimensional space double/multi-base radar high-speed target detection method |
| CN111551922A (en)* | 2020-05-18 | 2020-08-18 | 西安电子科技大学 | Three-dimensional space double/multi-base radar high-speed target detection method |
| CN111580063A (en)* | 2020-05-27 | 2020-08-25 | 西安电子科技大学 | A radar target detection method based on generalized demodulation frequency-wedge transform |
| CN113111301A (en)* | 2021-04-15 | 2021-07-13 | 中国人民解放军海军航空大学 | Keystone transformation implementation method based on time scale |
| CN113885002A (en)* | 2021-08-16 | 2022-01-04 | 西安电子科技大学 | Coherent accumulation method for external radiation source radar frequency agile signals based on scale transformation |
| CN113885002B (en)* | 2021-08-16 | 2024-07-02 | 西安电子科技大学 | Method for accumulating phase parameters of frequency agile signals of external radiation source radar based on scale transformation |
| CN113900088A (en)* | 2021-09-17 | 2022-01-07 | 中国科学院国家空间科学中心 | Long-time coherent accumulation method and system for uniform acceleration maneuvering target |
| CN114047502A (en)* | 2021-10-20 | 2022-02-15 | 中国科学院国家空间科学中心 | Coherent accumulation method and coherent accumulation system for high-speed maneuvering target |
| CN114047502B (en)* | 2021-10-20 | 2024-07-05 | 中国科学院国家空间科学中心 | Coherent accumulation method and coherent accumulation system for high-speed maneuvering target |
| CN114966583A (en)* | 2022-01-21 | 2022-08-30 | 中国人民解放军战略支援部队信息工程大学 | Maneuvering target coherent detection method and system based on improved coordinate rotation and Lu distribution |
| CN114384484A (en)* | 2022-01-24 | 2022-04-22 | 电子科技大学 | Segmentation processing-based rapid coherent accumulation method for uniform accelerated motion target |
| CN114384484B (en)* | 2022-01-24 | 2023-01-24 | 电子科技大学 | Segmentation processing-based rapid coherent accumulation method for uniform accelerated motion target |
| CN114690128A (en)* | 2022-03-28 | 2022-07-01 | 西安电子科技大学 | Coherent accumulation method of plasma sheathed target based on Doppler frequency correlation cancellation |
| CN114609606A (en)* | 2022-05-12 | 2022-06-10 | 艾索信息股份有限公司 | Parameter estimation method and device of target object and electronic equipment |
| CN116165619A (en)* | 2022-09-23 | 2023-05-26 | 中国人民解放军国防科技大学 | A Method of Motion Parameter Estimation and Coherent Accumulation Detection for Highly Maneuvering Targets |
| CN116165619B (en)* | 2022-09-23 | 2025-10-17 | 中国人民解放军国防科技大学 | High maneuvering target motion parameter estimation and coherent accumulation detection method |
| CN115902784A (en)* | 2022-12-12 | 2023-04-04 | 电子科技大学 | Accumulation detection method for uniformly accelerating moving ultra-high-speed targets in large time-wide bandwidth area radar |
| CN115902784B (en)* | 2022-12-12 | 2023-09-08 | 电子科技大学 | Uniform acceleration motion ultra-high-speed target accumulation detection method for large-time wide-bandwidth product radar |
| CN116299490A (en)* | 2023-01-17 | 2023-06-23 | 哈尔滨工程大学 | An Underwater Acoustic Multi-target Detection Method Based on Adaptive Doppler Filter-Radon Fourier Transform |
| CN116299490B (en)* | 2023-01-17 | 2023-12-05 | 哈尔滨工程大学 | Underwater sound multi-target detection method based on self-adaptive Doppler filtering-Radon Fourier transformation |
| CN117590347A (en)* | 2024-01-18 | 2024-02-23 | 四川天中星航空科技有限公司 | Target simulation method based on radar echo signals |
| CN117590347B (en)* | 2024-01-18 | 2024-04-02 | 四川天中星航空科技有限公司 | Target simulation method based on radar echo signals |
| Publication number | Publication date |
|---|---|
| CN108549067B (en) | 2020-06-02 |
| Publication | Publication Date | Title |
|---|---|---|
| CN108549067B (en) | Coherent accumulation detection method applied to third-order maneuvering target | |
| CN107561508B (en) | A Coherent Accumulation Detection Method for Uniformly Accelerated Moving Targets | |
| CN106970371B (en) | A kind of object detection method based on Keystone and matched filtering | |
| CN111736128B (en) | Coherent accumulation method based on SKT-SIAF-MSCFT | |
| CN110398730B (en) | Coherent detection method of maneuvering target based on coordinate rotation and non-uniform Fourier transform | |
| CN104076351B (en) | Phase-coherent accumulation detection method for high-speed high maneuvering target | |
| CN104062640B (en) | A Fast Realization Method of Radar Range Migration Compensation for External Radiation Sources | |
| CN106896358A (en) | A kind of high-speed target phase-coherent accumulation detection method based on position rotation transformation | |
| CN110161477B (en) | Maneuvering Target Detection Method Based on Multivariate Resampling Correlation Function | |
| CN107329138B (en) | Distance walking correction and coherent accumulation detection method for PD radar | |
| CN104730498A (en) | Target detection method based on Keystone and weighting rotating FFT | |
| CN108549066B (en) | A high-speed target accumulation detection method for broadband radar based on scale RFT | |
| CN110346798B (en) | Bistatic synthetic aperture radar wavenumber domain efficient imaging processing method | |
| CN113203998A (en) | ISAR translation compensation and imaging method, system, medium and device | |
| CN113376601A (en) | Side lobe suppression method of frequency agile radar based on CLEAN algorithm | |
| CN107976676B (en) | An Airborne Synthetic Aperture Radar Moving Target Imaging Method | |
| CN116299490B (en) | Underwater sound multi-target detection method based on self-adaptive Doppler filtering-Radon Fourier transformation | |
| CN113406636A (en) | NLCS imaging method of curve motion bistatic SAR | |
| CN112034447A (en) | A two-phase modulation method and device for improving the detection performance of pulse Doppler radar | |
| CN114488054B (en) | Computationally efficient synthetic aperture radar ground moving target focusing method | |
| CN114114264B (en) | Space maneuvering target ISAR imaging method, device, equipment and storage medium | |
| CN113567983B (en) | Radar synthetic aperture sparse imaging method and system using slide rail | |
| CN114966635A (en) | Moving object line spectrum enhancement method based on long-time coherent accumulation | |
| CN114371460A (en) | Airborne radar sea surface moving target energy accumulation and sea clutter suppression method | |
| CN108594229B (en) | Satellite-borne SAR intra-pulse Doppler effect two-dimensional compensation method and device and storage medium |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |